JP5790028B2 - Manufacturing method of ferro-coke for metallurgy - Google Patents
Manufacturing method of ferro-coke for metallurgy Download PDFInfo
- Publication number
- JP5790028B2 JP5790028B2 JP2011043509A JP2011043509A JP5790028B2 JP 5790028 B2 JP5790028 B2 JP 5790028B2 JP 2011043509 A JP2011043509 A JP 2011043509A JP 2011043509 A JP2011043509 A JP 2011043509A JP 5790028 B2 JP5790028 B2 JP 5790028B2
- Authority
- JP
- Japan
- Prior art keywords
- coke
- ferro
- temperature
- dry distillation
- briquette
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000571 coke Substances 0.000 title claims description 130
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 238000005272 metallurgy Methods 0.000 title claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 84
- 229910052742 iron Inorganic materials 0.000 claims description 40
- 239000002245 particle Substances 0.000 claims description 34
- 238000003763 carbonization Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000003610 charcoal Substances 0.000 claims 1
- 238000000197 pyrolysis Methods 0.000 description 40
- 239000004484 Briquette Substances 0.000 description 31
- 230000009257 reactivity Effects 0.000 description 24
- 239000007789 gas Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000003245 coal Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000003575 carbonaceous material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 238000004321 preservation Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/244—Binding; Briquetting ; Granulating with binders organic
- C22B1/245—Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/08—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
- C10B57/06—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/007—Conditions of the cokes or characterised by the cokes used
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Coke Industry (AREA)
- Manufacture Of Iron (AREA)
Description
本発明は、炭材と鉄鉱石との混合物を成型し、生成された成型物を乾留することによってフェロコークスを製造する冶金用フェロコークスの製造方法に関する。 The present invention relates to a method for producing ferro-coke for metallurgical use in which ferro-coke is produced by molding a mixture of a carbonaceous material and iron ore and subjecting the produced molded product to carbonization.
高炉の還元材比を低下させるためには、高炉内に形成される熱保存帯の温度を低下させることが有効である(例えば、非特許文献1参照。)。 In order to reduce the reducing material ratio of the blast furnace, it is effective to reduce the temperature of the heat storage zone formed in the blast furnace (for example, see Non-Patent Document 1).
熱保存帯温度を低下させる方法としては、下記(1)式に示すコークスのガス化反応(吸熱反応)の開始温度を下げる方法が挙げられる。
C+CO2 → 2CO ・・・ (1)
炭材(石炭)と鉄鉱石とを混合して成型した成型物を乾留して製造されるフェロコークスは、還元された鉄鉱石の触媒効果でフェロコークス中のコークスのCO2反応性を高めることができ、それに伴う熱保存帯温度の低下によって還元材比を低下させることができる(例えば、特許文献1参照。)。
As a method for lowering the temperature of the heat preservation zone, there is a method of lowering the starting temperature of the coke gasification reaction (endothermic reaction) represented by the following formula (1).
C + CO 2 → 2CO (1)
Ferro-coke produced by dry distillation of a molded product obtained by mixing carbonaceous material (coal) and iron ore increases the CO 2 reactivity of coke in ferro-coke by the catalytic effect of reduced iron ore. The ratio of the reducing material can be reduced by the accompanying decrease in the temperature of the heat preservation zone (see, for example, Patent Document 1).
このようなフェロコークスを製造する技術として、原料石炭に粉鉄鉱石を配合し、混合して得られた混合物を通常の室炉式コークス炉で乾留する方法が検討されてきた。例えば、(a)石炭と粉鉄鉱石との粉混合物を室炉式コークス炉に装入する方法、(b)石炭と鉄鉱石を冷間、すなわち室温で成型し、その成型物を室炉式コークス炉に装入する方法(例えば、非特許文献2参照。)である。 As a technique for producing such ferro-coke, a method has been studied in which powder iron ore is blended with raw coal, and a mixture obtained by mixing is subjected to dry distillation in a normal chamber-type coke oven. For example, (a) a method in which a powder mixture of coal and fine iron ore is charged into a chamber-type coke oven, (b) coal and iron ore are molded cold, that is, at room temperature, and the molded product is chamber-type It is a method (for example, refer nonpatent literature 2) of charging to a coke oven.
また、石炭と鉄鉱石の成型物を、室炉式コークス炉ではなく竪型の乾留炉で乾留する方法も提案されている(非特許文献3参照。)。 In addition, a method has been proposed in which a coal and iron ore molded product is carbonized in a vertical type carbonization furnace instead of a chamber furnace type coke oven (see Non-Patent Document 3).
尚、酸化鉄でもコークスのCO2反応性を高める効果が発現するため、鉄鉱石がすべて金属鉄まで還元されなくても、CO2反応性を高める効果はあると推定される(非特許文献4参照。)。
Since expressing the effect of increasing the CO 2 reactivity of the coke in the iron oxide, even if iron ore are all not be reduced to metallic iron, the effect of increasing the CO 2 reactivity is estimated to be (
一方で、高炉に装入される通常のコークスについては、乾留温度が低いほどCO2反応性が向上すると考えられる(例えば、非特許文献5参照。)。 On the other hand, regarding normal coke charged in a blast furnace, it is considered that the CO 2 reactivity is improved as the dry distillation temperature is lower (for example, see Non-Patent Document 5).
