[go: up one dir, main page]

JP5791429B2 - Exhaust gas treatment system and exhaust gas treatment method - Google Patents

Exhaust gas treatment system and exhaust gas treatment method Download PDF

Info

Publication number
JP5791429B2
JP5791429B2 JP2011185552A JP2011185552A JP5791429B2 JP 5791429 B2 JP5791429 B2 JP 5791429B2 JP 2011185552 A JP2011185552 A JP 2011185552A JP 2011185552 A JP2011185552 A JP 2011185552A JP 5791429 B2 JP5791429 B2 JP 5791429B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst denitration
heating device
denitration device
bypass pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011185552A
Other languages
Japanese (ja)
Other versions
JP2013046885A (en
Inventor
大祐 鮎川
大祐 鮎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2011185552A priority Critical patent/JP5791429B2/en
Publication of JP2013046885A publication Critical patent/JP2013046885A/en
Application granted granted Critical
Publication of JP5791429B2 publication Critical patent/JP5791429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、例えば廃棄物焼却処理施設において発生するNOxが含まれた排ガスを処理する排ガス処理システムおよび排ガス処理方法に関するものである。   The present invention relates to an exhaust gas treatment system and an exhaust gas treatment method for treating exhaust gas containing NOx generated in, for example, a waste incineration treatment facility.

図2に示されるように、従来の廃棄物焼却処理施設51において、廃棄物は燃焼炉52で燃焼される。この燃焼炉52での廃棄物の燃焼に伴い発生する排ガスは、ボイラ53での熱交換の後にガス冷却塔54で所定温度まで冷却されてからバグフィルタを用いた集塵装置(BF)55に送られる。この集塵装置55でばいじんが除去された排ガスは、一旦、排ガス加熱装置(GRH)56で加熱された後に触媒脱硝装置(SCR)57に送られる。この触媒脱硝装置57で脱硝処理された排ガスは、誘引通風機(IDF)58により、煙突59を介して系外に排出される。なお、この種の廃棄物焼却処理施設51は、例えば特許文献1にて知られている。   As shown in FIG. 2, in a conventional waste incineration treatment facility 51, waste is burned in a combustion furnace 52. The exhaust gas generated by the combustion of the waste in the combustion furnace 52 is cooled to a predetermined temperature in the gas cooling tower 54 after heat exchange in the boiler 53, and then is collected in a dust collector (BF) 55 using a bag filter. Sent. The exhaust gas from which the dust is removed by the dust collector 55 is once heated by the exhaust gas heating device (GRH) 56 and then sent to the catalyst denitration device (SCR) 57. The exhaust gas denitrated by the catalyst denitration device 57 is discharged out of the system through a chimney 59 by an induction fan (IDF) 58. Note that this kind of waste incineration treatment facility 51 is known, for example, from Patent Document 1.

特開2004−309079号公報JP 2004-309079 A

上記の廃棄物焼却処理施設51では、燃焼炉52からの排ガスに含まれる窒素酸化物(NOx)を除去するために、排ガス加熱装置56と触媒脱硝装置57とが組み込まれる。
触媒脱硝装置57は、触媒上でアンモニア(NH)とNOxの反応を起こさせ、NOxをNとHOに分解する装置であるが、分解率は反応温度に大きく依存する。そのために、排ガス温度を200℃以上に保つ必要がある。
In the waste incineration treatment facility 51 described above, an exhaust gas heating device 56 and a catalyst denitration device 57 are incorporated in order to remove nitrogen oxides (NOx) contained in the exhaust gas from the combustion furnace 52.
The catalyst denitration device 57 is a device that causes ammonia (NH 3 ) and NOx to react on the catalyst and decomposes NOx into N 2 and H 2 O. The decomposition rate greatly depends on the reaction temperature. Therefore, it is necessary to keep the exhaust gas temperature at 200 ° C. or higher.

一方、廃棄物焼却の際に発生する排ガスには、廃棄物に含まれる灰分や塩素、硫黄等に由来するばいじん、HCl、SOx等の有害物質が含まれる。そのため、集塵装置55でばいじんを除去し、アルカリ剤(消石灰が主流)を集塵装置55の上流に吹き込むことで、HCl、SOx等の酸性ガスをガス中や集塵装置55のろ布上で反応させて無害化を行っている。
ろ布の材質上(PTFE繊維やガラス繊維等が使用される)耐熱性は200℃程度までであり、また、HCl、SOx等の酸性ガスと消石灰の反応も温度依存性が高く、排ガス温度が低いほど効率的であるので、機器の腐食対策等を考慮し150℃程度の排ガス温度となるように設計される。
On the other hand, the exhaust gas generated during waste incineration includes harmful substances such as dust, HCl and SOx derived from ash, chlorine and sulfur contained in the waste. Therefore, dust is removed by the dust collector 55, and an alkaline agent (mainly slaked lime) is blown upstream of the dust collector 55, so that acidic gases such as HCl and SOx are in the gas or on the filter cloth of the dust collector 55. To make it harmless.
The heat resistance of the filter cloth material (PTFE fiber or glass fiber is used) is up to about 200 ° C, and the reaction between acidic gas such as HCl and SOx and slaked lime is highly temperature dependent, and the exhaust gas temperature is high. Since the lower the efficiency, the lower the exhaust gas temperature, which is about 150 ° C., in consideration of countermeasures against corrosion of the equipment.

