[go: up one dir, main page]

JP5786635B2 - Fuel cell structure - Google Patents

Fuel cell structure Download PDF

Info

Publication number
JP5786635B2
JP5786635B2 JP2011229123A JP2011229123A JP5786635B2 JP 5786635 B2 JP5786635 B2 JP 5786635B2 JP 2011229123 A JP2011229123 A JP 2011229123A JP 2011229123 A JP2011229123 A JP 2011229123A JP 5786635 B2 JP5786635 B2 JP 5786635B2
Authority
JP
Japan
Prior art keywords
fuel cell
cell structure
fuel
support tube
porous support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011229123A
Other languages
Japanese (ja)
Other versions
JP2013089463A (en
Inventor
雅之 上山
雅之 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011229123A priority Critical patent/JP5786635B2/en
Publication of JP2013089463A publication Critical patent/JP2013089463A/en
Application granted granted Critical
Publication of JP5786635B2 publication Critical patent/JP5786635B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、燃料電池構造体に関する。   The present invention relates to a fuel cell structure.

いわゆる横縞型燃料電池構造体は直管状のものが古くから知られ、蒸着、容射、スクリーン印刷等の方法で作製されている(例えば特許文献1及び特許文献2参照)。   A so-called horizontal stripe type fuel cell structure has been known for a long time, and has been produced by methods such as vapor deposition, spraying, and screen printing (see, for example, Patent Document 1 and Patent Document 2).

特開昭54−73246号公報(第1図、第2図)Japanese Patent Laid-Open No. 54-73246 (FIGS. 1 and 2) 特開昭63−133464号公報(第2図、第4図)JP 63-133464 A (FIGS. 2 and 4)

しかしながら、直管状の横縞型燃料電池構造体では、管の全長に対し、燃料電池セル同士を直列に接続するためのインターコネクタ部が占める割合が高くなると、発電に寄与する部分が少なくなってしまうため、インターコネクタ部をできるだけ短くする必要がある。   However, in a straight tubular horizontal stripe fuel cell structure, when the proportion of the interconnector portion for connecting the fuel cells in series with respect to the total length of the tube increases, the portion contributing to power generation decreases. Therefore, it is necessary to make the interconnector portion as short as possible.

また、直管状の横縞型燃料電池構造体では、燃料極、電解質、空気極、及びインターコネクタ部の各層を形成する毎に異なるマスキングが必要である上、各層を正確に位置合わせして作製する必要があるため、作製に手間がかかる上、位置ずれ等のトラブルが多く、信頼性も低いという問題があった。   In addition, a straight tubular horizontal striped fuel cell structure requires different masking each time the fuel electrode, electrolyte, air electrode, and interconnector layers are formed, and is manufactured by accurately aligning the layers. Therefore, there is a problem in that the production takes time and troubles such as misalignment and the reliability is low.

尚、特許文献2で開示されている固体電解質型燃料電池は、直管状の横縞型燃料電池構造体同士をU字形状の金属管でつなぐ構成であり、直管状の横縞型燃料電池構造体自体の構造は上述した通りである。   The solid oxide fuel cell disclosed in Patent Document 2 has a configuration in which straight tubular horizontal stripe fuel cell structures are connected to each other by a U-shaped metal tube, and the straight tubular horizontal stripe fuel cell structure itself. The structure is as described above.

本発明は、上記の状況に鑑み、量産性に優れ、信頼性の向上を図ることができる燃料電池構造体を提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a fuel cell structure that is excellent in mass productivity and can improve reliability.

上記目的を達成するために本発明に係る燃料電池構造体は、屈曲部を有する一体の多孔質支持体チューブと、複数の燃料電池セルと、複数の導電部と、ガスバリア特性を有する緻密膜を備え、前記燃料電池セルが、燃料極層、電解質層、及び酸化剤極層の三層を少なくとも含む多層構造であって、前記多孔質支持体チューブの外周面に形成され、隣り合う前記燃料電池セル同士が、一方の前記燃料電池セルの前記燃料極層と他方の前記燃料電池セルの前記酸化剤極層とが前記屈曲部において前記導電部を介して接続されることにより、電気的に直列接続されており、前記多孔質支持体チューブの外周面全面の各領域が、前記電解質層及び前記緻密膜の少なくとも一方によって覆われている構成(第1の構成)とする。 To achieve the above object, a fuel cell structure according to the present invention comprises an integral porous support tube having a bent portion, a plurality of fuel cells, a plurality of conductive portions, and a dense membrane having gas barrier properties. The fuel cell has a multilayer structure including at least three layers of a fuel electrode layer, an electrolyte layer, and an oxidant electrode layer, and is formed on the outer peripheral surface of the porous support tube and adjacent to the fuel cell. The cells are electrically connected in series by connecting the fuel electrode layer of one of the fuel battery cells and the oxidant electrode layer of the other fuel battery cell via the conductive portion at the bent portion. It is assumed that each region on the entire outer peripheral surface of the porous support tube is connected and covered with at least one of the electrolyte layer and the dense membrane (first configuration).