高炉の還元材比をよりいっそう低下させるためには、上記のようにフェロコークスを高炉で使用して、還元された鉄鉱石の触媒効果でフェロコークス中のコークスのCO2反応性を高め、熱保存帯温度を低下させる必要がある。しかし、フェロコークス中のコークスのCO2反応性を高める最適なフェロコークスの製造条件は明らかになっていない。さらに、コークスのCO2反応性に関しても、高炉内条件を考慮した条件で評価することが望ましい。 In order to further reduce the reducing material ratio of the blast furnace, ferro-coke is used in the blast furnace as described above, and the catalytic effect of the reduced iron ore increases the CO 2 reactivity of the coke in the ferro-coke, The storage zone temperature needs to be lowered. However, the optimum ferro-coke production conditions for increasing the CO 2 reactivity of coke in ferro-coke are not clear. Furthermore, it is desirable to evaluate the CO 2 reactivity of coke under conditions that take into account the blast furnace conditions.
本発明は、上記課題に鑑みてなされたものであって、その目的は、炭材と鉄鉱石とからなる混合物を乾留することによってフェロコークスを製造する際に、高炉内でのフェロコークス中のコークスのCO2反応性を高め、これにより熱保存帯温度を低下させて、還元材比を低下させることのできる、冶金用フェロコークスの製造方法を提供することにある。 This invention is made | formed in view of the said subject, Comprising: The objective is in the ferro-coke in a blast furnace when manufacturing ferro-coke by dry-distilling the mixture which consists of a carbonaceous material and iron ore. An object of the present invention is to provide a metallurgical ferro-coke manufacturing method capable of increasing the CO 2 reactivity of coke, thereby lowering the heat preservation zone temperature and reducing the reducing material ratio.
このような課題を解決するための本発明の特徴は以下の通りである。
(1)炭材と鉄鉱石とからなる混合物を成型して成型物を形成し、前記成型物を乾留してフェロコークスを製造する方法であって、前記乾留時のフェロコークスの最高温度が800℃以上、900℃以下であることを特徴とする冶金用フェロコークスの製造方法。
(2)前記乾留時のフェロコークスの最高温度が800℃以上、850℃以下であることを特徴とする、(1)に記載の冶金用フェロコークスの製造方法。
(3)前記フェロコークスが15mm以上、35mm以下の粒径を有することを特徴とする(1)または(2)に記載のフェロコークス製造方法。
(4)前記フェロコークスの粒径が、15mm以上、28mm以下であることを特徴とする(3)に記載のフェロコークス製造方法。
(5)前記フェロコークスが、5〜40質量%の鉄分を有することを特徴とする(1)ないし(4)のいずれか1つに記載のフェロコークス製造方法。
(6)前記成型物の乾留が竪型炉において行われ、前記成型物を加熱するガスとして前記竪型炉の炉頂ガスを使用することを特徴とする(1)ないし(5)のいずれか1つに記載のフェロコークス製造方法。
The features of the present invention for solving such problems are as follows.
(1) A method for producing a ferro-coke by molding a mixture of carbonaceous material and iron ore to form a molded product, and subjecting the molded product to dry distillation, wherein the maximum temperature of the ferro-coke during the dry distillation is 800 A method for producing ferro-coke for metallurgy, characterized in that the temperature is from 900C to 900C.
(2) The method for producing ferro-coke for metallurgy according to (1), wherein the maximum temperature of ferro-coke during the carbonization is 800 ° C. or higher and 850 ° C. or lower.
(3) The ferro-coke manufacturing method according to (1) or (2), wherein the ferro-coke has a particle size of 15 mm or more and 35 mm or less.
(4) The ferro-coke manufacturing method according to (3), wherein a particle size of the ferro-coke is 15 mm or more and 28 mm or less.
(5) The ferro-coke manufacturing method according to any one of (1) to (4), wherein the ferro-coke has an iron content of 5 to 40% by mass.
(6) Any one of (1) to (5), wherein dry distillation of the molding is performed in a vertical furnace, and the top gas of the vertical furnace is used as a gas for heating the molding. The ferro-coke manufacturing method as described in one.
本発明によれば、高炉内でのCO2反応性が高いフェロコークスを製造でき、熱保存帯温度の低下により、高炉の還元材比をより低減することが可能となる。また、フェロコークスを製造する際に必要以上に乾留温度を高くすることがなくなるため、所要熱量の適正化に寄与できる。 According to the present invention, ferro-coke having high CO 2 reactivity in the blast furnace can be produced, and the reducing material ratio of the blast furnace can be further reduced due to a decrease in the temperature of the heat preservation zone. In addition, since the dry distillation temperature is not increased more than necessary when producing ferro-coke, it can contribute to the optimization of the required heat quantity.
本発明者らは、炭材と鉄鉱石とからなる混合物を成型した成型物を乾留して製造する高炉操業に用いるフェロコークスについて、フェロコークス中のコークスのCO2反応性を高めるために、フェロコークスの製造方法について検討し、以下のように考えた。 In order to increase the CO 2 reactivity of coke in ferro-coke, the present inventors have developed a ferro-coke used for blast furnace operation that is produced by dry distillation of a molded product obtained by molding a mixture of carbonaceous material and iron ore. The coke production method was examined and considered as follows.