廃棄物焼却処理施設51における排ガス処理システムでは、まず集塵装置55でばいじん、HCl、SOx等の酸性ガスを除去し、次いで触媒脱硝装置57でNOxを除去するシステム構成となるが、上記のように温度依存性が高いので、ガス冷却塔54や排ガス加熱装置56が図2に示されるような配置とされる。
なお、図2中の括弧内の数値はそれぞれの装置の出口ガス温度の例を示す。
The exhaust gas treatment system in the waste incineration treatment facility 51 has a system configuration in which acid dust such as dust, HCl and SOx is first removed by the dust collector 55, and then NOx is removed by the catalyst denitration device 57. Therefore, the gas cooling tower 54 and the exhaust gas heating device 56 are arranged as shown in FIG.
In addition, the numerical value in the bracket | parenthesis in FIG. 2 shows the example of the exit gas temperature of each apparatus.

排ガス加熱装置56は、集塵装置55からの150℃程度の排ガスを210℃にまで加熱するものであり、熱源としては、ボイラ付き廃棄物焼却処理施設51の場合にはボイラ53からの過熱蒸気(400℃または300℃)が使用される。なお、ボイラ53が付帯していない廃棄物焼却処理施設の場合には燃料バーナ等により加熱する。   The exhaust gas heating device 56 heats the exhaust gas of about 150 ° C. from the dust collector 55 to 210 ° C., and the heat source is superheated steam from the boiler 53 in the case of the waste incineration treatment facility 51 with a boiler. (400 ° C. or 300 ° C.) is used. In addition, in the case of a waste incineration processing facility not accompanied by the boiler 53, it is heated by a fuel burner or the like.

ところで、排ガス加熱装置56で使用される熱源のエネルギーは損失エネルギーとなるので削減が望まれるが、触媒脱硝装置57での触媒脱硝反応は温度依存性が高いので、温度を下げることは困難である。
このため、例えば、ボイラ付き廃棄物焼却処理施設51の場合(試算例の場合)、投入ごみ熱量の約5.5%が排ガス加熱に使用されて損出となる。この量は熱回収したボイラ53からの蒸気の約9%にあたる。一方、ボイラ53が付帯していない廃棄物焼却処理施設(100t/日)の場合、灯油等の燃料が62リットル/h必要となり運営費がその分上がる。
By the way, since the energy of the heat source used in the exhaust gas heating device 56 is lost energy, it is desired to reduce it. However, since the catalyst denitration reaction in the catalyst denitration device 57 is highly temperature dependent, it is difficult to lower the temperature. .
For this reason, for example, in the case of the waste incineration treatment facility 51 with a boiler (in the case of a trial calculation example), about 5.5% of the input waste heat amount is used for exhaust gas heating and is lost. This amount corresponds to about 9% of the steam from the boiler 53 that has recovered heat. On the other hand, in the case of a waste incineration treatment facility (100 t / day) that is not accompanied by the boiler 53, fuel such as kerosene is required to be 62 liters / h, and the operation cost increases accordingly.

本発明は、前述のような問題点に鑑みてなされたもので、NOx濃度を規制値よりも低く抑えつつ、排ガス加熱装置での熱源として使用する過熱蒸気または燃料を削減することができる排ガス処理システムおよび排ガス処理方法を提供することを目的とするものである。   The present invention has been made in view of the above-described problems, and is capable of reducing the amount of superheated steam or fuel used as a heat source in an exhaust gas heating device while keeping the NOx concentration lower than a regulation value. It is an object of the present invention to provide a system and an exhaust gas treatment method.