上記構成によると、燃料電池セル同士を直列接続するためのインターコネクタ部を屈曲部に配置したため、燃料電池セルの各層を、マスキング等が不要なディッピング等の方法を用いて各層の塗布高さを制御するだけの簡易な制御で形成することができ、一度に多数の燃料電池セルを作製できるので、低コスト化が期待できる。すなわち、量産性に優れている。   According to the above configuration, since the interconnector portion for connecting the fuel cells in series is arranged at the bent portion, the coating height of each layer of the fuel cells is set using a method such as dipping that does not require masking or the like. Since it can be formed by simple control that only controls, and a large number of fuel cells can be produced at a time, cost reduction can be expected. That is, it is excellent in mass productivity.

また、上記構成によると、燃料電池セル同士を直列接続するためのインターコネクタ部を屈曲部に配置したため、インターコネクタ部の全長が多少長くなっても、直管状の横縞型燃料電池構造体のようにインターコネクタ部の全長がインターコネクタ部の数だけ燃料電池構造体の全長に影響することは無く、1つのインターコネクタ部の全長の半分が燃料電池構造体の高さ方向に影響するだけであるため、信頼性を優先した設計が可能になる。すなわち、信頼性の向上を図ることできる。 Further, according to the above configuration, since the interconnector portion for connecting the fuel cells in series is arranged in the bent portion, even if the overall length of the interconnector portion is slightly longer, it looks like a straight-tube horizontal stripe fuel cell structure. Further, the total length of the interconnector portion does not affect the total length of the fuel cell structure by the number of interconnectors, and only half of the total length of one interconnector portion affects the height direction of the fuel cell structure. Therefore, it is possible to design with priority on reliability. That is, reliability can be improved.

また、上記第の構成の燃料電池構造体において、前記電解質層の端部と前記緻密膜の端部とがオーバーラップしている構成(第の構成)にすることが望ましい。 In the fuel cell structure having the first configuration, it is desirable that the end portion of the electrolyte layer and the end portion of the dense membrane overlap each other ( second configuration).

また、上記第1または第2の構成の燃料電池構造体において、前記多孔質支持体チューブの軸が螺旋形状である構成(第の構成)にしてもよい。 In the fuel cell structure having the first or second configuration, the porous support tube may have a spiral shape ( third configuration).

また、上記第1〜第のいずれかの構成の燃料電池構造体において、前記多孔質支持体チューブが複数の内孔を有するようにしてもよい。 In the fuel cell structure having any one of the first to third configurations, the porous support tube may have a plurality of inner holes.

本発明によると、量産性に優れ、信頼性の向上を図ることができる燃料電池構造体を実現することができる。   According to the present invention, it is possible to realize a fuel cell structure that is excellent in mass productivity and capable of improving reliability.

本発明の第1実施形態に係る燃料電池構造体の斜視図である。1 is a perspective view of a fuel cell structure according to a first embodiment of the present invention. 本発明の第1実施形態に係る燃料電池構造体を製造する第1工程を示す斜視図である。It is a perspective view which shows the 1st process which manufactures the fuel cell structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る燃料電池構造体を製造する第2工程を示す斜視図である。It is a perspective view showing the 2nd process of manufacturing the fuel cell structure concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る燃料電池構造体を製造する第3工程を示す斜視図である。It is a perspective view showing the 3rd process of manufacturing the fuel cell structure concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る燃料電池構造体を製造する第4工程を示す斜視図である。It is a perspective view showing the 4th process which manufactures the fuel cell structure concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る燃料電池構造体を製造する第5工程を示す斜視図である。It is a perspective view which shows the 5th process which manufactures the fuel cell structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る燃料電池構造体を製造する第6工程を示す斜視図である。It is a perspective view which shows the 6th process which manufactures the fuel cell structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る燃料電池構造体の上部屈曲部の縦断面図である。It is a longitudinal cross-sectional view of the upper bending part of the fuel cell structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る燃料電池構造体を収容する容器の斜視図である。It is a perspective view of the container which accommodates the fuel cell structure concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る燃料電池構造体の斜視図である。It is a perspective view of the fuel cell structure concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る燃料電池構造体の斜視図である。It is a perspective view of the fuel cell structure concerning a 3rd embodiment of the present invention.

本発明の実施形態について図面を参照して以下に説明する。各図において、同一又は類似の部分には原則として同一の符号を付す。尚、本発明は、後述する実施形態に限られない。また、後述する各実施形態や各実施形態における変形例の内容は、矛盾がない限り、任意に組み合わせて実施することが可能である。   Embodiments of the present invention will be described below with reference to the drawings. In each drawing, the same or similar parts are denoted by the same reference numerals in principle. The present invention is not limited to the embodiments described later. Moreover, the content of each embodiment and the modified example in each embodiment to be described later can be implemented in any combination as long as there is no contradiction.

<第1実施形態>
図1は本発明の第1実施形態に係る燃料電池構造体の斜視図である。本発明の第1実施形態に係る燃料電池構造体では、屈曲部を有する一体の多孔質支持体チューブ1の両端部及び上部屈曲部を除いた外周面に、燃料電池セル8が形成されている。図1に示す例では、U字形状の5つの燃料電池セル8が多孔質支持体チューブ1上に形成されている。
<First Embodiment>
FIG. 1 is a perspective view of a fuel cell structure according to a first embodiment of the present invention. In the fuel cell structure according to the first embodiment of the present invention, the fuel cell 8 is formed on the outer peripheral surface excluding both ends and the upper bent portion of the integral porous support tube 1 having the bent portion. . In the example shown in FIG. 1, five U-shaped fuel cells 8 are formed on the porous support tube 1.

尚、図1では、図を見やすくするために、多孔質支持体チューブ1の内孔を示す点線の図示を省略している。また、後述する図1以外の斜視図においても多孔質支持体チューブ1の内孔を示す点線の図示を省略する。   In FIG. 1, in order to make the drawing easier to see, the dotted line indicating the inner hole of the porous support tube 1 is omitted. Further, in the perspective views other than FIG. 1 described later, the dotted line showing the inner hole of the porous support tube 1 is omitted.

また、以下の説明では、多孔質支持体チューブ1の直管部分の軸方向を燃料電池構造体の高さ方向とする。   In the following description, the axial direction of the straight pipe portion of the porous support tube 1 is the height direction of the fuel cell structure.

多孔質支持体チューブ1の上部屈曲部にはインターコネクタ部として機能する第1の導電部3及び第2の導電部7が配置される。隣り合う燃料電池セル8同士が、一方の燃料電池セル8の燃料極層4(図3参照)と他方の燃料電池セル8の酸化剤極層6とが多孔質支持体チューブ1の上部屈曲部において第1の導電部3及び第2の導電部7を介して接続されることにより、電気的に直列接続されている。すなわち、図1に示す例では、5つの燃料電池セル8が直列接続されている燃料電池構造体となっている。   A first conductive portion 3 and a second conductive portion 7 functioning as an interconnector portion are disposed in the upper bent portion of the porous support tube 1. Adjacent fuel cells 8 are configured such that the fuel electrode layer 4 (see FIG. 3) of one fuel cell 8 and the oxidant electrode layer 6 of the other fuel cell 8 are upper bent portions of the porous support tube 1. Are connected in series via the first conductive portion 3 and the second conductive portion 7. That is, in the example shown in FIG. 1, it is a fuel cell structure in which five fuel cells 8 are connected in series.

多孔質支持体チューブ1の一方の端部には、多孔質支持体チューブ1の一方の端部に最も近い位置に形成される燃料電池セル8の酸化剤極層6に接続される第2の導電部7が形成され、多孔質支持体チューブ1の他方の端部には、多孔質支持体チューブ1の他方の端部に最も近い位置に形成される燃料電池セル8の燃料極層4(図3参照)に接続される第1の導電部3が形成される。水素ガス等の燃料ガスを多孔質支持体チューブ1の内孔に導入し、空気等の酸化剤ガスを燃料電池構造体の周囲に供給することにより、各燃料電池セル8において発電が行われ、多孔質支持体チューブ1の両端部に形成された第1の導電部3及び第2の導電部7から電力を外部に取り出すことができる。   A second end of the porous support tube 1 is connected to the oxidant electrode layer 6 of the fuel cell 8 formed at a position closest to the one end of the porous support tube 1. A conductive portion 7 is formed, and the fuel electrode layer 4 of the fuel cell 8 (formed at the position closest to the other end of the porous support tube 1 is formed at the other end of the porous support tube 1. The first conductive portion 3 connected to (see FIG. 3) is formed. Electric power is generated in each fuel cell 8 by introducing a fuel gas such as hydrogen gas into the inner hole of the porous support tube 1 and supplying an oxidant gas such as air around the fuel cell structure. Electric power can be taken out from the first conductive portion 3 and the second conductive portion 7 formed at both ends of the porous support tube 1.

次に、本発明の第1実施形態に係る燃料電池構造体の製造方法について図2A〜図2Fを参照して説明する。図2Aは、本発明の第1実施形態に係る燃料電池構造体を製造する第1工程を示す斜視図である。図2Bは、本発明の第1実施形態に係る燃料電池構造体を製造する第2工程を示す斜視図である。図2Cは、本発明の第1実施形態に係る燃料電池構造体を製造する第3工程を示す斜視図である。図2Dは、本発明の第1実施形態に係る燃料電池構造体を製造する第4工程を示す斜視図である。図2Eは、本発明の第1実施形態に係る燃料電池構造体を製造する第5工程を示す斜視図である。図2Fは、本発明の第1実施形態に係る燃料電池構造体を製造する第6工程を示す斜視図である。   Next, the manufacturing method of the fuel cell structure according to the first embodiment of the present invention will be described with reference to FIGS. 2A to 2F. FIG. 2A is a perspective view showing a first step of manufacturing the fuel cell structure according to the first embodiment of the present invention. FIG. 2B is a perspective view showing a second step of manufacturing the fuel cell structure according to the first embodiment of the present invention. FIG. 2C is a perspective view showing a third step of manufacturing the fuel cell structure according to the first embodiment of the present invention. FIG. 2D is a perspective view showing a fourth step for manufacturing the fuel cell structure according to the first embodiment of the present invention. FIG. 2E is a perspective view showing a fifth step for manufacturing the fuel cell structure according to the first embodiment of the present invention. FIG. 2F is a perspective view showing a sixth step of manufacturing the fuel cell structure according to the first embodiment of the present invention.

第1工程において、スラリーを押し出し成型等でチューブ形状にし、さらに図2Aに示すような屈曲部を有する形状に成型して乾燥させる。上記スラリーとして、溶媒にジルコニア系等の絶縁性セラミック粒子が分散されたものを用いるため、ジルコニア系等の絶縁性セラミックチューブが得られる。また、上記スラリーには造孔材を含有させており、上記絶縁性セラミックチューブは焼結することで多孔質になる。したがって、上記絶縁性セラミックチューブを多孔質支持体チューブ1として用いることができる。   In the first step, the slurry is formed into a tube shape by extrusion molding or the like, and further molded into a shape having a bent portion as shown in FIG. 2A and dried. As the slurry, a zirconia-based insulating ceramic tube is obtained because zirconia-based insulating ceramic particles are dispersed in a solvent. The slurry contains a pore former, and the insulating ceramic tube becomes porous by sintering. Therefore, the insulating ceramic tube can be used as the porous support tube 1.

次に、第2工程において、図2Bに示す通り、多孔質支持体チューブ1の両端部及び上部屈曲部の外周面にガスバリア特性を有する緻密膜2の材料を塗布する。緻密膜2の材料としては、例えば、溶媒にジルコニア系等の絶縁性セラミック粒子が分散され、造孔材を含有していないスラリーを用いることができる。   Next, in the second step, as shown in FIG. 2B, the material of the dense film 2 having gas barrier properties is applied to the outer peripheral surfaces of both end portions and the upper bent portion of the porous support tube 1. As the material of the dense film 2, for example, a slurry in which insulating ceramic particles such as zirconia are dispersed in a solvent and does not contain a pore former can be used.

次に、第3工程において、図2Cに示す通り、緻密膜2が形成される領域の一部に第1の導電部3を形成する。第1の導電部3は、シルク印刷等によって一度に形成することができる。尚、第1の導電部3それぞれにおいて両端の高さを変えている。第1の導電部3としては、例えば、ランタンクロマイト系酸化物(LaCrO)や、NiAl、NiCr等のサーメットのガスバリア特性を有する緻密導電膜を用いることができる。 Next, in the third step, as shown in FIG. 2C, the first conductive portion 3 is formed in a part of the region where the dense film 2 is formed. The first conductive portion 3 can be formed at a time by silk printing or the like. Note that the height of both ends of each first conductive portion 3 is changed. As the first conductive part 3, for example, a lanthanum chromite oxide (LaCrO 3 ) or a dense conductive film having a gas barrier property of cermet such as NiAl or NiCr can be used.

次に、第4工程において、図2Dに示す通り、多孔質支持体チューブ1の両端部及び上部屈曲部以外の外周面に燃料極層4の材料を塗布する。また、燃料極層4の材料は、多孔質支持体チューブ1の両端部及び上部屈曲部の外周面にも一部オーバーラップして塗布される。各燃料極層4の高さ(上端)は揃えられており、各第1の導電部3の一端は燃料極層4に接続されるが、各第1の導電部3の他端は燃料極層4に接続されない。   Next, in the fourth step, as shown in FIG. 2D, the material of the fuel electrode layer 4 is applied to the outer peripheral surface of the porous support tube 1 other than both end portions and the upper bent portion. Further, the material of the fuel electrode layer 4 is also applied so as to partially overlap the both end portions of the porous support tube 1 and the outer peripheral surface of the upper bent portion. The height (upper end) of each fuel electrode layer 4 is aligned, and one end of each first conductive portion 3 is connected to the fuel electrode layer 4, but the other end of each first conductive portion 3 is the fuel electrode. Not connected to layer 4.

次に、第5工程において、図2Eに示す通り、多孔質支持体チューブ1の両端部及び上部屈曲部以外の外周面に電解質層5の材料を塗布する。また、電解質層5の材料は、多孔質支持体チューブ1の両端部及び上部屈曲部の外周面にも一部オーバーラップして塗布される。各電解質層5の高さ(上端)は各燃料極層4の高さ(上端)よりも高い位置で揃えられている。一般的には酸化剤極層6と他の層との焼結温度が異なるため、通常、第5工程が終了した段階で一旦焼結することになる。   Next, in the fifth step, as shown in FIG. 2E, the material of the electrolyte layer 5 is applied to the outer peripheral surface other than the both end portions and the upper bent portion of the porous support tube 1. Further, the material of the electrolyte layer 5 is also applied so as to partially overlap the both end portions of the porous support tube 1 and the outer peripheral surface of the upper bent portion. The height (upper end) of each electrolyte layer 5 is aligned at a position higher than the height (upper end) of each fuel electrode layer 4. In general, since the sintering temperature of the oxidant electrode layer 6 is different from that of the other layers, the sintering is usually performed once the fifth step is completed.

多孔質支持体チューブ1の外周面全面の各領域が、電解質層5及び緻密膜2の少なくとも一方によって覆われていることになるので、多孔質支持体チューブ1の内孔を流れる燃料ガスが本発明の第1実施形態に係る燃料電池構造体の周囲に漏れ出すことを防ぐことができる。また、本実施形態のように、電解質層5の端部と緻密膜2の端部とをオーバーラップさせることにより、燃料ガスが漏れることをより確実に防ぐことができる。   Since each region of the entire outer peripheral surface of the porous support tube 1 is covered with at least one of the electrolyte layer 5 and the dense membrane 2, the fuel gas flowing through the inner hole of the porous support tube 1 is the main gas. Leakage around the fuel cell structure according to the first embodiment of the invention can be prevented. Further, as in the present embodiment, the end of the electrolyte layer 5 and the end of the dense membrane 2 are overlapped, so that the fuel gas can be more reliably prevented from leaking.

次に、第6工程において、図2Fに示す通り、多孔質支持体チューブ1の両端部及び上部屈曲部以外の外周面に酸化剤極層6の材料を塗布する。また、酸化剤極層6の材料は、多孔質支持体チューブ1の両端部及び上部屈曲部の外周面にも一部オーバーラップして塗布される。各酸化剤極層6の高さ(上端)は、酸化剤極層6と第1の導電部3との接続を避けるため、各電解質層5の高さ(上端)よりも低い位置で揃えられている。   Next, in the sixth step, as shown in FIG. 2F, the material of the oxidant electrode layer 6 is applied to the outer peripheral surface other than both end portions and the upper bent portion of the porous support tube 1. Further, the material of the oxidant electrode layer 6 is also applied so as to partially overlap the outer peripheral surfaces of both end portions and the upper bent portion of the porous support tube 1. The height (upper end) of each oxidant electrode layer 6 is aligned at a position lower than the height (upper end) of each electrolyte layer 5 in order to avoid connection between the oxidant electrode layer 6 and the first conductive portion 3. ing.

最後に、隣り合う燃料電池セル8同士が、一方の燃料電池セル8の燃料極層4(図2D参照)と他方の燃料電池セル8の酸化剤極層6とが多孔質支持体チューブ1の上部屈曲部において第1の導電部3及び第2の導電部7を介して接続されることにより、電気的に直列接続されているように、緻密膜2が形成される領域の一部に第2の導電部7(図1参照)を形成する。第2の導電部7は、シルク印刷等によって一度に形成することができる。第2の導電部7の形成後、再度焼結して図1に示す本発明の第1実施形態に係る燃料電池構造体を得る。本発明の第1実施形態に係る燃料電池構造体の上部屈曲部の縦断面は図3に示すようになる。   Finally, the adjacent fuel cells 8 are composed of the fuel electrode layer 4 of one fuel cell 8 (see FIG. 2D) and the oxidant electrode layer 6 of the other fuel cell 8 of the porous support tube 1. By being connected via the first conductive portion 3 and the second conductive portion 7 in the upper bent portion, the second portion is formed in a part of the region where the dense film 2 is formed so as to be electrically connected in series. Two conductive portions 7 (see FIG. 1) are formed. The second conductive portion 7 can be formed at a time by silk printing or the like. After the formation of the second conductive portion 7, it is sintered again to obtain the fuel cell structure according to the first embodiment of the present invention shown in FIG. A longitudinal section of the upper bent portion of the fuel cell structure according to the first embodiment of the present invention is as shown in FIG.

各燃料電池セル8は、内側から燃料極層(アノード層)4、電解質層5、酸化剤極層(カソード層)6の順で積層された三層構造である。電解質層5は、ガスを通さず酸素イオン、水酸化物イオン、水素イオン等のイオンのみを通す必要があることから緻密な構造であり、例えば公知のランタンガレード系電解質(LSGM)、イットリア安定化ジルコニア(YSZ)、セリア系電解質(GDC)等を用いることができる。一方、燃料極層4及び酸化剤極層6は反応ガスを通す必要があることから多孔質であり、燃料極層4には、例えばNiO−LSGM、NiO−YSZ、NiO−GDC等が用いられ、酸化剤極層6には、例えばランタンストロンチウムマンガナイト(LSM)、ランタンストロンチウムコバルタイト(LSC)、サマリウムストロンチウムコバルタイト(SSC)等が用いられる。   Each fuel cell 8 has a three-layer structure in which a fuel electrode layer (anode layer) 4, an electrolyte layer 5, and an oxidant electrode layer (cathode layer) 6 are laminated in this order from the inside. The electrolyte layer 5 has a dense structure because it is necessary to pass only ions such as oxygen ions, hydroxide ions, hydrogen ions, and the like without passing gas. For example, a known lanthanum galide electrolyte (LSGM), yttria stable Zirconia fluoride (YSZ), ceria-based electrolyte (GDC), or the like can be used. On the other hand, the fuel electrode layer 4 and the oxidant electrode layer 6 are porous because the reaction gas needs to pass therethrough. For the fuel electrode layer 4, for example, NiO-LSGM, NiO-YSZ, NiO-GDC or the like is used. For the oxidant electrode layer 6, for example, lanthanum strontium manganite (LSM), lanthanum strontium cobaltite (LSC), samarium strontium cobaltite (SSC) or the like is used.

本発明の第1実施形態に係る燃料電池構造体によると、燃料電池セル同士を直列接続するためのインターコネクタ部を屈曲部に配置したため、燃料電池セルの各層を、マスキング等が不要なディッピング等の方法を用いて各層の塗布高さを制御するだけの簡易な制御で形成することができ、一度に多数の燃料電池セルを作製できるので、低コスト化が期待できる。すなわち、本発明の第1実施形態に係る燃料電池構造体は量産性に優れている。   According to the fuel cell structure according to the first embodiment of the present invention, since the interconnector portion for connecting the fuel cells in series is arranged in the bent portion, each layer of the fuel cell does not require masking or the like. This method can be formed by simple control only by controlling the coating height of each layer, and a large number of fuel cells can be produced at one time, so that cost reduction can be expected. That is, the fuel cell structure according to the first embodiment of the present invention is excellent in mass productivity.

また、本発明の第1実施形態に係る燃料電池構造体によると、燃料電池セル同士を直列接続するためのインターコネクタ部を屈曲部に配置したため、インターコネクタ部の全長が多少長くなっても、直管状の横縞型燃料電池構造体のようにインターコネクタ部の全長がインターコネクタ部の数だけ燃料電池構造体の全長に影響することは無く、1つのインターコネクタ部の全長の半分が燃料電池構造体の高さ方向に影響するだけであるため、信頼性を優先した設計が可能になる。すなわち、本発明の第1実施形態に係る燃料電池構造体は信頼性の向上を図ることできる。例えば、緻密膜2と電解質層5とのオーバーラップ領域、第1の導電部3と電解質層5とのオーバーラップ領域を十分取ることによって、シール性を向上させること、あるいは、線膨張率の違いから剥離することがある第1の導電部3を電解質層5でしっかり押さえることができる。また、緻密膜2の領域を十分取ることによって、多孔質支持体チューブ1から第1の導電部3及び第2の導電部7へのガスの流入を遮断して第1の導電部3及び第2の導電部7の酸化や還元による劣化を抑えることができる。   Further, according to the fuel cell structure according to the first embodiment of the present invention, the interconnector portion for connecting the fuel cells in series is arranged in the bent portion, so even if the overall length of the interconnector portion is somewhat longer, Unlike the straight tubular horizontal stripe fuel cell structure, the total length of the interconnector portion does not affect the total length of the fuel cell structure by the number of interconnector portions, and half of the total length of one interconnector portion is the fuel cell structure. Since it only affects the height direction of the body, it is possible to design with priority on reliability. That is, the fuel cell structure according to the first embodiment of the present invention can improve reliability. For example, by sufficiently taking the overlap region between the dense film 2 and the electrolyte layer 5 and the overlap region between the first conductive portion 3 and the electrolyte layer 5, the sealing property is improved, or the difference in linear expansion coefficient The first conductive portion 3 that may be peeled off can be firmly pressed by the electrolyte layer 5. In addition, by taking a sufficient area of the dense membrane 2, the inflow of gas from the porous support tube 1 to the first conductive portion 3 and the second conductive portion 7 is blocked, and the first conductive portion 3 and the first conductive portion 3 Degradation due to oxidation or reduction of the two conductive portions 7 can be suppressed.

本発明の第1実施形態に係る燃料電池構造体9は高温下で使用されるため、例えば図4に示すように、断熱容器を構成する蓋体10及び容器本体11を用意し、燃料電池構造体9の両端部を蓋体10に貫通させて燃料電池構造体9の両端部を蓋体10に固定し、蓋体10を容器本体11に取り付けることで燃料電池構造体9が断熱容器に収容されるようにすればよい。また、図4に示すように、容器本体11の正面及び背面に開口部12を設け、空気を断熱容器の内部に供給できるようにすればよい。必要に応じて、ヒーターや温度センサを断熱容器の内部に設けてもよい。   Since the fuel cell structure 9 according to the first embodiment of the present invention is used at a high temperature, for example, as shown in FIG. 4, a lid 10 and a container main body 11 constituting a heat insulation container are prepared, and the fuel cell structure Both ends of the body 9 are passed through the lid body 10, both ends of the fuel cell structure 9 are fixed to the lid body 10, and the lid body 10 is attached to the container body 11 so that the fuel cell structure 9 is accommodated in the heat insulating container. What should I do? Moreover, as shown in FIG. 4, the opening part 12 should just be provided in the front and back surface of the container main body 11, and it should just be able to supply air inside a heat insulation container. If necessary, a heater or a temperature sensor may be provided inside the heat insulating container.

尚、燃料電池セルは、本実施形態とは異なり、内側から酸化剤極層(カソード層)6、電解質層5、燃料極層(アノード層)4の順で積層された構造であってもよい。この場合、空気等の酸化剤ガスを多孔質支持体チューブ1の内孔に導入し、水素ガス等の燃料ガスを燃料電池構造体の周囲に供給するとよい。   Unlike the present embodiment, the fuel cell may have a structure in which an oxidant electrode layer (cathode layer) 6, an electrolyte layer 5, and a fuel electrode layer (anode layer) 4 are laminated in this order from the inside. . In this case, an oxidant gas such as air may be introduced into the inner hole of the porous support tube 1 and a fuel gas such as hydrogen gas may be supplied around the fuel cell structure.

また、燃料極層4と電解質層5との間に、燃料極材料と電解質材料との混合物を含有する中間層を設けてもよく、電解質層5と酸化剤極層6との間に、電解質材料と酸化剤極材料との混合物を含有する中間層を設けてもよい。   An intermediate layer containing a mixture of the fuel electrode material and the electrolyte material may be provided between the fuel electrode layer 4 and the electrolyte layer 5, and the electrolyte is interposed between the electrolyte layer 5 and the oxidant electrode layer 6. An intermediate layer containing a mixture of the material and the oxidant electrode material may be provided.

<第2実施形態>
図5は本発明の第2実施形態に係る燃料電池構造体の斜視図である。本発明の第2実施形態に係る燃料電池構造体は、本発明の第1実施形態に係る燃料電池構造体では多孔質支持体チューブ1の軸が同一平面上にあるのに対して、本発明の第2実施形態に係る燃料電池構造体では多孔質支持体チューブ1の軸が螺旋形状であって同一平面上にない点で、本発明の第1実施形態に係る燃料電池構造体と異なっている。
Second Embodiment
FIG. 5 is a perspective view of a fuel cell structure according to the second embodiment of the present invention. The fuel cell structure according to the second embodiment of the present invention is different from the fuel cell structure according to the first embodiment of the present invention in that the axis of the porous support tube 1 is on the same plane. The fuel cell structure according to the second embodiment differs from the fuel cell structure according to the first embodiment of the present invention in that the axis of the porous support tube 1 is spiral and not on the same plane. Yes.

本発明の第2実施形態に係る燃料電池構造体は、本発明の第1実施形態に係る燃料電池構造体と同様の効果を奏し、さらに、本発明の第1実施形態に係る燃料電池構造体と比較して、より一層スペース効率を向上させることができる。   The fuel cell structure according to the second embodiment of the present invention has the same effects as the fuel cell structure according to the first embodiment of the present invention, and further, the fuel cell structure according to the first embodiment of the present invention. Compared with, space efficiency can be further improved.

<第3実施形態>
図6は本発明の第3実施形態に係る燃料電池構造体の斜視図である。本発明の第3実施形態に係る燃料電池構造体は、本発明の第1実施形態に係る燃料電池構造体では多孔質支持体チューブ1が単一の内孔を有しているのに対して、本発明の第3実施形態に係る燃料電池構造体では多孔質支持体チューブ1が複数の内孔を有している点で、本発明の第1実施形態に係る燃料電池構造体と異なっている。
<Third Embodiment>
FIG. 6 is a perspective view of a fuel cell structure according to the third embodiment of the present invention. The fuel cell structure according to the third embodiment of the present invention is different from the fuel cell structure according to the first embodiment of the present invention in that the porous support tube 1 has a single inner hole. The fuel cell structure according to the third embodiment of the present invention differs from the fuel cell structure according to the first embodiment of the present invention in that the porous support tube 1 has a plurality of inner holes. Yes.

本発明の第3実施形態に係る燃料電池構造体は、本発明の第1実施形態に係る燃料電池構造体と同様の効果を奏し、さらに、本発明の第1実施形態に係る燃料電池構造体を複数並列接続したものと等価であるため、本発明の第1実施形態に係る燃料電池構造体単体よりも電流を増やすことができる。また、本発明の第3実施形態に係る燃料電池構造体は、一体構造物であるため、本発明の第1実施形態に係る燃料電池構造体を複数並列接続したものよりも製造や取り扱いが簡単である。   The fuel cell structure according to the third embodiment of the present invention has the same effects as the fuel cell structure according to the first embodiment of the present invention, and further, the fuel cell structure according to the first embodiment of the present invention. It is equivalent to a plurality of connected in parallel, so that the current can be increased as compared with the single fuel cell structure according to the first embodiment of the present invention. In addition, since the fuel cell structure according to the third embodiment of the present invention is an integral structure, it is easier to manufacture and handle than a plurality of fuel cell structures according to the first embodiment of the present invention connected in parallel. It is.

1 多孔質支持体チューブ
2 緻密膜
3 第1の導電部
4 燃料極層
5 電解質層
6 酸化剤極層
7 第2の導電部
8 燃料電池セル
9 本発明の第1実施形態に係る燃料電池構造体
10 蓋体
11 容器本体
12 開口部
DESCRIPTION OF SYMBOLS 1 Porous support tube 2 Dense membrane 3 1st electroconductive part 4 Fuel electrode layer 5 Electrolyte layer 6 Oxidant electrode layer 7 2nd electroconductive part 8 Fuel cell 9 Fuel cell structure which concerns on 1st Embodiment of this invention Body 10 Lid 11 Container body 12 Opening

Claims (4)

屈曲部を有する一体の多孔質支持体チューブと、
複数の燃料電池セルと、
複数の導電部と
ガスバリア特性を有する緻密膜を備え、
前記燃料電池セルが、燃料極層、電解質層、及び酸化剤極層の三層を少なくとも含む多層構造であって、前記多孔質支持体チューブの外周面に形成され、
隣り合う前記燃料電池セル同士が、一方の前記燃料電池セルの前記燃料極層と他方の前記燃料電池セルの前記酸化剤極層とが前記屈曲部において前記導電部を介して接続されることにより、電気的に直列接続されており、
前記多孔質支持体チューブの外周面全面の各領域が、前記電解質層及び前記緻密膜の少なくとも一方によって覆われていることを特徴とする燃料電池構造体。
An integral porous support tube having a bend;
A plurality of fuel cells;
A plurality of conductive parts ;
It has a dense film with gas barrier properties ,
The fuel cell has a multilayer structure including at least three layers of a fuel electrode layer, an electrolyte layer, and an oxidant electrode layer, and is formed on an outer peripheral surface of the porous support tube.
Adjacent fuel cells are connected to each other through the conductive portion at the bent portion of the fuel electrode layer of one of the fuel cells and the oxidant electrode layer of the other fuel cell. Are electrically connected in series ,
A fuel cell structure characterized in that each region on the entire outer peripheral surface of the porous support tube is covered with at least one of the electrolyte layer and the dense membrane .
前記電解質層の端部と前記緻密膜の端部とがオーバーラップしていることを特徴とする請求項1に記載の燃料電池構造体。2. The fuel cell structure according to claim 1, wherein an end portion of the electrolyte layer and an end portion of the dense film overlap each other. 前記多孔質支持体チューブの軸が螺旋形状であることを特徴とする請求項1または2に記載の燃料電池構造体。The fuel cell structure according to claim 1 or 2, wherein the axis of the porous support tube has a spiral shape. 前記多孔質支持体チューブが複数の内孔を有することを特徴とする請求項1〜3のいずれか一項に記載の燃料電池構造体。The fuel cell structure according to any one of claims 1 to 3, wherein the porous support tube has a plurality of inner holes.
JP2011229123A 2011-10-18 2011-10-18 Fuel cell structure Expired - Fee Related JP5786635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229123A JP5786635B2 (en) 2011-10-18 2011-10-18 Fuel cell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229123A JP5786635B2 (en) 2011-10-18 2011-10-18 Fuel cell structure

Publications (2)

Publication Number Publication Date
JP2013089463A JP2013089463A (en) 2013-05-13
JP5786635B2 true JP5786635B2 (en) 2015-09-30

Family

ID=48533167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229123A Expired - Fee Related JP5786635B2 (en) 2011-10-18 2011-10-18 Fuel cell structure

Country Status (1)

Country Link
JP (1) JP5786635B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9023091D0 (en) * 1990-10-24 1990-12-05 Ici Plc Composite membranes and electrochemical cells containing them
JP3621849B2 (en) * 1999-07-29 2005-02-16 三菱重工業株式会社 Fuel cell module
JP2006221879A (en) * 2005-02-08 2006-08-24 Ngk Spark Plug Co Ltd Solid oxide electrolyte fuel cell
JP5084246B2 (en) * 2005-12-22 2012-11-28 Nok株式会社 Fuel cell module
JP2008071709A (en) * 2006-09-15 2008-03-27 Toto Ltd Fuel cell
JP5158405B2 (en) * 2006-12-22 2013-03-06 トヨタ自動車株式会社 Fuel cell
JP2009076395A (en) * 2007-09-21 2009-04-09 Toyota Motor Corp Tube fuel cell and tube fuel cell comprising the tube fuel cell

Also Published As

Publication number Publication date
JP2013089463A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
US8173322B2 (en) Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections
JP5208905B2 (en) Solid oxide fuel cell and solid oxide fuel cell bundle
JP2012038718A (en) Fuel cell structure
JP3914990B2 (en) Cylindrical fuel cell
KR20110022907A (en) Flat Solid Oxide Fuel Cell Module
JP5622754B2 (en) Method for producing solid oxide fuel cell and solid oxide fuel cell
JP4883733B1 (en) Fuel cell structure
KR20110086904A (en) Fabrication and installation of electrical connectors for flat tubular solid oxide fuel cells
JP2011527820A (en) Solid oxide fuel cell with transition cross section for improved anode gas management at open end
JP5175252B2 (en) Fuel cell with integrated support
CN104979575B (en) The porous inert of both ends open supports tubular solid oxide fuel cells, pile and preparation method thereof
JP2008243751A (en) Solid oxide fuel cell tubular single cell, solid oxide fuel cell bundle and solid oxide fuel cell module
US20100325878A1 (en) Bi Containing Solid Oxide Fuel Cell System With Improved Performance and Reduced Manufacturing Costs
KR101186537B1 (en) Micro cylindrical solid oxide fuel cell stack and solid oxide fuel cell power generation system comprising the same
JP6180628B2 (en) High temperature unit cell with porous gas induction channel layer
JP6039459B2 (en) Solid oxide fuel cell
JP5199218B2 (en) Solid oxide fuel cell and manufacturing method thereof
JP2014132534A (en) Stack structure for fuel battery
JP5786635B2 (en) Fuel cell structure
KR101188997B1 (en) Solid oxide fuel cell
US20140178793A1 (en) Solid oxide fuel cell
KR101301354B1 (en) Solid oxide fuel cell and solid oxide fuel cell module
KR101109328B1 (en) Fuel cell with mesh support
JP5062786B1 (en) Fuel cell structure
JP2014123543A (en) Solid oxide fuel cell and method of manufacturing solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5786635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees