[go: up one dir, main page]

JP5787347B2 - Immobilized photocatalyst for water splitting and method for producing hydrogen and / or oxygen - Google Patents

Immobilized photocatalyst for water splitting and method for producing hydrogen and / or oxygen Download PDF

Info

Publication number
JP5787347B2
JP5787347B2 JP2011053406A JP2011053406A JP5787347B2 JP 5787347 B2 JP5787347 B2 JP 5787347B2 JP 2011053406 A JP2011053406 A JP 2011053406A JP 2011053406 A JP2011053406 A JP 2011053406A JP 5787347 B2 JP5787347 B2 JP 5787347B2
Authority
JP
Japan
Prior art keywords
photocatalyst
water
inorganic material
hydrophilic inorganic
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011053406A
Other languages
Japanese (ja)
Other versions
JP2012187520A (en
Inventor
一成 堂免
一成 堂免
前田 和彦
和彦 前田
久保田 純
純 久保田
諳珂 熊
諳珂 熊
瀬戸山 亨
亨 瀬戸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Mitsubishi Chemical Group Corp
Original Assignee
University of Tokyo NUC
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Mitsubishi Chemical Holdings Corp filed Critical University of Tokyo NUC
Priority to JP2011053406A priority Critical patent/JP5787347B2/en
Publication of JP2012187520A publication Critical patent/JP2012187520A/en
Application granted granted Critical
Publication of JP5787347B2 publication Critical patent/JP5787347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Fuel Cell (AREA)

Description

本発明は、所定の可視光応答型光半導体と親水性無機材料とを含む光触媒層を備えた水分解用光触媒固定化物、及び、当該水分解用光触媒固定化物を用いた水素及び/又は酸素の製造方法に関する。   The present invention is a water splitting photocatalyst-immobilized product provided with a photocatalyst layer containing a predetermined visible light responsive photo-semiconductor and a hydrophilic inorganic material, and hydrogen and / or oxygen using the water-splitting photocatalyst immobilized product. It relates to a manufacturing method.

太陽エネルギーなどの再生可能エネルギーを利用した高性能な光エネルギー変換システムを実用化することは、地球温暖化の抑制、及び枯渇しつつある化石資源依存からの脱却を目指す観点から、近年になって急激にその重要性が増している。中でも、太陽エネルギーを用いて水を分解し水素を製造する技術は、現行の石油精製、アンモニア、メタノールの原料供給技術としてのみならず、燃料電池をベースとした来たる水素エネルギー社会において、必須とされる技術である。   Practical use of high-performance light energy conversion systems that use renewable energy such as solar energy has been in progress in recent years from the perspective of suppressing global warming and moving away from the depletion of fossil resources. Its importance is increasing rapidly. Above all, the technology that decomposes water using solar energy to produce hydrogen is indispensable not only in the current petroleum refining, ammonia and methanol raw material supply technology, but also in the future hydrogen energy society based on fuel cells. Technology.

光触媒による水分解反応は、1970年代から広く研究されている(非特許文献1等)。太陽光はそのエネルギーの大部分が可視光領域にあるため、太陽光で効率的に水分解を行うためには、そのエネルギーの大部分が可視光領域の光を利用できることが好ましい。当初の光触媒は太陽光中に4%程度しか含まれない波長領域が紫外領域(380nm以下)の光しか利用できないものであったが、2000年以降になり、可視光領域の光を利用して、水を完全分解することができ、かつ水中で安定である光触媒が提案されるようになってきている。さらに、光触媒に助触媒を担持させることにより、変換効率を向上させる技術等も提案されている。   The water splitting reaction using a photocatalyst has been extensively studied since the 1970s (Non-Patent Document 1, etc.). Since most of the energy of sunlight is in the visible light region, in order to efficiently perform water splitting with sunlight, it is preferable that most of the energy can use light in the visible light region. The original photocatalyst was only usable in the ultraviolet region (380 nm or less) in the wavelength region where only about 4% of sunlight is contained, but since 2000, light in the visible region is used. Photocatalysts that can completely decompose water and are stable in water have been proposed. Furthermore, a technique for improving conversion efficiency by supporting a cocatalyst on a photocatalyst has been proposed.

例えば、助触媒としてRh2−XCrを担持したGaN:ZnOは、400nm付近での水分解反応の量子収率が5%程度であり、太陽光を利用した水素製造用の光触媒として注目されている(非特許文献2、3等)。 For example, GaN carrying Rh 2-X Cr X O 3 as a co-catalyst: ZnO is the quantum yield of the water decomposition reaction in the vicinity of 400nm is about 5%, as a photocatalyst for hydrogen production using sunlight It is attracting attention (Non-Patent Documents 2, 3, etc.).

ここで、ラボスケールにおける光触媒による水分解実験では、光を照射した反応器中で、光触媒粒子を含んだ分散液を攪拌して反応させる。攪拌しないで水分解反応を行うと、反応効率が低下することが知られている(非特許文献4)。通常、光は上面から照射されるため、攪拌によって十分に懸濁した系では、主に水面近傍の光触媒が光を吸収して水を分解するので、生成した水素と酸素とが気相中に放出され易いのに対し、光触媒が水中で沈んでしまうと、水面までの距離が長くなり、生成した水素と酸素とが触媒表面から気相中へ拡散できずに逆反応によって水に戻ってしまうことが原因と考えられている。また、光触媒の濡れ性が低い場合、生成ガスが光触媒表面に気泡として吸着し易く、これも生成ガスの気相中への拡散を阻害し、逆反応を生じさせる原因となってしまう。   Here, in a water splitting experiment using a photocatalyst on a laboratory scale, a dispersion containing photocatalyst particles is stirred and reacted in a reactor irradiated with light. It is known that when the water splitting reaction is performed without stirring, the reaction efficiency decreases (Non-patent Document 4). Normally, light is irradiated from the upper surface, so in a system that is sufficiently suspended by stirring, the photocatalyst near the water surface absorbs light and decomposes water, so that the generated hydrogen and oxygen are in the gas phase. If the photocatalyst sinks in water, it is likely to be released, but the distance to the water surface becomes longer, and the generated hydrogen and oxygen cannot be diffused from the catalyst surface into the gas phase, and return to water by a reverse reaction. It is thought to be the cause. Further, when the photocatalyst has low wettability, the product gas is easily adsorbed as bubbles on the surface of the photocatalyst, which also inhibits the diffusion of the product gas into the gas phase and causes a reverse reaction.

しかしながら、光触媒を用いて化学品の原料やエネルギー源としての水素を製造する場合、例えば光触媒の太陽光変換効率(η)を10%とすると、年間20万トンの水素を製造するには、年間日射量の大きい赤道付近であっても25km以上の光触媒及び反応器面積が必要となる。このような大規模な反応器において攪拌操作を行うことは、装置面でも、水素製造コストの観点からも現実的ではない。 However, when producing hydrogen as a chemical raw material or energy source using a photocatalyst, for example, assuming that the solar conversion efficiency (η) of the photocatalyst is 10%, Even near the equator where the amount of solar radiation is large, a photocatalyst and reactor area of 25 km 2 or more are required. It is not practical to perform the stirring operation in such a large-scale reactor from the viewpoint of the apparatus and the hydrogen production cost.

また、光触媒は、粉末のままで反応器内部に均一に保持することは困難であることから、光触媒はあらかじめ板やシート状のものに固定化しておくことが好ましい。さらに、光触媒の交換・回収作業を行うことを想定した場合にも、或いは、製造の効率化の観点からも、光触媒をあらかじめ固定化しておいたほうが作業が簡便となり好ましいといえる。例えば、特許文献1には、酸化チタンに助触媒として酸化イリジウムを担持した光触媒を、バインダーとしてSiOを使用して基板上に固定する技術が提案されている。 In addition, since it is difficult to keep the photocatalyst uniformly in the reactor as a powder, it is preferable to fix the photocatalyst in a plate or sheet in advance. Furthermore, even when it is assumed that the photocatalyst replacement / recovery operation is performed, or from the viewpoint of manufacturing efficiency, it is preferable to fix the photocatalyst in advance because the operation is simple. For example, Patent Document 1 proposes a technique in which a photocatalyst carrying iridium oxide as a co-catalyst on titanium oxide is fixed onto a substrate using SiO 2 as a binder.

しかし、本発明者らが検討したところ、光触媒を固定化して水分解を実施した場合、分解効率が著しく低下する場合があることを知見した。特許文献1においても、光触媒とバインダーを混合して使用した場合、バインダーを使用しない場合に比較して酸素発生速度が減少することが示されている(特許文献1の図3、試料Aと試料Cとの比較)。   However, as a result of investigations by the present inventors, it has been found that when the photocatalyst is immobilized and water decomposition is carried out, the decomposition efficiency may be significantly reduced. Patent Document 1 also shows that when a photocatalyst and a binder are mixed and used, the oxygen generation rate is reduced as compared to the case where no binder is used (FIG. 3, Patent A and Sample A of Patent Document 1). Comparison with C).

したがって、光触媒による水分解を産業的に、しかも大規模に実施するためには、光触媒を攪拌することなく、かつ、光触媒が有する光水分解性能を十分に発揮し得る固定化技術が望まれていた。   Therefore, in order to carry out water splitting with a photocatalyst industrially and on a large scale, there is a demand for an immobilization technique that can sufficiently exhibit the photowater splitting performance of the photocatalyst without stirring the photocatalyst. It was.

特開2001−219073号公報JP 2001-219073 A

Chem.Soc.Rev., 2009, 38, p.253-278Chem. Soc. Rev., 2009, 38, p.253-278 Nature 2006, 440 (7082), p.295Nature 2006, 440 (7082), p.295 Chem. Mater. 2010, 22(3), p.612-623Chem. Mater. 2010, 22 (3), p.612-623 水分解光触媒技術の最新動向 シーエムシー出版 2003、p.61〜68Latest Trends in Water-Splitting Photocatalytic Technology CM Publishing 2003, p. 61-68

本発明は、光触媒の光水分解性能を低下させることなく、かつ、簡便で効率的に利用が可能な光触媒固定化物、及び、当該光触媒固定化物を用いた水素及び/又は酸素の製造方法を提供することを課題とする。   The present invention provides a photocatalyst-immobilized product that can be used easily and efficiently without reducing the photocatalytic performance of the photocatalyst, and a method for producing hydrogen and / or oxygen using the photocatalyst-immobilized product. The task is to do.

本発明者らが鋭意検討したところ、助触媒を担持した可視光応答型の光触媒と親水性無機材料粒子とを混合するように基板上に塗布し、光触媒層として基板上に固定化することにより、良好な光水分解性能を有する光触媒固定化物を得ることができることを知見し、本発明を完成させるに至った。   As a result of intensive investigations by the present inventors, a visible light responsive photocatalyst carrying a cocatalyst and hydrophilic inorganic material particles are applied on a substrate so as to be mixed, and fixed as a photocatalyst layer on the substrate. The inventors have found that a photocatalyst-immobilized product having good photohydrolysis performance can be obtained, and have completed the present invention.

親水性無機材料粒子が存在しない場合、親水性の低い可視光応答型光触媒粒子により光触媒層を形成することとなるため、光触媒粒子間に水が浸入し難くなる。結果として、光触媒層の最上面近傍の光触媒しか光水分解反応に利用できない。しかし、親水性無機材料粒子を共存させることによって、光触媒層内に水が浸入し易くなり、光触媒層の最上面近傍だけでなく、光触媒層の内部においても光水分解反応を生じさせることができ、また、親水性表面によって生成ガスが光触媒層に付着し難くなる結果、生成ガスの気相中への拡散が促進されるため、単位面積、単位光触媒量あたりの反応効率が向上したものと推定される。   When the hydrophilic inorganic material particles are not present, the photocatalyst layer is formed by visible light responsive photocatalyst particles having low hydrophilicity, so that water hardly enters between the photocatalyst particles. As a result, only the photocatalyst near the uppermost surface of the photocatalyst layer can be used for the photohydrolysis reaction. However, the coexistence of hydrophilic inorganic material particles makes it easy for water to enter the photocatalyst layer, and can cause a photowater decomposition reaction not only near the top surface of the photocatalyst layer but also inside the photocatalyst layer. Also, the product surface is less likely to adhere to the photocatalyst layer due to the hydrophilic surface, and the diffusion of the product gas into the gas phase is promoted, so the reaction efficiency per unit area and unit photocatalyst amount has been improved. Is done.