前記目的を達成するために、第1発明による排ガス処理システムは、
NOxが含まれた排ガスを加熱する排ガス加熱装置と、この排ガス加熱装置からの排ガスにNHガスを注入して脱硝する触媒脱硝装置とを備える排ガス処理システムにおいて、
前記排ガス加熱装置の排ガス入口に接続される管路から分岐して前記触媒脱硝装置の排ガス出口に接続される管路に繋がるバイパス管路と、
前記排ガス加熱装置からの排ガスの温度が所定温度となるように前記排ガス加熱装置での加熱を制御する排ガス温度制御手段と、
前記触媒脱硝装置からの排ガスと前記バイパス管路からの排ガスとが合流する前の前記触媒脱硝装置からの排ガスのNOx濃度が規制値の第1所定%以下となるように前記触媒脱硝装置でのNHガスの注入量を制御するNHガス注入量制御手段と、
前記触媒脱硝装置からの排ガスと前記バイパス管路からの排ガスとが合流した後の排ガスのNOx濃度が規制値の第2所定%以下となるように前記バイパス管路に流れる排ガスの流量を制御するバイパスガス量制御手段と、
を備えることを特徴とするものである。
In order to achieve the above object, an exhaust gas treatment system according to the first invention comprises:
In an exhaust gas treatment system comprising an exhaust gas heating device that heats exhaust gas containing NOx, and a catalyst denitration device that injects NH 3 gas into the exhaust gas from the exhaust gas heating device and denitrates,
A bypass pipe branched from a pipe connected to the exhaust gas inlet of the exhaust gas heating device and connected to a pipe connected to the exhaust gas outlet of the catalyst denitration device;
An exhaust gas temperature control means for controlling heating in the exhaust gas heating device so that the temperature of the exhaust gas from the exhaust gas heating device becomes a predetermined temperature;
In the catalyst denitration device, the NOx concentration of the exhaust gas from the catalyst denitration device before the exhaust gas from the catalyst denitration device and the exhaust gas from the bypass pipe merge is equal to or lower than a first predetermined percentage of a regulation value. NH 3 gas injection amount control means for controlling the injection amount of NH 3 gas;
The flow rate of the exhaust gas flowing through the bypass pipe is controlled so that the NOx concentration of the exhaust gas after the exhaust gas from the catalyst denitration apparatus and the exhaust gas from the bypass pipe are merged is equal to or less than a second predetermined percentage of the regulation value. Bypass gas amount control means;
It is characterized by providing.

次に、第2発明による排ガス処理方法は、
NOxが含まれた排ガスを加熱する排ガス加熱装置と、この排ガス加熱装置からの排ガスにNHガスを注入して脱硝する触媒脱硝装置と、前記排ガス加熱装置の排ガス入口に接続される管路から分岐して前記触媒脱硝装置の排ガス出口に接続される管路に繋がるバイパス管路とを備える排ガス処理システムにおいて、
前記排ガス加熱装置からの排ガスの温度が所定温度となるように前記排ガス加熱装置での加熱を制御し、
前記触媒脱硝装置からの排ガスと前記バイパス管路からの排ガスとが合流する前の前記触媒脱硝装置からの排ガスのNOx濃度が規制値の第1所定%以下となるように前記触媒脱硝装置でのNHガスの注入量を制御し、
前記触媒脱硝装置からの排ガスと前記バイパス管路からの排ガスとが合流した後の排ガスのNOx濃度が規制値の第2所定%以下となるように前記バイパス管路に流れる排ガスの流量を制御する
ことを特徴とするものである。
Next, an exhaust gas treatment method according to the second invention is as follows.
From an exhaust gas heating device that heats exhaust gas containing NOx, a catalyst denitration device that injects NH 3 gas into the exhaust gas from the exhaust gas heating device to denitrate, and a pipe connected to the exhaust gas inlet of the exhaust gas heating device In an exhaust gas treatment system comprising a bypass pipe that branches and leads to a pipe connected to the exhaust gas outlet of the catalyst denitration device,
Controlling the heating in the exhaust gas heating device so that the temperature of the exhaust gas from the exhaust gas heating device becomes a predetermined temperature,
In the catalyst denitration device, the NOx concentration of the exhaust gas from the catalyst denitration device before the exhaust gas from the catalyst denitration device and the exhaust gas from the bypass pipe merge is equal to or lower than a first predetermined percentage of a regulation value. Control the injection amount of NH 3 gas,
The flow rate of the exhaust gas flowing through the bypass pipe is controlled so that the NOx concentration of the exhaust gas after the exhaust gas from the catalyst denitration apparatus and the exhaust gas from the bypass pipe are merged is equal to or less than a second predetermined percentage of the regulation value. It is characterized by this.

