JP5786709B2 - Gas-liquid separator and refrigeration equipment - Google Patents
Gas-liquid separator and refrigeration equipment Download PDFInfo
- Publication number
- JP5786709B2 JP5786709B2 JP2011289608A JP2011289608A JP5786709B2 JP 5786709 B2 JP5786709 B2 JP 5786709B2 JP 2011289608 A JP2011289608 A JP 2011289608A JP 2011289608 A JP2011289608 A JP 2011289608A JP 5786709 B2 JP5786709 B2 JP 5786709B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- liquid
- refrigerant
- inlet
- separation chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007788 liquid Substances 0.000 title claims description 243
- 238000005057 refrigeration Methods 0.000 title claims description 23
- 239000003507 refrigerant Substances 0.000 claims description 216
- 238000000926 separation method Methods 0.000 claims description 73
- 230000002265 prevention Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 9
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 1
Images
Landscapes
- Air-Conditioning For Vehicles (AREA)
Description
本発明は、気液二相冷媒をガス冷媒と液冷媒とに分離する気液分離器、及び気液分離器を備えた冷凍装置に関する。 The present invention relates to a gas-liquid separator that separates a gas-liquid two-phase refrigerant into a gas refrigerant and a liquid refrigerant, and a refrigeration apparatus including the gas-liquid separator.
従来より、冷媒回路に接続され、気液二相冷媒をガス冷媒と液冷媒とに分離する気液分離器が知られている。 Conventionally, a gas-liquid separator connected to a refrigerant circuit and separating a gas-liquid two-phase refrigerant into a gas refrigerant and a liquid refrigerant is known.
例えば特許文献1には、内部に溝付き体を有し、該溝付き体の溝内に気液二相冷媒を流通させ、表面張力作用によりガス冷媒と液冷媒とに分離することができる気液分離器が開示されている。 For example, in Patent Document 1, a gas-liquid two-phase refrigerant that has a grooved body therein and allows a gas-liquid two-phase refrigerant to flow through the grooved body and be separated into a gas refrigerant and a liquid refrigerant by a surface tension action is disclosed. A liquid separator is disclosed.
前記のような気液分離器では、一般に、気液二相冷媒を気液分離器内に流入させる入口管と、分離されたガス冷媒及び液冷媒を気液分離器外に流出させる出口管が定められている。即ち、仮に気液二相冷媒を出口管から気液分離器内に流入させると、気液二相冷媒の気液分離が十分に行われず、気液分離器が十分に機能しない。 In the gas-liquid separator as described above, generally, there are an inlet pipe through which the gas-liquid two-phase refrigerant flows into the gas-liquid separator, and an outlet pipe through which the separated gas refrigerant and liquid refrigerant flow out of the gas-liquid separator. It has been established. That is, if the gas-liquid two-phase refrigerant is caused to flow into the gas-liquid separator from the outlet pipe, the gas-liquid two-phase refrigerant is not sufficiently separated and the gas-liquid separator does not function sufficiently.
ところで、例えば冷暖房運転が可能な空気調和装置では、冷暖房を切り換えるために冷凍サイクルを行う冷媒回路の冷媒循環方向を切り換える。そのため、ただ単に気液分離器を冷媒回路に接続しただけでは、こうした冷媒回路の冷媒循環方向が切り換わる冷凍装置においては、冷媒の循環方向を切り換えたときに気液二相冷媒が出口管から気液分離器内に流入してしまい、気液分離器が機能しないことになる。 By the way, for example, in an air conditioner capable of cooling and heating operation, the refrigerant circulation direction of the refrigerant circuit that performs the refrigeration cycle is switched to switch between cooling and heating. Therefore, in a refrigeration system in which the refrigerant circulation direction of such a refrigerant circuit is switched simply by connecting the gas-liquid separator to the refrigerant circuit, the gas-liquid two-phase refrigerant is discharged from the outlet pipe when the refrigerant circulation direction is switched. It will flow into the gas-liquid separator and the gas-liquid separator will not function.
そこで、冷媒回路の冷媒循環方向を切り換えても気液二相冷媒が入口管から気液分離器内に流入するように、四路切換弁や4つの逆止弁から成る逆止弁ブリッジを用いて冷媒流路を切り換えることが考えられる。 Therefore, a check valve bridge comprising a four-way switching valve and four check valves is used so that the gas-liquid two-phase refrigerant flows from the inlet pipe into the gas-liquid separator even when the refrigerant circulation direction of the refrigerant circuit is switched. It is conceivable to switch the refrigerant flow path.
しかしながら、四路切換弁や逆止弁ブリッジは、構造が複雑であったり、部品点数が多かったりするため、高価である。そのため、気液分離器を備えた冷凍装置の製造コストが高くなる。 However, the four-way switching valve and the check valve bridge are expensive because they have a complicated structure and a large number of parts. Therefore, the manufacturing cost of the refrigeration apparatus provided with the gas-liquid separator increases.
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、冷凍サイクルを行う冷媒回路の冷媒循環方向を切り換えても、気液二相冷媒が所定の入口管から気液分離器内に流入するように冷媒流路を切り換えることができる安価な気液分離器及び、該気液分離器を備えた冷凍装置を提供することである。 The present invention has been made in view of the above points, and an object of the present invention is to provide a gas-liquid two-phase refrigerant from a predetermined inlet pipe even if the refrigerant circulation direction of a refrigerant circuit that performs a refrigeration cycle is switched. An inexpensive gas-liquid separator capable of switching the refrigerant flow path so as to flow into the separator, and a refrigeration apparatus including the gas-liquid separator.
第1の発明は、冷媒が循環して冷凍サイクルを行うと共に該冷媒の循環方向を切り換え可能な冷媒回路に接続される気液分離器を対象とし、気液二相冷媒をガス冷媒と液冷媒とに分離する気液分離室(41d)を有する本体部(41)と、前記気液分離室(41d)に気液二相冷媒を流入させる入口部と、前記入口部よりも内径が小さい第1及び第2出入口管(43,44)と、前記冷媒回路に接続され、該冷媒回路から分岐して第1出入口管(43)及び入口部に接続される第1分岐管(48)と、前記冷媒回路に接続され、該冷媒回路から分岐して第2出入口管(44)及び入口部に接続される第2分岐管(49)とを備え、前記入口部は、前記第1分岐管(48)に気液二相冷媒が流入したときには、前記気液分離室(41d)が第1及び第2分岐管(48,49)のうちの第1分岐管(48)のみと連通する状態にする一方、前記第2分岐管(49)に気液二相冷媒が流入したときには、前記気液分離室(41d)が第1及び第2分岐管(48,49)のうちの第2分岐管(49)のみと連通する状態にする逆止弁(9)を有し、前記第1分岐管(48)に気液二相冷媒が流入すると、該気液二相冷媒が前記第1出入口管(43)及び入口部のうちの主に入口部から前記気液分離室(41d)に流入し、該気液分離室(41d)の液冷媒が前記第2出入口管(44)を介して冷媒回路に流出する一方、前記第2分岐管(49)に気液二相冷媒が流入すると、該気液二相冷媒が前記第2出入口管(49)及び入口部のうちの主に入口部から前記気液分離室(41d)に流入し、該気液分離室(41d)の液冷媒が前記第1出入口管(43)を介して冷媒回路に流出するように構成されていることを特徴とする。 A first invention is directed to a gas-liquid separator connected to a refrigerant circuit that performs a refrigeration cycle by circulating refrigerant and switching the circulation direction of the refrigerant, and uses a gas-liquid two-phase refrigerant as a gas refrigerant and a liquid refrigerant. A main body (41) having a gas-liquid separation chamber (41d) that separates into a gas, a gas-liquid two-phase refrigerant into the gas-liquid separation chamber (41d), and an inner diameter smaller than that of the inlet. A first branch pipe (48) connected to the refrigerant circuit, branched from the refrigerant circuit and connected to the first inlet pipe (43) and the inlet portion; A second branch pipe (49) connected to the refrigerant circuit and branched from the refrigerant circuit and connected to the inlet section; and the inlet section includes the first branch pipe ( 48) When the gas-liquid two-phase refrigerant flows into the gas-liquid separation chamber (41d), the gas-liquid separation chamber (41d) is the first branch of the first and second branch pipes (48, 49). When the gas-liquid two-phase refrigerant flows into the second branch pipe (49) while communicating with only the branch pipe (48), the gas-liquid separation chamber (41d) is connected to the first and second branch pipes ( 48, 49) having a check valve (9) that communicates only with the second branch pipe (49), and when the gas-liquid two-phase refrigerant flows into the first branch pipe (48), The gas-liquid two-phase refrigerant flows into the gas-liquid separation chamber (41d) mainly from the inlet portion of the first inlet / outlet pipe (43) and the inlet portion, and the liquid refrigerant in the gas-liquid separation chamber (41d) is When the gas-liquid two-phase refrigerant flows into the second branch pipe (49) while flowing out into the refrigerant circuit via the second inlet / outlet pipe (44), the gas-liquid two-phase refrigerant is transferred to the second inlet / outlet pipe (49). And the liquid refrigerant in the gas-liquid separation chamber (41d) flows out into the refrigerant circuit through the first inlet / outlet pipe (43). Configure to It is characterized in that is.