すなわち、本発明の要旨は次の(1)〜()に存する。
(1) 基材上に光触媒層を有する水分解用光触媒固定化物であって、光触媒層が、Ga、Zn、Ti、La、Ta及びBaからなる群より選ばれる1つ以上の原子を含む窒化物又は酸窒化物である可視光応答型光半導体と、可視光応答型光半導体に担持された助触媒と、シリカ、アルミナ、及び酸化チタンからなる群より選ばれる少なくとも1種の親水性無機材料とを含み、光触媒層は、助触媒が担持された可視光応答型光半導体と、親水性無機材料とが混合されてなることを特徴とする水分解用光触媒固定化物。
(2) 可視光応答型光半導体と親水性無機材料とが粒子状であり、かつ、親水性無機材料の粒子径が、助触媒が担持された可視光応答型光半導体の粒子径より小さい、(1)に記載の光水分解用光触媒固定物。
) 可視光応答型光半導体が、GaN:ZnO、LaTiON及びBaTaON:Mgからなる群より選ばれる1種以上である、(1)又は(2)に記載の水分解用光触媒固定化物。
) 助触媒が、Pt、Pt−Ru、Ru−Ir、Rh−Cr複合酸化物、Ru酸化物、Ir酸化物、Co酸化物、Mn酸化物からなる群より選ばれる1種以上である、(1)〜(3)のいずれかに記載の水分解用光触媒固定化物。
) 親水性無機材料がシリカである、(1)〜()のいずれかに記載の水分解用光触媒固定化物。
) (1)〜()のいずれかに記載の水分解用光触媒固定化物を水中に配置し、当該光触媒固定化物に光を照射することによって水を分解する、水素及び/又は酸素の製造方法。
That is, the gist of the present invention resides in the following (1) to ( 6 ).
(1) A photocatalyst immobilization product for water splitting having a photocatalyst layer on a base material, wherein the photocatalyst layer contains one or more atoms selected from the group consisting of Ga, Zn, Ti, La, Ta and Ba At least one hydrophilic inorganic material selected from the group consisting of a visible light responsive optical semiconductor that is an oxide or an oxynitride, a promoter supported on the visible light responsive optical semiconductor, silica, alumina, and titanium oxide preparative only containing photocatalyst layer has a visible-light-responsive semiconductor cocatalyst is supported, hydrophilic inorganic material and is mixed with features to water splitting photocatalytic immobilizates by comprising.
(2) The visible light responsive optical semiconductor and the hydrophilic inorganic material are in the form of particles, and the particle diameter of the hydrophilic inorganic material is smaller than the particle diameter of the visible light responsive optical semiconductor carrying the promoter, (1) The photocatalyst fixed product for water splitting according to (1).
( 3 ) The photocatalyst for water splitting according to (1) or (2) , wherein the visible light responsive optical semiconductor is at least one selected from the group consisting of GaN: ZnO, LaTiO 2 N, and BaTaO 2 N: Mg. Immobilized material.
( 4 ) The promoter is at least one selected from the group consisting of Pt, Pt—Ru, Ru—Ir, Rh—Cr composite oxide, Ru oxide, Ir oxide, Co oxide, and Mn oxide. The photocatalyst fixed material for water splitting according to any one of (1) to (3) .
( 5 ) The photocatalyst immobilized product for water splitting according to any one of (1) to ( 4 ), wherein the hydrophilic inorganic material is silica.
( 6 ) The photocatalyst immobilized product for water splitting according to any one of (1) to ( 5 ) is disposed in water, and water is decomposed by irradiating the photocatalyst immobilized product with light. Hydrogen and / or oxygen Production method.

本願において、「X:M」は、光半導体XにMをドープ或いは固溶させたものを意味する。例えば、「GaN:ZnO」とは、光半導体であるGaN中にZnOを固溶させたものであり、「BaTaON:Mg」とは、光半導体であるBaTaONにMgをドープしたものである。 In the present application, “X: M” means an optical semiconductor X doped with M or dissolved. For example, “GaN: ZnO” is a solid solution of ZnO in GaN, which is an optical semiconductor, and “BaTaO 2 N: Mg” is a BaTaO 2 N, which is an optical semiconductor, doped with Mg. It is.

また、本願において、「X:M1/M2」は、光半導体XにM1とM2とを共ドープしたものを意味する。例えば、TiO:Ni/Taは、光半導体であるTiO2にNiとTaとを共ドープしたものである。 In the present application, “X: M1 / M2” means that the optical semiconductor X is co-doped with M1 and M2. For example, TiO 2 : Ni / Ta is obtained by co-doping Ni and Ta into TiO 2 that is an optical semiconductor.

また、本願において、「M1−M2」は金属M1微粒子と金属M2微粒子とが互いに隣接して存在し、互いに金属間相互作用を持つものを意味する。例えばRu−Ir/BaTaON:Mgは、MgをドープしたBaTaON光触媒に、助触媒としてRu、Ir の2種の金属を互いに隣接して存在するように担持したものである。 In the present application, “M1-M2” means that the metal M1 fine particles and the metal M2 fine particles are adjacent to each other and have an intermetallic interaction with each other. For example, Ru—Ir / BaTaO 2 N: Mg is a BaTaO 2 N photocatalyst doped with Mg that supports two kinds of metals, Ru and Ir 2, as co-catalysts.

本発明においては、光触媒層中に可視光応答型の光触媒とともに親水性無機材料を共存させることによって、水分解反応時に、光触媒層の表面近傍だけでなく内部にまで水を浸入させることができるとともに、親水性表面によって生成ガスが光触媒層に付着し難くなる結果、生成ガスの気相中への拡散が促進される。また、反応器内での攪拌が不要であり簡便に水分解反応を行うことができる。すなわち、本発明によれば、光触媒の光水分解性能を低下させることなく、かつ、簡便で効率的に利用が可能な水分解用光触媒固定化物、及び、当該光触媒固定化物を用いた水素及び/又は酸素の製造方法を提供することができる。   In the present invention, by allowing a hydrophilic inorganic material to coexist with a visible light responsive photocatalyst in the photocatalyst layer, water can be infiltrated not only into the vicinity of the surface of the photocatalyst layer but also into the interior during the water splitting reaction. As a result, it becomes difficult for the produced gas to adhere to the photocatalyst layer due to the hydrophilic surface, and as a result, diffusion of the produced gas into the gas phase is promoted. Further, stirring in the reactor is unnecessary, and the water splitting reaction can be performed easily. That is, according to the present invention, the photocatalyst-immobilized product for water splitting that can be used simply and efficiently without reducing the photocatalytic performance of the photocatalyst, and hydrogen and / or Alternatively, a method for producing oxygen can be provided.

一実施形態に係る本発明の光触媒固定化物を概略的に示す図である。It is a figure which shows roughly the photocatalyst fixed material of this invention which concerns on one Embodiment. 光触媒の構成について説明するための図である。It is a figure for demonstrating the structure of a photocatalyst. 実施例にて用いた光触媒固定化物の評価装置を概略的に示す図である。It is a figure which shows roughly the evaluation apparatus of the photocatalyst fixed material used in the Example.

1.水分解用光触媒固定化物
本発明に係る水分解用光触媒固定化物は、基材上に光触媒層を有する光触媒固定化物であって、光触媒層が、Ga、Zn、Ti、La、Ta及びBaからなる群より選ばれる1つ以上の原子を含む窒化物又は酸窒化物である可視光応答型光半導体と、可視光応答型光半導体に担持された助触媒と、シリカ、アルミナ、及び酸化チタンからなる群より選ばれる少なくとも1種の親水性無機材料とを含むことに特徴を有する。
1. The photocatalyst immobilized product for water splitting according to the present invention is a photocatalyst immobilized product having a photocatalyst layer on a substrate, and the photocatalyst layer is made of Ga, Zn, Ti, La, Ta, and Ba. A visible light responsive optical semiconductor that is a nitride or oxynitride containing one or more atoms selected from the group, a promoter supported on the visible light responsive optical semiconductor, silica, alumina, and titanium oxide It is characterized by containing at least one hydrophilic inorganic material selected from the group.

図1に、一実施形態に係る本発明の水分解用光触媒固定化物100を概略的に示す。図1に示すように、光触媒固定化物100は、光触媒1と親水性無機材料2とが混合されてなる光触媒層10が基材20の表面に設けられている。ここで、光触媒1は、例えば図2に示すように、可視光応答型光半導体1aに助触媒1b、1bが担持されてなるものである。以下、構成要件毎に説明する。   In FIG. 1, the photocatalyst fixed material 100 for water splitting of this invention which concerns on one Embodiment is shown roughly. As shown in FIG. 1, the photocatalyst immobilization product 100 is provided with a photocatalyst layer 10 in which a photocatalyst 1 and a hydrophilic inorganic material 2 are mixed on the surface of a substrate 20. Here, for example, as shown in FIG. 2, the photocatalyst 1 is formed by supporting promoters 1b and 1b on a visible light responsive optical semiconductor 1a. Hereinafter, each component requirement will be described.

1.1.光触媒層10
光触媒層10には(1)可視光応答型光半導体1a、(2)当該可視光応答型光半導体1aに担持された助触媒1b、及び(3)親水性無機材料2が含まれており、助触媒1bが担持された可視光応答型光半導体1aが光触媒1として機能する。
1.1. Photocatalyst layer 10
The photocatalyst layer 10 includes (1) a visible light responsive optical semiconductor 1a, (2) a promoter 1b supported on the visible light responsive optical semiconductor 1a, and (3) a hydrophilic inorganic material 2. The visible light responsive optical semiconductor 1a carrying the promoter 1b functions as the photocatalyst 1.

(1)可視光応答型光半導体1a
本発明において用いられる可視光応答型光半導体1aは、可視光領域の波長を吸収し、周囲の水を分解する性能を有する光半導体をいう。具体的には、380nm〜1000nmの光、好ましくは420nm〜800nmの光を吸収し、かつ、その価電子帯上端が酸性溶液中におけるO/HOの酸化還元電位よりも低い可視光応答型光半導体、又は、400nm〜1000nmの光、好ましくは420nm〜800nmの光を吸収し、かつ、伝導体下端が酸性溶液中におけるH/Hの酸化還元電位よりも高い可視光応答型光半導体が好ましい。
(1) Visible light responsive optical semiconductor 1a
The visible light responsive optical semiconductor 1a used in the present invention refers to an optical semiconductor that has the ability to absorb wavelengths in the visible light region and decompose surrounding water. Specifically, a visible light response that absorbs light of 380 nm to 1000 nm, preferably 420 nm to 800 nm, and whose upper end of the valence band is lower than the redox potential of O 2 / H 2 O in an acidic solution. Type optical semiconductor, or visible light responsive type light that absorbs light of 400 nm to 1000 nm, preferably 420 nm to 800 nm, and whose lower end of the conductor is higher than the redox potential of H + / H 2 in an acidic solution A semiconductor is preferred.

可視光応答型光半導体1aとしては、窒化物、酸窒化物、複合酸化物等が挙げられる。   Examples of the visible light responsive optical semiconductor 1a include nitrides, oxynitrides, composite oxides, and the like.