本発明においては、排ガス加熱装置からの排ガスの温度が所定温度(例えば、210℃)となるようにその排ガス加熱装置での加熱が制御される。これにより、温度依存性が高い触媒脱硝装置での触媒脱硝反応が良好に行われる。
また、触媒脱硝装置からの排ガスとバイパス管路からの排ガスとが合流する前の触媒脱硝装置からの排ガスのNOx濃度が規制値の第1所定%(例えば、30%)以下となるようにその触媒脱硝装置でのNHガスの注入量が制御されるとともに、触媒脱硝装置からの排ガスとバイパス管路からの排ガスとが合流した後の排ガスのNOx濃度が規制値の第1所定%よりも大きくて100%未満の第2所定%(例えば、90%)以下となるようにそのバイパス管路に流れる排ガスの流量が制御される。これにより、NOx濃度が規制値よりも低く抑えられる。
また、排ガス加熱装置の排ガス入口に向かう排ガスの一部は、バイパス管路を通して触媒脱硝装置の排ガス出口に接続される管路に流れるので、その分だけ排ガス加熱装置での熱源として使用する過熱蒸気または燃料を削減することができる。
本発明によれば、NOx濃度を規制値よりも低く抑えつつ、排ガス加熱装置での熱源として使用する過熱蒸気または燃料を削減することができので、例えば、ボイラ付き廃棄物焼却処理施設の場合には、削減分の蒸気を他の機器に熱利用し(例えば蒸気タービン発電機へ送る蒸気量を増加させて発電量を増加させる。)、ボイラが付帯していない廃棄物焼却処理施設には、燃料消費量を低減して運転経費を削減することができる。
In the present invention, heating in the exhaust gas heating device is controlled so that the temperature of the exhaust gas from the exhaust gas heating device becomes a predetermined temperature (for example, 210 ° C.). Thereby, the catalyst denitration reaction in the catalyst denitration apparatus having high temperature dependence is favorably performed.
Further, the NOx concentration of the exhaust gas from the catalyst denitration device before the exhaust gas from the catalyst denitration device and the exhaust gas from the bypass line merge is set to be equal to or lower than a first predetermined percentage (for example, 30%) of the regulation value. The injection amount of NH 3 gas in the catalyst denitration device is controlled, and the NOx concentration of the exhaust gas after the exhaust gas from the catalyst denitration device and the exhaust gas from the bypass line merge is less than the first predetermined percentage of the regulation value. The flow rate of the exhaust gas flowing through the bypass pipe is controlled so as to be equal to or less than a second predetermined percentage (for example, 90%) which is large and less than 100%. Thereby, the NOx concentration is suppressed to be lower than the regulation value.
In addition, a part of the exhaust gas that goes to the exhaust gas inlet of the exhaust gas heating device flows through a bypass pipe to a pipe connected to the exhaust gas outlet of the catalyst denitration device. Or fuel can be reduced.
According to the present invention, while kept below the regulation value of the NOx concentration, since Ru can reduce superheated steam or fuel used as a heat source in the exhaust gas heating device, for example, in the case of a boiler with waste incineration facilities In the case of waste incineration facilities that do not have boilers, use the reduced steam heat for other equipment (for example, increase the amount of steam sent to the steam turbine generator to increase power generation). , Fuel consumption can be reduced and operating expenses can be reduced.

本発明の一実施形態に係る排ガス処理システムを備えた廃棄物焼却処理施設の概略システム構成図Schematic system configuration diagram of a waste incineration treatment facility equipped with an exhaust gas treatment system according to an embodiment of the present invention 従来の排ガス処理システムを備えた廃棄物焼却処理施設の概略システム構成図Schematic system configuration diagram of a waste incineration facility equipped with a conventional exhaust gas treatment system

次に、本発明による排ガス処理システムおよび排ガス処理方法の具体的な実施の形態について、図面を参照しつつ説明する。   Next, specific embodiments of the exhaust gas treatment system and the exhaust gas treatment method according to the present invention will be described with reference to the drawings.

図1には、本発明の一実施形態に係る排ガス処理システムを備えた廃棄物焼却処理施設の概略システム構成図が示されている。   FIG. 1 shows a schematic system configuration diagram of a waste incineration treatment facility equipped with an exhaust gas treatment system according to an embodiment of the present invention.

<廃棄物焼却処理施設の概略構成の説明>
図1に示される廃棄物焼却処理施設1において、廃棄物は燃焼炉2で燃焼される。この燃焼炉2での廃棄物の燃焼に伴い発生する排ガスは、ボイラ3での熱交換の後にガス冷却塔4で所定温度まで冷却されてからバグフィルタを用いた集塵装置(BF)5に送られる。この集塵装置5でばいじんが除去された排ガスは、一旦、排ガス加熱装置(GRH)6で加熱された後に触媒脱硝装置(SCR)7に送られる。この触媒脱硝装置7で脱硝処理された排ガスは、誘引通風機(IDF)8により、煙突9を介して系外に排出される。なお、図1中の括弧内の数値はそれぞれの装置の出口ガス温度の例を示す。
<Description of schematic configuration of waste incineration facility>
In the waste incineration treatment facility 1 shown in FIG. 1, the waste is burned in a combustion furnace 2. The exhaust gas generated by the combustion of the waste in the combustion furnace 2 is cooled to a predetermined temperature in the gas cooling tower 4 after heat exchange in the boiler 3 and then collected in a dust collector (BF) 5 using a bag filter. Sent. The exhaust gas from which the dust is removed by the dust collector 5 is once heated by the exhaust gas heating device (GRH) 6 and then sent to the catalyst denitration device (SCR) 7. The exhaust gas denitrated by the catalyst denitration device 7 is discharged out of the system through a chimney 9 by an induction fan (IDF) 8. In addition, the numerical value in the bracket | parenthesis in FIG. 1 shows the example of the exit gas temperature of each apparatus.

<バイパス管路の説明>
集塵装置5の排ガス出口と排ガス加熱装置6の排ガス入口とを接続する管路10と、触媒脱硝装置7の排ガス出口と誘引通風機8の排ガス入口とを接続する管路11とは、バイパス管路12によって接続されている。これにより、集塵装置5から排ガス加熱装置6に向かう排ガスの一部は、管路10から分岐するバイパス管路12を介して管路11に流れ、触媒脱硝装置7からの排ガスと合流して誘引通風機8へと導かれる。
<Description of bypass pipeline>
The pipeline 10 connecting the exhaust gas outlet of the dust collector 5 and the exhaust gas inlet of the exhaust gas heating device 6 and the pipeline 11 connecting the exhaust gas outlet of the catalyst denitration device 7 and the exhaust gas inlet of the induction fan 8 are bypassed. They are connected by a pipe 12. As a result, a part of the exhaust gas from the dust collector 5 toward the exhaust gas heating device 6 flows to the pipeline 11 via the bypass pipeline 12 branched from the pipeline 10, and merges with the exhaust gas from the catalyst denitration device 7. Guided to the induction fan 8.