この構成によると、冷媒回路から第1分岐管(48)に気液二相冷媒が流入すると、該気液二相冷媒が入口部及び第1出入口管(43)から本体部(41)の気液分離室(41d)に流入する。ここで、第1出入口管(43)の内径が入口部の内径よりも小さいため、気液二相冷媒は主に入口部から気液分離室(41d)に流入する。気液分離室(41d)に流入した気液二相冷媒は、気液分離室(41d)でガス冷媒と液冷媒とに分離される。気液二相冷媒から分離された液冷媒は、気液分離室(41d)から第2出入口管(44)を介して冷媒回路に流出する。 According to this configuration, when the gas-liquid two-phase refrigerant flows into the first branch pipe (48) from the refrigerant circuit, the gas-liquid two-phase refrigerant flows from the inlet and the first inlet / outlet pipe (43) to the gas in the main body (41). It flows into the liquid separation chamber (41d). Here, since the inner diameter of the first inlet / outlet pipe (43) is smaller than the inner diameter of the inlet portion, the gas-liquid two-phase refrigerant mainly flows into the gas-liquid separation chamber (41d) from the inlet portion. The gas-liquid two-phase refrigerant that has flowed into the gas-liquid separation chamber (41d) is separated into gas refrigerant and liquid refrigerant in the gas-liquid separation chamber (41d). The liquid refrigerant separated from the gas-liquid two-phase refrigerant flows out from the gas-liquid separation chamber (41d) to the refrigerant circuit via the second inlet / outlet pipe (44).
一方、冷媒回路の冷媒循環方向を切り換えて第2分岐管(49)に気液二相冷媒が流入すると、該気液二相冷媒が入口部及び第2出入口管(44)から本体部(41)の気液分離室(41d)に流入する。ここで、第2出入口管(44)の内径が入口部の内径よりも小さいため、気液二相冷媒は主に入口部から気液分離室(41d)に流入する。気液分離室(41d)に流入した気液二相冷媒は、気液分離室(41d)でガス冷媒と液冷媒とに分離されて、液冷媒が気液分離室(41d)から第1出入口管(43)を介して冷媒回路に流出する。 On the other hand, when the gas-liquid two-phase refrigerant flows into the second branch pipe (49) by switching the refrigerant circulation direction of the refrigerant circuit, the gas-liquid two-phase refrigerant flows from the inlet part and the second inlet / outlet pipe (44) to the main body part (41). ) Into the gas-liquid separation chamber (41d). Here, since the inner diameter of the second inlet / outlet pipe (44) is smaller than the inner diameter of the inlet portion, the gas-liquid two-phase refrigerant mainly flows into the gas-liquid separation chamber (41d) from the inlet portion. The gas-liquid two-phase refrigerant flowing into the gas-liquid separation chamber (41d) is separated into gas refrigerant and liquid refrigerant in the gas-liquid separation chamber (41d), and the liquid refrigerant is discharged from the gas-liquid separation chamber (41d) to the first inlet / outlet. It flows out into the refrigerant circuit through the pipe (43).
第2の発明は、第1の発明において、前記気液分離室(41d)には、前記第1出入口管(43)及び第2出入口管(44)の一方から流入した気液二相冷媒が該第1出入口管(43)及び第2出入口管(44)の他方に直接的に流入するのを防止する防止手段(41e)が設けられていることを特徴とする。 In a second aspect based on the first aspect, the gas-liquid two-phase refrigerant flowing from one of the first inlet / outlet pipe (43) and the second inlet / outlet pipe (44) is introduced into the gas-liquid separation chamber (41d). A prevention means (41e) for preventing direct flow into the other of the first inlet / outlet pipe (43) and the second inlet / outlet pipe (44) is provided.
前述したように気液二相冷媒は、入口部のみならず第1出入口管(43)や第2出入口管(44)からも気液二相冷媒が流入する。これら第1出入口管(43)及び第2出入口管(44)は共に、液冷媒を気液分離室(41d)から流出させるための管であるから、本体部(41)に対し、気液分離室(41d)の液冷媒が溜まる部分に連通接続されることになる。そのため、第1出入口管(43)及び第2出入口管(44)の一方から気液分離室(41d)に流入した気液二相冷媒が気液分離されずに第1出入口管(43)及び第2出入口管(44)の他方に直接的に流入し、そのまま冷媒回路に流出する虞があるところ、この構成によると、第1出入口管(43)及び第2出入口管(44)の一方から気液分離室(41d)に流入した気液二相冷媒は、防止手段(41e)により第1出入口管(43)及び第2出入口管(44)の他方に直接的に流入することが防止される。 As described above, the gas-liquid two-phase refrigerant flows from the first inlet / outlet pipe (43) and the second inlet / outlet pipe (44) as well as the inlet. Since both the first inlet / outlet pipe (43) and the second inlet / outlet pipe (44) are pipes for allowing liquid refrigerant to flow out of the gas / liquid separation chamber (41d), the liquid / liquid separation is performed with respect to the main body (41). The chamber (41d) is connected to the portion where the liquid refrigerant accumulates. Therefore, the gas-liquid two-phase refrigerant that has flowed into the gas-liquid separation chamber (41d) from one of the first inlet / outlet pipe (43) and the second inlet / outlet pipe (44) is not separated into the first inlet / outlet pipe (43) and There is a possibility of flowing directly into the other of the second inlet / outlet pipe (44) and outflowing into the refrigerant circuit as it is. According to this configuration, from one of the first inlet / outlet pipe (43) and the second inlet / outlet pipe (44). The gas-liquid two-phase refrigerant flowing into the gas-liquid separation chamber (41d) is prevented from flowing directly into the other of the first inlet / outlet pipe (43) and the second inlet / outlet pipe (44) by the prevention means (41e). The
第3の発明は、第2の発明において、前記気液分離室(41d)は、前記入口部から流入した気液二相冷媒を旋回させてガス冷媒と液冷媒とに分離し、前記防止手段(41e)は、前記気液二相冷媒の旋回軸方向に延びる軸を有する螺旋状の邪魔板であることを特徴とする。 In a third aspect based on the second aspect, the gas-liquid separation chamber (41d) rotates the gas-liquid two-phase refrigerant flowing from the inlet portion to separate it into a gas refrigerant and a liquid refrigerant, and the prevention means (41e) is a spiral baffle plate having an axis extending in the swirl axis direction of the gas-liquid two-phase refrigerant.