例えば、Ga、Zn、Ti、La、Ta、及びBaからなる群より選ばれる1つ以上の原子を含む窒化物又は酸窒化物を、本発明における可視光応答型光半導体1aとして用いることができる。具体的には、LaTiON、Ca0.25La0.75TiO2.250.75、TaON、CaNbON、CaTaON、SrTaON、BaTaON、LaTaON、YTa、(Ga1−xZn)(N1−x)、(Zn1+xGe)(N)(xは、0−1の数値を表す)、TiNなどの酸窒化物、Ta、GaN:Mgなどの窒化物を含むが、ここに例示した材料に限定されるものではない。特に、光水分解能に一層優れたものとする観点から、GaN:ZnO、LaTiON、TaON、Ta又はBaTaONが好ましい。これら光半導体は2種以上の混合物であってもよい。 For example, a nitride or oxynitride containing one or more atoms selected from the group consisting of Ga, Zn, Ti, La, Ta, and Ba can be used as the visible light responsive optical semiconductor 1a in the present invention. . Specifically, LaTiO 2 N, Ca 0.25 La 0.75 TiO 2.25 N 0.75 , TaON, CaNbO 2 N, CaTaO 2 N, SrTaO 2 N, BaTaO 2 N, LaTaO 2 N, Y 2 Ta 2 O 5 N 2 , (Ga 1-x Zn x ) (N 1-x O x ), (Zn 1 + x Ge) (N 2 O x ) (x represents a numerical value of 0-1), TiN x Oxynitrides such as O y F z and nitrides such as Ta 3 N 5 and GaN: Mg are included, but are not limited to the materials exemplified here. In particular, GaN: ZnO, LaTiO 2 N, TaON, Ta 3 N 5 or BaTaO 2 N is preferable from the viewpoint of further improving optical water resolution. These optical semiconductors may be a mixture of two or more.

或いは、BiWO、BiYWO、In(ZnO)、InTaO、InTaO:Ni、TiO:Ni、TiO:Ru、TiORh、TiO:Ni/Ta、TiO:Ni/Nb、TiO:Cr/Sb、TiO:Ni/Sb、TiO:Sb/Cu、TiO:Rh/Sb、TiO:Rh/Ta、TiO:Rh/Nb、SrTiO:Ni/Ta、SrTiO:Ni/Nb、SrTiO:Cr、SrTiO:Cr/Sb、SrTiO:Cr/Ta、SrTiO:Cr/Nb、SrTiO:Cr/W、SrTiO:Mn、SrTiO:Ru、SrTiO:Rh、SrTiO:Rh/Sb、SrTiO:Ir、CaTiO:Rh、LaTi:Cr、LaTi:Cr/Sb、LaTi:Fe、PbMoO:Cr、RbPbNb10、HPbNb10、PbBiNb、BiVO、BiCuVO、BiSnVO、SnNb、AgNbO、AgVO、AgLi1/3Ti2/3、AgLi1/3Sn2/3などの酸化物、CdSなどの硫化物、CdSeなどのセレン化物、LnTi(Ln:Pr、Nd、Sm、Gd、Tb、Dy、HoおよびEr)やLa、Inを含むオキシサルファイド化合物(Chemistry Letters、2007,36,854−855)も、本発明における可視光応答型光半導体1aとして用いることができる。 Alternatively, Bi 2 WO 6 , BiYWO 6 , In 2 O 3 (ZnO) 3 , InTaO 4 , InTaO 4 : Ni, TiO 2 : Ni, TiO 2 : Ru, TiO 2 Rh, TiO 2 : Ni / Ta, TiO 2 : Ni / Nb, TiO 2 : Cr / Sb, TiO 2 : Ni / Sb, TiO 2 : Sb / Cu, TiO 2 : Rh / Sb, TiO 2 : Rh / Ta, TiO 2 : Rh / Nb, SrTiO 3 : Ni / Ta, SrTiO 3 : Ni / Nb, SrTiO 3 : Cr, SrTiO 3 : Cr / Sb, SrTiO 3 : Cr / Ta, SrTiO 3 : Cr / Nb, SrTiO 3 : Cr / W, SrTiO 3 : Mn, SrTiO 3: Ru, SrTiO 3: Rh , SrTiO 3: Rh / Sb, SrTiO 3: Ir, CaTiO 3: Rh, La 2 i 2 O 7: Cr, La 2 Ti 2 O 7: Cr / Sb, La 2 Ti 2 O 7: Fe, PbMoO 4: Cr, RbPb 2 Nb 3 O 10, HPb 2 Nb 3 O 10, PbBi 2 Nb 2 O 9 , BiVO 4 , BiCu 2 VO 6 , BiSn 2 VO 6 , SnNb 2 O 6 , AgNbO 3 , AgVO 3 , AgLi 1/3 Ti 2/3 O 2 , AgLi 1/3 Sn 2/3 O 2 Oxides including oxides, sulfides such as CdS, selenides such as CdSe, Ln 2 Ti 2 S 2 O 5 (Ln: Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er), La, and In A compound (Chemistry Letters, 2007, 36, 854-855) can also be used as the visible light responsive optical semiconductor 1a in the present invention.

上記のような可視光応答型光半導体1aは、増感剤を担持したものであってもよい。増感剤としては、[Ru(bpy)3]2+、エリスロシン(erythrosine)、亜鉛ポルフィリン、クマリン、及びこれら化合物の誘導体、CdS等がある。 The visible light responsive optical semiconductor 1a as described above may carry a sensitizer. Examples of the sensitizer include [Ru (bpy) 3] 2+ , erythrosine, zinc porphyrin, coumarin, and derivatives of these compounds, CdS, and the like.

また、上記のような可視光応答型光半導体1aの表面にp型もしくはn型光半導体を吸着させ、p−n接合を形成させたものを使用することもできる。用いるp型もしくはn型光半導体としては、CuO、CuO、CuI、Cu(InGa)S、Cu(InGa)Se、CuGaS、CuGaSSe、CuGaSe、CdS、CdTe、CdZnTe、CdSe、CuZnSnS、CuGa、CuInS、Cu(InAl)Se、CuIn、CuAlO、CuGaO、SrCu、GaP、GaAs、GaAsP、GaN、InP、InAs、GaInAsP、GaSb、Si、SiC、Ge、ZnS、Feなどの無機系半導体、およびフラーレン誘導体、ポルフィリン誘導体、フタロシアニン誘導体、ポリチオフェン誘導体等の有機系半導体が例示できる。 It is also possible to use a p-n junction formed by adsorbing a p-type or n-type optical semiconductor on the surface of the visible light responsive optical semiconductor 1a as described above. Examples of p-type or n-type optical semiconductors include CuO, Cu 2 O, CuI, Cu (InGa) S 2 , Cu (InGa) Se 2 , CuGaS 2 , CuGaSSe, CuGaSe 2 , CdS, CdTe, CdZnTe, CdSe, Cu 2 ZnSnS 4 , CuGa 5 S 8 , CuInS 2 , Cu (InAl) Se 2 , CuIn 5 S 8 , CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , GaP, GaAs, GaAsP, GaN, InP, InAs, GaInAsP, GaSb Inorganic semiconductors such as Si, SiC, Ge, ZnS, and Fe 2 O 3 and organic semiconductors such as fullerene derivatives, porphyrin derivatives, phthalocyanine derivatives, and polythiophene derivatives.

図1、2に示したように、可視光応答型光半導体1aは粒子状であることが好ましい。その一次粒子の粒子径は、可視光応答型光半導体1aが光触媒層10において適切に機能し得る大きさであれば特に限定されるものではない。例えば、粒子径の下限が好ましくは0.001μm以上、より好ましくは0.005μm以上、上限が好ましくは500μm以下、より好ましくは200μm以下の可視光応答型光半導体粒子を用いることができる。尚、本願において「粒子径」とは、定方向接線径(フェレ径)を意味し、XRD、TEM、SEM法等の公知の手段によって測定することができる。   As shown in FIGS. 1 and 2, the visible light responsive optical semiconductor 1a is preferably in the form of particles. The particle diameter of the primary particles is not particularly limited as long as the visible light responsive optical semiconductor 1a has a size that can function properly in the photocatalyst layer 10. For example, visible light-responsive optical semiconductor particles having a lower limit of the particle diameter of preferably 0.001 μm or more, more preferably 0.005 μm or more, and an upper limit of preferably 500 μm or less, more preferably 200 μm or less can be used. In the present application, the “particle diameter” means a constant tangential diameter (Ferret diameter), and can be measured by a known means such as XRD, TEM, or SEM method.

(2)助触媒1b
本発明において、可視光応答型光半導体1aには助触媒1bが担持される。本発明において用いられる助触媒1bは水素生成及び/又は酸素生成を促進する役割を果たす。
(2) Cocatalyst 1b
In the present invention, the visible light responsive optical semiconductor 1a carries the promoter 1b. The cocatalyst 1b used in the present invention plays a role of promoting hydrogen generation and / or oxygen generation.

助触媒1bとしては、可視光応答型光半導体1aに担持して、水素生成及び/又は酸素生成を促進する役割を果たすものであれば特に限定されるものではないが、具体的には第2〜14族の金属、該金属の金属間化合物、固溶体、共晶体、もしくは、該金属の混合粒子(以下、「多元金属粒子」と呼称)を用いることが好ましい。又は、これらの酸化物、複合酸化物、酸窒化物、硫化物、酸硫化物、或いはこれらの混合物のいずれかを用いることが好ましい。ここで、「金属間化合物」とは、2種以上の金属元素から形成される化合物であって、もとの金属と異なる結晶構造と原子結合様式を持つものをいう。「多元金属粒子」とは、光触媒上に高分散された2種以上の金属元素からなる超微粒子で触媒作用の上で金属間相互作用を持つものをいう。「これらの酸化物、複合酸化物、酸窒化物、硫化物、酸硫化物」とは、第2〜14族の金属、該金属の金属間化合物又は合金の、酸化物、複合酸化物、酸窒化物、硫化物、酸硫化物をいう。「これらの混合物」とは、以上例示した化合物のいずれか2以上の混合物をいう。   The promoter 1b is not particularly limited as long as it is supported on the visible light responsive optical semiconductor 1a and plays a role of promoting hydrogen generation and / or oxygen generation. It is preferable to use a metal of Group -14, an intermetallic compound of the metal, a solid solution, a eutectic, or a mixed particle of the metal (hereinafter referred to as “multi-metal particles”). Alternatively, any of these oxides, composite oxides, oxynitrides, sulfides, oxysulfides, or a mixture thereof is preferably used. Here, the “intermetallic compound” is a compound formed from two or more kinds of metal elements and has a crystal structure and an atomic bonding mode different from those of the original metal. “Multi-element metal particles” refers to ultrafine particles composed of two or more metal elements highly dispersed on a photocatalyst and having a metal-to-metal interaction upon catalytic action. “These oxides, composite oxides, oxynitrides, sulfides, oxysulfides” are oxides, composite oxides, acids of Group 2-14 metals, intermetallic compounds or alloys of the metals. Nitride, sulfide, oxysulfide. “A mixture thereof” refers to a mixture of any two or more of the compounds exemplified above.

酸化反応の助触媒としては、好ましくは、Mg、Ti、Mn、Fe、Co、Ni、Cu、Ga、Ru、Rh、Pd、Ag、Cd、In、Ce、Ta、W、Ir、PtまたはPbの金属、該金属の金属間化合物、固溶体、共晶体、もしくは該金属の多元金属粒子、該金属の酸化物または複合酸化物であり、より好ましくは、Mn、Co、Ni、Ru、Rh、Irの金属、Ru−Ir、Pt−Ru多元金属粒子、これらの酸化物または複合酸化物であり、さらに好ましくは、Ir、Ru−Ir、MnO、MnO、Mn、Mn、CoO、Co、NiCo、RuO、Rh、IrOである。 As the promoter for the oxidation reaction, Mg, Ti, Mn, Fe, Co, Ni, Cu, Ga, Ru, Rh, Pd, Ag, Cd, In, Ce, Ta, W, Ir, Pt or Pb are preferable. Metal, intermetallic compound of the metal, solid solution, eutectic, or multicomponent metal particles of the metal, oxide or composite oxide of the metal, and more preferably Mn, Co, Ni, Ru, Rh, Ir Metal, Ru—Ir, Pt—Ru multi-metal particles, oxides or composite oxides thereof, and more preferably Ir, Ru—Ir, MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CoO, Co 3 O 4 , NiCo 2 O 4 , RuO 2 , Rh 2 O 3 , IrO 2 .