<排ガス温度制御手段の説明>
排ガス加熱装置6は、集塵装置5からの150℃程度の排ガスを210℃にまで加熱するものであり、熱源としては、ボイラ3からの過熱蒸気(400℃または300℃)が使用される。
この排ガス加熱装置6には、その排ガス出口からの排ガスの温度が所定温度(例えば210℃)となるように当該排ガス加熱装置6での加熱を制御する排ガス温度制御手段13が付設されている。
この排ガス温度制御手段13は、制御弁14と制御器15とを備え、排ガス加熱装置6の排ガス出口の温度が所定温度(例えば、210℃)となるように制御器15からの信号にて過熱蒸気の供給量を制御弁14で制御するように構成されている。
<Description of exhaust gas temperature control means>
The exhaust gas heating device 6 heats about 150 ° C. exhaust gas from the dust collector 5 to 210 ° C., and superheated steam (400 ° C. or 300 ° C.) from the boiler 3 is used as a heat source.
The exhaust gas heating device 6 is provided with exhaust gas temperature control means 13 for controlling the heating in the exhaust gas heating device 6 so that the temperature of the exhaust gas from the exhaust gas outlet becomes a predetermined temperature (for example, 210 ° C.).
The exhaust gas temperature control means 13 includes a control valve 14 and a controller 15, and is heated by a signal from the controller 15 so that the exhaust gas outlet temperature of the exhaust gas heating device 6 becomes a predetermined temperature (for example, 210 ° C.). The supply amount of steam is controlled by the control valve 14.

<NHガス注入量制御手段の説明>
触媒脱硝装置7は、触媒上でアンモニア(NH)とNOxの反応を起こさせ、NOxをNとHOに分解する装置である。
この触媒脱硝装置7には、その排ガス出口からの排ガスのNOx濃度が規制値(例えば、100ppm(O12%換算))の第1所定%(例えば、30%)以下となるように当該触媒脱硝装置7でのNHガスの注入量を制御するNHガス注入量制御手段16が付設されている。
このNHガス注入量制御手段16は、制御弁17と制御器18とを備え、触媒脱硝装置7の排ガス出口のNOx濃度が30ppmとなるように制御器18からの信号にて触媒脱硝装置7へのNHガスの供給量を制御弁17で制御するように構成されている。
<Description of NH 3 gas injection amount control means>
The catalyst denitration device 7 is a device that causes ammonia (NH 3 ) and NOx to react on the catalyst and decomposes NOx into N 2 and H 2 O.
The catalyst denitration device 7 includes the catalyst so that the NOx concentration of the exhaust gas from the exhaust gas outlet is not more than a first predetermined percentage (for example, 30%) of a regulation value (for example, 100 ppm (converted to 12% of O 2 )). NH 3 gas injection amount control means 16 for controlling the injection amount of the NH 3 gas in the denitration unit 7 is attached.
This NH 3 gas injection amount control means 16 includes a control valve 17 and a controller 18, and the catalyst denitration device 7 receives a signal from the controller 18 so that the NOx concentration at the exhaust gas outlet of the catalyst denitration device 7 becomes 30 ppm. The control valve 17 is configured to control the supply amount of NH 3 gas.

<バイパスガス量制御手段の説明>
バイパス管路12には、触媒脱硝装置7からの排ガスと当該バイパス管路12からの排ガスとが合流した後の排ガスのNOx濃度が規制値の第2所定%(例えば、90%)以下となるように当該バイパス管路12に流れる排ガスの流量を制御するバイパスガス量制御手段19が付設されている。
このバイパスガス量制御手段19は、バイパス管路12の途中に設けられてその回動角度に応じて排ガスの流量を調節するバイパスダンパ20と、このバイパスダンパ20を回動駆動するモータ21と、このモータ21を制御する制御器22とを備え、触媒脱硝装置7からの排ガスとバイパス管路12からの排ガスとが合流した後の排ガスのNOx濃度が90ppmとなるように制御器22からモータ21への駆動制御信号にてバイパスダンパ20の回動角度を調整してバイパス管路12に流れる排ガスの流量を制御するように構成されている。
なお、制御器18,22へはO濃度換算用にO測定器23よりO測定信号が送られる。
<Description of bypass gas amount control means>
In the bypass line 12, the NOx concentration of the exhaust gas after the exhaust gas from the catalyst denitration device 7 and the exhaust gas from the bypass line 12 merge is equal to or lower than the second predetermined percentage (for example, 90%) of the regulation value. Thus, a bypass gas amount control means 19 for controlling the flow rate of the exhaust gas flowing through the bypass pipeline 12 is attached.
The bypass gas amount control means 19 is provided in the middle of the bypass pipe 12 and adjusts the flow rate of the exhaust gas according to the rotation angle of the bypass gas, and a motor 21 that drives the bypass damper 20 to rotate. A controller 22 for controlling the motor 21, and the controller 22 controls the motor 21 so that the NOx concentration of the exhaust gas after the exhaust gas from the catalyst denitration device 7 and the exhaust gas from the bypass line 12 merge is 90 ppm. The rotation angle of the bypass damper 20 is adjusted by the drive control signal to control the flow rate of the exhaust gas flowing through the bypass conduit 12.
Incidentally, O 2 measurement signal is sent from the O 2 meter 23 for O 2 converted concentration is to the controller 18, 22.