この構成によると、いわゆるサイクロン式の気液分離器が実現される。また、第1出入口管(43)や第2出入口管(44)から気液分離室(41d)に流入した気液二相冷媒は、邪魔板(41e)に当たると、該邪魔板(41e)に案内されて旋回する。 According to this configuration, a so-called cyclonic gas-liquid separator is realized. When the gas-liquid two-phase refrigerant flowing into the gas-liquid separation chamber (41d) from the first inlet / outlet pipe (43) or the second inlet / outlet pipe (44) hits the baffle plate (41e), the baffle plate (41e) Guided to turn.
第4の発明は、冷凍装置を対象とし、第1〜3の何れか1つの発明の気液分離器を備えていることを特徴とする。 A fourth invention is directed to a refrigeration apparatus and includes the gas-liquid separator according to any one of the first to third inventions.
第1の発明によれば、冷凍サイクルを行う冷媒回路の冷媒循環方向を切り換えても、気液二相冷媒が入口部から気液分離器内に流入するように冷媒流路を切り換えることができる気液分離器を提供することができる。そして、こうした冷媒流路の切り換え機構が1つの逆止弁と配管のみで構成されているから、冷媒流路の切り換え機構に四路切換弁を採用した場合に比べて構造が簡単であり、逆止弁ブリッジを採用した場合に比べて逆止弁の数が少なくて済む分だけ、気液分離器を安価で提供することができる。 According to the first invention, the refrigerant flow path can be switched so that the gas-liquid two-phase refrigerant flows into the gas-liquid separator from the inlet even when the refrigerant circulation direction of the refrigerant circuit performing the refrigeration cycle is switched. A gas-liquid separator can be provided. Since such a refrigerant flow path switching mechanism is composed of only one check valve and a pipe, the structure is simpler than the case where a four-way switching valve is adopted as the refrigerant flow path switching mechanism. The gas-liquid separator can be provided at a lower cost because the number of check valves is smaller than when a check valve bridge is used.
第2の発明によれば、第1出入口管(43)及び第2出入口管(44)の一方から気液分離室(41d)に流入した気液二相冷媒が第1出入口管(43)及び第2出入口管(44)の他方に直接流入することが防止されるから、気液二相冷媒が気液分離室(41d)で気液分離されずにそのまま冷媒回路に流出することを回避できる。 According to the second invention, the gas-liquid two-phase refrigerant that has flowed into the gas-liquid separation chamber (41d) from one of the first inlet / outlet pipe (43) and the second inlet / outlet pipe (44) is converted into the first inlet / outlet pipe (43) and Since it is prevented from flowing directly into the other of the second inlet / outlet pipe (44), the gas-liquid two-phase refrigerant can be prevented from flowing out into the refrigerant circuit without being gas-liquid separated in the gas-liquid separation chamber (41d). .
第3の発明によれば、第1出入口管(43)や第2出入口管(44)から気液分離室(41d)に流入した気液二相冷媒が邪魔板(41e)により旋回させられるから、該気液二相冷媒を旋回に伴う遠心力によりガス冷媒と液冷媒とに分離することができる。 According to the third invention, the gas-liquid two-phase refrigerant flowing into the gas-liquid separation chamber (41d) from the first inlet / outlet pipe (43) or the second inlet / outlet pipe (44) is swirled by the baffle plate (41e). The gas-liquid two-phase refrigerant can be separated into a gas refrigerant and a liquid refrigerant by centrifugal force accompanying the swirling.
第4の発明によれば、冷凍装置が安価な気液分離器を備えているから、冷凍装置の製造コストを低減することができる。 According to the fourth invention, since the refrigeration apparatus includes the inexpensive gas-liquid separator, the manufacturing cost of the refrigeration apparatus can be reduced.
以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎない。
《実施形態》
−全体構成−
図1は、本発明の実施形態に係る冷凍装置(1)の冷媒回路図である。この冷凍装置(1)は、冷暖房を切り換えて運転可能な空気調和装置である。この空気調和装置(1)は、冷媒が循環して蒸気圧縮式冷凍サイクルを行う冷媒回路(10)を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following description of the preferred embodiment is merely exemplary in nature.
<Embodiment>
-Overall configuration-
FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus (1) according to an embodiment of the present invention. This refrigeration apparatus (1) is an air conditioner that can be operated by switching between heating and cooling. The air conditioner (1) includes a refrigerant circuit (10) that performs a vapor compression refrigeration cycle by circulating refrigerant.
冷媒回路(10)は、圧縮機(2)と、室外熱交換器(3)と、気液分離器(4)と、室内熱交換器(5)と、四路切換弁(6)と、第1及び第2膨張弁(7,8)とを備えている。 The refrigerant circuit (10) includes a compressor (2), an outdoor heat exchanger (3), a gas-liquid separator (4), an indoor heat exchanger (5), a four-way switching valve (6), And first and second expansion valves (7, 8).
圧縮機(2)は、吸入した冷媒を圧縮して吐出する流体機械であり、その吸入側が四路切換弁(6)の後述する第2ポートに接続されている一方、その吐出側が四路切換弁(6)の後述する第1ポートに接続されている。 The compressor (2) is a fluid machine that compresses and discharges the sucked refrigerant, and its suction side is connected to a second port (to be described later) of the four-way switching valve (6), while its discharge side is four-way switching. The valve (6) is connected to a later-described first port.
室外熱交換器(3)は、例えばフィン・アンド・チューブ型熱交換器であり、図示しない室外ファンによって送られる室外空気と当該室外熱交換器(3)内を流通する冷媒との間で熱交換を行う。この室外熱交換器(3)は、四路切換弁(6)の後述する第4ポートに接続されていると共に、第1膨張弁(7)に接続されている。 The outdoor heat exchanger (3) is, for example, a fin-and-tube heat exchanger, and heat is generated between outdoor air sent by an outdoor fan (not shown) and refrigerant circulating in the outdoor heat exchanger (3). Exchange. The outdoor heat exchanger (3) is connected to a later-described fourth port of the four-way switching valve (6) and to the first expansion valve (7).
室内熱交換器(5)は、例えばフィン・アンド・チューブ型熱交換器であり、図示しない室内ファンによって送られる室内空気と当該室内熱交換器(5)内を流通する冷媒との間で熱交換を行う。この室内熱交換器(5)は、四路切換弁(6)の後述する第3ポートに接続されていると共に、第2膨張弁(8)に接続されている。 The indoor heat exchanger (5) is, for example, a fin-and-tube heat exchanger, and heat is generated between indoor air sent by an indoor fan (not shown) and refrigerant circulating in the indoor heat exchanger (5). Exchange. The indoor heat exchanger (5) is connected to a later-described third port of the four-way switching valve (6) and is also connected to the second expansion valve (8).
四路切換弁(6)は、第1ポート、第2ポート、第3ポート、及び第4ポートを有しており、第1ポートと第4ポートとが連通し且つ第2ポートと第3ポートとが連通する第1状態(図1に実線で示す状態)と、第1ポートと第3ポートとが連通し且つ第2ポートと第4ポートとが連通する第2状態(図1に破線で示す状態)とが切り換え可能に構成されている。 The four-way selector valve (6) has a first port, a second port, a third port, and a fourth port, the first port communicates with the fourth port, and the second port and the third port. Is in a first state (indicated by a solid line in FIG. 1), and a second state in which the first port and the third port are in communication and the second port and the fourth port are in communication (indicated by a broken line in FIG. 1). Can be switched.