還元反応の助触媒としては、好ましくは、Pt、Pd、Rh、Ru、Ni、Au、Fe、Ru−Ir、NiO、RuO、IrO、Rh、および、Cr−Rh複合酸化物、コアシェル型Rh/Cr、Pt/Cr 等を挙げることができる。 As the co-catalyst for the reduction reaction, preferably, Pt, Pd, Rh, Ru, Ni, Au, Fe, Ru—Ir, NiO, RuO 2 , IrO 2 , Rh 2 O 3 , and Cr—Rh composite oxide , Core-shell type Rh / Cr 2 O 3 , Pt / Cr 2 O 3 and the like.

本発明では、助触媒1bとしてより好ましくは、Pt、Pt−Ru、Ru−Ir、Rh−Cr複合酸化物、Ru酸化物(RuO)、Ir酸化物(IrO)、Co酸化物(CoO、Co)、Mn酸化物(MnO、Mn、Mn)からなる群より選ばれる1種以上を用いる。この中でも、Rh−Cr複合酸化物、Ru酸化物、Ir酸化物、Co酸化物、Mn酸化物からなる群より選ばれる1種以上が特に好ましい。 In the present invention, the cocatalyst 1b is more preferably Pt, Pt—Ru, Ru—Ir, Rh—Cr composite oxide, Ru oxide (RuO 2 ), Ir oxide (IrO 2 ), Co oxide (CoO , Co 3 O 4 ), Mn oxide (MnO, Mn 2 O 3 , Mn 3 O 4 ), one or more selected from the group consisting of MnO, Mn 2 O 3 and Mn 3 O 4 are used. Among these, at least one selected from the group consisting of Rh—Cr composite oxide, Ru oxide, Ir oxide, Co oxide, and Mn oxide is particularly preferable.

助触媒1bの可視光応答型光半導体1aへの担持方法としては、含浸担持、光電着法などが挙げられる。2種類以上の助触媒を担持する場合は、含浸担持では各々の助触媒の前駆体を同時に含浸する共含浸のほか、必要に応じて逐次含浸によって担持する。含浸法での担持では吸着サイトをコントロールできず、一方の助触媒がもう一方の助触媒を被覆してしまったり、互いの助触媒が接触して再結合中心になってしまい効果が出なくなることが予想される場合には、片方の助触媒は従来どおり吸着法で担持し、もう片方の助触媒(好ましくは還元反応助触媒)を光電着法で担持させる。尚、ここでいう光電着法(光電析法ともよばれる)とは、光半導体粒子と金属塩を共存させ、光照射によって金属塩を還元し、金属もしくは金属化合物として光半導体粒子上に担持する方法をいう。助触媒粒子もしくは助触媒粒子の前駆体の粒子径としては、特に限定されないが、通常1nm以上、好ましくは2nm以上、通常100nm以下、好ましくは50nm以下である。   Examples of a method for supporting the cocatalyst 1b on the visible light responsive optical semiconductor 1a include an impregnation support and a photo-deposition method. When two or more kinds of cocatalysts are supported, in the impregnation support, in addition to co-impregnation in which the precursors of the respective cocatalysts are impregnated simultaneously, they are supported by sequential impregnation as required. With the impregnation method, the adsorption site cannot be controlled, and one co-catalyst coats the other co-catalyst or the co-catalysts come into contact with each other and become recombination centers, resulting in no effect. If one of them is expected, one promoter is supported by the adsorption method as usual, and the other promoter (preferably a reduction reaction promoter) is supported by the photodeposition method. Here, the photo-deposition method (also called photo-deposition method) is a method in which photo-semiconductor particles and a metal salt coexist, the metal salt is reduced by light irradiation, and supported on the photo-semiconductor particle as a metal or a metal compound. Say. The particle diameter of the promoter particles or the precursor of the promoter particles is not particularly limited, but is usually 1 nm or more, preferably 2 nm or more, usually 100 nm or less, preferably 50 nm or less.

助触媒1bをナノ粒子とする場合は、例えば、保護基としてPVA(ポリビニルアルコール)やPVP(ポリビニルピロリドン)を使用するコロイド法など(Polymer J. 1999, 31, 1127-1132., Angew. Chem., Int. Ed. 2007, 46, 5397-5401)によって合成することができる。助触媒粒子の前駆体としては、助触媒金属の水酸化物、塩化物、硝酸塩、炭酸塩、酢酸塩、シュウ酸塩、リン酸塩のほか、各種アルコラート、フェノラート、カルボキシラート、アセチルアセトナート、チオラート、チオカルボキシラート錯体、アンミン錯体、各種アミン錯体、各種置換ピリジン、イミダゾール、ビピリジン、ターピリジン、フェナンスロリン、ポルフィリン錯体、各種ニトリル錯体等を使用することができるが、ここに例示した材料に限定されるものではない。   When the cocatalyst 1b is a nanoparticle, for example, a colloid method using PVA (polyvinyl alcohol) or PVP (polyvinylpyrrolidone) as a protecting group (Polymer J. 1999, 31, 1127-1132., Angew. Chem. , Int. Ed. 2007, 46, 5397-5401). Examples of the precursor of the promoter particles include hydroxides, chlorides, nitrates, carbonates, acetates, oxalates and phosphates of various promoter metals, various alcoholates, phenolates, carboxylates, acetylacetonates, Thiolate, thiocarboxylate complex, ammine complex, various amine complexes, various substituted pyridines, imidazole, bipyridine, terpyridine, phenanthroline, porphyrin complex, various nitrile complexes, etc. can be used, but are limited to the materials exemplified here Is not to be done.

助触媒1bの量は少なすぎても効果がなく、多すぎると助触媒自身が光を吸収・散乱するなどして光触媒の光吸収を妨げたり、再結合中心として働いたりしてかえって触媒活性が低下してしまう。このような観点から、可視光応答型光半導体1aへの助触媒1bの担持量は、可視光応答型光半導体1aを基準(100質量%)として、好ましくは0.01質量%以上20質量%以下、より好ましくは0.01質量%以上15質量%以下、特に好ましくは0.01質量%以上10質量%以下である。   If the amount of the cocatalyst 1b is too small, there is no effect. If the amount is too large, the cocatalyst itself absorbs and scatters light, thereby preventing the photocatalyst from absorbing light or acting as a recombination center. It will decline. From such a viewpoint, the loading amount of the promoter 1b on the visible light responsive optical semiconductor 1a is preferably 0.01% by mass or more and 20% by mass based on the visible light responsive optical semiconductor 1a (100% by mass). Hereinafter, it is more preferably 0.01% by mass to 15% by mass, and particularly preferably 0.01% by mass to 10% by mass.

(3)親水性無機材料2
光触媒層10に含まれる親水性無機材料2は、可視光を吸収せず、親水性の高い無機化合物の中から選ばれる。具体的には、Al、Bi、BeO、CeO、Ga、GeO、GeO、La、MgO、 Nb、Sb、Sb、Sc、SiO、Sm、SnO、TiO、ZnO、ZrO、Y、WO等の金属酸化物;SiO−Al、ZrO−Al等の複合酸化物;ゼオライト;ヘテロポリ酸;等を使用することができる。この中でも汎用材料であり、安価であるAl、TiO、SiOを用いるとよい。特にSiOが好ましい。また、SiOを用いる場合は、非晶質のSiOを用いることが好ましい。非晶質のSiOを用いることで、光触媒層10における光水分解反応が一層効率的なものとなる。
(3) Hydrophilic inorganic material 2
The hydrophilic inorganic material 2 contained in the photocatalyst layer 10 does not absorb visible light and is selected from inorganic compounds having high hydrophilicity. Specifically, Al 2 O 3 , Bi 2 O 3 , BeO, CeO 2 , Ga 2 O 3 , GeO, GeO 2 , La 2 O 3 , MgO, Nb 2 O 3 , Sb 2 O 3 , Sb 2 O 5 , metal oxides such as Sc 2 O 3 , SiO 2 , Sm 2 O 3 , SnO 2 , TiO 2 , ZnO, ZrO 2 , Y 2 O 3 , WO 3 ; SiO 2 —Al 2 O 3 , ZrO 2 — Complex oxides such as Al 2 O 3 ; zeolites; heteropoly acids; etc. can be used. Among these, it is preferable to use Al 2 O 3 , TiO 2 , and SiO 2 which are general-purpose materials and are inexpensive. SiO 2 is particularly preferable. In the case of using the SiO 2, it is preferable to use an amorphous SiO 2. By using amorphous SiO 2 , the photowater decomposition reaction in the photocatalyst layer 10 becomes more efficient.

親水性無機材料2は、それぞれ市販、製造されている材料を用いることができる。また親水性無機材料2として用いられる酸化物もしくは複合酸化物は、金属アルコキシド(例えば、テトラエチルシリケート、テトラn−ブチルチタネート等)を原料とし、光触媒1の表面において加水分解及び縮合させることで酸化物に変換したもの、又はあらかじめ部分的に加水分解、縮合によってゾル化した金属アルコキシド−金属酸化物混合物を調製しておき、これを光触媒と接触させて、光触媒1の表面で酸化物に変換したものを用いることもできる。この際、親水性無機材料2の表面には、アルコキシ基等の有機基が生成する場合があるが、その有無については特に限定されるものではない。いずれの場合においても、光触媒表面の親水性を保つ観点、水分解反応における生成ガスに有機基の分解物が混入して純度を低下させることを回避する観点から、アルコキシ基等の有機基は焼成処理等によって除去する方が好ましい。   As the hydrophilic inorganic material 2, commercially available materials can be used. The oxide or composite oxide used as the hydrophilic inorganic material 2 is an oxide obtained by hydrolysis and condensation on the surface of the photocatalyst 1 using a metal alkoxide (for example, tetraethyl silicate, tetra n-butyl titanate, etc.) as a raw material. Or a metal alkoxide-metal oxide mixture that has been partially solated by hydrolysis and condensation in advance, and is converted into an oxide on the surface of the photocatalyst 1 by contacting it with the photocatalyst Can also be used. At this time, an organic group such as an alkoxy group may be formed on the surface of the hydrophilic inorganic material 2, but the presence or absence thereof is not particularly limited. In any case, organic groups such as alkoxy groups are calcined from the viewpoint of maintaining the hydrophilicity of the photocatalyst surface, and from the viewpoint of avoiding degradation of purity by mixing organic group decomposition products into the product gas in the water decomposition reaction. It is preferable to remove by treatment or the like.

図1、2に示したように、親水性無機材料2は粒子状であることが好ましい。具体的な粒子径については、光触媒層10に水を適切に浸入させることが可能で、且つ、光触媒1が光触媒層10において適切に機能し得る大きさであれば特に限定されるものではない。特に、光触媒1よりも小さな粒子径とすることが好ましい。例えば、粒子径の下限が好ましくは1nm以上、より好ましくは10nm以上、上限が200μm以下、より好ましくは100μm以下の親水性無機材料粒子を用いることができる。   As shown in FIGS. 1 and 2, the hydrophilic inorganic material 2 is preferably in the form of particles. The specific particle diameter is not particularly limited as long as water can appropriately enter the photocatalyst layer 10 and the photocatalyst 1 can function properly in the photocatalyst layer 10. In particular, the particle diameter is preferably smaller than that of the photocatalyst 1. For example, hydrophilic inorganic material particles having a particle diameter lower limit of preferably 1 nm or more, more preferably 10 nm or more, and an upper limit of 200 μm or less, more preferably 100 μm or less can be used.

光触媒層10において親水性無機材料2の量が多すぎると、親水性無機材料2による光散乱のため、光触媒1の光吸収を阻害して反応効率が低下したり、単位面積当たりに塗布できる光触媒の量が減少したりする虞がある。逆に、親水性無機材料2の量が少なすぎると、十分な水供給促進効果及び生成ガスの拡散促進効果が得られない。したがって、光触媒層10に含まれる親水性無機材料2の量は、光触媒1の重量に対して好ましくは1%以上300%以下、より好ましくは10%以上200%以下、さらに好ましくは10%以上100%以下である。   If the amount of the hydrophilic inorganic material 2 in the photocatalyst layer 10 is too large, light absorption by the hydrophilic inorganic material 2 will inhibit the light absorption of the photocatalyst 1 to reduce the reaction efficiency, or the photocatalyst that can be applied per unit area There is a risk that the amount of the amount will decrease. On the other hand, if the amount of the hydrophilic inorganic material 2 is too small, sufficient water supply promotion effect and product gas diffusion promotion effect cannot be obtained. Therefore, the amount of the hydrophilic inorganic material 2 contained in the photocatalyst layer 10 is preferably 1% or more and 300% or less, more preferably 10% or more and 200% or less, and still more preferably 10% or more and 100 based on the weight of the photocatalyst 1. % Or less.

光触媒層10の厚みは、0.1μm以上1000μm以下、好ましくは1μm以上100μm以下である。光触媒層10が厚すぎる場合、光触媒層10の機械強度が低下したり、剥がれ易くなったりすると同時に、層下部の光触媒1に光が到達し難くなり、光触媒1の利用効率が低下してしまう。逆に薄すぎると、単位面積当たりの光触媒1の量が少なすぎて、反応効率が低下してしまう。   The thickness of the photocatalyst layer 10 is 0.1 μm or more and 1000 μm or less, preferably 1 μm or more and 100 μm or less. When the photocatalyst layer 10 is too thick, the mechanical strength of the photocatalyst layer 10 is lowered or easily peeled off, and at the same time, it is difficult for light to reach the photocatalyst 1 below the layer, and the utilization efficiency of the photocatalyst 1 is lowered. On the other hand, if it is too thin, the amount of the photocatalyst 1 per unit area is too small and the reaction efficiency is lowered.

また、光触媒層10は、使用中に容易に破壊されない機械強度と、水分子のアクセス及び生成物である水素ガスと酸素ガスとの放出パスを確保するため、少なくとも0.25nm以上、好ましくは1nm以上5000nm以下の孔径を有する多孔質体であることが重要となる。   Further, the photocatalyst layer 10 is at least 0.25 nm or more, preferably 1 nm in order to ensure mechanical strength that is not easily broken during use, access to water molecules, and a release path of hydrogen gas and oxygen gas as products. It is important that the porous body has a pore diameter of 5000 nm or less.

1.2.基材20
基材20は酸性、中性、塩基性の水中で安定であり、光触媒1によって酸化されない材料であれば材質について限定を受けるものではない。具体的には、セラミック、金属、耐酸化コーティングを施したメタクリル樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル等の有機基材、木材等の天然基材を用いることができる。特に、親水性無機材料と縮重合或いは水素結合を形成し得る基材を用いることで、光触媒層10と基材20との接着力を向上させることができる。このような基材としてはアルコキシシラン(シリル化剤)、加水分解基を持つシロキサン化合物、シランカップリング剤、シリコーン樹脂がある。基材20の形状については特に限定はなく、例えば、図1に示したような平板状の基材20の他、表面に凹凸を有する基材等であってもよい。基材20の厚みについても特に限定されるものではなく、設備規模に応じて適宜選択することができる。
1.2. Base material 20
The base material 20 is not limited as long as it is a material that is stable in acidic, neutral, and basic water and is not oxidized by the photocatalyst 1. Specifically, ceramic, metal, methacrylic resin with an anti-oxidation coating, acrylic resin, urethane resin, polyester resin, organic base materials such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, and natural base materials such as wood are used. be able to. In particular, the adhesive force between the photocatalyst layer 10 and the base material 20 can be improved by using a base material that can form polycondensation or hydrogen bonds with the hydrophilic inorganic material. Examples of such a substrate include alkoxysilane (silylating agent), a siloxane compound having a hydrolyzing group, a silane coupling agent, and a silicone resin. There is no limitation in particular about the shape of the base material 20, For example, the base material etc. which have an unevenness | corrugation on the surface other than the flat base material 20 as shown in FIG. 1 may be sufficient. The thickness of the substrate 20 is not particularly limited, and can be appropriately selected according to the equipment scale.

本発明に係る光触媒固定化物100は、上記のような構成を備えてなる。光触媒固定化物100においては、光触媒層10中に可視光応答型の光触媒1とともに親水性無機材料2を共存させることによって、水分解反応時に、光触媒層10の表面近傍だけでなく内部にまで水を浸入させることができるとともに、親水性表面によって生成ガスが光触媒層に付着し難くなる結果、生成ガスの気相中への拡散が促進される。また、反応器内での攪拌が不要であり簡便に水分解反応を行うことができる。すなわち、光触媒固定化物100は、光触媒1の光水分解性能を低下させることなく、かつ、簡便で効率的に利用が可能な光触媒固定化物と言える。   The photocatalyst immobilization product 100 according to the present invention has the above-described configuration. In the photocatalyst immobilization product 100, by allowing the hydrophilic inorganic material 2 to coexist with the visible light responsive photocatalyst 1 in the photocatalyst layer 10, water is not only supplied to the vicinity of the surface of the photocatalyst layer 10 but also to the inside during the water splitting reaction. In addition to being able to enter, the hydrophilic surface makes it difficult for the product gas to adhere to the photocatalyst layer, and as a result, diffusion of the product gas into the gas phase is promoted. Further, stirring in the reactor is unnecessary, and the water splitting reaction can be performed easily. That is, the photocatalyst immobilization product 100 can be said to be a photocatalyst immobilization product that can be used simply and efficiently without reducing the photocatalytic performance of the photocatalyst 1.

尚、上記説明においては、光触媒層10が粒子状の光触媒1と粒子状の親水性無機材料2とが混合されてなる形態について詳述したが本発明は当該形態に限定されるものではない。例えば、光触媒表面の一部に親水性無機材料が担持或いは一部被覆された形態であってもよい。また、光触媒と親水性無機材料との形状は粒子状に限定されるものではない。ただし、より簡易に光触媒活性の高い光触媒固定化物を得る観点からは、粒子状の光触媒と粒子状の親水性無機材料とが混合されてなる光触媒層とすることが好ましい。   In addition, in the said description, although the photocatalyst layer 10 explained in full detail the form by which the particulate photocatalyst 1 and the particulate hydrophilic inorganic material 2 were mixed, this invention is not limited to the said form. For example, a form in which a hydrophilic inorganic material is supported or partially coated on a part of the surface of the photocatalyst may be used. Further, the shapes of the photocatalyst and the hydrophilic inorganic material are not limited to particles. However, from the viewpoint of obtaining a photocatalyst immobilized product having a high photocatalytic activity more easily, it is preferable to form a photocatalyst layer in which a particulate photocatalyst and a particulate hydrophilic inorganic material are mixed.

2.光触媒固定化物の製造方法
本発明に係る光触媒固定化物は、例えば、上述した光触媒と親水性無機材料とを溶媒中で混合し、基材に塗布・乾燥させることによって得ることができる。混合する際には、あらかじめ混合した光触媒と親水性無機材料とを溶媒に分散させてもよいし、溶媒中に光触媒と親水性無機材料とを投入して混合してもよい。
2. Method for Producing Photocatalyst Immobilized Product The photocatalyst immobilized product according to the present invention can be obtained, for example, by mixing the above-described photocatalyst and a hydrophilic inorganic material in a solvent, and applying and drying the substrate. When mixing, the photocatalyst and the hydrophilic inorganic material that are mixed in advance may be dispersed in a solvent, or the photocatalyst and the hydrophilic inorganic material may be added and mixed in the solvent.

光触媒と親水性無機材料とを混合する際に使用する溶媒としては、水、メタノール、エタノール等のアルコール類、アセトンなどのケトン類、ベンゼン、トルエン、キシレン等が挙げられるが、親水性無機材料を効率よく分散させる観点から、特に水を用いることが好ましい。尚、例えば超音波処理によって、光触媒及び親水性無機材料を溶媒中により均一に分散させることができる。   Examples of the solvent used when mixing the photocatalyst and the hydrophilic inorganic material include water, alcohols such as methanol and ethanol, ketones such as acetone, benzene, toluene, xylene, and the like. From the viewpoint of efficient dispersion, it is particularly preferable to use water. For example, the photocatalyst and the hydrophilic inorganic material can be more uniformly dispersed in the solvent by ultrasonic treatment.

光触媒と親水性無機材料とが分散された溶媒を基材に塗布する際は、広く一般的に使用されている技術を用いればよい。例えば、スプレー法、ディップ法、スキージ法、ドクターブレード法、スピンコート法、スクリーンコート法、ロールコーティング法等がある。   When a solvent in which a photocatalyst and a hydrophilic inorganic material are dispersed is applied to a substrate, a widely used technique may be used. For example, there are a spray method, a dip method, a squeegee method, a doctor blade method, a spin coating method, a screen coating method, a roll coating method and the like.

ここで、光触媒及び親水性無機材料の塗布性を向上させるため、基材上にあらかじめ親水性無機材料を含む層を形成させ、その上に光触媒及び親水性無機材料を含む溶媒を塗布することもできる。   Here, in order to improve the applicability of the photocatalyst and the hydrophilic inorganic material, a layer containing the hydrophilic inorganic material may be formed on the substrate in advance, and a solvent containing the photocatalyst and the hydrophilic inorganic material may be applied thereon. it can.

塗布後の乾燥条件としては、溶媒が揮発する程度の温度に加熱すればよい。これにより、基材上に光触媒層を適切に形成することができる。例えば、40℃〜200℃程度の加熱乾燥によって基材上に光触媒層を形成することができる。   What is necessary is just to heat to the temperature which the solvent volatilizes as drying conditions after application | coating. Thereby, a photocatalyst layer can be appropriately formed on a substrate. For example, the photocatalyst layer can be formed on the substrate by heat drying at about 40 ° C. to 200 ° C.

3.水素及び/又は酸素の製造方法
本発明に係る光触媒固定化物は、一定の光源から光が照射されて、下記反応式(1)に係る光水分解反応を起こすことにより、水素及び/又は酸素を製造することができる。
O → H +1/2O (1)
3. Method for Producing Hydrogen and / or Oxygen The photocatalyst immobilization product according to the present invention generates hydrogen and / or oxygen by irradiating light from a certain light source and causing a photohydrolysis reaction according to the following reaction formula (1). Can be manufactured.
H 2 O → H 2 + 1 / 2O 2 (1)

光水分解反応の条件は、使用する光触媒によって適宜選択することができ、特に限定されるものではない。   The conditions for the photohydrolysis reaction can be appropriately selected depending on the photocatalyst used, and are not particularly limited.

光水分解反応に用いる光源としては、特に限定されるものではないが、太陽光の他、キセノンランプ、水銀ランプ、メタルハライドランプ、LEDランプやソーラーシミュレーター等の人工光源を用いることができる。これらの光源を用いて、水中に配置した光触媒固定化物の光触媒層に光を照射することによって、水分解反応を生じさせる。   The light source used for the photohydrolysis reaction is not particularly limited, but artificial light sources such as xenon lamps, mercury lamps, metal halide lamps, LED lamps and solar simulators can be used in addition to sunlight. By using these light sources and irradiating light to the photocatalyst layer of the photocatalyst immobilized material disposed in water, a water splitting reaction is caused.

光源の照射方法については特に限定されるものではなく、光触媒層へ直接照射する形態の他、反射鏡を用いて照射したり、レンズ等を用いて集光して照射してもよい。   The irradiation method of the light source is not particularly limited, and in addition to the form in which the photocatalyst layer is directly irradiated, irradiation may be performed using a reflecting mirror, or may be condensed and irradiated using a lens or the like.

光水分解反応の反応圧力は特に限定されるものではなく、通常、減圧(0.5kPa)から常圧の範囲で実施することができる。反応温度についても特に限定されるものではなく、通常0℃〜100℃、好ましくは50℃〜80℃の範囲で実施することができる。使用する水の液性についても特に限定されるものではなく、pH2〜13の範囲が好ましく、pH4.5〜7.0の範囲がより好ましい。   The reaction pressure of the photohydrolysis reaction is not particularly limited, and can usually be carried out in the range of reduced pressure (0.5 kPa) to normal pressure. The reaction temperature is not particularly limited, and the reaction can be performed usually in the range of 0 ° C to 100 ° C, preferably 50 ° C to 80 ° C. The liquid property of the water to be used is not particularly limited, and a range of pH 2 to 13 is preferable, and a range of pH 4.5 to 7.0 is more preferable.

光触媒固定化物を水面近傍に設置した場合、すなわち、光触媒固定化物の光触媒層上に少量の水しか存在しない場合、光照射によって光触媒層近傍の水が高温となり、不具合が生じる虞がある。一方で、光触媒固定化物を水中の深部に設置した場合、光が十分に届かない虞があるほか、生成ガスが水面に到達する前に逆反応を起こす虞がある。このような観点から、光触媒固定化物は、水面から50μm以上1m以下となる位置に設置することが好ましい。   When the photocatalyst immobilized product is installed in the vicinity of the water surface, that is, when only a small amount of water is present on the photocatalyst layer of the photocatalyst immobilized product, the water in the vicinity of the photocatalyst layer becomes hot due to light irradiation, which may cause a problem. On the other hand, when the photocatalyst immobilization product is installed in a deep part in water, there is a possibility that light does not reach sufficiently, and a reverse reaction may occur before the generated gas reaches the water surface. From such a viewpoint, the photocatalyst immobilized product is preferably installed at a position that is 50 μm or more and 1 m or less from the water surface.

以下、実施例及び比較例を挙げて本発明に係る光触媒固定化物についてさらに詳細に説明する。   Hereinafter, the photocatalyst immobilized product according to the present invention will be described in more detail with reference to Examples and Comparative Examples.

<光触媒の調製>
(GaN:ZnOの調製)
J. Phys. Chem. B 2006, 110, 13753-13758に記載された方法に従って調製を行った。すなわち、1.08gのGa(高純度化学社製)と0.94gのZnO(関東化学社製)とを混合し、アンモニア気流下(250mL/min)、850℃で15時間、窒化処理を行った。XRD及びEDXで確認したところ、GaN:ZnOの生成が確認された。
<Preparation of photocatalyst>
(Preparation of GaN: ZnO)
The preparation was performed according to the method described in J. Phys. Chem. B 2006, 110, 13753-13758. That is, 1.08 g of Ga 2 O 3 (manufactured by Koyo Chemical Co., Ltd.) and 0.94 g of ZnO (manufactured by Kanto Chemical Co., Ltd.) were mixed, and nitriding was performed at 850 ° C. for 15 hours under an ammonia stream (250 mL / min). Processed. When confirmed by XRD and EDX, formation of GaN: ZnO was confirmed.

(RhCr2−x/GaN:ZnOの調製)
J. Phys. Chem. B 2006, 110, 13753-13758に記載された方法に従って調製を行った。すなわち、上記のGaN:ZnO(0.3g〜0.4g)をNaRhCl・12HO(三津和化学社製)(GaN:ZnOに対して1.5質量%のCr)を含む3mL〜4mL水溶液に懸濁し、蒸発皿内、ウォーターバス上でガラス棒で攪拌しながら溶媒を蒸発乾燥させた。その後、空気中、350℃で焼成し、助触媒としてRhCr2−xが担持されたGaN:ZnOを得た。
(Rh x Cr 2-x O 3 / GaN: Preparation of ZnO)
The preparation was performed according to the method described in J. Phys. Chem. B 2006, 110, 13753-13758. That is, 3 mL of the above GaN: ZnO (0.3 g to 0.4 g) containing Na 3 RhCl 6 · 12H 2 O (manufactured by Mitsuwa Chemical Co., Ltd.) (1.5% by mass of Cr with respect to GaN: ZnO). It was suspended in ˜4 mL aqueous solution, and the solvent was evaporated to dryness while stirring with a glass rod in an evaporating dish on a water bath. Then, in air, calcined at 350 ° C., the Rh x Cr 2-x O 3 as a co-catalyst supported GaN: to obtain a ZnO.

(LaTiONの調製)
La(NO・6HO(関東化学社製)、Ti(O−iPr)(関東化学社製)、クエン酸(和光純薬社製)、エチレングリコール(関東化学社製)をメタノール中、モル比1:1:10:30となるように混合し、373Kで重合させた。さらに623Kで熱処理して炭化させた後、空気中、923Kで焼成し、LaとTiの複合酸化物前駆体を得た。この前駆体を100mL/minのNH気流下で、1K/minで1123Kまで昇温した後、当該温度で15時間保持し、その後室温まで冷却してLaTiONを合成した。XRD及びEDXで確認したところ、LaTiONの生成が確認された。
(Preparation of LaTiO 2 N)
La (NO 3) (manufactured by Kanto Chemical Co., Inc.) 3 · 6H 2 O, Ti (O-iPr) ( manufactured by Kanto Chemical Co., Inc.) 4, citric acid (manufactured by Wako Pure Chemical Industries, Ltd.), ethylene glycol (manufactured by Kanto Chemical Co., Inc.) In methanol, the mixture was mixed at a molar ratio of 1: 1: 10: 30 and polymerized at 373K. Further, after heat treatment at 623K and carbonization, firing in air at 923K was performed to obtain a composite oxide precursor of La and Ti. This precursor was heated to 1123 K at 1 K / min under a NH 3 gas stream of 100 mL / min, then held at that temperature for 15 hours, and then cooled to room temperature to synthesize LaTiO 2 N. When confirmed by XRD and EDX, formation of LaTiO 2 N was confirmed.

(Pt−CoO/LaTiONの調製)
上記のLaTiON(0.3−0.4g)をCo(NO・6HO(和光純薬社製)(LaTiONに対して 0.5 質量%のCo) を含む3−4mL水溶液に懸濁し、蒸発皿内、ウォーターバス上でガラス棒で撹拌しながら溶媒を蒸発乾燥させた。その後空気中200℃で焼成した。得られたサンプルをさらにPt(NHCl・HO(ALDRICH社製)(LaTiONに対して3.0質量% のPt) を含む3−4mL水溶液に懸濁し、蒸発皿内、ウォーターバス上でガラス棒で撹拌しながら溶媒を蒸発乾燥させた。その後水素気流下、300℃で水素還元した。これにより助触媒としてPt−CoOが担持されたLaTiONを得た。尚、CoOとは、CoO、Co、Coの混合物を意味する。
(Preparation of Pt—CoO x / LaTiO 2 N)
3 containing the above LaTiO 2 N (0.3-0.4 g) containing Co (NO 3 ) 2 .6H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.) (0.5 mass% Co with respect to LaTiO 2 N) It was suspended in -4 mL aqueous solution, and the solvent was evaporated and dried while stirring with a glass rod in a water bath in an evaporating dish. Thereafter, it was fired at 200 ° C. in air. The resulting further Pt (NH 3) (manufactured by ALDRICH Co.) 4 Cl 2 · H 2 O The sample was suspended in 3-4mL an aqueous solution containing (3.0 wt% Pt relative LaTiO 2 N), evaporating dish The solvent was evaporated to dryness while stirring with a glass rod on a water bath. Thereafter, hydrogen reduction was performed at 300 ° C. in a hydrogen stream. As a result, LaTiO 2 N carrying Pt—CoO x as a promoter was obtained. CoO x means a mixture of CoO, Co 2 O 3 , and Co 3 O 4 .

(BaTaON:Mgの調製)
BaCO(関東化学社製)、Ta(高純度化学社製)、Mg(NO・6HO(関東化学社製)をモル比100:46.25:7.5となるように混合し、空気中、923Kで焼成し、BaとTaとMgの複合酸化物前駆体を得た。この前駆体を200mL/minのNH気流下で、1K/minで1173Kまで昇温した後、当該温度で20時間保持し、その後室温まで冷却してBaTaON:Mgを合成した。XRD及びEDXで確認したところ、BaTaON:Mgの生成が確認された。
(Preparation of BaTaO 2 N: Mg)
BaCO 3 (manufactured by Kanto Chemical Co., Inc.), (manufactured by High Purity Chemical Co.) Ta 2 O 5, Mg ( NO 3) 2 · 6H 2 O ( manufactured by Kanto Chemical Co., Inc.) a molar ratio of 100: 46.25: 7.5 with The mixture was mixed and fired at 923 K in air to obtain a composite oxide precursor of Ba, Ta, and Mg. This precursor was heated to 1173 K at 1 K / min under an NH 3 stream of 200 mL / min, then held at that temperature for 20 hours, and then cooled to room temperature to synthesize BaTaO 2 N: Mg. It was confirmed by XRD and EDX, BaTaO 2 N: Mg generation of has been confirmed.

(Ru−Ir/BaTaON:Mgの調製)
上記のBaTaON:Mg(0.3−0.4g)を RuCl・nHO(関東化学社製)(BaTaON:Mgに対して1.0質量%のRu)を含む3−4mL水溶液に懸濁し、蒸発皿内、ウォーターバス上でガラス棒で撹拌しながら溶媒を蒸発乾燥させた。得られた試料を水素気流下、300℃で水素還元した後、NaIrCl(関東化学社製)(BaTaON:Mgに対して0.3質量%のIr) を含む3−4mL水溶液に懸濁し、蒸発皿内、ウォーターバス上でガラス棒で撹拌しながら溶媒を蒸発乾燥させた。得られた試料をさらに水素気流下、300℃で水素還元した。これにより助触媒としてRu−Irが担持されたBaTaON:Mgを得た。
(Preparation of Ru-Ir / BaTaO 2 N: Mg)
The above BaTaO 2 N: Mg (0.3-0.4 g) contains RuCl 3 .nH 2 O (manufactured by Kanto Chemical Co.) (BaTaO 2 N: 1.0 mass% Ru with respect to Mg) 3- It suspended in 4 mL aqueous solution, and the solvent was evaporated and dried in the evaporating dish on the water bath with stirring with a glass rod. The obtained sample was subjected to hydrogen reduction at 300 ° C. under a hydrogen stream, and then 3-4 mL aqueous solution containing Na 2 IrCl 6 (manufactured by Kanto Chemical Co., Inc.) (BaTaO 2 N: 0.3% by mass of Ir with respect to Mg). The solvent was evaporated to dryness while stirring with a glass rod in an evaporating dish on a water bath. The obtained sample was further hydrogen reduced at 300 ° C. under a hydrogen stream. As a result, BaTaO 2 N: Mg on which Ru—Ir was supported as a promoter was obtained.

<光触媒固定化物の調製>
(実施例1)
光触媒として上記のように調製した20mgのRhxCr2−X/GaN:ZnOと、親水性無機材料として20mgの二酸化ケイ素(和光純薬社製、70nm)とを200μLの蒸留水に懸濁し、3〜5分間の超音波処理によって十分に分散させた。この分散液をホットプレート上で60〜80℃に加熱したサンドブラスト加工パイレックスガラス(50mm角)上にピペットで滴下し、ガラス棒で塗り広げて乾燥させ、光触媒固定化物を調製した。
<Preparation of immobilized photocatalyst>
Example 1
20 mg of RhxCr 2 -X O 3 / GaN: ZnO prepared as described above as a photocatalyst and 20 mg of silicon dioxide (manufactured by Wako Pure Chemical Industries, 70 nm) as a hydrophilic inorganic material are suspended in 200 μL of distilled water, Sufficiently dispersed by sonication for 3-5 minutes. This dispersion was dropped onto a sandblasted Pyrex glass (50 mm square) heated to 60 to 80 ° C. on a hot plate with a pipette, spread with a glass rod and dried to prepare a photocatalyst immobilized product.

(実施例2)
親水性無機材料として20mgのアモルファスシリカ(関東化学社製)を用いたほかは、実施例1と同様にして光触媒固定化物を調製した。
(Example 2)
A photocatalyst immobilized product was prepared in the same manner as in Example 1, except that 20 mg of amorphous silica (manufactured by Kanto Chemical Co., Inc.) was used as the hydrophilic inorganic material.

(実施例3)
光触媒として上記のように調製した20mgのRhxCr2−X/GaN:ZnOと、20mgのテトラエトキシシラン(TEOS)(ALDRICH社製)とを200μLの蒸留水に懸濁し、3〜5分間の超音波処理によって十分に光触媒を分散させると同時にTEOSを加水分解させ、光触媒表面でSiOに変換した。この分散液をホットプレート上で60〜80℃に加熱したサンドブラスト加工パイレックスガラス(50mm角)上にピペットで滴下し、ガラス棒で塗り広げて乾燥させ、光触媒固定化物を調製した。
(Example 3)
RhxCr 2-X O 3 / GaN of 20mg, prepared as described above as a photocatalyst: suspended and ZnO, and tetraethoxysilane 20mg (TEOS) (ALDRICH Co.) in distilled water 200 [mu] L, of 3-5 minutes The photocatalyst was sufficiently dispersed by ultrasonic treatment, and at the same time, TEOS was hydrolyzed and converted to SiO 2 on the photocatalyst surface. This dispersion was dropped onto a sandblasted Pyrex glass (50 mm square) heated to 60 to 80 ° C. on a hot plate with a pipette, spread with a glass rod and dried to prepare a photocatalyst immobilized product.

(実施例4)
光触媒として上記のように調製した20mgのLaTiONを用いたほかは、実施例1と同様にして光触媒固定化物を調製した。
Example 4
A photocatalyst immobilized product was prepared in the same manner as in Example 1 except that 20 mg of LaTiO 2 N prepared as described above was used as the photocatalyst.

(実施例5)
光触媒として上記のように調製した20mgのBaTaON:Mgを用いたほかは、実施例1と同様にして光触媒固定化物を調製した。
(Example 5)
A photocatalyst immobilization product was prepared in the same manner as in Example 1 except that 20 mg of BaTaO 2 N: Mg prepared as described above was used as the photocatalyst.

(比較例1)
親水性無機材料を使用せずに、RhCr2−X/GaN:ZnO懸濁液をパイレックスガラス上に塗布したほかは、実施例1と同様にして光触媒固定化物を調製した。
(Comparative Example 1)
Without the use of hydrophilic inorganic materials, Rh x Cr 2-X O 3 / GaN: except that the ZnO suspension was applied on Pyrex glass were prepared photocatalyst immobilizate in the same manner as in Example 1.

(比較例2)
親水性無機材料を使用せずに、LaTiON懸濁液をパイレックスガラス上に塗布したほかは、実施例4と同様にして光触媒固定化物を調製した。
(Comparative Example 2)
A photocatalyst immobilization product was prepared in the same manner as in Example 4 except that the LaTiO 2 N suspension was applied onto Pyrex glass without using a hydrophilic inorganic material.

(比較例3)
親水性無機材料を使用せずに、BaTaON:Mg懸濁液をパイレックスガラス上に塗布したほかは、実施例5と同様にして光触媒固定化物を調製した。
(Comparative Example 3)
A photocatalyst immobilization product was prepared in the same manner as in Example 5 except that a BaTaO 2 N: Mg suspension was applied on Pyrex glass without using a hydrophilic inorganic material.

<光水分解反応の条件>
調製した光触媒固定化物を用いて光水分解反応性能の評価を行った。光水分解反応は、図3に示すような真空排気用ポンプ、循環ポンプ、光触媒固定化物を入れるセル、気体採取バルブ、及びガスクロマトグラフ分析装置(GC)を備えた閉鎖系の反応装置で評価した。光源は300Wのキセノンランプ(λ>300nm)を使用し、温度上昇を避けるためランプとセルとの間にはウォーターフィルタを設け、さらにセルは冷却水を用いて外側から冷却した。評価の際は、あらかじめ反応装置内を数回脱気し、空気の残っていないことを確認した。真空度は4×10Pa程度とした。その後に光照射を開始し、ガスの生成量を測定した。分析条件はカラム(モレキュラーシーブ5A)、キャリアガス(アルゴン)、温度(50〜70℃)とした。
<Conditions for photohydrolysis reaction>
The prepared photocatalyst immobilization product was used to evaluate the photohydrolysis reaction performance. The photo-water splitting reaction was evaluated by a closed reactor equipped with a vacuum exhaust pump, a circulation pump, a cell containing a photocatalyst immobilized product, a gas sampling valve, and a gas chromatograph analyzer (GC) as shown in FIG. . A 300 W xenon lamp (λ> 300 nm) was used as the light source, a water filter was provided between the lamp and the cell to avoid temperature rise, and the cell was cooled from the outside with cooling water. In the evaluation, the inside of the reactor was deaerated several times in advance and it was confirmed that no air remained. The degree of vacuum was about 4 × 10 4 Pa. Thereafter, light irradiation was started, and the amount of gas produced was measured. The analysis conditions were a column (molecular sieve 5A), carrier gas (argon), and temperature (50 to 70 ° C.).

尚、実施例1〜3及び比較例1に係る光触媒固定化物については、100mL純水(pH=7)とともにセルに入れ、光を照射して水素ガス及び酸素ガスの生成量を測定した。   In addition, about the photocatalyst fixed material concerning Examples 1-3 and the comparative example 1, it put into the cell with 100 mL pure water (pH = 7), and irradiated the light, and measured the production amount of hydrogen gas and oxygen gas.

実施例4、5及び比較例2、3に係る光触媒固定化物については、水素ガスの生成と酸素ガスの生成とを別々に評価した。すなわち、光触媒固定化物を犠牲試薬であるメタノールを10vol%含む水溶液100mL(pH=7)とともにセルに入れ、光を照射して水素ガスの生成量を測定した。一方、光触媒固定化物を犠牲試薬である0.01M AgNO水溶液100mL(pH=7)とともにセルに入れ、光を照射して酸素ガスの生成量を測定した。 For the photocatalyst immobilized products according to Examples 4 and 5 and Comparative Examples 2 and 3, the generation of hydrogen gas and the generation of oxygen gas were evaluated separately. That is, the photocatalyst immobilization product was put into a cell together with 100 mL (pH = 7) of an aqueous solution containing 10 vol% of a sacrificial reagent, and irradiated with light to measure the amount of hydrogen gas produced. On the other hand, the photocatalyst immobilized product was put into a cell together with 100 mL (pH = 7) of a 0.01 M AgNO 3 aqueous solution as a sacrificial reagent, and irradiated with light, and the amount of oxygen gas produced was measured.

<評価結果>
下記表1、2に、光触媒固定化物の水分解反応活性を比較した結果を示す。
<Evaluation results>
Tables 1 and 2 below show the results of comparing the water splitting reaction activities of the photocatalyst immobilized products.

Figure 0005787347
Figure 0005787347

Figure 0005787347
Figure 0005787347

表1から明らかなように、光触媒層に親水性無機材料を含む実施例1〜3に係る光触媒固定化物は、親水性無機材料を含まない比較例1に係る光触媒固定化物と比較して、水分解による水素生成初速度が3.4〜4.6倍高く、酸素生成速度も5.8〜7.3倍高い。親水性無機材料を添加することにより光触媒活性が向上することが明らかである。これは、親水性無機材料が存在しないと、親水性の低い光触媒粒子の粒子間に水が浸入し難く、結果として光触媒層の最上面近傍の光触媒しか光水分解反応に利用できないが、親水性無機材料を共存させることによって、光触媒層内に水が供給され易くなり、層の上側だけでなく、内部の光触媒も水分解反応に利用することができ、また、親水性表面によって生成ガスが光触媒層に付着し難くなる結果、生成ガスの気相中への拡散が促進され、単位面積、単位光触媒量あたりの反応効率が向上したものと考えられる。特に、親水性無機材料として非晶質シリカを用いた実施例2が最も光触媒活性が高かった。   As is clear from Table 1, the photocatalyst-immobilized product according to Examples 1 to 3 containing the hydrophilic inorganic material in the photocatalyst layer is more water than the photocatalyst-immobilized product according to Comparative Example 1 that does not contain the hydrophilic inorganic material. The initial hydrogen production rate by decomposition is 3.4 to 4.6 times higher, and the oxygen production rate is 5.8 to 7.3 times higher. It is clear that the addition of a hydrophilic inorganic material improves the photocatalytic activity. In the absence of a hydrophilic inorganic material, it is difficult for water to enter between the photocatalyst particles having low hydrophilicity. As a result, only the photocatalyst near the uppermost surface of the photocatalyst layer can be used for the photohydrolysis reaction. By allowing the inorganic material to coexist, water can be easily supplied into the photocatalyst layer, and not only the upper side of the layer but also the internal photocatalyst can be used in the water splitting reaction. As a result of difficulty in adhering to the layer, it is considered that diffusion of the product gas into the gas phase is promoted, and the reaction efficiency per unit area and unit photocatalyst amount is improved. In particular, Example 2 using amorphous silica as the hydrophilic inorganic material had the highest photocatalytic activity.

また、表2から明らかなように、犠牲試薬としてメタノールを用いた系においても、親水性無機材料を含む実施例4、5に係る光触媒固定化物は、親水性無機材料を含まない比較例2、3に係る光触媒固定化物と比較して、水素生成初速度が2倍高く、親水性無機材料を添加することにより光触媒活性が向上することが明らかである。また、犠牲試薬としてAgNOを用いた系においても、親水性無機材料を含む実施例4、5に係る光触媒固定化物は、親水性無機材料を含まない比較例2、3に係る光触媒固定化物と比較して、酸素生成初速度が1.05〜5.7倍高く、親水性無機材料を添加することにより光触媒活性が向上することが明らかである。これらも、上記実施例1〜3と同様の理由で、単位面積、単位光触媒量あたりの反応効率が向上したものと考えられる。 Further, as is clear from Table 2, even in a system using methanol as a sacrificial reagent, the photocatalyst immobilized product according to Examples 4 and 5 containing a hydrophilic inorganic material is a comparative example 2 that does not contain a hydrophilic inorganic material. As compared with the photocatalyst immobilized product according to No. 3, the initial hydrogen production rate is twice as high, and it is clear that the addition of a hydrophilic inorganic material improves the photocatalytic activity. In addition, even in a system using AgNO 3 as a sacrificial reagent, the photocatalyst immobilized product according to Examples 4 and 5 containing a hydrophilic inorganic material is different from the photocatalyst immobilized product according to Comparative Examples 2 and 3 that does not contain a hydrophilic inorganic material. In comparison, the initial oxygen production rate is 1.05 to 5.7 times higher, and it is clear that the addition of a hydrophilic inorganic material improves the photocatalytic activity. These are also considered to have improved reaction efficiency per unit area and unit photocatalyst amount for the same reason as in Examples 1 to 3 above.

以上、現時点において、最も実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う水分解用光触媒固定化物、並びに水素及び/又は酸素の製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   Although the present invention has been described with reference to the most practical and preferred embodiments at the present time, the present invention is not limited to the embodiments disclosed herein. In addition, it can be changed as appropriate without departing from the scope or spirit of the invention that can be read from the claims and the entire specification, and the water-catalyzed photocatalyst immobilization product with such a change, and the method for producing hydrogen and / or oxygen are also included. Moreover, it should be understood as being included in the technical scope of the present invention.

本発明に係る水分解用光触媒固定化物は、光触媒により光水分解反応を大規模で行う場合に特に好適に用いることができ、低コストの水素/酸素製造技術を提供することができる。   The photocatalyst immobilization product for water splitting according to the present invention can be particularly suitably used when a photowater splitting reaction is carried out on a large scale using a photocatalyst, and a low-cost hydrogen / oxygen production technique can be provided.

1 光触媒
1a 可視光応答型光半導体
1b 助触媒
2 親水性無機材料
10 光触媒層
20 基材
100 水分解用光触媒固定化物
DESCRIPTION OF SYMBOLS 1 Photocatalyst 1a Visible light response type optical semiconductor 1b Cocatalyst 2 Hydrophilic inorganic material 10 Photocatalyst layer 20 Base material 100 Photocatalyst fixed substance for water splitting

Claims (6)

基材上に光触媒層を有する水分解用光触媒固定化物であって、
前記光触媒層が、
Ga、Zn、Ti、La、Ta及びBaからなる群より選ばれる1つ以上の原子を含む窒化物又は酸窒化物である可視光応答型光半導体と、
該可視光応答型光半導体に担持された助触媒と、
シリカ、アルミナ、及び酸化チタンからなる群より選ばれる少なくとも1種の親水性無機材料と、
を含み、
前記光触媒層は、前記助触媒が担持された可視光応答型光半導体と、前記親水性無機材料とが混合されてなることを特徴とする水分解用光触媒固定化物。
A photocatalyst immobilized product for water splitting having a photocatalyst layer on a substrate,
The photocatalytic layer is
A visible light responsive optical semiconductor that is a nitride or oxynitride containing one or more atoms selected from the group consisting of Ga, Zn, Ti, La, Ta, and Ba;
A promoter supported on the visible light responsive optical semiconductor;
At least one hydrophilic inorganic material selected from the group consisting of silica, alumina, and titanium oxide;
Only including,
The photocatalyst layer is a photocatalyst immobilized product for water splitting, wherein the visible light responsive optical semiconductor carrying the promoter is mixed with the hydrophilic inorganic material .
前記可視光応答型光半導体と前記親水性無機材料とが粒子状であり、かつ、前記親水性無機材料の粒子径が、前記助触媒が担持された可視光応答型光半導体の粒子径より小さい、請求項1に記載の光水分解用光触媒固定物。The visible light responsive optical semiconductor and the hydrophilic inorganic material are in the form of particles, and the particle diameter of the hydrophilic inorganic material is smaller than the particle diameter of the visible light responsive optical semiconductor carrying the promoter. The fixed photocatalyst for water photolysis according to claim 1. 前記可視光応答型光半導体が、GaN:ZnO、LaTiON及びBaTaON:Mgからなる群より選ばれる1種以上である、請求項1又は2に記載の水分解用光触媒固定化物。 The photocatalyst immobilization product for water splitting according to claim 1 or 2 , wherein the visible light responsive optical semiconductor is at least one selected from the group consisting of GaN: ZnO, LaTiO 2 N, and BaTaO 2 N: Mg. 前記助触媒が、Pt、Pt−Ru、Ru−Ir、Rh−Cr複合酸化物、Ru酸化物、Ir酸化物、Co酸化物、Mn酸化物からなる群より選ばれる1種以上である、請求項1〜3のいずれかに記載の水分解用光触媒固定化物。 The co-catalyst is at least one selected from the group consisting of Pt, Pt—Ru, Ru—Ir, Rh—Cr composite oxide, Ru oxide, Ir oxide, Co oxide, and Mn oxide. Item 4. The photocatalyst immobilized product for water splitting according to any one of Items 1 to 3 . 前記親水性無機材料がシリカである、請求項1〜のいずれかに記載の水分解用光触媒固定化物。 The photocatalyst immobilization product for water splitting according to any one of claims 1 to 4 , wherein the hydrophilic inorganic material is silica. 請求項1〜のいずれかに記載の水分解用光触媒固定化物を水中に配置し、該光触媒固定化物に光を照射することによって水を分解する、水素及び/又は酸素の製造方法。 A method for producing hydrogen and / or oxygen, wherein the photocatalyst immobilized product for water splitting according to any one of claims 1 to 5 is disposed in water and water is decomposed by irradiating the photocatalyst immobilized product with light.
JP2011053406A 2011-03-10 2011-03-10 Immobilized photocatalyst for water splitting and method for producing hydrogen and / or oxygen Active JP5787347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011053406A JP5787347B2 (en) 2011-03-10 2011-03-10 Immobilized photocatalyst for water splitting and method for producing hydrogen and / or oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053406A JP5787347B2 (en) 2011-03-10 2011-03-10 Immobilized photocatalyst for water splitting and method for producing hydrogen and / or oxygen

Publications (2)

Publication Number Publication Date
JP2012187520A JP2012187520A (en) 2012-10-04
JP5787347B2 true JP5787347B2 (en) 2015-09-30

Family

ID=47081283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053406A Active JP5787347B2 (en) 2011-03-10 2011-03-10 Immobilized photocatalyst for water splitting and method for producing hydrogen and / or oxygen

Country Status (1)

Country Link
JP (1) JP5787347B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7494691B2 (en) 2020-10-07 2024-06-04 住友ゴム工業株式会社 Tire manufacturing method

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046305A1 (en) 2012-09-21 2014-03-27 Toto株式会社 Composite photocatalyst, and photocatalyst material
CN103007936B (en) * 2012-12-28 2014-07-09 青岛信锐德科技有限公司 Air purifier material, preparation method and use of air purifier material
CN103028399B (en) * 2012-12-28 2014-08-27 青岛信锐德科技有限公司 Alumina microsphere air purifying agent, preparation method and application of air purifying agent
JP6016199B2 (en) * 2013-03-26 2016-10-26 Toto株式会社 Composite metal oxide particles and method for producing the same
CN103191716B (en) * 2013-04-17 2014-09-24 桂林理工大学 Corundum structured composite oxide photocatalyst Mg4Nb2-xTaxO9 and preparation method thereof
EP3012022A4 (en) * 2013-06-21 2017-03-08 Toto Ltd. Visible light responsive photocatalyst material
JP6077505B2 (en) * 2013-09-18 2017-02-08 富士フイルム株式会社 Water-splitting photocatalyst and method for producing the same, water-splitting photoelectrode
JP6186262B2 (en) * 2013-12-06 2017-08-23 株式会社 グリーンケミー Visible light region responsive catalyst and water decomposition method using the same
JP6338049B2 (en) * 2014-02-07 2018-06-06 学校法人東京理科大学 Photocatalytic semiconductor element, photocatalytic oxidation-reduction reaction apparatus and photoelectrochemical reaction execution method
WO2016067823A1 (en) * 2014-10-28 2016-05-06 Toto株式会社 Photocatalyst composite particles and method for producing same
JP6660691B2 (en) * 2014-10-28 2020-03-11 Toto株式会社 Photocatalyst composite particles and method for producing the same
JP6654871B2 (en) 2014-11-21 2020-02-26 三菱ケミカル株式会社 Method for producing composite photocatalyst and composite photocatalyst
JP6497590B2 (en) * 2015-02-03 2019-04-10 パナソニックIpマネジメント株式会社 Method of decomposing water, water splitting device and anode electrode for oxygen generation
JP6433815B2 (en) * 2015-02-26 2018-12-05 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6578878B2 (en) * 2015-10-22 2019-09-25 富士通株式会社 Oxynitride
JP6674098B2 (en) 2016-05-31 2020-04-01 富士通株式会社 Photoexcitation material, photochemical electrode, and method for producing photoexcitation material
JP2017217623A (en) * 2016-06-09 2017-12-14 学校法人明治大学 Method for manufacturing photocatalytic material
JP6803065B2 (en) * 2016-11-09 2020-12-23 国立大学法人 筑波大学 Photocatalyst and its manufacturing method
JP6901718B2 (en) * 2017-01-30 2021-07-14 Toto株式会社 Photocatalytic material and its manufacturing method
JP7133042B2 (en) * 2019-01-25 2022-09-07 シャープ株式会社 Photocatalyst, photocatalytic cluster, and method for producing photocatalyst
JP7599269B2 (en) * 2019-03-07 2024-12-13 三菱ケミカル株式会社 Photocatalyst carrying a cocatalyst on its surface and method for producing said photocatalyst
CN110156474B (en) * 2019-05-30 2022-03-11 中国人民解放军国防科技大学 A kind of porous tantalum-based oxynitride ceramic and preparation method thereof
CN112121829A (en) * 2020-09-25 2020-12-25 合肥工业大学 Manganese-doped transition metal atomic metal phosphide catalyst and preparation method thereof and application in hydrogen production by electrolysis of water
JP6989830B2 (en) * 2020-11-09 2022-01-12 Toto株式会社 Photocatalytic material and its manufacturing method
JP2025506077A (en) * 2022-02-22 2025-03-07 耐酷時(北京)科技有限公司 A method for manufacturing a core-shell hollow structure in which photocatalyst particles self-generate a core

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4091974B2 (en) * 2002-05-07 2008-05-28 大研化学工業株式会社 Method for producing sol-gel for light source for environmental purification
JP4070624B2 (en) * 2003-01-31 2008-04-02 独立行政法人科学技術振興機構 Method for improving photocatalytic activity comprising metal nitride and metal oxynitride having visible light responsiveness
JP3787686B2 (en) * 2003-03-26 2006-06-21 松下電器産業株式会社 Water photolysis device and photolysis method
JP3834777B2 (en) * 2003-11-11 2006-10-18 独立行政法人科学技術振興機構 Water splitting catalyst composed of gallium nitride solid solution
JP2005262148A (en) * 2004-03-19 2005-09-29 Japan Science & Technology Agency Photocatalyst production method, photocatalyst obtained by the production method, and use thereof
JP2008105905A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Apparatus for photolysis of water
JP5641501B2 (en) * 2010-03-31 2014-12-17 三菱化学株式会社 Hydrogen production equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7494691B2 (en) 2020-10-07 2024-06-04 住友ゴム工業株式会社 Tire manufacturing method

Also Published As

Publication number Publication date
JP2012187520A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5787347B2 (en) Immobilized photocatalyst for water splitting and method for producing hydrogen and / or oxygen
JP5765678B2 (en) Photocatalyst for photowater splitting reaction and method for producing photocatalyst for photowater splitting reaction
Swain et al. Fabrication of hierarchical two-dimensional MoS2 nanoflowers decorated upon cubic CaIn2S4 microflowers: facile approach to construct novel metal-free p–n heterojunction semiconductors with superior charge separation efficiency
Lingampalli et al. Recent progress in the photocatalytic reduction of carbon dioxide
JP7085567B2 (en) Photocatalytic carbon dioxide reduction method using a photocatalyst in the form of a porous monolith
Li et al. One-dimensional copper-based heterostructures toward photo-driven reduction of CO 2 to sustainable fuels and feedstocks
Wang et al. Stable photocatalytic hydrogen evolution from water over ZnO–CdS core–shell nanorods
Fajrina et al. Monolithic Ag-Mt dispersed Z-scheme pCN-TiO2 heterojunction for dynamic photocatalytic H2 evolution using liquid and gas phase photoreactors
Wu et al. Efficient visible light formaldehyde oxidation with 2D pn heterostructure of BiOBr/BiPO4 nanosheets at room temperature
Thalluri et al. Green-synthesized BiVO4 oriented along {040} facets for visible-light-driven ethylene degradation
Tahir et al. Dynamic photocatalytic reduction of CO2 to CO in a honeycomb monolith reactor loaded with Cu and N doped TiO2 nanocatalysts
Kočí et al. Effect of silver doping on the TiO2 for photocatalytic reduction of CO2
Do et al. Preparation of basalt fiber@ perovskite PbTiO3 core–shell composites and their effects on CH4 production from CO2 photoreduction
Lyubina et al. Photocatalytic hydrogen evolution from aqueous solutions of glycerol under visible light irradiation
KR102257999B1 (en) Titanium dioxide composite, method for manufacturing the same, and photocatalyst including the same
Adegoke et al. Photocatalytic conversion of CO2 using ZnO semiconductor by hydrothermal method
US20160271589A1 (en) Photocatalytic hydrogen production from water, and photolysis system for the same
US9339792B2 (en) Photocatalyst, method for preparation, photolysis system
Jeyalakshmi et al. Titania based catalysts for photoreduction of carbon dioxide: Role of modifiers
JP2015199065A (en) Photocatalyst and method for producing the same
JP2012081458A (en) Catalyst composition for catalytic combustion reaction of ethylene and method for decomposing ethylene by using the same
JP2015131300A (en) Photocatalyst for photowater splitting reaction and method for producing photocatalyst for photowater splitting reaction
CN104941666B (en) A kind of Cd of visible light-responded cubic sphalerite structurexZn1‑xThe preparation method of S mischcrystal photocatalysts
Nishimura et al. Effect of Fe loading condition and reductants on CO2 reduction performance with Fe/TiO2 photocatalyst
Gómez et al. Alumina coating with TiO2 and its effect on catalytic photodegradation of phenol and p‐cresol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150723

R150 Certificate of patent or registration of utility model

Ref document number: 5787347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250