(A)乾留時のフェロコークスの温度が高いほど混合された鉄鉱石の還元が進行するため、触媒効果が高まる。 (A) Since the reduction of the mixed iron ore proceeds as the temperature of the ferro-coke at the time of dry distillation increases, the catalytic effect increases.
(B)一方、一般にコークスは乾留時のコークスの温度が低いほどCO2反応性が向上すると考えられるため、フェロコークスの鉄以外の部分である、炭材が乾留したコークス部分についても着目し、フェロコークス中のコークス部分も乾留温度が低いほど反応性が向上する。 (B) On the other hand, since coke is generally considered to improve CO 2 reactivity as the temperature of coke at the time of dry distillation is lower, attention is also paid to the coke portion where carbonaceous material is carbonized, which is a part other than iron of ferro-coke, The reactivity of the coke portion in ferro-coke is improved as the dry distillation temperature is lower.
すなわち、フェロコークスを製造する際の乾留時のフェロコークスの温度が高くなると、還元鉄の触媒効果の観点からはコークスのCO2反応性が向上する可能性が、コークス性状の観点からはコークスのCO2反応性が低下する可能性があることになる。従って、コークスのCO2反応性を高めるために、フェロコークスの製造条件には最適な温度範囲が存在するのではないかと考えられる。 That is, when the temperature of ferro-coke at the time of dry distillation at the time of producing ferro-coke increases, the CO 2 reactivity of coke may be improved from the viewpoint of the catalytic effect of reduced iron, and from the viewpoint of coke characteristics, CO 2 reactivity may be reduced. Therefore, in order to increase the CO 2 reactivity of coke, it is considered that there is an optimum temperature range in the ferro-coke production conditions.
そこで、本発明者らは、温度条件を変更して乾留したフェロコークスに対し、高炉内のガスおよび温度を再現した条件によりコークスのCO2反応性を評価する実験を行なうことで、コークスのCO2反応性を高めるフェロコークスの乾留条件を導出した。その過程を以下に説明する。 Therefore, the present inventors conducted an experiment to evaluate the CO 2 reactivity of coke by changing the temperature conditions and dry-distilling ferro-coke under the conditions in which the gas and temperature in the blast furnace were reproduced. 2 The dry distillation conditions of ferro-coke that enhance the reactivity were derived. The process will be described below.
フェロコークスは、石炭と鉄鉱石の混合物(石炭は90、80、70、60mass%、鉄鉱石は10、20、30、40mass%)をブリケットマシンで成型した成型物(ブリケット)をバッチ式の加圧乾留炉で乾留して製造した。ブリケットの形状を図1に示す。図1において、上がブリケットの平面図、下が正面図であり、L=30mm、B=25mm、T=18mmである。Lは長さ(length)、Bは幅(breadth)、Tは厚さ(thickness)であり、フェロコークスの粒径は(長さ×幅×厚さ)1/3、すなわち、(L×B×T)1/3で表される。 Ferro coke is a mixture of coal and iron ore (coal is 90, 80, 70, 60 mass%, iron ore is 10, 20, 30, 40 mass%) molded by a briquette machine (briquette). It was produced by dry distillation in a pressure dry distillation furnace. The shape of the briquette is shown in FIG. In FIG. 1, the top is a plan view of the briquette, and the bottom is a front view, and L = 30 mm, B = 25 mm, and T = 18 mm. L is length (length), B is width (breadth), T is thickness (thickness), and the particle size of ferro-coke is (length × width × thickness) 1/3 , that is, (L × B × T) 1/3
乾留時のフェロコークスの温度(フェロコークス乾留温度)は、750、800、850、900、950℃であった。なお、前記フェロコークス乾留温度は乾留時の最高温度であり、ブリケットの中心部の温度を測定したものである。これらの最高温度までは5℃/分で昇温し、最高温度で90分保持した。また、雰囲気は水素30%、一酸化炭素11%、二酸化炭素17%、窒素21%、水蒸気5%、メタン16%(各々はvol%)の混合ガスとした。これは、実際のフェロコークス製造において、竪型炉を用いたガス−固体の向流移動層による連続的な製造を前提とし、さらにガスとして炉頂ガスを利用するプロセスを想定したものである。各フェロコークス乾留温度におけるフェロコークス中鉄鉱石の還元率を図2に示す。フェロコークス乾留温度の上昇に伴い、還元率が増加している。 The temperature of ferro coke at the time of dry distillation (ferro coke dry distillation temperature) was 750, 800, 850, 900, 950 ° C. The ferro-coke dry distillation temperature is the highest temperature during dry distillation, and the temperature at the center of the briquette is measured. The temperature was raised to 5 ° C./min up to these maximum temperatures and held at the maximum temperature for 90 minutes. The atmosphere was a mixed gas of 30% hydrogen, 11% carbon monoxide, 17% carbon dioxide, 21% nitrogen, 5% water vapor, and 16% methane (each vol%). This is based on the premise of continuous production using a gas-solid counter-current moving bed using a vertical furnace in actual ferro-coke production, and further assumes a process using furnace top gas as gas. FIG. 2 shows the reduction rate of ferro-coke medium iron ore at each ferro-coke carbonization temperature. As the ferro-coke distillation temperature rises, the reduction rate increases.