<作用効果の説明>
本実施形態においては、排ガス基準NOx100ppm(O12%換算))で排ガス加熱装置6の排ガス出口の温度を210℃になるように制御器15からの信号にて排ガス加熱装置6への供給蒸気量を制御弁14で制御する。排ガス加熱装置6からの排ガスは触媒脱硝装置7へと流れる。触媒脱硝装置7の排ガス出口のNOx濃度が30ppmとなるように制御器18の信号にてNHガス供給量を制御弁17で制御し、触媒脱硝装置7の排ガス出口のNOx濃度を30ppm程度にする。バイパス管路12と合流後のNOx濃度が90ppmになるように制御器22の信号にてバイパスダンパ20の回動角度を調整してバイパス管路12に流れる排ガスの流量を制御し、バイパス管路12と合流後のNOx濃度を90ppm程度にする。これにより、NOx濃度が規制値(100ppm)よりも低く抑えられる。
<Description of effects>
In the present embodiment, the supply steam to the exhaust gas heating device 6 by a signal from the controller 15 so that the exhaust gas outlet NO. Temperature of the exhaust gas heating device 6 becomes 210 ° C. with exhaust gas standard NOx 100 ppm (O 2 12% conversion). The amount is controlled by the control valve 14. The exhaust gas from the exhaust gas heating device 6 flows to the catalyst denitration device 7. The control valve 17 controls the NH 3 gas supply amount by a signal from the controller 18 so that the NOx concentration at the exhaust gas outlet of the catalyst denitration device 7 is 30 ppm, and the NOx concentration at the exhaust gas outlet of the catalyst denitration device 7 is about 30 ppm. To do. The flow rate of the exhaust gas flowing through the bypass line 12 is controlled by adjusting the rotation angle of the bypass damper 20 with a signal from the controller 22 so that the NOx concentration after merging with the bypass line 12 becomes 90 ppm. 12 and the NOx concentration after merging are about 90 ppm. Thereby, the NOx concentration is suppressed to be lower than the regulation value (100 ppm).

表1には、従来の廃棄物焼却処理施設51と本実施形態の廃棄物焼却処理施設1との100t/日の焼却処理での比較結果が示されている。表1に示されるように、排ガス加熱装置(GRH)6での使用蒸気量を50%程度低減することができる。100t/日規模の蒸気発電効率を15%とした場合、発電量は1400kw程度である。この低減蒸気量による発電量の増加は90kw程度となり6%程度の発電量が増加する。発電効率は1%程度向上する。   Table 1 shows a comparison result in a 100 t / day incineration process between the conventional waste incineration facility 51 and the waste incineration facility 1 of the present embodiment. As shown in Table 1, the amount of steam used in the exhaust gas heating device (GRH) 6 can be reduced by about 50%. When the steam power generation efficiency on the scale of 100 t / day is 15%, the power generation amount is about 1400 kW. The increase in power generation amount due to this reduced steam amount is about 90 kW, and the power generation amount is about 6%. The power generation efficiency is improved by about 1%.

Figure 0005791429
Figure 0005791429

本実施形態によれば、NOx濃度を規制値よりも低く抑えつつ、排ガス加熱装置6での熱源として使用する過熱蒸気を削減することができる(排ガス加熱装置6での熱損失50%程度低減)。これにより、廃棄物焼却処理施設1に付設の例えば蒸気タービン発電機(図示省略)へ送る蒸気量を増加させて発電量を増加させることができる(発電量6%程度増加)。   According to this embodiment, it is possible to reduce superheated steam used as a heat source in the exhaust gas heating device 6 while suppressing the NOx concentration to be lower than the regulation value (reduction of about 50% in heat loss in the exhaust gas heating device 6). . As a result, it is possible to increase the amount of power generation by increasing the amount of steam sent to, for example, a steam turbine generator (not shown) attached to the waste incineration treatment facility 1 (increase by about 6% in power generation amount).

以上、本発明の排ガス処理システムおよび排ガス処理方法について、一実施形態に基づいて説明したが、本発明は上記実施形態に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   The exhaust gas treatment system and the exhaust gas treatment method of the present invention have been described based on one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is appropriately within a range not departing from the gist thereof. The configuration can be changed.

本発明の排ガス処理システムおよび排ガス処理方法は、NOx濃度を規制値よりも低く抑えつつ、排ガス加熱装置での熱源として使用する過熱蒸気または燃料を削減することができるという特性を有していることから、廃棄物焼却処理施設における排ガスの処理の用途に好適に用いることができる。   The exhaust gas treatment system and the exhaust gas treatment method of the present invention have a characteristic that the superheated steam or fuel used as a heat source in the exhaust gas heating device can be reduced while keeping the NOx concentration lower than the regulation value. Therefore, it can be suitably used for an exhaust gas treatment application in a waste incineration treatment facility.

1 廃棄物焼却処理施設
6 排ガス加熱装置
7 触媒脱硝装置
10 管路
11 管路
12 バイパス管路
13 排ガス温度制御手段
14 制御弁
15 制御器
16 NHガス注入量制御手段
17 制御弁
18 制御器
19 バイパスガス量制御手段
20 バイパスダンパ
21 モータ
22 制御器
DESCRIPTION OF SYMBOLS 1 Waste incineration processing facility 6 Exhaust gas heating apparatus 7 Catalytic denitration apparatus 10 Pipe line 11 Pipe line 12 Bypass line 13 Exhaust gas temperature control means 14 Control valve 15 Controller 16 NH 3 gas injection amount control means 17 Control valve 18 Controller 19 Bypass gas amount control means 20 Bypass damper 21 Motor 22 Controller

Claims (2)

NOxが含まれた排ガスを加熱する排ガス加熱装置と、この排ガス加熱装置からの排ガスにNHガスを注入して脱硝する触媒脱硝装置とを備える排ガス処理システムにおいて、
前記排ガス加熱装置の排ガス入口に接続される管路から分岐して前記触媒脱硝装置の排ガス出口に接続される管路に繋がるバイパス管路と、
前記排ガス加熱装置からの排ガスの温度が所定温度となるように前記排ガス加熱装置での加熱を制御する排ガス温度制御手段と、
前記触媒脱硝装置からの排ガスと前記バイパス管路からの排ガスとが合流する前の前記触媒脱硝装置からの排ガスのNOx濃度が規制値の第1所定%以下となるように前記触媒脱硝装置でのNHガスの注入量を制御するNHガス注入量制御手段と、
前記触媒脱硝装置からの排ガスと前記バイパス管路からの排ガスとが合流した後の排ガスのNOx濃度が規制値の第2所定%以下となるように前記バイパス管路に流れる排ガスの流量を制御するバイパスガス量制御手段と、
を備えることを特徴とする排ガス処理システム。
In an exhaust gas treatment system comprising an exhaust gas heating device that heats exhaust gas containing NOx, and a catalyst denitration device that injects NH 3 gas into the exhaust gas from the exhaust gas heating device and denitrates,
A bypass pipe branched from a pipe connected to the exhaust gas inlet of the exhaust gas heating device and connected to a pipe connected to the exhaust gas outlet of the catalyst denitration device;
An exhaust gas temperature control means for controlling heating in the exhaust gas heating device so that the temperature of the exhaust gas from the exhaust gas heating device becomes a predetermined temperature;
In the catalyst denitration device, the NOx concentration of the exhaust gas from the catalyst denitration device before the exhaust gas from the catalyst denitration device and the exhaust gas from the bypass pipe merge is equal to or lower than a first predetermined percentage of a regulation value. NH 3 gas injection amount control means for controlling the injection amount of NH 3 gas;
The flow rate of the exhaust gas flowing through the bypass pipe is controlled so that the NOx concentration of the exhaust gas after the exhaust gas from the catalyst denitration apparatus and the exhaust gas from the bypass pipe are merged is equal to or less than a second predetermined percentage of the regulation value. Bypass gas amount control means;
An exhaust gas treatment system comprising:
NOxが含まれた排ガスを加熱する排ガス加熱装置と、この排ガス加熱装置からの排ガスにNHガスを注入して脱硝する触媒脱硝装置と、前記排ガス加熱装置の排ガス入口に接続される管路から分岐して前記触媒脱硝装置の排ガス出口に接続される管路に繋がるバイパス管路とを備える排ガス処理システムにおいて、
前記排ガス加熱装置からの排ガスの温度が所定温度となるように前記排ガス加熱装置での加熱を制御し、
前記触媒脱硝装置からの排ガスと前記バイパス管路からの排ガスとが合流する前の前記触媒脱硝装置からの排ガスのNOx濃度が規制値の第1所定%以下となるように前記触媒脱硝装置でのNHガスの注入量を制御し、
前記触媒脱硝装置からの排ガスと前記バイパス管路からの排ガスとが合流した後の排ガスのNOx濃度が規制値の第2所定%以下となるように前記バイパス管路に流れる排ガスの流量を制御する
ことを特徴とする排ガス処理方法。
From an exhaust gas heating device that heats exhaust gas containing NOx, a catalyst denitration device that injects NH 3 gas into the exhaust gas from the exhaust gas heating device to denitrate, and a pipe connected to the exhaust gas inlet of the exhaust gas heating device In an exhaust gas treatment system comprising a bypass pipe that branches and leads to a pipe connected to the exhaust gas outlet of the catalyst denitration device,
Controlling the heating in the exhaust gas heating device so that the temperature of the exhaust gas from the exhaust gas heating device becomes a predetermined temperature,
In the catalyst denitration device, the NOx concentration of the exhaust gas from the catalyst denitration device before the exhaust gas from the catalyst denitration device and the exhaust gas from the bypass pipe merge is equal to or lower than a first predetermined percentage of a regulation value. Control the injection amount of NH 3 gas,
The flow rate of the exhaust gas flowing through the bypass pipe is controlled so that the NOx concentration of the exhaust gas after the exhaust gas from the catalyst denitration apparatus and the exhaust gas from the bypass pipe are merged is equal to or less than a second predetermined percentage of the regulation value. An exhaust gas treatment method characterized by that.
JP2011185552A 2011-08-29 2011-08-29 Exhaust gas treatment system and exhaust gas treatment method Active JP5791429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011185552A JP5791429B2 (en) 2011-08-29 2011-08-29 Exhaust gas treatment system and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011185552A JP5791429B2 (en) 2011-08-29 2011-08-29 Exhaust gas treatment system and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2013046885A JP2013046885A (en) 2013-03-07
JP5791429B2 true JP5791429B2 (en) 2015-10-07

Family

ID=48010229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011185552A Active JP5791429B2 (en) 2011-08-29 2011-08-29 Exhaust gas treatment system and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP5791429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105435597A (en) * 2015-12-23 2016-03-30 广东惠州平海发电厂有限公司 System for improving denitration operation rate of Siemens 1000MW/600MW ultra-supercritical unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008086B1 (en) * 2013-07-08 2015-08-14 Degremont METHOD AND INSTALLATION FOR BIOLOGICAL DENITRIFICATION OF WASTE WATER
JP2021143616A (en) * 2020-03-11 2021-09-24 いすゞ自動車株式会社 Exhaust emission control system of internal combustion engine
CN116116213B (en) * 2023-02-09 2025-07-15 北京首钢国际工程技术有限公司 Embedded SCR flue gas denitration device and method for blast furnace hot blast stove

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141771A (en) * 1975-06-03 1976-12-06 Mitsubishi Heavy Ind Ltd An apparatus for removal of nox in exhaust
JPS61187232U (en) * 1985-05-13 1986-11-21
JPH0817910B2 (en) * 1986-04-10 1996-02-28 バブコツク日立株式会社 Exhaust gas treatment device
JPS6344925A (en) * 1986-08-12 1988-02-25 Takuma Co Ltd Denitration treatment of exhaust gas
JP2553935B2 (en) * 1989-09-04 1996-11-13 三井鉱山 株式会社 Desulfurization and denitration method of exhaust gas from sintering machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105435597A (en) * 2015-12-23 2016-03-30 广东惠州平海发电厂有限公司 System for improving denitration operation rate of Siemens 1000MW/600MW ultra-supercritical unit

Also Published As

Publication number Publication date
JP2013046885A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
US8211391B2 (en) Biomass boiler SCR NOx and CO reduction system
CN203944290U (en) A kind of SCR flue gas denitrification system
CN102187078A (en) Emission reduction system for use with a heat recovery steam generation system
CN112403258B (en) System and method for removing carbon monoxide and denitration of flue gas
WO2015186818A1 (en) Boiler system and electric power generation plant provided with same
JPS6157927B2 (en)
JP2014514134A (en) Selective catalyst NOX reduction method and apparatus in power generation boiler
JP5791429B2 (en) Exhaust gas treatment system and exhaust gas treatment method
CN107014217A (en) Coke-oven plant&#39;s coke-stove gas is utilized and smoke processing system and its processing method
CN103191640A (en) SCR (Selective Catalytic Reduction) denitration reducing agent urea pyrolysis heat source supply method and device
TWI744523B (en) Method and system for the removal of noxious compounds from flue-gas
JP2013072571A (en) Exhaust gas treating system
CN206198975U (en) A kind of desulphurization denitration energy saving integral cleaning system of flue gases of cock oven
JP2011120981A (en) Oxygen combustion type exhaust gas treatment apparatus and operation method for the same
JP4681460B2 (en) Gasification combined power generation facility
JP2007205689A (en) Waste combustion exhaust gas processing method and device
JP6552762B1 (en) Combined plant and excess heat recovery method for combined plant
WO2013136912A1 (en) Thermal power plant
JP2010099603A (en) Method for treating exhaust gas and apparatus for treating exhaust gas
CN203170224U (en) Heat source supplying device for SCR (Selective Catalytic Reduction) denitration-reductant urea pyrolysis
CN112403181A (en) Flue gas desulfurization and denitrification treatment system and method
JP6458298B2 (en) Incineration equipment
CN214581129U (en) SCR (Selective catalytic reduction) treatment system for hazardous waste incineration flue gas
JP5945093B2 (en) Mercury removal equipment
JP2019097543A (en) Exhaust supply system and exhaust supply method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150804

R150 Certificate of patent or registration of utility model

Ref document number: 5791429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250