第1及び第2膨張弁(7,8)は、例えば開度調整可能な電動弁であり、冷媒を減圧する機能を有する。そして、第1膨張弁(7)は、前述したように室外熱交換器(3)に接続されていると共に、気液分離器(4)に接続されている。一方、第2膨張弁(8)は、前述したように室内熱交換器(5)に接続されていると共に、気液分離器(4)に接続されている。 The first and second expansion valves (7, 8) are, for example, electric valves whose opening degrees can be adjusted, and have a function of depressurizing the refrigerant. The first expansion valve (7) is connected to the outdoor heat exchanger (3) as described above, and is also connected to the gas-liquid separator (4). On the other hand, the second expansion valve (8) is connected to the indoor heat exchanger (5) and also to the gas-liquid separator (4) as described above.
気液分離器(4)は、気液二相冷媒を旋回させて、該旋回に伴う遠心力によりガス冷媒と液冷媒とに分離する、いわゆるサイクロン式の気液分離器である。この気液分離器(4)は、図2〜4に示すように、本体部(41)、入口管(42)、第1及び第2出入口管(43,44)、ガス出口管(45)、第1及び第2連絡管(46,47)、第1及び第2分岐管(48,49)、及び逆止弁(9)を備えている。 The gas-liquid separator (4) is a so-called cyclone type gas-liquid separator in which a gas-liquid two-phase refrigerant is swirled and separated into a gas refrigerant and a liquid refrigerant by centrifugal force accompanying the swirling. As shown in FIGS. 2 to 4, the gas-liquid separator (4) includes a main body (41), an inlet pipe (42), first and second inlet / outlet pipes (43, 44), and a gas outlet pipe (45). , First and second connecting pipes (46, 47), first and second branch pipes (48, 49), and a check valve (9).
本体部(41)は、円筒状の側壁(41a)と、該側壁(41a)の上端を閉塞する上蓋(41b)と、該側壁(41a)の下端を閉塞する下蓋(41c)とを備えた中空の円柱形状を有する。 The main body (41) includes a cylindrical side wall (41a), an upper lid (41b) for closing the upper end of the side wall (41a), and a lower lid (41c) for closing the lower end of the side wall (41a). It has a hollow cylindrical shape.
本体部(41)の内部には、気液二相冷媒を上側から下側に旋回させながら導き、ガス冷媒と液冷媒とに分離する気液分離室(41d)が形成されている。従って、本実施形態では、上下方向が旋回軸方向となる。 Inside the main body (41), a gas-liquid separation chamber (41d) is formed in which the gas-liquid two-phase refrigerant is guided while being swung from the upper side to the lower side and separated into a gas refrigerant and a liquid refrigerant. Therefore, in the present embodiment, the vertical direction is the turning axis direction.
気液分離室(41d)には、上下方向に延びると共に側壁(41a)の筒軸と合致した軸を有する螺旋状の邪魔板(41e)が設けられている。この邪魔板(41e)は、後述するように出入口管(43,44)から気液分離室(41d)に流入した気液二相冷媒が当たるように、気液分離室(41d)の下部に全周に亘って設けられている。この邪魔板(41e)が防止手段を構成する。 The gas-liquid separation chamber (41d) is provided with a spiral baffle plate (41e) that extends in the vertical direction and has an axis that matches the cylinder axis of the side wall (41a). As will be described later, this baffle plate (41e) is placed under the gas-liquid separation chamber (41d) so that the gas-liquid two-phase refrigerant flowing into the gas-liquid separation chamber (41d) from the inlet / outlet pipes (43, 44) will hit. It is provided over the entire circumference. This baffle plate (41e) constitutes a prevention means.
入口管(42)は、気液二相冷媒を気液分離室(41d)に流入させるための管である。この入口管(42)は、一端が本体部(41)の側壁(41a)の上端部に対し接線方向に延びるように接続され、他端が逆止弁(9)に接続されている。 The inlet pipe (42) is a pipe for allowing the gas-liquid two-phase refrigerant to flow into the gas-liquid separation chamber (41d). One end of the inlet pipe (42) is connected to the upper end of the side wall (41a) of the main body (41) so as to extend tangentially, and the other end is connected to the check valve (9).
第1及び第2出入口管(43,44)は、気液分離室(41d)から液冷媒を流出させるための管である。これら第1及び第2出入口管(43,44)は、液冷媒が溜まる気液分離室(41d)の底部に突出するように、本体部(41)の側壁(41a)の下端部に貫通接続されている。 The first and second inlet / outlet pipes (43, 44) are pipes for allowing liquid refrigerant to flow out of the gas-liquid separation chamber (41d). These first and second inlet / outlet pipes (43, 44) are through-connected to the lower end of the side wall (41a) of the main body (41) so as to protrude from the bottom of the gas-liquid separation chamber (41d) where liquid refrigerant accumulates. Has been.
第1及び第2出入口管(43,44)の内径は、入口管(42)、逆止弁(9)、第1連絡管(46)、及び第2連絡管(47)の内径よりも小さく設定されている。 The inner diameters of the first and second inlet / outlet pipes (43, 44) are smaller than the inner diameters of the inlet pipe (42), the check valve (9), the first connecting pipe (46), and the second connecting pipe (47). Is set.
ガス出口管(45)は、気液分離室(41d)からガス冷媒を流出させるための管である。このガス出口管(45)は、一端が気液分離室(41d)の上端側に突出するように本体部(41)の下蓋(41c)に貫通接続され、他端が圧縮機(2)の圧縮室(不図示)に接続されている。 The gas outlet pipe (45) is a pipe for allowing the gas refrigerant to flow out from the gas-liquid separation chamber (41d). The gas outlet pipe (45) is connected through to the lower lid (41c) of the main body (41) so that one end protrudes to the upper end side of the gas-liquid separation chamber (41d), and the other end of the compressor (2) Connected to a compression chamber (not shown).
第1分岐管(48)は、第1膨張弁(7)に接続されていると共に、分岐して一方の分岐端が第1連絡管(46)に接続され、他方の分岐端が第1出入口管(43)に接続されている。尚、第1分岐管(48)は、上下方向に対して若干斜めに傾いている。 The first branch pipe (48) is connected to the first expansion valve (7), branches, one branch end is connected to the first connecting pipe (46), and the other branch end is the first inlet / outlet. Connected to tube (43). The first branch pipe (48) is slightly inclined with respect to the vertical direction.
第2分岐管(49)は、第2膨張弁(8)に接続されていると共に、分岐して一方の分岐端が第2連絡管(47)に接続され、他方の分岐端が第2出入口管(44)に接続されている。尚、第2分岐管(49)は、第1分岐管(48)と同様に、上下方向に対して若干斜めに傾いている。 The second branch pipe (49) is connected to the second expansion valve (8), branches, one branch end is connected to the second connecting pipe (47), and the other branch end is the second inlet / outlet. Connected to tube (44). The second branch pipe (49) is slightly inclined with respect to the vertical direction, like the first branch pipe (48).
逆止弁(9)は、例えば筒状のボール逆止弁であり、内部に球形状の弁体(ボール弁)(91)を有する。この逆止弁(9)の両端部の内径は、当該両端部の開口をボール弁(91)により閉塞可能なように、ボール弁(91)の直径よりも小さく設定されている一方、両端部を除く部分の内径は、ボール弁(91)が筒軸方向に移動可能なように、ボール弁(91)の直径よりも若干大きく設定されている。そうして、逆止弁(9)には、一端部に第1連絡管(46)が接続され、他端部に第2連絡管(47)が接続され、中央部に入口管(42)が接続されている。本実施形態では、これら第1連絡管(46)、第2連絡管(47)、逆止弁(9)、及び入口管(42)が入口部を構成する。 The check valve (9) is, for example, a cylindrical ball check valve, and has a spherical valve body (ball valve) (91) inside. The inner diameter of both ends of the check valve (9) is set smaller than the diameter of the ball valve (91) so that the opening of the both ends can be closed by the ball valve (91). The inner diameter of the part excluding is set to be slightly larger than the diameter of the ball valve (91) so that the ball valve (91) can move in the cylinder axis direction. Then, the check valve (9) is connected to the first connecting pipe (46) at one end, the second connecting pipe (47) to the other end, and the inlet pipe (42) at the center. Is connected. In the present embodiment, the first connecting pipe (46), the second connecting pipe (47), the check valve (9), and the inlet pipe (42) constitute an inlet portion.
−運転動作−
本空気調和装置(1)は、以上のように構成されており、次に空気調和装置(1)の運転動作について説明する。この空気調和装置(1)では、四路切換弁(6)の切り換えによって冷房運転と暖房運転とを切り換えることができる。
-Driving action-
The air conditioner (1) is configured as described above. Next, the operation of the air conditioner (1) will be described. In the air conditioner (1), the cooling operation and the heating operation can be switched by switching the four-way switching valve (6).
<冷房運転>
まず、冷房運転について、図1及び3を参照しながら説明する。冷房運転では、四路切換弁(6)は、上記第1状態に設定される。室外熱交換器(3)は凝縮器として機能する一方、室内熱交換器(5)は蒸発器として機能する。
<Cooling operation>
First, the cooling operation will be described with reference to FIGS. In the cooling operation, the four-way selector valve (6) is set to the first state. The outdoor heat exchanger (3) functions as a condenser, while the indoor heat exchanger (5) functions as an evaporator.
ユーザが空気調和装置(1)に対し運転指示をすると、冷媒回路(10)では、圧縮機(2)の運転が開始されると共に、各膨張弁(7,8)の開度が適宜の状態に設定され、冷媒が図1の矢印の方向に循環する。 When the user gives an operation instruction to the air conditioner (1), the refrigerant circuit (10) starts the operation of the compressor (2), and the opening degree of each expansion valve (7, 8) is in an appropriate state. The refrigerant circulates in the direction of the arrow in FIG.
具体的には、冷媒は、圧縮機(2)で圧縮されて高温高圧の状態となる。圧縮機(2)で圧縮された冷媒は、室外熱交換器(3)を流れると共に、室外空気と熱交換して凝縮する。そうして、凝縮した冷媒は、第1膨張弁(7)で中間圧まで減圧されて、気液二相冷媒となる。 Specifically, the refrigerant is compressed by the compressor (2) and is in a high temperature and high pressure state. The refrigerant compressed by the compressor (2) flows through the outdoor heat exchanger (3) and condenses by exchanging heat with outdoor air. Then, the condensed refrigerant is decompressed to an intermediate pressure by the first expansion valve (7) and becomes a gas-liquid two-phase refrigerant.
気液二相冷媒は、気液分離器(4)の第1分岐管(48)に流入して、該第1分岐管(48)で第1連絡管(46)側と第1出入口管(43)側とに分流し、各々に流入する。 The gas-liquid two-phase refrigerant flows into the first branch pipe (48) of the gas-liquid separator (4), and the first branch pipe (48) and the first inlet / outlet pipe ( 43) Divide to the side and flow into each.
第1分岐管(48)から第1連絡管(46)に流入した気液二相冷媒は、逆止弁(9)に流入する。この逆止弁(9)に流入した気液二相冷媒の圧力により、逆止弁(9)のボール弁(91)が第2連絡管(47)側に移動し、第2連絡管(47)側の開口を閉塞する。これにより、第1分岐管(48)が第1連絡管(46)、逆止弁(9)、及び入口管(42)を介して気液分離室(41d)と連通する。即ち、気液分離室(41d)が第1及び第2分岐管(48,49)のうちの第1分岐管(48)のみと連通する状態になる。 The gas-liquid two-phase refrigerant that has flowed from the first branch pipe (48) into the first communication pipe (46) flows into the check valve (9). Due to the pressure of the gas-liquid two-phase refrigerant flowing into the check valve (9), the ball valve (91) of the check valve (9) moves to the second connecting pipe (47) side, and the second connecting pipe (47 ) Close the opening on the side. Accordingly, the first branch pipe (48) communicates with the gas-liquid separation chamber (41d) via the first communication pipe (46), the check valve (9), and the inlet pipe (42). That is, the gas-liquid separation chamber (41d) communicates with only the first branch pipe (48) of the first and second branch pipes (48, 49).
そうして、気液二相冷媒は、入口管(42)から本体部(41)の気液分離室(41d)に流入する。尚、逆止弁(9)の第2連絡管(47)側の開口がボール弁(91)により閉塞されているから、逆止弁(9)に流入した気液二相冷媒が第2連絡管(47)に流入することはない。 Thus, the gas-liquid two-phase refrigerant flows from the inlet pipe (42) into the gas-liquid separation chamber (41d) of the main body (41). Since the opening on the second connecting pipe (47) side of the check valve (9) is closed by the ball valve (91), the gas-liquid two-phase refrigerant flowing into the check valve (9) is in the second connection. It does not flow into the pipe (47).
一方、第1分岐管(48)から第1出入口管(43)に流入した気液二相冷媒も本体部(41)の気液分離室(41d)に流入する。ここで、第1出入口管(43)の内径が第1連絡管(46)、逆止弁(9)、及び入口管(42)の内径よりも小さく設定されているため、気液二相冷媒は、主に入口管(42)から気液分離室(41d)に流入する。 On the other hand, the gas-liquid two-phase refrigerant that has flowed from the first branch pipe (48) into the first inlet / outlet pipe (43) also flows into the gas-liquid separation chamber (41d) of the main body (41). Here, since the inner diameter of the first inlet / outlet pipe (43) is set smaller than the inner diameters of the first communication pipe (46), the check valve (9), and the inlet pipe (42), the gas-liquid two-phase refrigerant Mainly flows from the inlet pipe (42) into the gas-liquid separation chamber (41d).
入口管(42)から気液分離室(41d)に流入した気液二相冷媒は、下蓋(41c)側に旋回させられながら導かれ(図4の矢印参照)、この旋回に伴う遠心力によりガス冷媒と液冷媒とに分離される。 The gas-liquid two-phase refrigerant that has flowed into the gas-liquid separation chamber (41d) from the inlet pipe (42) is guided while being swung toward the lower lid (41c) (see the arrow in FIG. 4), and the centrifugal force accompanying this swirling Is separated into a gas refrigerant and a liquid refrigerant.
一方、第1出入口管(43)から気液分離室(41d)に流入した気液二相冷媒は、邪魔板(41e)に当たる。ここで、邪魔板(41e)が螺旋状に形成されているため、気液二相冷媒は、邪魔板(41e)に案内されて、旋回させられながら上蓋(41b)側に導かれ、ガス冷媒と液冷媒とに分離される。 On the other hand, the gas-liquid two-phase refrigerant flowing into the gas-liquid separation chamber (41d) from the first inlet / outlet pipe (43) hits the baffle plate (41e). Here, since the baffle plate (41e) is formed in a spiral shape, the gas-liquid two-phase refrigerant is guided to the baffle plate (41e) and guided to the upper lid (41b) side while being swung. And liquid refrigerant.
気液分離室(41d)で分離されたガス冷媒は、ガス出口管(45)から気液分離室(41d)外に流出し、圧縮機(2)にインジェクションされる。これにより、圧縮機(2)の圧縮途中の圧縮室に対し中間圧のガス冷媒が供給される。 The gas refrigerant separated in the gas-liquid separation chamber (41d) flows out of the gas-liquid separation chamber (41d) from the gas outlet pipe (45), and is injected into the compressor (2). Thereby, the intermediate-pressure gas refrigerant is supplied to the compression chamber in the middle of compression of the compressor (2).
一方、気液分離室(41d)で分離された液冷媒は、第2出入口管(44)から気液分離室(41d)外に流出する。そうして、液冷媒は、第2分岐管(49)を介して第2膨張弁(8)を流れ、該第2膨張弁(8)で低圧まで減圧される。第2膨張弁(8)で減圧された液冷媒は、室内熱交換器(5)を流れると共に、室内空気と熱交換して蒸発し、室内空気を冷却する。そうして、蒸発した冷媒は、圧縮機(2)に吸引される。 On the other hand, the liquid refrigerant separated in the gas-liquid separation chamber (41d) flows out of the gas-liquid separation chamber (41d) from the second inlet / outlet pipe (44). Then, the liquid refrigerant flows through the second expansion valve (8) via the second branch pipe (49), and is depressurized to a low pressure by the second expansion valve (8). The liquid refrigerant decompressed by the second expansion valve (8) flows through the indoor heat exchanger (5), evaporates by exchanging heat with the indoor air, and cools the indoor air. Then, the evaporated refrigerant is sucked into the compressor (2).
<暖房運転>
次に、暖房運転について、図5、6を参照しながら説明する。暖房運転では、四路切換弁(6)は、上記第2状態に設定される。そして、前記とは逆に、室外熱交換器(3)が蒸発器として機能する一方、室内熱交換器(5)が凝縮器として機能する。
<Heating operation>
Next, the heating operation will be described with reference to FIGS. In the heating operation, the four-way selector valve (6) is set to the second state. Contrary to the above, the outdoor heat exchanger (3) functions as an evaporator, while the indoor heat exchanger (5) functions as a condenser.
暖房運転では、冷媒は、図5の矢印の方向に循環する。 In the heating operation, the refrigerant circulates in the direction of the arrow in FIG.
具体的には、圧縮機(2)で圧縮された高温高圧の冷媒は、室内熱交換器(5)を流れると共に、室内空気と熱交換して凝縮する。そうして、凝縮した冷媒は、第2膨張弁(8)で中間圧まで減圧されて、気液二相冷媒となる。 Specifically, the high-temperature and high-pressure refrigerant compressed by the compressor (2) flows through the indoor heat exchanger (5) and condenses by exchanging heat with indoor air. Then, the condensed refrigerant is decompressed to an intermediate pressure by the second expansion valve (8), and becomes a gas-liquid two-phase refrigerant.
気液二相冷媒は、気液分離器(4)の第2分岐管(49)に流入して、該第2分岐管(49)で第2連絡管(47)側と第2出入口管(44)側とに分流し、各々に流入する。 The gas-liquid two-phase refrigerant flows into the second branch pipe (49) of the gas-liquid separator (4), and the second branch pipe (49) and the second connection pipe (47) side and the second inlet / outlet pipe ( 44) Divide to the side and flow into each.
第2分岐管(49)から第2連絡管(47)に流入した気液二相冷媒は、逆止弁(9)に流入する。この逆止弁(9)に流入した気液二相冷媒の圧力により、逆止弁(9)のボール弁(91)が第1連絡管(46)側に移動し、第1連絡管(46)側の開口を閉塞する。これにより、第2分岐管(49)が第2連絡管(47)、逆止弁(9)、及び入口管(42)を介して気液分離室(41d)と連通する。即ち、気液分離室(41d)が第1及び第2分岐管(48,49)のうちの第2分岐管(49)のみと連通する状態になる。 The gas-liquid two-phase refrigerant that has flowed from the second branch pipe (49) into the second communication pipe (47) flows into the check valve (9). Due to the pressure of the gas-liquid two-phase refrigerant flowing into the check valve (9), the ball valve (91) of the check valve (9) moves to the first connecting pipe (46) side, and the first connecting pipe (46 ) Close the opening on the side. Accordingly, the second branch pipe (49) communicates with the gas-liquid separation chamber (41d) via the second communication pipe (47), the check valve (9), and the inlet pipe (42). That is, the gas-liquid separation chamber (41d) communicates with only the second branch pipe (49) of the first and second branch pipes (48, 49).
そうして、気液二相冷媒は、入口管(42)から本体部(41)の気液分離室(41d)に流入する。尚、逆止弁(9)の第1連絡管(46)側の開口がボール弁(91)により閉塞されているから、逆止弁(9)に流入した気液二相冷媒が第1連絡管(46)に流入することはない。 Thus, the gas-liquid two-phase refrigerant flows from the inlet pipe (42) into the gas-liquid separation chamber (41d) of the main body (41). Since the opening of the check valve (9) on the first communication pipe (46) side is closed by the ball valve (91), the gas-liquid two-phase refrigerant flowing into the check valve (9) is in the first connection. It does not flow into the pipe (46).
一方、第2分岐管(49)から第2出入口管(44)に流入した気液二相冷媒も気液分離室(41d)に流入する。ここで、第2出入口管(44)の内径が第2連絡管(47)、逆止弁(9)、及び入口管(42)の内径よりも小さく設定されているため、気液二相冷媒は、主に入口管(42)から気液分離室(41d)に流入する。 On the other hand, the gas-liquid two-phase refrigerant that has flowed from the second branch pipe (49) into the second inlet / outlet pipe (44) also flows into the gas-liquid separation chamber (41d). Here, since the inner diameter of the second inlet / outlet pipe (44) is set smaller than the inner diameters of the second connecting pipe (47), the check valve (9), and the inlet pipe (42), the gas-liquid two-phase refrigerant Mainly flows from the inlet pipe (42) into the gas-liquid separation chamber (41d).
入口管(42)から気液分離室(41d)に流入した気液二相冷媒は、前記と同様にしてガス冷媒と液冷媒とに分離される。 The gas-liquid two-phase refrigerant flowing into the gas-liquid separation chamber (41d) from the inlet pipe (42) is separated into a gas refrigerant and a liquid refrigerant in the same manner as described above.
一方、第2出入口管(44)から気液分離室(41d)に流入した気液二相冷媒は、邪魔板(41e)に当たって、前記と同様にしてガス冷媒と液冷媒とに分離される。 On the other hand, the gas-liquid two-phase refrigerant flowing into the gas-liquid separation chamber (41d) from the second inlet / outlet pipe (44) hits the baffle plate (41e) and is separated into the gas refrigerant and the liquid refrigerant in the same manner as described above.
気液分離室(41d)で分離されたガス冷媒は、ガス出口管(45)から気液分離室(41d)外に流出し、圧縮機(2)にインジェクションされる。 The gas refrigerant separated in the gas-liquid separation chamber (41d) flows out of the gas-liquid separation chamber (41d) from the gas outlet pipe (45), and is injected into the compressor (2).
一方、気液分離室(41d)で分離された液冷媒は、第1出入口管(43)から気液分離室(41d)外に流出する。そうして、液冷媒は、第1分岐管(48)を介して第1膨張弁(7)を流れ、該第1膨張弁(7)で低圧まで減圧される。第1膨張弁(7)で減圧された液冷媒は、室外熱交換器(3)を流れると共に、室外空気と熱交換して蒸発し、圧縮機(2)に吸引される。 On the other hand, the liquid refrigerant separated in the gas-liquid separation chamber (41d) flows out of the gas-liquid separation chamber (41d) from the first inlet / outlet pipe (43). Then, the liquid refrigerant flows through the first expansion valve (7) via the first branch pipe (48), and is depressurized to a low pressure by the first expansion valve (7). The liquid refrigerant decompressed by the first expansion valve (7) flows through the outdoor heat exchanger (3), evaporates by exchanging heat with outdoor air, and is sucked into the compressor (2).
−実施形態の効果−
本実施形態によれば、冷凍サイクルを行う冷媒回路(10)の冷媒循環方向を切り換えても、気液二相冷媒が入口管(42)から気液分離室(41d)に流入するように冷媒流路を切り換えることができる。そのため、冷媒回路(10)の冷媒循環方向を切り換えても、気液二相冷媒を気液分離室(41d)で確実にガス冷媒と液冷媒とに分離することができる。
-Effect of the embodiment-
According to the present embodiment, even if the refrigerant circulation direction of the refrigerant circuit (10) that performs the refrigeration cycle is switched, the refrigerant is such that the gas-liquid two-phase refrigerant flows from the inlet pipe (42) into the gas-liquid separation chamber (41d). The flow path can be switched. Therefore, even if the refrigerant circulation direction of the refrigerant circuit (10) is switched, the gas-liquid two-phase refrigerant can be reliably separated into the gas refrigerant and the liquid refrigerant in the gas-liquid separation chamber (41d).
また、冷媒流路の切り換え機構が1つの逆止弁(9)と第1及び第2分岐管(48,49)等の配管のみで構成されているから、冷媒流路の切り換え機構に四路切換弁を採用した場合に比べて構造が簡単であり、逆止弁ブリッジを採用した場合に比べて逆止弁の数が少なくて済む分だけ、気液分離器を安価で提供することができ、ひいては気液分離器を備えた冷凍装置の製造コストを低減することができる。 Moreover, since the refrigerant flow path switching mechanism is composed of only one check valve (9) and piping such as the first and second branch pipes (48, 49), there are four paths to the refrigerant flow path switching mechanism. The structure is simpler than when a switching valve is used, and the gas-liquid separator can be provided at a lower cost because the number of check valves is smaller than when a check valve bridge is used. As a result, the manufacturing cost of the refrigeration apparatus including the gas-liquid separator can be reduced.
また、冷媒流路の切り換え機構に四路切換弁や逆止弁ブリッジを採用した場合に比べて、構造が簡単であるため、大きさも小さくすることができ、気液分離器(4)を設置するためのスペースを小さくすることができる。 Compared to the case where a four-way switching valve or check valve bridge is used for the refrigerant flow switching mechanism, the structure is simpler and the size can be reduced, and a gas-liquid separator (4) is installed. The space for doing so can be reduced.
さらに、本実施形態では、気液二相冷媒が入口管(42)のみならず第1出入口管(43)や第2出入口管(44)からも流入するため、一方の出入口管から流入した気液二相冷媒がガス冷媒と液冷媒とに分離されずに他方の出入口管に直接的に流入し、そのまま気液分離室(41d)外に流出する虞があるところ、気液二相冷媒が邪魔板(41e)に当たるため、出入口管に直接的に流入することを防止することができる。そして、邪魔板(41e)を螺旋状に形成しているため、邪魔板(41e)に当たった気液二相冷媒を旋回させてガス冷媒と液冷媒とに分離することができる。
《その他の実施形態》
本発明は、上記実施形態について、以下のような構成としてもよい。
Furthermore, in this embodiment, the gas-liquid two-phase refrigerant flows not only from the inlet pipe (42) but also from the first inlet / outlet pipe (43) and the second inlet / outlet pipe (44). There is a possibility that the liquid two-phase refrigerant flows directly into the other inlet / outlet pipe without being separated into the gas refrigerant and the liquid refrigerant and flows out of the gas-liquid separation chamber (41d) as it is. Since it hits the baffle plate (41e), it can be prevented from flowing directly into the inlet / outlet pipe. Since the baffle plate (41e) is formed in a spiral shape, the gas-liquid two-phase refrigerant that has hit the baffle plate (41e) can be swirled to be separated into a gas refrigerant and a liquid refrigerant.
<< Other Embodiments >>
The present invention may be configured as follows with respect to the above embodiment.
即ち、上記実施形態においては、サイクロン式の気液分離器を用いたが、これに限られず、例えば、表面張力作用によりガス冷媒と液冷媒とに分離することができる気液分離器を用いてもよい。 That is, in the above embodiment, the cyclone type gas-liquid separator is used. However, the present invention is not limited to this. For example, a gas-liquid separator that can be separated into a gas refrigerant and a liquid refrigerant by a surface tension action is used. Also good.
本発明は、冷凍サイクルを行う冷媒回路の冷媒循環方向を切り換えても、気液二相冷媒が所定の入口管から気液分離器内に流入するように冷媒流路を切り換えることができる安価な気液分離器を提供することができ、冷凍装置に適用した場合に、冷凍装置の製造コストを低減することができる点で有用である。 According to the present invention, the refrigerant flow path can be switched so that the gas-liquid two-phase refrigerant flows from the predetermined inlet pipe into the gas-liquid separator even when the refrigerant circulation direction of the refrigerant circuit performing the refrigeration cycle is switched. A gas-liquid separator can be provided, which is useful in that the manufacturing cost of the refrigeration apparatus can be reduced when applied to the refrigeration apparatus.
1 空気調和装置(冷凍装置)
10 冷媒回路
4 気液分離器
41 本体部
41d 気液分離室
41e 邪魔板(防止手段)
42 入口管(入口部)
43 第1出入口管
44 第2出入口管
45 ガス出口管
46 第1連絡管(入口部)
47 第2連絡管(入口部)
48 第1分岐管
49 第2分岐管
9 逆止弁(入口部)
1 Air conditioning equipment (refrigeration equipment)
DESCRIPTION OF
42 Inlet pipe (inlet part)
43 1st entrance /
47 Second communication pipe (entrance)
48
Claims (4)
気液二相冷媒をガス冷媒と液冷媒とに分離する気液分離室(41d)を有する本体部(41)と、
前記気液分離室(41d)に気液二相冷媒を流入させる入口部と、
前記入口部よりも内径が小さい第1及び第2出入口管(43,44)と、
前記冷媒回路に接続され、該冷媒回路から分岐して第1出入口管(43)及び入口部に接続される第1分岐管(48)と、
前記冷媒回路に接続され、該冷媒回路から分岐して第2出入口管(44)及び入口部に接続される第2分岐管(49)とを備え、
前記入口部は、前記第1分岐管(48)に気液二相冷媒が流入したときには、前記気液分離室(41d)が第1及び第2分岐管(48,49)のうちの第1分岐管(48)のみと連通する状態にする一方、前記第2分岐管(49)に気液二相冷媒が流入したときには、前記気液分離室(41d)が第1及び第2分岐管(48,49)のうちの第2分岐管(49)のみと連通する状態にする逆止弁(9)を有し、
前記第1分岐管(48)に気液二相冷媒が流入すると、該気液二相冷媒が前記第1出入口管(43)及び入口部のうちの主に入口部から前記気液分離室(41d)に流入し、該気液分離室(41d)の液冷媒が前記第2出入口管(44)を介して冷媒回路に流出する一方、前記第2分岐管(49)に気液二相冷媒が流入すると、該気液二相冷媒が前記第2出入口管(49)及び入口部のうちの主に入口部から前記気液分離室(41d)に流入し、該気液分離室(41d)の液冷媒が前記第1出入口管(43)を介して冷媒回路に流出するように構成されていることを特徴とする気液分離器。 A gas-liquid separator connected to a refrigerant circuit capable of performing a refrigeration cycle by circulating refrigerant and switching a circulation direction of the refrigerant,
A main body (41) having a gas-liquid separation chamber (41d) for separating the gas-liquid two-phase refrigerant into a gas refrigerant and a liquid refrigerant;
An inlet for allowing a gas-liquid two-phase refrigerant to flow into the gas-liquid separation chamber (41d);
First and second inlet / outlet pipes (43, 44) having an inner diameter smaller than that of the inlet part;
A first branch pipe (48) connected to the refrigerant circuit and branched from the refrigerant circuit and connected to a first inlet / outlet pipe (43) and an inlet portion;
A second branch pipe (49) connected to the refrigerant circuit, branched from the refrigerant circuit and connected to the inlet section (44) and the inlet section;
When the gas-liquid two-phase refrigerant flows into the first branch pipe (48), the gas-liquid separation chamber (41d) has the first inlet of the first and second branch pipes (48, 49). When the gas-liquid two-phase refrigerant flows into the second branch pipe (49) while communicating with only the branch pipe (48), the gas-liquid separation chamber (41d) is connected to the first and second branch pipes ( 48, 49) having a check valve (9) for communicating only with the second branch pipe (49),
When the gas-liquid two-phase refrigerant flows into the first branch pipe (48), the gas-liquid two-phase refrigerant mainly flows from the inlet portion of the first inlet / outlet pipe (43) and the inlet portion to the gas-liquid separation chamber ( 41d), and the liquid refrigerant in the gas-liquid separation chamber (41d) flows out into the refrigerant circuit via the second inlet / outlet pipe (44), while the gas-liquid two-phase refrigerant flows into the second branch pipe (49). The gas-liquid two-phase refrigerant flows into the gas-liquid separation chamber (41d) mainly from the inlet portion of the second inlet / outlet pipe (49) and the inlet portion, and the gas-liquid separation chamber (41d) The liquid refrigerant is configured to flow out to the refrigerant circuit through the first inlet / outlet pipe (43).
前記気液分離室(41d)には、前記第1出入口管(43)及び第2出入口管(44)の一方から流入した気液二相冷媒が該第1出入口管(43)及び第2出入口管(44)の他方に直接的に流入するのを防止する防止手段(41e)が設けられていることを特徴とする気液分離器。 The gas-liquid separator according to claim 1,
In the gas-liquid separation chamber (41d), the gas-liquid two-phase refrigerant flowing from one of the first inlet / outlet pipe (43) and the second inlet / outlet pipe (44) receives the first inlet / outlet pipe (43) and the second inlet / outlet. A gas-liquid separator characterized in that a prevention means (41e) for preventing direct flow into the other of the pipe (44) is provided.
前記気液分離室(41d)は、前記入口部から流入した気液二相冷媒を旋回させてガス冷媒と液冷媒とに分離し、
前記防止手段(41e)は、前記気液二相冷媒の旋回軸方向に延びる軸を有する螺旋状の邪魔板であることを特徴とする気液分離器。 The gas-liquid separator according to claim 2,
The gas-liquid separation chamber (41d) rotates the gas-liquid two-phase refrigerant flowing from the inlet portion to separate the gas refrigerant and the liquid refrigerant,
The gas-liquid separator is characterized in that the prevention means (41e) is a spiral baffle plate having an axis extending in the direction of the rotation axis of the gas-liquid two-phase refrigerant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011289608A JP5786709B2 (en) | 2011-12-28 | 2011-12-28 | Gas-liquid separator and refrigeration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011289608A JP5786709B2 (en) | 2011-12-28 | 2011-12-28 | Gas-liquid separator and refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013139894A JP2013139894A (en) | 2013-07-18 |
JP5786709B2 true JP5786709B2 (en) | 2015-09-30 |
Family
ID=49037507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011289608A Expired - Fee Related JP5786709B2 (en) | 2011-12-28 | 2011-12-28 | Gas-liquid separator and refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5786709B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5888114B2 (en) * | 2012-05-23 | 2016-03-16 | ダイキン工業株式会社 | Refrigeration equipment |
KR20210155630A (en) * | 2020-06-16 | 2021-12-23 | 엘지전자 주식회사 | Air conditioner |
DE102023106299A1 (en) * | 2023-03-14 | 2024-09-19 | Schaeffler Technologies AG & Co. KG | Refrigerant circuit with separator for switching between operating modes |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5520360A (en) * | 1978-07-31 | 1980-02-13 | Tokyo Shibaura Electric Co | Heat pump apparatus |
JPH1194401A (en) * | 1997-07-24 | 1999-04-09 | Hitachi Ltd | Refrigeration air conditioner |
JP3918421B2 (en) * | 2000-09-21 | 2007-05-23 | 三菱電機株式会社 | Air conditioner, operation method of air conditioner |
JP2005233470A (en) * | 2004-02-18 | 2005-09-02 | Denso Corp | Gas-liquid separator |
US20070251256A1 (en) * | 2006-03-20 | 2007-11-01 | Pham Hung M | Flash tank design and control for heat pumps |
JP2008051374A (en) * | 2006-08-23 | 2008-03-06 | Daikin Ind Ltd | Gas-liquid separator |
JP2008096095A (en) * | 2006-09-13 | 2008-04-24 | Daikin Ind Ltd | Refrigeration equipment |
JP2008075894A (en) * | 2006-09-19 | 2008-04-03 | Daikin Ind Ltd | Gas-liquid separator |
JP5143040B2 (en) * | 2009-02-05 | 2013-02-13 | 三菱電機株式会社 | Gas-liquid separator and refrigeration cycle apparatus equipped with the gas-liquid separator |
JP5014367B2 (en) * | 2009-03-10 | 2012-08-29 | 三菱電機株式会社 | Gas-liquid separator and refrigeration cycle equipment equipped with it |
-
2011
- 2011-12-28 JP JP2011289608A patent/JP5786709B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013139894A (en) | 2013-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9140474B2 (en) | Air conditioner | |
JP4604909B2 (en) | Ejector type cycle | |
JP5288020B1 (en) | Refrigeration equipment | |
KR102198311B1 (en) | Air conditioning system | |
EP1921389A2 (en) | Air conditioner having ventilation system | |
KR101146460B1 (en) | A refrigerant system | |
US20150159920A1 (en) | Dehumidifier | |
KR20130059450A (en) | Refrigeration circuit | |
JP2008051344A (en) | Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator | |
JP4118254B2 (en) | Refrigeration equipment | |
JP2009276045A (en) | Ejector type refrigeration cycle | |
KR102101694B1 (en) | Distributor and air conditioner including the same | |
JP5786709B2 (en) | Gas-liquid separator and refrigeration equipment | |
WO2020241622A1 (en) | Refrigeration device | |
JP6750240B2 (en) | Air conditioner | |
US20160313036A1 (en) | Subcooler and air conditioner including the same | |
JP5625699B2 (en) | Refrigeration circuit | |
JP5262916B2 (en) | Heat exchanger | |
JP7067318B2 (en) | Air conditioner | |
JP6458895B2 (en) | Gas-liquid separation unit of refrigeration apparatus and refrigeration apparatus | |
JP2010078248A (en) | Gas-liquid separator and refrigerating cycle device including the same | |
WO2020065712A1 (en) | Refrigeration cycle device | |
JP2013210133A (en) | Refrigerating device | |
WO2007040031A1 (en) | Liquid gas heat exchanger for air conditioner | |
KR20140123823A (en) | Air Conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141003 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20141119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150630 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150713 |
|
LAPS | Cancellation because of no payment of annual fees |