次に、フェロコークスの粒径が生産性に及ぼす影響に関して検討した。乾留時、特に製品の性状に大きな影響を及ぼす最高温度に関しては、ブリケット内の温度を均一に保持することが望ましい。ガスと固体の向流移動層である竪型乾留炉を用いる際には、ブリケット内で温度が均一となる時間を確保するように操業条件を設定する必要がある。 Next, the effect of the particle size of ferro-coke on productivity was examined. It is desirable to keep the temperature in the briquette uniform during dry distillation, especially with regard to the maximum temperature that greatly affects the properties of the product. When using a vertical dry distillation furnace that is a countercurrent moving bed of gas and solid, it is necessary to set operating conditions so as to ensure a time for the temperature to be uniform in the briquette.
図3にブリケット体積を変化させ、25℃から850℃まで昇温速度5℃/分で昇温させた際の、表層が850℃に達してから中心が850℃に達するまでの時間差を測定した結果を示す。ブリケット体積6cm3を基準条件とし、ブリケット体積6cm3の場合に対する相対値で整理した。雰囲気は水素30%、一酸化炭素11%、二酸化炭素17%、窒素21%、水蒸気5%、メタン16%(各々はvol%)の混合ガスであり、ブリケット表層および中心の温度を測定した。ブリケット体積が大きくなるほど、ブリケット全体が均一温度になる時間が増大する。
In FIG. 3, the time difference from when the surface layer reached 850 ° C. until the center reached 850 ° C. was measured when the briquette volume was changed and the temperature was raised from 25 ° C. to 850 ° C. at a heating rate of 5 ° C./min. Results are shown. The briquette volume of 6 cm 3 was used as a reference condition, and the relative values with respect to the briquette volume of 6 cm 3 were arranged. The atmosphere was a mixed gas of
次に、ブリケット全体を均一温度とするために必要な乾留炉の操業条件を検討した。ブリケット体積6cm3の条件を基準とすると、体積が6cm3より大きなブリケットについて粒子全体を均一温度に保持する時間、すなわちブリケット中心が850℃に達した後に粒子全体を850℃に保持する時間を同じとするためには、図3に示した時間が6cm3のブリケット全体が850℃になる時間に比べて余分に必要となる。時間を調整する手段としては、ブリケット降下速度の変更が挙げられる。体積6cm3のブリケットで、850℃のゾーン長さ1.5mの通過時間が90分となる、1m/時のブリケット降下速度を基準とした場合の、ブリケット体積と、ブリケット全体が850℃で乾留される時間が同等となるために必要なブリケット降下速度の関係を図4に示す。ブリケット体積が大きくなるほど降下速度を下げる必要があり、これは生産速度の低下を意味し、体積6cm3を基準にした場合、体積14cm3以上になると生産速度が5%以上減少する。なお、前述のようにフェロコークスの粒径は(長さ×幅×厚さ)1/3で示すと、体積6cm3の粒径は23.8mmに、14cm3の粒径は28.3mmに、18cm3の粒径は30.6mmに相当する。以上のように生産性に関しては小さい粒径のブリケットほど有利となるが、高炉での使用を前提とすると、通気性の観点で粒径に下限を規定することが望ましい。
Next, we examined the operating conditions of the dry distillation furnace necessary to bring the entire briquette to a uniform temperature. Based on the condition of the briquette volume of 6 cm 3 , the time for holding the whole particle at a uniform temperature for the briquette larger than 6 cm 3 , that is, the time for holding the whole particle at 850 ° C. after the briquette center reaches 850 ° C. is the same. In order to achieve this, an extra time is required as compared to the time when the entire 6 cm 3 briquette shown in FIG. As a means for adjusting the time, there is a change in the briquette descending speed. A briquette with a volume of 6 cm 3 , a zone length of 1.5 m at 850 ° C. and a transit time of 90 minutes. The briquette volume and the entire briquette are dry-distilled at 850 ° C. based on the briquette descending speed of 1 m / hour. FIG. 4 shows the relationship between the briquette lowering speeds necessary for the time taken to be equal. As the briquette volume increases, it is necessary to lower the descent rate. This means a decrease in production rate. When the volume is 6 cm 3 , the production rate decreases by 5% or more when the volume exceeds 14 cm 3 . As described above, when the particle size of ferro-coke is represented by (length × width × thickness) 1/3 , the particle size of
フェロコークスは、焼結鉱、ペレット、塊鉱石等から構成される鉄原料に混合して使用することが望ましい。焼結鉱、ペレット、塊鉱石等から構成される鉄原料を、以下、鉱石という。この際、鉱石とフェロコークスの混合層の通気性を維持することが、操業上重要となるため、鉱石とフェロコークスの混合層の通気抵抗に及ぼすフェロコークス粒径の影響を調査した。鉱石中のフェロコークス比率を21vol%(フェロコークス比率35mass%に相当)とした。鉱石の粒度分布を図5に示す。鉱石中に混合するフェロコークスの粒径による通気抵抗の変化を、下記式(2)を用いて計算した。
通気抵抗指数=(1/Φdp)1.3・(1−ε)1.3/ε3 ・・・ (2)
ここで、Φは形状係数(0.7とした。)、dpは鉱石/フェロコークス混合層の平均粒子径、εは鉱石/フェロコークス混合層の空隙率である。混合層の平均径は想定するフェロコークス粒径に応じて図5に示した粒度分布を補正して算出し、空隙率は補正後の粒度分布から推定した(非特許文献3参照。)。結果を図6に示す。フェロコークスの粒径が15〜35mmの間では通気抵抗が低く、その変化も小さいことがわかる。フェロコークスの粒径が15mmを下回ると混合層の平均径が低下することにより通気抵抗が上昇する。一方、フェロコークスの粒径が大きい条件でも通気抵抗が上昇するが、これは粒度分布が広がることにより空隙率が低下することに起因する。以上から、通気抵抗上昇を回避するためには、フェロコークス粒径が15〜35mmであるのが好ましいことが明らかになった。成型器を用いて製造される図1に示したような形状のフェロコークスであれば、先に定義したフェロコークスの粒径(=(L×B×T)1/3)が15〜35mmであることが望ましい。より望ましくは、20〜35mmである。
Ferro-coke is desirably used by being mixed with an iron raw material composed of sintered ore, pellets, lump ore and the like. Hereinafter, an iron raw material composed of sintered ore, pellets, lump ore and the like is referred to as ore. At this time, since maintaining the air permeability of the mixed layer of ore and ferro-coke is important for operation, the effect of the particle size of ferro-coke on the air-flow resistance of the mixed layer of ore and ferro-coke was investigated. The ferro-coke ratio in the ore was 21 vol% (corresponding to a ferro-coke ratio of 35 mass%). The particle size distribution of the ore is shown in FIG. The change in ventilation resistance due to the particle size of the ferro-coke mixed in the ore was calculated using the following formula (2).
Ventilation resistance index = (1 / Φdp) 1.3・ (1-ε) 1.3 / ε 3 (2)
Here, Φ is the shape factor (0.7), dp is the average particle size of the ore / ferrocoke mixed layer, and ε is the porosity of the ore / ferrocoke mixed layer. The average diameter of the mixed layer was calculated by correcting the particle size distribution shown in FIG. 5 according to the assumed ferrocoke particle size, and the porosity was estimated from the corrected particle size distribution (see Non-Patent Document 3). The results are shown in FIG. It can be seen that when the particle size of ferro-coke is between 15 and 35 mm, the ventilation resistance is low and the change is small. If the particle size of the ferro-coke is less than 15 mm, the average diameter of the mixed layer is lowered to increase the airflow resistance. On the other hand, the airflow resistance increases even under the condition that the particle size of the ferrocoke is large, but this is due to the decrease in the porosity due to the expansion of the particle size distribution. From the above, it was found that the ferrocoke particle size is preferably 15 to 35 mm in order to avoid an increase in ventilation resistance. In the case of ferrocoke having a shape as shown in FIG. 1 manufactured using a molding machine, the particle size (= (L × B × T) 1/3 ) of ferrocoke as defined above is 15 to 35 mm. It is desirable to be. More desirably, the thickness is 20 to 35 mm.
以上より、フェロコークスの粒径に関しては、乾留炉の生産性確保の観点からは28mm以下、高炉使用時の通気性の観点からは15〜35mmが望ましい。生産性確保と通気性の両方を考慮すると、15〜28mmの範囲が望ましい。 From the above, the particle size of ferro-coke is preferably 28 mm or less from the viewpoint of securing productivity of the dry distillation furnace, and 15 to 35 mm from the viewpoint of air permeability when using the blast furnace. In consideration of both securing of productivity and air permeability, a range of 15 to 28 mm is desirable.
なお、ブリケットはブリケットマシンのモールドの形状に応じて、マセック型、印籠型、玉子型、楕円型 等の呼び名があるが、いずれにおいても直交する3つの対称軸(前出のL、B、T)を有するため、先に示した粒径(=(L×B×T)1/3)によってその特性が規定される。 Briquettes have names such as Macek type, Indo type, egg type, and oval type depending on the shape of the mold of the briquetting machine. In any case, the three symmetry axes (L, B, T mentioned above) ), The characteristic is defined by the particle size (= (L × B × T) 1/3 ) shown above.
次に、750、800、850、900、950℃のフェロコークス乾留温度で製造したフェロコークスを、高炉内条件を模擬した条件で反応させる試験を行った。ブリケット形状は図1においてL=30mm、B=25mm、T=18mmとした。反応条件を図7に示す。図7において、太線で示した部分が、高炉の炉頂から1200℃の温度域へと装入物が炉内を降下する際に受ける履歴を再現した条件に相当する。 Next, a test was conducted in which ferrocoke produced at 750, 800, 850, 900, and 950 ° C. ferrocoke dry distillation temperatures was reacted under conditions simulating blast furnace conditions. The briquette shape was L = 30 mm, B = 25 mm, and T = 18 mm in FIG. The reaction conditions are shown in FIG. In FIG. 7, the part indicated by a thick line corresponds to a condition that reproduces the history that the charge received when the charge descends from the top of the blast furnace to the temperature range of 1200 ° C.
図7の条件で1200℃まで反応させた後のフェロコークスについて、フェロコークス乾留温度とフェロコークス中カーボンの反応率の関係を図8に示す。フェロコークス乾留温度が750℃および950℃では反応率が低位となり、850℃で極大値を持つ結果となった。フェロコークス乾留温度が750℃の場合は図2に示すようにフェロコークス中鉄鉱石の還元率が20%と低く、還元鉄の触媒効果が小さいために反応性が低くなったものと推察される。また、図2に示すようにフェロコークス乾留温度の上昇に伴いフェロコークス中鉄鉱石の還元率は上昇するが、コークス部の反応性が低下する影響により、950℃では反応性が低下したものと推定される。 FIG. 8 shows the relationship between the ferro-coke dry distillation temperature and the reaction rate of carbon in the ferro-coke for ferro-coke after the reaction to 1200 ° C. under the conditions of FIG. The reaction rate was low when the ferro-coke dry distillation temperatures were 750 ° C. and 950 ° C., and the maximum value was obtained at 850 ° C. When the ferro-coke distillation temperature is 750 ° C., the reduction rate of iron ore in ferro-coke is as low as 20% as shown in FIG. 2, and it is assumed that the reactivity is low because the catalytic effect of reduced iron is small. . In addition, as shown in FIG. 2, the reduction rate of iron ore in ferrocoke increases as the ferrocoke dry distillation temperature increases, but the reactivity decreases at 950 ° C. due to the decrease in the reactivity of the coke part. Presumed.
また、鉄分を0〜40質量%に変更し、乾留温度850℃で製造したフェロコークスの上記試験における反応開始温度を図9に示す。ここで、フェロコークス中カーボンの反応率が0.8%に達した温度を反応開始温度と定義した。図9によれば、フェロコークス中の鉄分含有量が増えるに従い、反応性が向上し反応開始温度が低下する効果が発現する。そして、鉄分含有量5質量%から大きな効果が発現し、40質量%以上では効果が飽和する。このことから、5〜40質量%が望ましい鉄分含有量であると言える。したがって、フェロコークス中の鉄分含有量は5〜40質量%が好ましく、さらに好ましくは10〜40質量%である。 Moreover, the reaction start temperature in the said test of the ferro-coke manufactured by changing iron content into 0-40 mass% and having a carbonization temperature of 850 degreeC is shown in FIG. Here, the temperature at which the reaction rate of carbon in ferrocoke reached 0.8% was defined as the reaction start temperature. According to FIG. 9, as the iron content in the ferro-coke increases, the reactivity is improved and the reaction start temperature is lowered. And a big effect is expressed from iron content 5 mass%, and an effect is saturated at 40 mass% or more. From this, it can be said that 5-40 mass% is a desirable iron content. Therefore, the iron content in ferrocoke is preferably 5 to 40% by mass, more preferably 10 to 40% by mass.
以上のことから、炭材と鉄鉱石とからなる混合物を乾留してフェロコークスを製造する際には、乾留時のフェロコークスの温度を800〜900℃の範囲内、望ましくは800〜850℃の範囲内、特に望ましくは850℃近傍とすることにより、CO2反応性の高いフェロコークスを製造することができることが明らかになった。 From the above, when producing ferro-coke by dry distillation of a mixture of carbonaceous material and iron ore, the temperature of ferro-coke at the time of dry distillation is in the range of 800-900 ° C, desirably 800-850 ° C. It was found that ferro-coke having high CO 2 reactivity can be produced by setting the temperature within the range, particularly desirably around 850 ° C.
フェロコークスの粒径に関しては、乾留炉の生産性確保の観点からは28mm以下、高炉使用時の通気性の観点からは15〜35mmが望ましい。生産性確保と通気性の両方を考慮すると、15〜28mmが望ましい。 The particle size of ferro-coke is preferably 28 mm or less from the viewpoint of ensuring productivity of the dry distillation furnace, and 15 to 35 mm from the viewpoint of air permeability when using the blast furnace. Considering both productivity and air permeability, 15 to 28 mm is desirable.
フェロコークス中の鉄分は5〜40質量%が好ましく、さらに好ましくは10〜40質量%である。炭材としては、石炭を用いることが好ましい。石炭の他に、バイオマス等を用いることもできる。 The iron content in the ferrocoke is preferably 5 to 40% by mass, more preferably 10 to 40% by mass. As the carbon material, coal is preferably used. In addition to coal, biomass and the like can also be used.
各乾留温度条件で製造したフェロコークスの高炉使用試験を実施した。 A blast furnace use test of ferro-coke produced under each dry distillation temperature condition was conducted.
フェロコークスは、石炭と鉄鉱石の混合物(石炭は70mass%、鉄鉱石は30mass%)をブリケットマシンで成型したブリケットを、ガス加熱式の竪型の乾留炉で連続的に乾留した。ガスは乾留炉の炉頂ガスの一部を加熱したものを用い(水素30vol%、一酸化炭素11vol%、二酸化炭素17vol%、窒素21vol%、水蒸気5vol%、「メタン+エタン」16vol%)、乾留炉内を上昇するガスと、炉内を連続的に降下するブリケットとで向流移動層を形成することによりブリケットの昇温を行った。ブリケットの寸法は図1に示した形状(L=30mm、B=25mm、T=18mm)とした。竪型乾留炉において、炉頂から装入されたブリケットは1時間程度で600℃近傍まで昇温されるが、600℃から最高温度までは2℃/分〜5℃/分で昇温させ、最高温度で1.5時間保持した。この最高温度をフェロコークス乾留温度とした。ここで、例えば非特許文献6に示すように、竪型の乾留炉においてはガス温度と固体温度に差が生じる。この差を勘案し、向流移動層の伝熱シミュレーションを行い、固体温度が所定条件となるように、ガス条件の調整を行った。
Ferro-coke continuously dry-distilled briquettes obtained by molding a mixture of coal and iron ore (coal is 70 mass%, iron ore is 30 mass%) with a briquette machine in a gas heating vertical distillation furnace. The gas used is one obtained by heating a part of the top gas of the carbonization furnace (
フェロコークス製造条件(フェロコークス乾留温度)、フェロコークス中の鉄還元率、操業条件(フェロコークス使用量、室炉コークス比、微粉炭比)および高炉操業結果(還元材比)を表1に、フェロコークス乾留温度と高炉還元材比との関係を図10に示す。表1において、ベースはフェロコークスを使用しない通常の高炉操業の場合、ケース1〜5がフェロコークスを鉱石層に均一に混合して高炉炉頂から装入した操業を行った場合である。
Table 1 shows ferro-coke production conditions (ferro-coke dry distillation temperature), iron reduction rate in ferro-coke, operating conditions (ferro-coke consumption, chamber coke ratio, pulverized coal ratio) and blast furnace operation results (reducing material ratio). The relationship between the ferro-coke dry distillation temperature and the blast furnace reducing material ratio is shown in FIG. In Table 1, in the case of normal blast furnace operation without using ferro-coke, the base is a case where
表1によれば、フェロコークスを使用しない条件(ベース)に対し、フェロコークスを使用することで還元材比を低減することができることが分かる。特に、乾留時のフェロコークスの温度(フェロコークス乾留温度)が800〜900℃間では、還元材比を30kg/t以上も低減させることが可能となった。これは、乾留温度が高いほどフェロコークス中鉄の還元率が上昇するために触媒としての機能が高まる効果と、乾留温度が高いほどコークス部の反応性が低下する効果の相互作用によるものと推定される。 According to Table 1, it can be seen that the reducing material ratio can be reduced by using ferro-coke against the condition (base) in which ferro-coke is not used. In particular, when the temperature of ferro-coke at the time of dry distillation (ferro-coke dry distillation temperature) is between 800 and 900 ° C., the reducing agent ratio can be reduced by 30 kg / t or more. It is estimated that this is due to the interaction between the effect of increasing the function as a catalyst because the reduction rate of iron in ferro-coke increases as the carbonization temperature increases, and the effect of reducing the reactivity of the coke part as the carbonization temperature increases. Is done.
Claims (3)
前記成型物を竪型炉において乾留することとし、
前記成型物を加熱するガスとして前記竪型炉の炉頂ガスを使用して、高炉で使用されるフェロコークスを製造する方法であって、
前記フェロコークスが10〜40質量%の鉄分を有し、
前記乾留時のフェロコークスの最高温度が800℃以上、850℃以下であることを特徴とする冶金用フェロコークスの製造方法。
但し、前記フェロコークスの最高温度が800℃の場合を除く。 Molding a mixture of charcoal and iron ore to form a molding,
The molded product is to be carbonized in a vertical furnace,
Using the top gas of the vertical furnace as a gas for heating the molded product, a method for producing ferro-coke used in a blast furnace,
The ferro-coke has 10-40 mass% iron,
The method for producing ferro-coke for metallurgy, wherein the maximum temperature of ferro-coke at the time of carbonization is 800 ° C. or higher and 850 ° C. or lower.
However, the case where the maximum temperature of the ferro-coke is 800 ° C. is excluded.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011043509A JP5790028B2 (en) | 2010-03-03 | 2011-03-01 | Manufacturing method of ferro-coke for metallurgy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010046061 | 2010-03-03 | ||
JP2010046061 | 2010-03-03 | ||
JP2011043509A JP5790028B2 (en) | 2010-03-03 | 2011-03-01 | Manufacturing method of ferro-coke for metallurgy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011202159A JP2011202159A (en) | 2011-10-13 |
JP5790028B2 true JP5790028B2 (en) | 2015-10-07 |
Family
ID=44542119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011043509A Active JP5790028B2 (en) | 2010-03-03 | 2011-03-01 | Manufacturing method of ferro-coke for metallurgy |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2543716B1 (en) |
JP (1) | JP5790028B2 (en) |
KR (1) | KR20120123482A (en) |
CN (1) | CN102782095B (en) |
WO (1) | WO2011108466A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103468841A (en) * | 2013-09-06 | 2013-12-25 | 鞍钢股份有限公司 | Semi coke for blast furnace injection and manufacturing method thereof |
CN103756701B (en) * | 2014-01-21 | 2015-11-25 | 河北联合大学 | Hyperergy coke and production method thereof |
EP3315585B1 (en) * | 2015-06-24 | 2019-12-25 | JFE Steel Corporation | Method for producing ferrocoke |
CN106635067A (en) * | 2016-11-24 | 2017-05-10 | 武汉科思瑞迪科技有限公司 | Shaft furnace process for producing iron coke |
CN110093467B (en) * | 2019-06-05 | 2020-07-17 | 东北大学 | Preparation method of iron coke |
KR102289527B1 (en) * | 2019-09-24 | 2021-08-12 | 현대제철 주식회사 | Reduction method of the reducing agents ratio and co2 gas of the blast furnace |
CN110699141B (en) * | 2019-10-10 | 2021-08-20 | 中南大学 | A chain grate-rotary kiln injects biomass fuel and its preparation method and application |
CN110699142B (en) * | 2019-10-10 | 2021-02-02 | 中南大学 | A kind of iron ore sintered biomass fuel and its preparation method and application |
JP2022187900A (en) * | 2021-06-08 | 2022-12-20 | 株式会社神戸製鋼所 | Pig iron manufacturing method and ore raw material |
CN113416567B (en) * | 2021-07-08 | 2022-07-15 | 山西沁新能源集团股份有限公司 | Preparation method of ferro coke and ferro coke |
CN115612760B (en) * | 2021-07-13 | 2023-11-03 | 山西沁新能源集团股份有限公司 | Low-ash high-strength iron coke and preparation method thereof |
CN115612762B (en) * | 2021-07-13 | 2023-11-03 | 山西沁新能源集团股份有限公司 | Iron coke with high cold and hot strength and preparation method thereof |
CN115612761B (en) * | 2021-07-13 | 2023-11-03 | 山西沁新能源集团股份有限公司 | Low-ash high-strength iron coke and preparation method thereof |
KR102567429B1 (en) * | 2021-07-27 | 2023-08-17 | 현대제철 주식회사 | How to control the charge distribution profile of a blast furnace |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5966486A (en) * | 1982-10-07 | 1984-04-14 | Nippon Steel Corp | Continuous production unit of molded ferro coke |
JPH0428810A (en) * | 1990-05-24 | 1992-01-31 | Nippon Steel Corp | Smelting reduction iron-making method |
CN1077602C (en) * | 1999-08-20 | 2002-01-09 | 方新贵 | Spheroidized iron-coke ore solidified rapidly at middle temp and its apparatus |
JP4487564B2 (en) * | 2002-12-25 | 2010-06-23 | Jfeスチール株式会社 | Ferro-coke manufacturing method |
JP4556525B2 (en) * | 2004-07-16 | 2010-10-06 | Jfeスチール株式会社 | Blast furnace operation method |
JP5087868B2 (en) * | 2006-07-05 | 2012-12-05 | Jfeスチール株式会社 | Ferro-coke manufacturing method |
BRPI0722354A2 (en) * | 2007-12-26 | 2014-03-18 | Jfe Steel Corp | IRON COKE PRODUCTION METHOD |
JP5386838B2 (en) * | 2008-03-21 | 2014-01-15 | Jfeスチール株式会社 | Ferro-coke for metallurgy |
JP5365043B2 (en) * | 2008-03-27 | 2013-12-11 | Jfeスチール株式会社 | Ferro-coke manufacturing method |
-
2011
- 2011-02-25 EP EP11750576.8A patent/EP2543716B1/en active Active
- 2011-02-25 WO PCT/JP2011/054367 patent/WO2011108466A1/en active Application Filing
- 2011-02-25 CN CN201180011516.0A patent/CN102782095B/en active Active
- 2011-02-25 KR KR1020127022341A patent/KR20120123482A/en active Search and Examination
- 2011-03-01 JP JP2011043509A patent/JP5790028B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR20120123482A (en) | 2012-11-08 |
CN102782095B (en) | 2015-07-01 |
EP2543716B1 (en) | 2019-04-03 |
JP2011202159A (en) | 2011-10-13 |
EP2543716A4 (en) | 2016-07-13 |
CN102782095A (en) | 2012-11-14 |
EP2543716A1 (en) | 2013-01-09 |
WO2011108466A1 (en) | 2011-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5790028B2 (en) | Manufacturing method of ferro-coke for metallurgy | |
JP5059379B2 (en) | Hot briquette iron for blast furnace charging raw material and method for producing the same | |
JP4487564B2 (en) | Ferro-coke manufacturing method | |
JP5546675B1 (en) | Blast furnace operating method and hot metal manufacturing method | |
JP5880941B2 (en) | Method for producing reduced iron | |
JP4971815B2 (en) | Blast furnace operation method | |
EP2657320B1 (en) | Method for manufacturing partially carbonized coal briquettes | |
JP4910640B2 (en) | Blast furnace operation method | |
JP6119700B2 (en) | Blast furnace operation method | |
CN104870618A (en) | Method for manufacturing briquette | |
JP2004285134A (en) | Process for producing raw material for metallurgical furnace | |
JP2011252200A (en) | Method for operating blast furnace | |
JPH026815B2 (en) | ||
CN111099590A (en) | Coal-based activated carbon production process | |
JP5958264B2 (en) | Agglomerate for blast furnace and method for producing the same | |
JP2013147692A (en) | Method of operating blast furnace at high tapping ratio of pig iron | |
JP5763308B2 (en) | Ferro-coke manufacturing method | |
KR101421208B1 (en) | Selection method of carboneous materials and manufacturing method of reduced iron using the same | |
JP5565143B2 (en) | Blast furnace operation method | |
WO2011052798A1 (en) | Method for operating blast furnace | |
JP7488449B2 (en) | Binder for manufacturing agglomerates, manufacturing method of agglomerates using the same, manufacturing method of reduced iron, agglomerates | |
JPH02236210A (en) | Blast furnace operation method | |
JPH0778251B2 (en) | Direct iron making method using vertical furnace | |
JP4923872B2 (en) | Blast furnace operation method | |
JP2018003081A (en) | Manufacturing method of sinter raw material for manufacturing sintered ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150218 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150608 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150707 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150720 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5790028 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |