JP5797998B2 - Heat pump type water heater - Google Patents
Heat pump type water heater Download PDFInfo
- Publication number
- JP5797998B2 JP5797998B2 JP2011225690A JP2011225690A JP5797998B2 JP 5797998 B2 JP5797998 B2 JP 5797998B2 JP 2011225690 A JP2011225690 A JP 2011225690A JP 2011225690 A JP2011225690 A JP 2011225690A JP 5797998 B2 JP5797998 B2 JP 5797998B2
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- temperature
- boiling
- bath
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 316
- 238000009835 boiling Methods 0.000 claims description 123
- 238000010438 heat treatment Methods 0.000 claims description 80
- 238000003303 reheating Methods 0.000 claims description 11
- 230000003203 everyday effect Effects 0.000 claims description 5
- 230000002354 daily effect Effects 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 claims 1
- 239000003507 refrigerant Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 238000003287 bathing Methods 0.000 description 7
- 206010037660 Pyrexia Diseases 0.000 description 6
- 238000009413 insulation Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
本発明は、ヒートポンプ式給湯装置に関するものである。 The present invention relates to a heat pump type hot water supply apparatus.
従来よりこの種のヒートポンプ式給湯装置においては、給水管と出湯管が接続されて湯水を貯湯する貯湯タンクと、この貯湯タンク下部から取り出した湯水を加熱して貯湯タンク上部に戻す加熱手段と、所定の時間帯に加熱手段による沸き上げを開始し、加熱手段への入水温度が所定の沸き終い温度以上となると沸き上げを終了するようにし、貯湯タンク内の残っている中温水の温度に応じて沸き終い温度を変更して中温水の沸き上げを防止して、ヒートポンプの加熱効率を低下させないようにしたものがあった。 Conventionally, in this type of heat pump type hot water supply apparatus, a hot water storage tank connected to a hot water supply pipe and a hot water discharge pipe to store hot water, heating means for heating the hot water taken out from the lower part of the hot water storage tank and returning it to the upper part of the hot water storage tank, Boiling is started by the heating means at a predetermined time zone, and when the temperature of water entering the heating means exceeds the predetermined boiling end temperature, the boiling is terminated, and the temperature of the medium temperature water remaining in the hot water storage tank is reached. In response to this, there was one in which the boiling end temperature was changed to prevent boiling of the medium temperature water so as not to lower the heating efficiency of the heat pump.
しかし、この従来のものでは、中温水の温度に応じて沸き終い温度を変更するため、中温水が多量に残っている場合に沸き上げ量が少なくなるため湯切れの可能性が高まってしまうという問題があった。 However, in this conventional one, since the boiling end temperature is changed according to the temperature of the intermediate temperature water, the amount of boiling is reduced when a large amount of the intermediate temperature water remains, so the possibility of running out of hot water increases. There was a problem.
そこで、本発明は上記課題を解決するため、請求項1では、給水管と出湯管が接続されて湯水を貯湯する貯湯タンクと、この貯湯タンク下部から取り出した湯水を加熱して貯湯タンク上部に戻すヒートポンプ式加熱手段と、所定の時間帯に前記ヒートポンプ式加熱手段による沸き上げを開始し、前記ヒートポンプ式加熱手段への入水温度が所定の沸き終い温度以上となると沸き上げを終了すると共に、前記貯湯タンク内の中温水の発生状況を判断する制御手段とを備え、前記制御手段は、過去複数日間の一日毎の使用熱量のバラツキ度合を算出し、バラツキ度合が所定値よりも小さい場合に中温水の発生量が少ないと判断して、前記所定の沸き終い温度を、中温水の発生量が少ないと判断しなかった場合よりも低い温度に変更するようにした。 Therefore, in order to solve the above problems, the present invention provides a hot water storage tank in which hot water is stored by connecting a water supply pipe and a hot water discharge pipe, and hot water taken out from the lower part of the hot water storage tank to heat the hot water in the upper part of the hot water storage tank. Heat pump type heating means to be returned, start boiling by the heat pump type heating means in a predetermined time zone, and when the temperature of water entering the heat pump type heating means is equal to or higher than the predetermined boiling end temperature, Control means for determining the occurrence of intermediate temperature water in the hot water storage tank, the control means calculates the degree of variation in the amount of heat used per day for the past multiple days, and when the degree of variation is smaller than a predetermined value it is determined that the generation amount of medium-temperature water is small, and to change the predetermined boiling it away temperature, to a temperature lower than in the case of not determining that the generated amount of medium-temperature water is small
また、請求項2では、給水管と出湯管が接続されて湯水を貯湯する貯湯タンクと、この貯湯タンク下部から取り出した湯水を加熱して貯湯タンク上部に戻すヒートポンプ式加熱手段と、所定の時間帯に前記ヒートポンプ式加熱手段による沸き上げを開始し、前記ヒートポンプ式加熱手段への入水温度が所定の沸き終い温度以上となると沸き上げを終了すると共に、前記貯湯タンク内の中温水の発生状況を判断する制御手段と、浴槽内の浴水を前記貯湯タンク内の湯水で追い焚きする風呂熱交換器と、前記浴槽と前記風呂熱交換器とを浴水が循環可能に接続する風呂循環回路とを備え、前記制御手段は、浴水追い焚きによる風呂加熱量が閾値以下であった連続回数が過去複数日間連続し、かつ、過去複数日間の一日毎の使用熱量に基づいて算出されるバラツキ度合が所定値よりも小さい場合、中温水の発生量が少ないと判断し、前記所定の沸き終い温度を中温水の発生量が少ないと判断しなかった場合よりも低い温度に変更するようにした。 According to a second aspect of the present invention, a hot water storage tank in which hot water is stored by connecting a water supply pipe and a hot water discharge pipe, heat pump heating means for heating the hot water taken out from the lower part of the hot water storage tank and returning it to the upper part of the hot water storage tank, and a predetermined time The heating by the heat pump type heating means is started in the belt, and when the temperature of water entering the heat pump type heating means exceeds a predetermined boiling end temperature, the boiling is finished and the state of occurrence of medium temperature water in the hot water storage tank A bath heat circuit that connects the bath water to the tub and the bath heat exchanger so that the bath water can circulate. with the door, said control means continuously count bath heating amount is equal to or less than the threshold value are continuous past several days by reheating bath water, and, calculated on the basis of the use amount of heat per day over the past several days If the variation degree that is smaller than a predetermined value, determines that the generation amount of medium-temperature water is small, change to a lower temperature than if no is determined that the generation amount of medium-temperature water to the predetermined boiling it away temperature is less I did it.
また、請求項3では、前記バラツキ度合は、過去複数日間の一日毎の使用熱量の標準偏差から算出するようにした。
Further, in
また、請求項4では、前記バラツキ度合は、過去複数日間の一日毎の使用熱量の最大値と最小値の差から算出するようにした。
Further, in
本発明によれば、使用湯量が日々一定でばらつかないような使用パターンの中温水の発生量が少ない状況が所定期間継続するような場合、沸き終い温度を低い温度に変更することで、所定の時間帯での中温水の沸き上げを防止してヒートポンプの加熱効率を向上させることができ、一方、日々の使用湯量がばらつくような使用パターンの中温水の発生量が多い場合、沸き終い温度を高い温度に変更することで、所定の時間帯での沸き上げ時に中温水も沸き上げ、沸き上げ量を確実に確保して湯切れを防止することができる。このように、ユーザーの使用状況に合わせて、湯切れを防止した上で最適かつ効率的な沸き上げを行うことができる。 According to the present invention, if circumstances generation amount of hot water is smaller in the use pattern, such as using hot water is no variation in the daily constant as continues for a predetermined time period, by changing the boiling it away temperature lower temperature If, to prevent boiling of the hot water in at a given time period can be improved heating efficiency of the heat pump, whereas, in many cases the generation amount of the hot water in the usage patterns such as day-to-day use hot water varies, By changing the boiling end temperature to a high temperature, it is possible to boil up the medium-temperature water at the time of boiling in a predetermined time zone, and to ensure the amount of boiling to prevent hot water from running out. As described above, it is possible to perform boiling up optimally and efficiently in accordance with the use situation of the user while preventing hot water from running out.
本発明の一実施形態のヒートポンプ式給湯装置を図面に基づいて説明する。
1は湯水を貯湯する貯湯タンク(ここではタンク容量370L)、2は貯湯タンク1に給水する給水管、3は給水管2に設けられ給水圧を減圧する減圧弁、4は貯湯タンク1上部から出湯する出湯管、5は出湯管4に設けられ過圧を逃がす過圧逃がし弁、6は減圧弁3の下流側の給水管2から分岐した給水バイパス管、7は出湯管4からの湯水と給水バイパス管6からの水とを混合する給湯混合弁、8は給湯混合弁7からの湯水を給湯する給湯管、9は給湯管8に設けられた給湯温度センサ、10は給湯管8を流れる流量を検出する給湯流量センサ、11は給水温度を検出する給水温度センサ、12は給湯栓である。
A heat pump type hot water supply apparatus according to an embodiment of the present invention will be described with reference to the drawings.
1 is a hot water storage tank for storing hot water (a tank capacity of 370 L in this case), 2 is a water supply pipe for supplying water to the hot
13は浴槽、14は貯湯タンク1内の上部に設けた風呂熱交換器、15は浴槽13と風呂熱交換器14とを浴水が循環可能に接続している風呂循環回路、16は風呂循環回路15途中に設けられた風呂循環ポンプ、17は浴槽13から風呂熱交換器14へ戻る浴水の温度を検出する風呂戻り温度センサ、18は風呂熱交換器14から浴槽13へ往く浴水の温度を検出する風呂往き温度センサ、19は浴槽13内の水位を圧力により検出する水位センサ、20は給湯管8から分岐されて風呂循環回路15へ接続された湯張り管、21は湯張り管20の開閉を行う湯張り電磁弁である。
13 is a bathtub, 14 is a bath heat exchanger provided in the upper part of the hot
22は貯湯タンク1の側面上下に複数設けられ各部の貯湯温度を検出する貯湯温度センサであり、ここでは、貯湯温度センサ22aは30L、貯湯温度センサ22bは80L、貯湯温度センサ22cは130L、貯湯温度センサ22dは180L、貯湯温度センサ22eは230L、貯湯温度センサ22fは280L、貯湯温度センサ22gは330Lの容量の貯湯温度を検出するものである。
A plurality of hot water storage sensors 22 are provided on the upper and lower sides of the hot water storage tank 1 to detect the hot water storage temperature of each part. Here, the hot water
23は貯湯タンク1内の湯水を加熱するヒートポンプ式加熱手段で、冷媒を圧縮する圧縮機24と、圧縮された高温冷媒と貯湯タンク1からの湯水とを熱交換する冷媒水熱交換器25と、冷媒水熱交換器25で放熱された冷媒を減圧する膨張弁26と、低温低圧の冷媒を蒸発される蒸発器としての空気熱交換器27とを冷媒配管28で環状に接続して構成され、一定の加熱能力で作動するように制御されるもので、貯湯タンク1下部から取り出した湯を加熱して貯湯タンク1上部に戻すようにしているため沸き上げる湯量を自在にコントロールできるものである。なお、29は空気熱交換機27に熱源となる外気を送風する送風ファンである。
23 is a heat pump heating means for heating the hot water in the hot water storage tank 1, a
30は貯湯タンク1の下部と冷媒水熱交換器25の入口とを接続し、冷媒水熱交換機25の出口と貯湯タンク1の上部とを接続する加熱循環回路、31は冷媒水熱交換機25入口側の加熱循環回路30に設けられ貯湯タンク1下部から取り出した湯水を冷媒水熱交換機25を介して貯湯タンク1上部に循環させる加熱循環ポンプ、32は冷媒水熱交換機25に流入する湯水の温度を検出する入水温度センサ、33は冷媒水熱交換機25から流出する湯水の温度を検出する沸き上げ温度センサ、34は外気温度を検出する外気温度センサである。
30 is a heating circuit that connects the lower part of the hot water storage tank 1 and the inlet of the refrigerant
35は給湯温度や各種必要な設定を行うためのリモートコントローラで、給湯設定温度や風呂設定温度を表示する表示部36と、給湯設定温度および風呂設定温度を設定する温度設定スイッチ37と、浴槽13への所定湯量の湯張りに続いて所定の保温時間だけ保温運転を行わせるフロスイッチ38と、浴水を加熱する追焚き動作を行わせる追焚きスイッチ39と、貯湯タンク1からの使用熱量の実績に対する余裕分を多めにして翌日に必要な熱量(必要熱量Q)を設定する多めモードと使用熱量の実績に対する余裕分を少なめにして必要熱量Qを設定する少なめモードの少なくとも2種類の沸き上げモードを手動操作によって切り替える沸き上げモード切替スイッチ40とを備えている。
41はこのヒートポンプ式風呂給湯機の作動を制御する制御手段で、予め作動を制御するためのプログラムが記憶されていると共に、演算、比較、記憶機能、カウント機能を有し、給湯温度センサ9、給湯流量センサ10、給水温度センサ11、風呂戻り温度センサ17、風呂往き温度センサ18、水位センサ19、貯湯温度センサ22a〜e、入水温度センサ32、沸き上げ温度センサ33、外気温度センサ34にて検出される値が入力され、給湯混合弁7、風呂循環ポンプ16、湯張り電磁弁21、圧縮機24、膨張弁26、送風ファン29、加熱循環ポンプ31の駆動を制御し、沸き上げ動作、給湯動作や風呂加熱動作等を制御するもので、リモートコントローラ35と通信可能に接続されているものである。
41 is a control means for controlling the operation of the heat pump bath water heater, and stores a program for controlling the operation in advance and has a calculation, comparison, storage function, and count function. Hot water
<給湯動作>
次に、給湯栓12が開かれ、給湯流量センサ10が給湯開始と見なせる量以上の流量を検出すると、制御手段41は給湯温度センサ9で検出する給湯温度がリモートコントローラ35で設定した給湯設定温度となるように給湯混合弁7の開度を調節し、出湯管4からの湯と給水バイパス管6からの水とを混合して給湯設定温度の湯を給湯する。
<Hot-water supply operation>
Next, when the hot-
このとき、制御手段41は、給水温度センサ11で検出する給水温度と給湯流量センサ11で検出する給湯流量と給湯設定温度とから使用熱量を所定温度の給湯量に換算して、積算記憶する。
At this time, the control means 41 converts the amount of heat used into a hot water supply amount of a predetermined temperature from the hot water supply temperature detected by the hot water
そして、給湯栓12が閉じられる等して給湯流量センサ10が検出する流量が給湯停止と見なせる量未満の流量まで低下すると、制御手段41は給湯混合弁7の開度調節を終了し、給湯を終了する。
When the flow rate detected by the hot water supply
<湯張り動作>
また、リモートコントローラ35の風呂スイッチ38がオンされた場合について説明すると、制御手段41は湯張り電磁弁21を開き、給湯温度センサ9で検出する給湯温度がリモートコントローラ35で設定した風呂設定温度となるように給湯混合弁7の開度を調節して風呂設定温度の湯を湯張りし、給湯流量センサ10が検出する湯張り電磁弁21を開いてからの流量積算値が予めリモートコントローラ35等で設定した湯張り湯量に達すると湯張り電磁弁21を閉じる。
<Water filling operation>
The case where the
このとき、制御手段41は、給水温度センサ11で検出する給水温度と給湯流量センサ11で検出する給湯流量と風呂設定温度とから浴槽13へ給湯された使用熱量を所定温度の給湯量に換算して、積算記憶する。
At this time, the control means 41 converts the amount of used hot water supplied to the
そして、湯張り運転を完了すると制御手段41は所定の保温時間(例えば2時間)の保温運転を行う。この保温運転では、定期的に風呂循環ポンプ16を駆動して浴水温度をチェックし、風呂設定温度未満であれば風呂加熱要求ありとして風呂循環ポンプ16の駆動を継続して浴水を風呂設定温度まで加熱するようにしている。そして、湯張り運転の完了から所定の保温時間が経過すると、浴水の保温運転を行わないようにしている。
When the hot water filling operation is completed, the control means 41 performs a heat insulation operation for a predetermined heat insulation time (for example, 2 hours). In this heat insulation operation, the
<追い焚き動作>
また、リモートコントローラ35の追い焚きスイッチ39がオンされると、制御手段41は、風呂加熱要求ありとして風呂設定温度まで加熱する追い焚き運転を行うようにしており、追い焚き運転によって風呂加熱要求が発生すると、制御手段41は、風呂循環ポンプ16を駆動開始し、浴水を風呂熱交換器14に循環させて、貯湯タンク1内の貯湯熱によって浴水を加熱する風呂加熱動作を開始し、そして、風呂戻り温度センサ17が風呂設定温度以上を検出すると、風呂循環ポンプ16を駆動停止して風呂加熱動作を終了する。
<Casting action>
When the
<沸き上げ動作>
次に、電力料金単価の安価な深夜の沸き上げ動作について、図2のフローチャートに基づいて説明する。ここでは、所定の時間帯である23時から翌朝7時までの深夜時間帯がそれ以外の昼間時間帯よりも電力料金単価が安価な料金制度に基づいて説明するが、これに限られず、例えば22時から翌朝8時までを安価な深夜時間帯とする料金制度でもよいものである。
<Boiling operation>
Next, a low-cost boiling operation at a low power charge unit price will be described based on the flowchart of FIG. Here, a description will be given based on a rate system in which the power unit price is lower than the other daytime hours in the midnight time zone from 23:00 to 7:00 the next morning, which is a predetermined time zone, but is not limited to this. It is also possible to use a fee system with a cheap midnight time zone from 22:00 to 8:00 the next morning.
現在時刻が23時になり深夜時間帯の開始時刻となると(ステップS1でYes)、制御手段41は設定されている沸き上げモードと、給湯負荷として積算記憶している過去数日分の1日単位の使用熱量とに基づいて翌日に必要な必要熱量Qを算出、決定する(ステップS2)。ここでは、過去一週間の所定温度換算の給湯量の平均値と、その標準偏差に基づく値と、沸き上げモードの種類に応じた余裕分(例えば多めモードでは43℃換算100L分の熱量、少なめモードでは43℃換算50L分の熱量)との和から必要熱量Qを算出、決定するようにしている。 When the current time is 23:00 and the start time of the midnight time zone is reached (Yes in step S1), the control means 41 is set to the heating mode that has been set and the unit of the past several days accumulated and stored as the hot water supply load. The necessary heat quantity Q required for the next day is calculated and determined based on the heat quantity used (step S2). Here, the average value of the hot water supply amount converted into the predetermined temperature for the past one week, the value based on the standard deviation, and the allowance according to the type of the heating mode (for example, in the large mode, the heat amount for 100 L converted to 43 ° C., less In the mode, the required amount of heat Q is calculated and determined from the sum of the amount of heat of 43 L converted to 50 L).
次に、制御手段41は、外気温度センサ34で検出する外気温度Taに応じ、予め記憶されている外気温度Taに応じたテーブルデータから目標沸き上げ温度Tsetを決定する(ステップS3)。ここでは、目標沸き上げ温度Tsetを外気温度Taが10℃未満で75℃、外気温度Taが10℃以上では70℃としている。 Next, the control means 41 determines the target boiling temperature Tset from the table data corresponding to the stored outside air temperature Ta according to the outside air temperature Ta detected by the outside air temperature sensor 34 (step S3). Here, the target boiling temperature Tset is 75 ° C. when the outside air temperature Ta is less than 10 ° C., and 70 ° C. when the outside air temperature Ta is 10 ° C. or more.
なお、外気温度Taと目標沸き上げ温度Tsetの関係データの代わりに、給水温度Twと目標沸き上げ温度Tsetのテーブルデータを制御手段41に予め記憶し、ステップS3では、給水温度センサ11、最下部の貯湯温度センサ22gあるいは入水温度センサ32で検出される給水温度Twに基づいて目標沸き上げ温度Tsetを決定する構成としてもよい。
Note that table data of the feed water temperature Tw and the target boiling temperature Tset is stored in advance in the control means 41 instead of the relationship data between the outside air temperature Ta and the target boiling temperature Tset. The target boiling temperature Tset may be determined based on the feed water temperature Tw detected by the hot water storage temperature sensor 22g or the incoming
そして、制御手段41は、必要熱量Qを目標沸き上げ温度Tsetから給水温度Twを引いた値で除して、目標沸き上げ量Vを算出する(ステップS4)。このとき、目標沸き上げ量Vは、貯湯温度センサ22a〜gの位置に応じて補正され、算出された値が、130L以下では130L、130L超180L以下では180L、180L超230L未満では230L、230L超280L以下では280L、280L超では330Lを目標沸き上げ量Vとなるように補正して決定していると共に、決定された目標沸き上げ量Vに対応する貯湯温度センサ22c〜gのいずれか一つを沸き終いを判定する貯湯温度センサとする。なお、必要熱量Qが多い場合は、深夜時間帯に沸き上げ切れなかった不足分を昼間時間帯の沸き増し動作で沸き上げるようにしている。
Then, the control means 41 calculates the target boiling amount V by dividing the required heat quantity Q by the value obtained by subtracting the feed water temperature Tw from the target boiling temperature Tset (step S4). At this time, the target boiling amount V is corrected in accordance with the position of the hot water
次に、制御手段41は、貯湯温度センサ22a〜gの検出温度に基づき、残湯判定温度(例えば50℃)以上の残湯量Vzを算出し(ステップS5)、目標沸き上げ量Vから残湯量Vzを減じて沸き上げ必要量Vpを算出する(ステップS6)。
Next, the control means 41 calculates the remaining hot water amount Vz equal to or higher than the remaining hot water determination temperature (for example, 50 ° C.) based on the detected temperatures of the hot water
そして、制御手段41は、過去の所定期間(例えば一週間)の単位期間(例えば1日)毎の使用熱量のバラツキ度合を算出する(ステップS7)。ここで、バラツキ度合は、過去一週間の一日毎の使用熱量の標準偏差や、過去一週間の一日毎の使用熱量の最大使用熱量と最小使用熱量の差をバラツキ度合を表す数値とすることができる。 And the control means 41 calculates the variation degree of the usage-amount of heat | fever for every unit period (for example, 1 day) of the past predetermined period (for example, one week) (step S7). Here, the variation degree may be a standard deviation of the daily usage heat amount in the past week or the difference between the maximum usage heat amount and the minimum usage heat amount per day in the past week as a numerical value representing the variation degree. it can.
次に、制御手段41は、前記ステップS7で算出したバラツキ度合を表す数値を予め定められた所定値と比較し(ステップS8)、バラツキ度合が小さい場合は、過去所定期間にわたり中温水の発生量が少ないと判断して、所定の沸き終い温度を低い温度(ここでは50℃)に変更する(ステップS9)。一方、バラツキ度合が大きい場合は、過去所定期間にわたり中温水の発生量が比較的多いと判断して、所定の沸き終い温度を高い温度(ここでは60℃)に変更する(ステップS10)。 Next, the control means 41 compares the numerical value representing the degree of variation calculated in step S7 with a predetermined value (step S8), and when the degree of variation is small, the amount of generated warm water over the past predetermined period. The predetermined boiling end temperature is changed to a low temperature (50 ° C. in this case) (step S9). On the other hand, if the degree of variation is large, it is determined that the amount of intermediate-temperature water generated is relatively large over the past predetermined period, and the predetermined boiling end temperature is changed to a high temperature (here, 60 ° C.) (step S10).
そして、制御手段41は、沸き上げ必要量Vpをヒートポンプ式加熱手段29の一定の加熱能力で除して沸き上げ時間を算出し、深夜時間帯の終了時刻から逆算して沸き上げ開始時刻(ピークシフト時刻)を算出する(ステップS11)。 Then, the control means 41 calculates the boiling time by dividing the boiling required amount Vp by the constant heating capacity of the heat pump type heating means 29, and calculates the boiling start time (peak) from the end time of the midnight time zone. (Shift time) is calculated (step S11).
現在時刻がピークシフト時刻となると(ステップS12でYes)、前記ステップS3で決定した目標沸き上げ温度Tsetでの沸き上げ動作を開始すべく、ヒートポンプ式加熱手段23および加熱循環ポンプ31を駆動開始し、貯湯タンク1下部から取り出した水を目標沸き上げ温度Tsetの湯に加熱して貯湯タンク1上部から戻して積層状に貯湯する(ステップS13)。
When the current time becomes the peak shift time (Yes in step S12), the heat pump heating means 23 and the
前記ステップS4で決定した目標沸き上げ量Vに対応する貯湯温度センサ22c〜g(沸き終い温度センサ)が前記ステップS9またはS10で決定した沸き終い温度を検出するか、または入水温度センサ32が加熱上限温度(例えば55℃)以上を検出するかして沸き上げが完了されると(ステップS14)、ヒートポンプ式加熱手段23および加熱循環ポンプ31を駆動停止して沸き上げ動作を終了し(ステップS15)、沸き上げ動作のフローを終了するようにしている(ステップS16)。一方で、現在時刻が深夜時間帯の終了時刻である7時に到達すると(ステップS17)、ヒートポンプ式加熱手段23および加熱循環ポンプ31を駆動停止して沸き上げ動作を終了し(ステップS15)、沸き上げ動作のフローを終了するようにしている(ステップS16)。
The hot water
このように、使用湯量が日々一定でばらつかないような使用パターンであって中温水の発生量が少ない状況が所定期間継続するような場合、沸き終い温度を低い温度(ここでは50℃)に変更することで、深夜時間帯での中温水の沸き上げを防止してヒートポンプの加熱効率を向上させることができ、一方、日々の使用湯量がばらつくような使用パターンで中温水の発生量が多い場合、沸き終い温度を高い温度に変更することで、所定の時間帯での沸き上げ時に中温水も沸き上げ、沸き上げ量を確実に確保して湯切れを防止することができる。このように、ユーザーの使用状況に合わせて、湯切れを防止した上で最適かつ効率的な沸き上げを行うことができる。 In this way, when the usage pattern is such that the amount of hot water used is constant and does not vary from day to day and the amount of generated medium-temperature water is low, the boiling end temperature is lowered (here, 50 ° C.). By changing to, the heating efficiency of the heat pump can be improved by preventing the boiling of medium temperature water in the midnight hours, while the amount of generation of medium temperature water is reduced in the usage pattern in which the amount of hot water used varies from day to day. In many cases, by changing the boiling end temperature to a high temperature, the medium-temperature water is also boiled at the time of boiling in a predetermined time zone, and the amount of boiling can be reliably secured to prevent hot water from running out. As described above, it is possible to perform boiling up optimally and efficiently in accordance with the use situation of the user while preventing hot water from running out.
<第2の実施形態>
次に、本発明の第2の実施形態について説明する。なお、先の実施形態と同一のものには同一の符号を付してその説明を省略する。
この第2の実施形態は、制御手段41が浴水追い焚きの使用状況から中温水の発生量を判断するようにしたもので、以下に判断の詳細を説明する。
<Second Embodiment>
Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the same thing as previous embodiment, and the description is abbreviate | omitted.
In the second embodiment, the control means 41 determines the amount of medium-temperature water generated from the use of bathing water, and details of the determination will be described below.
制御手段41は、風呂追い焚き運転あるいは風呂保温運転によって浴水を風呂熱交換器14で加熱した時間である風呂追い焚き時間を一日毎に積算し、過去直近一週間において一日毎の風呂追い焚き時間の積算時間が閾値以下であった連続回数を記憶するようにしている。
The control means 41 accumulates the bath replenishment time, which is the time when the bath water is heated by the
<沸き上げ動作>
次に、沸き上げ動作について図3のフローチャートに基づき、先の実施形態と異なる箇所を中心に説明すると、ステップS6で沸き上げ必要量Vpを算出した後に、ステップS18へ進み、制御手段41が記憶している風呂追い焚き時間の積算時間が閾値以下であった連続回数が7回であるかを判定し、連続回数が7回であれば(ステップS18でYes)、ステップS9へ進み所定の沸き終い温度を50℃とし、連続回数が7回未満であれば(ステップS18でNo)、ステップS10へ進み所定の沸き終い温度を60℃とする。
<Boiling operation>
Next, the boiling operation will be described based on the flowchart of FIG. 3 with a focus on the points different from the previous embodiment. After calculating the boiling required amount Vp in step S6, the process proceeds to step S18, and the control means 41 stores it. It is determined whether or not the number of consecutive times when the accumulated bath chasing time is equal to or less than the threshold value is seven, and if the number of consecutive times is seven (Yes in step S18), the process proceeds to step S9 and the predetermined boiling If the end temperature is 50 ° C. and the number of continuous times is less than 7 (No in step S18), the process proceeds to step S10, and the predetermined boiling end temperature is set to 60 ° C.
その後の沸き上げにおいて、前記ステップS4で決定した目標沸き上げ量Vに対応する貯湯温度センサ22c〜g(沸き終い温度センサ)が前記ステップS9またはS10で決定した沸き終い温度を検出するか、または入水温度センサ32が加熱上限温度(例えば55℃)以上を検出するかして沸き上げが完了されると(ステップS14)、ヒートポンプ式加熱手段23および加熱循環ポンプ31を駆動停止して沸き上げ動作を終了し(ステップS15)、沸き上げ動作のフローを終了するようにしている(ステップS16)。一方で、現在時刻が深夜時間帯の終了時刻である7時に到達すると(ステップS17)、ヒートポンプ式加熱手段23および加熱循環ポンプ31を駆動停止して沸き上げ動作を終了し(ステップS15)、沸き上げ動作のフローを終了するようにしている(ステップS16)。
In the subsequent boiling, whether the hot water
このように、各日の風呂追い焚きの時間が少ないような使用パターン等の中温水の発生量が少ない状況が所定期間継続するような場合、沸き終い温度を低い温度に変更することで、所定の時間帯での中温水の沸き上げを防止してヒートポンプの加熱効率を向上させることができ、一方、各日の風呂追い焚きの時間が多いような使用パターン等の中温水の発生量が多い場合、沸き終い温度を高い温度に変更することで、所定の時間帯での沸き上げ時に中温水も沸き上げ、沸き上げ量を確実に確保して湯切れを防止することができる。このように、ユーザーの使用状況に合わせて、湯切れを防止した上で最適かつ効率的な沸き上げを行うことができる。 In this way, if the situation where the amount of generated medium-temperature water is low, such as a usage pattern that requires less time for bathing each day, continues for a predetermined period, by changing the boiling end temperature to a lower temperature, The heating efficiency of the heat pump can be improved by preventing the boiling of the medium temperature water in a predetermined time zone, while the amount of generated medium temperature water such as usage patterns that have a lot of time for bathing each day is reduced. In many cases, by changing the boiling end temperature to a high temperature, the medium-temperature water is also boiled at the time of boiling in a predetermined time zone, and the amount of boiling can be reliably secured to prevent hot water from running out. As described above, it is possible to perform boiling up optimally and efficiently in accordance with the use situation of the user while preventing hot water from running out.
<第3の実施形態>
次に、本発明の第3の実施形態について説明する。なお、先の実施形態と同一のものには同一の符号を付してその説明を省略する。
この第3の実施形態は、制御手段41が過去所定期間の単位期間毎の使用熱量に基づいて算出されるバラツキ度合と浴水追い焚きの使用状況とから中温水の発生量を判断するようにしたもので、以下に判断の詳細を説明する。
<Third Embodiment>
Next, a third embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the same thing as previous embodiment, and the description is abbreviate | omitted.
In the third embodiment, the control means 41 determines the generation amount of the medium-temperature water from the degree of variation calculated based on the amount of heat used for each unit period of the past predetermined period and the use situation of bathing water replenishment. The details of the determination will be described below.
制御手段41は、風呂追い焚き運転あるいは風呂保温運転によって浴水を風呂熱交換器14で加熱した加熱量を風呂戻り温度センサ17の検出温度と風呂設定温度と風呂追い焚き時間とから算出して一日毎に積算し、過去直近一週間において一日毎の風呂加熱量が閾値以下であった連続回数を記憶するようにしている。なお、風呂加熱量は公知の別の方法によって算出したり、推測するようにしてもよい。
The control means 41 calculates the heating amount of the bath water heated by the
<沸き上げ動作>
次に、沸き上げ動作について図4のフローチャートに基づき、先の実施形態と異なる箇所を中心に説明すると、ステップS6で沸き上げ必要量Vpを算出した後に、ステップS18へ進み、制御手段41が記憶している風呂加熱量の積算値が閾値以下であった連続回数が7回であるかを判定し、連続回数が7回であれば(ステップS18でYes)、ステップS7へ進み、過去の所定期間(例えば一週間)の単位期間(例えば1日)毎の使用熱量のバラツキ度合を算出する。ここで、バラツキ度合は、過去一週間の一日毎の使用熱量の標準偏差や、過去一週間の一日毎の使用熱量の最大使用熱量と最小使用熱量の差をバラツキ度合を表す数値とすることができる。
<Boiling operation>
Next, the boiling operation will be described based on the flowchart of FIG. 4 with a focus on the differences from the previous embodiment. After calculating the boiling required amount Vp in step S6, the process proceeds to step S18, and the control means 41 stores it. It is determined whether or not the number of consecutive times when the integrated value of the bath heating amount is equal to or less than the threshold value is seven, and if the number of consecutive times is seven (Yes in step S18), the process proceeds to step S7, and the past predetermined number The degree of variation in the amount of heat used is calculated for each unit period (for example, one day) of the period (for example, one week). Here, the variation degree may be a standard deviation of the daily usage heat amount in the past week or the difference between the maximum usage heat amount and the minimum usage heat amount per day in the past week as a numerical value representing the variation degree. it can.
次に、制御手段41は、前記ステップS7で算出したバラツキ度合を表す数値を予め定められた所定値と比較し(ステップS8)、バラツキ度合が小さい場合は、過去所定期間にわたり中温水の発生量が少ないと判断して、所定の沸き終い温度を低い温度(ここでは50℃)に変更する(ステップS9)。一方、バラツキ度合が大きい場合は、過去所定期間にわたり中温水の発生量が比較的多いと判断して、所定の沸き終い温度を高い温度(ここでは60℃)に変更する(ステップS10)。 Next, the control means 41 compares the numerical value representing the degree of variation calculated in step S7 with a predetermined value (step S8), and when the degree of variation is small, the amount of generated warm water over the past predetermined period. The predetermined boiling end temperature is changed to a low temperature (50 ° C. in this case) (step S9). On the other hand, if the degree of variation is large, it is determined that the amount of intermediate-temperature water generated is relatively large over the past predetermined period, and the predetermined boiling end temperature is changed to a high temperature (here, 60 ° C.) (step S10).
また、前記ステップS18で制御手段41が記憶している風呂加熱量の積算値が閾値以下であった連続回数が7回未満であれば(ステップS18でNo)、ステップS10へ進み所定の沸き終い温度を60℃とする。 If the integrated number of bath heating amounts stored in the control means 41 in step S18 is less than the threshold value is less than 7 (No in step S18), the process proceeds to step S10 and the predetermined boiling end is completed. Temperature is 60 ° C.
その後の沸き上げにおいて、前記ステップS4で決定した目標沸き上げ量Vに対応する貯湯温度センサ22c〜g(沸き終い温度センサ)が前記ステップS9またはS10で決定した沸き終い温度を検出するか、または入水温度センサ32が加熱上限温度(例えば55℃)以上を検出するかして沸き上げが完了されると(ステップS14)、ヒートポンプ式加熱手段23および加熱循環ポンプ31を駆動停止して沸き上げ動作を終了し(ステップS15)、沸き上げ動作のフローを終了するようにしている(ステップS16)。一方で、現在時刻が深夜時間帯の終了時刻である7時に到達すると(ステップS17)、ヒートポンプ式加熱手段23および加熱循環ポンプ31を駆動停止して沸き上げ動作を終了し(ステップS15)、沸き上げ動作のフローを終了するようにしている(ステップS16)。
In the subsequent boiling, whether the hot water
このように、使用湯量が日々一定でばらつかないような使用パターンでかつ各日の風呂追い焚きの加熱量が少ないような使用パターンであることを判定することで、中温水の発生量が少ない状況であることを確実に判定し、使用湯量が日々一定でばらつかないような使用パターンでかつ各日の風呂追い焚きの加熱量が少ないような使用パターンの中温水の発生量が少ない状況が所定期間継続するような場合、沸き終い温度を低い温度に変更することで、所定の時間帯での中温水の沸き上げを防止してヒートポンプの加熱効率を向上させることができ、一方、日々の使用湯量がばらつくような使用パターンや、各日の風呂追い焚きの加熱量が多いような使用パターンの中温水の発生量が多い場合、沸き終い温度を高い温度に変更することで、所定の時間帯での沸き上げ時に中温水も沸き上げ、沸き上げ量を確実に確保して湯切れを防止することができる。このように、ユーザーの使用状況に合わせて、湯切れを防止した上で最適かつ効率的な沸き上げを行うことができる。 In this way, by determining that the usage pattern is such that the amount of hot water used is constant and does not vary from day to day, and the amount of heating required for bathing each day is small, the amount of generated medium-temperature water is small. There is a situation in which the amount of hot water generated is low and the usage pattern in which the amount of hot water used is constant and does not vary from day to day, and the amount of heating in the bath replenishment day is small. If it continues for a predetermined period, changing the boiling end temperature to a lower temperature can prevent the boiling of medium temperature water in a predetermined time zone and improve the heating efficiency of the heat pump. If the amount of hot water used varies, or if there is a large amount of medium-temperature water generated such that there is a large amount of heating for bathing each day, change the boiling end temperature to a higher temperature. Even boiling medium-temperature water during the boiling of the time zone, it is possible to prevent the hot water runs out reliably secure the amount of boiling. As described above, it is possible to perform boiling up optimally and efficiently in accordance with the use situation of the user while preventing hot water from running out.
なお、浴水追い焚きの使用状況から中温水の発生量を判断するにあたり、第2の実施形態では追い焚き時間、第3の実施形態では風呂加熱量を例に説明したが、これに限らず、風呂追い焚き運転あるいは風呂保温運転によって浴水を風呂熱交換器14で加熱した回数を一日毎に積算し、過去直近一週間において一日毎の風呂追い焚き回数が閾値以下であるかどうかから中温水の発生量を判断するようにしてもよい。
In addition, in judging the generation amount of intermediate temperature water from the usage condition of the bath water reheating, the second embodiment has been described with respect to the reheating time and the third embodiment as an example of the bath heating amount, but not limited thereto. The number of times the bath water is heated by the
<第4の実施形態>
次に、本発明の第4の実施形態について説明する。なお、先の実施形態と同一のものには同一の符号を付してその説明を省略する。
この第4の実施形態は、制御手段41が貯湯温度センサ22の検出温度に基づいて中温水の発生状況を判断するようにしたもので、以下に判断の詳細を説明する。
<Fourth Embodiment>
Next, a fourth embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the same thing as previous embodiment, and the description is abbreviate | omitted.
In the fourth embodiment, the
制御手段41は、深夜時間帯開始時の貯湯タンク1内の中温水の残湯量を貯湯温度センサ22によって検出し、過去直近一週間において一日毎の中温水の残湯量が閾値以下であった連続回数を記憶するようにしている。 The control means 41 detects the remaining amount of hot water in the hot water storage tank 1 at the start of the midnight time zone by the hot water storage temperature sensor 22, and the remaining hot water amount in the hot water for each day in the past week is continuously below the threshold. The number of times is memorized.
<沸き上げ動作>
次に、沸き上げ動作について図5のフローチャートに基づき、先の実施形態と異なる箇所を中心に説明すると、ステップS6で沸き上げ必要量Vpを算出した後に、ステップS19へ進み、貯湯温度センサ22a〜gで検出する貯湯温度から中温水の残湯量(例えば50℃以上60℃未満の温水量)を検出し、所定の閾値以下であるかどうかを判定する。
<Boiling operation>
Next, the boiling operation will be described based on the flowchart of FIG. 5 with a focus on the differences from the previous embodiment. After calculating the boiling required amount Vp in step S6, the process proceeds to step S19, and the hot water
そして、続くステップS20では、制御手段41が記憶している中温水の残湯量が閾値以下であった連続回数が7回であるかを判定し、連続回数が7回であれば(ステップS20でYes)、ステップS7へ進み、過去所定期間にわたり中温水の発生量が少ないと判断して、所定の沸き終い温度を低い温度(ここでは50℃)に変更する(ステップS9)。一方、連続回数が7回未満であれば(ステップS20でNo)、ステップS10へ進み所定の沸き終い温度を60℃とする。 Then, in the following step S20, it is determined whether the number of consecutive times that the amount of remaining hot water of the medium-temperature water stored in the control means 41 is equal to or less than the threshold is seven, and if the number of consecutive times is seven (in step S20) Yes), the process proceeds to step S7, where it is determined that the amount of intermediate-temperature water generated is small over the past predetermined period, and the predetermined boiling end temperature is changed to a low temperature (here, 50 ° C.) (step S9). On the other hand, if the number of continuous times is less than 7 (No in step S20), the process proceeds to step S10 and the predetermined boiling end temperature is set to 60 ° C.
その後の沸き上げにおいて、前記ステップS4で決定した目標沸き上げ量Vに対応する貯湯温度センサ22c〜g(沸き終い温度センサ)が前記ステップS9またはS10で決定した沸き終い温度を検出するか、または入水温度センサ32が加熱上限温度(例えば55℃)以上を検出するかして沸き上げが完了されると(ステップS14)、ヒートポンプ式加熱手段23および加熱循環ポンプ31を駆動停止して沸き上げ動作を終了し(ステップS15)、沸き上げ動作のフローを終了するようにしている(ステップS16)。一方で、現在時刻が深夜時間帯の終了時刻である7時に到達すると(ステップS17)、ヒートポンプ式加熱手段23および加熱循環ポンプ31を駆動停止して沸き上げ動作を終了し(ステップS15)、沸き上げ動作のフローを終了するようにしている(ステップS16)。
In the subsequent boiling, whether the hot water
このように、沸き上げ開始前の貯湯温度に基づいて中温水の発生量が少ない状況であることを確実に判定し、中温水の発生量が少ない状況が所定期間継続するような場合、沸き終い温度を低い温度に変更することで、所定の時間帯での中温水の沸き上げを防止してヒートポンプの加熱効率を向上させることができ、一方、中温水の発生量が多い場合、沸き終い温度を高い温度に変更することで、所定の時間帯での沸き上げ時に中温水も沸き上げ、沸き上げ量を確実に確保して湯切れを防止することができる。このように、ユーザーの使用状況に合わせて、湯切れを防止した上で最適かつ効率的な沸き上げを行うことができる。 As described above, when it is reliably determined that the amount of intermediate warm water generated is small based on the hot water storage temperature before the start of boiling, and the state where the amount of intermediate warm water generated is low continues for a predetermined period, By changing the low temperature to a low temperature, it is possible to improve the heating efficiency of the heat pump by preventing the boiling of the medium temperature water in a predetermined time zone. By changing the high temperature to a high temperature, the medium-temperature water is also boiled at the time of boiling in a predetermined time zone, and the amount of boiling can be reliably ensured to prevent hot water from running out. As described above, it is possible to perform boiling up optimally and efficiently in accordance with the use situation of the user while preventing hot water from running out.
なお、本発明は上記の実施形態のみに限定されるものではなく、例えば、沸き終い温度を判定する温度センサとして、入水温度センサ32を用いるようにしてもよい。
In addition, this invention is not limited only to said embodiment, For example, you may make it use the incoming
1 貯湯タンク
2 給水管
4 出湯管
13 浴槽
14 風呂熱交換器
15 風呂循環回路
22 貯湯温度センサ
23 ヒートポンプ式加熱手段
41 制御手段
DESCRIPTION OF SYMBOLS 1 Hot
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011225690A JP5797998B2 (en) | 2011-10-13 | 2011-10-13 | Heat pump type water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011225690A JP5797998B2 (en) | 2011-10-13 | 2011-10-13 | Heat pump type water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013087968A JP2013087968A (en) | 2013-05-13 |
JP5797998B2 true JP5797998B2 (en) | 2015-10-21 |
Family
ID=48532063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011225690A Active JP5797998B2 (en) | 2011-10-13 | 2011-10-13 | Heat pump type water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5797998B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5811983B2 (en) * | 2012-09-28 | 2015-11-11 | ダイキン工業株式会社 | Water heater |
JP6616927B2 (en) * | 2016-03-30 | 2019-12-04 | 株式会社コロナ | Heat pump type water heater |
JP6751619B2 (en) * | 2016-08-05 | 2020-09-09 | リンナイ株式会社 | Hot water supply system |
JP6780367B2 (en) * | 2016-08-24 | 2020-11-04 | 株式会社ノーリツ | Hot water storage and hot water supply device |
JP2019015411A (en) * | 2017-07-03 | 2019-01-31 | 株式会社Lixil | Hot water heater |
JP6734450B2 (en) * | 2019-08-20 | 2020-08-05 | 株式会社コロナ | Heat pump water heater |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4337880B2 (en) * | 2004-07-12 | 2009-09-30 | 株式会社デンソー | Heat pump water heater |
JP2006336937A (en) * | 2005-06-01 | 2006-12-14 | Denso Corp | Hot water storage water heater |
JP5038729B2 (en) * | 2007-01-17 | 2012-10-03 | 株式会社コロナ | Heat pump water heater |
JP2008224203A (en) * | 2007-02-14 | 2008-09-25 | Matsushita Electric Ind Co Ltd | Water heater |
JP5136451B2 (en) * | 2009-02-10 | 2013-02-06 | パナソニック株式会社 | Water heater |
JP5428478B2 (en) * | 2009-04-09 | 2014-02-26 | パナソニック株式会社 | Water heater |
JP5385801B2 (en) * | 2010-01-19 | 2014-01-08 | 株式会社コロナ | Heat pump type water heater |
-
2011
- 2011-10-13 JP JP2011225690A patent/JP5797998B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013087968A (en) | 2013-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5797998B2 (en) | Heat pump type water heater | |
KR20100114022A (en) | Heat-pump hot-water supply apparatus | |
JP4324154B2 (en) | Hot water storage water heater | |
JP5571609B2 (en) | Heat pump bath water heater | |
JP2013087961A (en) | Storage type hot water supply apparatus | |
JP5567519B2 (en) | Hot water storage bath water heater | |
JP5584163B2 (en) | Hot water storage water heater | |
JP5813980B2 (en) | Heat pump bath water heater | |
JP4034254B2 (en) | Hot water storage water heater | |
JP5192406B2 (en) | Method for determining boiling target temperature of heat pump water heater | |
JP5662235B2 (en) | Hot water storage water heater | |
JP5694845B2 (en) | Heat pump bath water heater | |
JP5087417B2 (en) | Hot water storage water heater | |
JP2004020013A (en) | Hot water storage type hot water supply device | |
JP4955375B2 (en) | Hot water storage water heater | |
JP5580244B2 (en) | Hot water storage water heater | |
JP5155094B2 (en) | Hot water storage water heater | |
JP2015152256A (en) | Storage type hot water supply device | |
JP4064332B2 (en) | Hot water storage water heater | |
JP6434216B2 (en) | Hot water storage water heater | |
JP5690192B2 (en) | Hot water storage water heater | |
JP2006308125A (en) | Storage water heater | |
JP5342403B2 (en) | Hot water storage water heater | |
JP4377843B2 (en) | Hot water storage water heater | |
JP2012220038A (en) | Heat pump type bath water heater, and heating control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140320 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150717 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150818 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150820 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5797998 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |