[go: up one dir, main page]

JP5784923B2 - Synthetic resin mirror and manufacturing method thereof - Google Patents

Synthetic resin mirror and manufacturing method thereof Download PDF

Info

Publication number
JP5784923B2
JP5784923B2 JP2011034632A JP2011034632A JP5784923B2 JP 5784923 B2 JP5784923 B2 JP 5784923B2 JP 2011034632 A JP2011034632 A JP 2011034632A JP 2011034632 A JP2011034632 A JP 2011034632A JP 5784923 B2 JP5784923 B2 JP 5784923B2
Authority
JP
Japan
Prior art keywords
synthetic resin
indium
film
tin
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011034632A
Other languages
Japanese (ja)
Other versions
JP2012171175A (en
Inventor
長野 達也
達也 長野
Original Assignee
株式会社菱晃
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社菱晃 filed Critical 株式会社菱晃
Priority to JP2011034632A priority Critical patent/JP5784923B2/en
Publication of JP2012171175A publication Critical patent/JP2012171175A/en
Application granted granted Critical
Publication of JP5784923B2 publication Critical patent/JP5784923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、加熱成形が可能な合成樹脂鏡およびその製造方法に関する。   The present invention relates to a synthetic resin mirror capable of thermoforming and a method for manufacturing the same.

合成樹脂板を用いた加熱成形品への金属反射膜の成膜は、加熱成形後にその表面または裏面に施されている。成膜方法として一般には、電解メッキ等の湿式メッキと真空蒸着法やスパッタリング法等の乾式メッキが用いられている。湿式メッキは、製造工程で扱う薬品の有害性や廃液処理等の制約がある。乾式メッキでは、深絞りされた形状の場合、蒸着源からの角度により成膜できない箇所が発生することや更に被成膜品のサイズが大きい場合は、真空チャンバーの容積に制約を受け生産性が悪化することがある。   The metal reflective film is formed on the thermoformed product using the synthetic resin plate on the front surface or the back surface after the thermoforming. In general, wet plating such as electrolytic plating and dry plating such as vacuum deposition or sputtering are used as the film forming method. Wet plating has limitations such as the toxicity of chemicals handled in the manufacturing process and waste liquid treatment. In the case of dry plating, in the case of a deeply drawn shape, there are places where film formation cannot be performed depending on the angle from the vapor deposition source, and if the size of the film-formed product is large, productivity is limited by the volume of the vacuum chamber. May get worse.

このような制約を改善するために、あらかじめ金属反射膜を成膜した合成樹脂板を加熱成形し従来と同等の金属光沢を得る材料が望まれていたが、従来の合成樹脂鏡における金属反射膜材料であるアルミニウム、クロム、ニッケル、銀またはそれらの合金は、加熱成形時における合成樹脂板の軟化に金属反射膜が追従できず、クラックや白化を起こす問題があった。   In order to improve such a restriction, a material for obtaining a metallic luster equivalent to the conventional one by thermoforming a synthetic resin plate on which a metal reflective film has been formed has been desired. Aluminum, chromium, nickel, silver or alloys thereof, which are materials, have a problem that the metal reflective film cannot follow the softening of the synthetic resin plate at the time of thermoforming, causing cracks and whitening.

これらの問題を克服するために、例えば特許文献1では金属反射膜の成膜材料にインジウム合金が好ましいとされている。   In order to overcome these problems, for example, in Patent Document 1, an indium alloy is preferable as a film forming material for the metal reflective film.

特許文献1では、加熱成形可能な金属反射膜にインジウム合金が提案されているが、良好な成形性を得るためには主鎖にベンゼン環とシクロヘキサン環またはナフタレン環を持つポリエステル系高分子フィルムの併用が必要であるとされており、アクリルフィルムを樹脂基板へ用いた場合は立体成形には適していないことが記されている。一般に、主鎖にベンゼン環とシクロヘキサン環またはナフタレン環を持つポリエステル系高分子フィルムより耐熱性が低いアクリル樹脂等の熱可塑性樹脂を用いて良好な成形性を得る場合、成膜する材料には展延性が高くかつ融点が樹脂基板の加熱成型温度以下である金属にすることが望ましい。単一金属または合金が使用できるが融点を制御する必要がある場合は、合金を使用すればよい。樹脂基板の加熱成型温度と融点が適切でない金属または合金を成膜した場合、加熱成形時における樹脂基板の軟化へ金属反射膜が追従できず金属反射膜がクラックや白化を起こし金属光沢を損なう問題がある。   In Patent Document 1, an indium alloy is proposed as a heat-formable metal reflective film, but in order to obtain good moldability, a polyester polymer film having a benzene ring and a cyclohexane ring or a naphthalene ring in the main chain is proposed. It is described that it is necessary to use in combination, and when an acrylic film is used for a resin substrate, it is not suitable for three-dimensional molding. In general, when a thermoplastic resin such as an acrylic resin having lower heat resistance than a polyester polymer film having a benzene ring, a cyclohexane ring or a naphthalene ring in the main chain is used to obtain a good moldability, the material to be formed is not suitable. It is desirable to use a metal having high ductility and a melting point equal to or lower than the heat molding temperature of the resin substrate. A single metal or alloy can be used, but if the melting point needs to be controlled, an alloy may be used. When a metal or alloy with an inappropriate temperature and melting point for the resin substrate is formed, the metal reflective film cannot follow the softening of the resin substrate during heat molding, causing the metal reflective film to crack or whiten and damage the metallic luster. There is.

特開2002−370311号公報Japanese Patent Laid-Open No. 2002-370311

本発明は、アクリル樹脂基板上へ加熱成形温度以下の融点を有し、スズおよびインジウムを特定組成で含有する合金を成膜することで金属反射膜が加熱成形により軟化した樹脂基板に追従しクラックや白化を起こさない金属光沢を有した合成樹脂鏡を提供することを目的とする。   The present invention has a melting point that is lower than the thermoforming temperature on an acrylic resin substrate, and the metal reflective film follows the resin substrate softened by thermoforming by forming an alloy containing tin and indium with a specific composition, and cracks. Another object is to provide a synthetic resin mirror having a metallic luster that does not cause whitening.

本発明は、アクリル樹脂基板上に金属反射膜および保護塗膜がこの順に積層された合成樹脂鏡であって、金属反射膜がスズ13〜48質量%、インジウム87〜52質量%を含有する合金からなる合成樹脂鏡である。 The present invention is a synthetic resin mirror in which a metal reflection film and a protective coating film are laminated in this order on an acrylic resin substrate, and the metal reflection film contains 13 to 48 % by mass of tin and 87 to 52 % by mass of indium. A synthetic resin mirror made of

また本発明は、金属反射膜をスパッタリングまたは真空蒸着により形成する工程と、前記金属反射膜上に保護塗膜を形成する工程を有する前記合成樹脂鏡の製造方法である。   Moreover, this invention is a manufacturing method of the said synthetic resin mirror which has the process of forming a metal reflective film by sputtering or vacuum deposition, and the process of forming a protective coating film on the said metal reflective film.

本発明によれば、アクリル樹脂基板上へ加熱成形温度以下の融点を有した合金を成膜することで金属反射膜が加熱成形により軟化した樹脂基板に追従し、クラックや白化を起こさない金属光沢を有した合成樹脂鏡が得られる。   According to the present invention, a metallic luster that does not cause cracks or whitening by forming an alloy having a melting point equal to or lower than the thermoforming temperature on an acrylic resin substrate so that the metal reflective film follows the softened resin substrate by thermoforming. A synthetic resin mirror having

本発明を示す概略構成図である。It is a schematic block diagram which shows this invention. 示差走査熱量測定装置により合金の融点を測定した例(実施例1の測定チャート)である。It is the example (measurement chart of Example 1) which measured melting | fusing point of the alloy with the differential scanning calorimeter. 成形性試験3で用いる型の断面図である。It is sectional drawing of the type | mold used by the moldability test 3. FIG.

本発明に用いる合成樹脂基板は、アクリル樹脂基板である。加熱成形温度が140℃から170℃のアクリル樹脂を用いることが好ましい。前記基板の厚みは0.5〜5mmの範囲が好ましい。また透明であれば着色してもよい。前記基板の製造方法は連続キャスト法、セルキャスト法、押し出し法等の公知の方法が適用でき特に限定されない。   The synthetic resin substrate used in the present invention is an acrylic resin substrate. It is preferable to use an acrylic resin having a thermoforming temperature of 140 ° C. to 170 ° C. The thickness of the substrate is preferably in the range of 0.5 to 5 mm. Moreover, as long as it is transparent, you may color. The manufacturing method of the said board | substrate can apply well-known methods, such as a continuous casting method, a cell casting method, and an extrusion method, and is not specifically limited.

前記合成樹脂基板上に形成する金属反射膜は、融点制御と展延性及び環境性の点からスズ(Sn)とインジウム(In)を使用する。Snの含有率が13〜51質量%、Inの含有率が87〜49質量%の範囲にある。Snの含有率が16質量%以上であることが好ましく、48質量%以下であることが好ましい。またInの含有率が52質量%以上であることが好ましく、84質量%以下であることが好ましい。金属反射膜2中のSnとInの含有率がこの範囲にある場合は金属反射膜2の融点を約120〜140℃にすることが出来る。これにより加熱成形温度が140℃から170℃の場合、合成樹脂基板上へ加熱成形温度以下の融点を有した合金を成膜することで金属反射膜が加熱成形により軟化した樹脂基板に追従しクラックや白化を起こさない金属光沢を有した合成樹脂鏡を得ることができる。   The metal reflective film formed on the synthetic resin substrate uses tin (Sn) and indium (In) from the viewpoints of melting point control, spreadability, and environmental properties. The Sn content is in the range of 13 to 51 mass%, and the In content is in the range of 87 to 49 mass%. The Sn content is preferably 16% by mass or more, and preferably 48% by mass or less. Further, the In content is preferably 52% by mass or more, and more preferably 84% by mass or less. When the contents of Sn and In in the metal reflection film 2 are within this range, the melting point of the metal reflection film 2 can be set to about 120 to 140 ° C. As a result, when the thermoforming temperature is 140 ° C to 170 ° C, an alloy having a melting point lower than the thermoforming temperature is formed on the synthetic resin substrate, so that the metal reflective film follows the softened resin substrate by the thermoforming and cracks. And a synthetic resin mirror having a metallic luster that does not cause whitening.

金属反射膜にSnとInを単体で用いる場合はそれらの融点が決まっているためSnとInの合金化により加熱成形温度の下限140℃以下の融点を持つ金属反射膜を得る必要がある。また融点のピークを複数もつSnとInの構成比率は加熱成形時に金属反射膜のクラックや白化を起こしやすく不安定であるためSnとInの構成比率は融点のピークが単一で且つ140℃以下とする必要がある。これにより十分な金属光沢を有する膜厚であっても加熱成形時にクラックや白化を起こさない金属反射膜を得ることが出来る。SnとIn以外にもビスマス、亜鉛、鉛、カドミウム、アンチモン等の低融点金属と呼ばれる金属元素を合金化しても融点の制御は可能であるが、展延性あるいは有害性の点で好ましくない。なお、金属反射膜の光線透過率は、通常5〜30%程度である。   When Sn and In are used alone for the metal reflection film, their melting points are determined, so it is necessary to obtain a metal reflection film having a melting point of 140 ° C. or lower of the lower limit of the heat forming temperature by alloying Sn and In. In addition, the composition ratio of Sn and In having a plurality of melting point peaks is unstable because it easily causes cracking and whitening of the metal reflection film during thermoforming, so the composition ratio of Sn and In is a single melting point peak and 140 ° C. or less. It is necessary to. Thereby, even if it is a film thickness which has sufficient metal luster, the metal reflective film which does not raise | generate a crack and whitening at the time of thermoforming can be obtained. In addition to Sn and In, the melting point can be controlled by alloying a metal element called a low melting point metal such as bismuth, zinc, lead, cadmium, and antimony, but this is not preferable in terms of ductility or harmfulness. In addition, the light transmittance of a metal reflective film is about 5 to 30% normally.

保護塗膜は樹脂基板の加熱成形時に追従するものであれば特に限定しないが、例えばアクリル系、ウレタン系等の塗料が挙げられる。その塗布方法は、スプレー法、フローコーター法等の公知の技術・方法により行うことができる。塗布後、加熱または光照射により塗膜を硬化させることができる。硬化後の保護塗膜の厚みは、防食の観点から10μm以上であることが好ましく、また密着性の観点から30μm以下であることが好ましい。   Although it will not specifically limit if a protective coating film follows at the time of the thermoforming of a resin substrate, For example, paints, such as an acrylic type and a urethane type, are mentioned. The coating method can be performed by a known technique / method such as a spray method or a flow coater method. After coating, the coating film can be cured by heating or light irradiation. The thickness of the protective coating after curing is preferably 10 μm or more from the viewpoint of corrosion prevention, and is preferably 30 μm or less from the viewpoint of adhesion.

SnとInを含んだ金属反射膜を得るための方法としては、スパッタリング法と真空蒸着法が好ましい。スパッタリング法の場合はSnとInの合金をターゲット材として各々作成し単元カソードのスパッタリング装置で成膜させる方法のほか、2元カソードによるスパッタリング装置を用いてSnとInの個別のターゲットからの同時成膜でも可能である。真空蒸着法の場合はSnとInの合金を使用、あるいはSnとInの別々の蒸着材料を各々同一のタングステンボートにセットし同一の蒸着源として使用することができるが、合金を用いる方が好ましい。   As a method for obtaining a metallic reflective film containing Sn and In, a sputtering method and a vacuum deposition method are preferable. In the case of the sputtering method, an alloy of Sn and In is prepared as a target material, and a single cathode sputtering apparatus is used to form a film. In addition, a dual cathode sputtering apparatus is used to simultaneously form Sn and In targets from individual targets. A membrane is also possible. In the case of the vacuum deposition method, an alloy of Sn and In can be used, or separate vapor deposition materials of Sn and In can be set on the same tungsten boat and used as the same vapor deposition source, but it is preferable to use an alloy. .

以下に図面を用いて本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態の合成樹脂鏡は、アクリル樹脂基板1の一方の主面(図1中、上面)に、SnとInからなる金属反射膜2および保護塗膜3がアクリル樹脂基板1側からこの順に積層されてなる。   In the synthetic resin mirror of the present embodiment, a metal reflective film 2 and a protective coating film 3 made of Sn and In are formed in this order from the acrylic resin substrate 1 side on one main surface (the upper surface in FIG. It is laminated.

半透過鏡として用いる場合は金属反射膜2の膜厚または反射率によって光線透過率を制御する点から、合成樹脂基板として、透明性を持ったアクリル、ポリスチレン、MS樹脂、ポリカーボネート等の透明樹脂基板が挙げられるが、本発明ではアクリル樹脂基板が使用できる。透明樹脂基板の厚みは0.5〜5mmが好ましいが特に限定されない。   When used as a semi-transparent mirror, the transparent resin substrate such as acrylic, polystyrene, MS resin, and polycarbonate having transparency is used as a synthetic resin substrate because the light transmittance is controlled by the film thickness or reflectance of the metal reflecting film 2 In the present invention, an acrylic resin substrate can be used. The thickness of the transparent resin substrate is preferably 0.5 to 5 mm, but is not particularly limited.

本発明について実施例と比較例を挙げて更に説明する。ただし、実施例9および10は参考用である。 The present invention will be further described with reference to examples and comparative examples. However, Examples 9 and 10 are for reference.

(合金の融点)
所定の組成で合金を調整したものを試料として、その合金の融点を示差走査熱量測定装置(セイコーインスツルメンツ(株)製 DSC6200)を用いて測定した。この測定では図2に示すようなチャートが得られ、そのピークが示す温度を融点とした(小数点第2位以下四捨五入)。
(Melting point of alloy)
Using an alloy prepared with a predetermined composition as a sample, the melting point of the alloy was measured using a differential scanning calorimeter (DSC6200, manufactured by Seiko Instruments Inc.). In this measurement, a chart as shown in FIG. 2 was obtained, and the temperature indicated by the peak was taken as the melting point (rounded to the second decimal place).

(真空蒸着)
真空蒸着装置((株)アルバック製EBX−10D)により樹脂基板上に真空蒸着した。上記真空蒸着の条件を表1に示す。
(Vacuum deposition)
It vacuum-deposited on the resin board | substrate with the vacuum evaporation apparatus (product made from ULVAC, Inc. EBX-10D). The vacuum deposition conditions are shown in Table 1.

Figure 0005784923
Figure 0005784923

(合金の組成)
形成した金属反射膜中のスズとインジウムの組成(質量比)は、光電子分光分析法による質量分析を行って決定した。高真空状態にした光電子分光装置((株)島津製作所製 AXIS ULTRA)の試料室内に上記スズとインジウムの合金膜が表面に形成されたアクリル板を10mm角に切断した試料をおき、その金属反射膜表面にX線を照射し、光電効果により表面から放出される光電子を利用し表面の金属反射膜の元素分析を行い、質量比を算出した(小数点第1位以下四捨五入)。
(Alloy composition)
The composition (mass ratio) of tin and indium in the formed metal reflective film was determined by performing mass analysis by photoelectron spectroscopy. A sample obtained by cutting the acrylic plate on the surface of which the alloy film of tin and indium is formed into a 10 mm square is placed in a sample chamber of a high vacuum photoelectron spectrometer (AXIS ULTRA manufactured by Shimadzu Corporation), and its metal reflection The surface of the film was irradiated with X-rays, and elemental analysis of the metal reflective film on the surface was performed using photoelectrons emitted from the surface by the photoelectric effect, and the mass ratio was calculated (rounded to the first decimal place).

(金属反射膜の光線透過率)
光線透過率の測定は、デンシトメーター(コニカミノルタ製 PDA100)を用い、次式:
吸光度=−log10(透過率)
に従って、光学濃度(吸光度)から透過率(出射光強度/入射光強度)を求めた。
(Light transmittance of metal reflective film)
The light transmittance is measured using a densitometer (PDA100, manufactured by Konica Minolta) using the following formula:
Absorbance = −log 10 (transmittance)
Thus, the transmittance (emitted light intensity / incident light intensity) was determined from the optical density (absorbance).

(実施例1)
厚さ2mmのアクリル板((株)クラレ製 コモグラス CG−001)を用意しこのアクリル板上に鏡として十分な金属光沢が得られるように光線透過率を約7%となるようにスズ24mgとインジウム126mgを蒸着材料として用いてスズ−インジウム合金からなる金属反射膜を形成した。金属反射膜は質量比Sn:Inが16:84となり、融点139.5℃の単一ピークを得た。
Example 1
A 2 mm thick acrylic plate (Komoray Co., Ltd. CG-001) was prepared, and 24 mg of tin was used so that the light transmittance was about 7% so that a sufficient metallic luster was obtained as a mirror on this acrylic plate. A metal reflective film made of a tin-indium alloy was formed using 126 mg of indium as an evaporation material. The metal reflective film had a mass ratio of Sn: In of 16:84, and a single peak with a melting point of 139.5 ° C. was obtained.

次にこの合金膜上にアクリル系透明塗料(三菱レイヨン(株)製 商品名LR902)をスプレーコート法により、乾燥膜厚が約20μmとなるように塗布しその後60℃に設定した乾燥炉で1時間乾燥し、本実施例の合成樹脂鏡を得た。   Next, an acrylic transparent paint (product name: LR902, manufactured by Mitsubishi Rayon Co., Ltd.) was applied onto the alloy film by a spray coating method so that the dry film thickness was about 20 μm, and then 1 in a drying furnace set at 60 ° C. After drying for a time, a synthetic resin mirror of this example was obtained.

(実施例2)
スズとインジウムの量を変えたこと以外は実施例1と同様にして合成樹脂鏡を作成した。スズ:インジウム=17:83とした。
(Example 2)
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the amounts of tin and indium were changed. Tin: indium = 17: 83.

(実施例3)
スズとインジウムの量を変えたこと以外は実施例1と同様にして合成樹脂鏡を作成した。スズ:インジウム=18:82とした。
(Example 3)
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the amounts of tin and indium were changed. Tin: indium = 18: 82.

(実施例4)
スズとインジウムの量を変えたこと以外は実施例1と同様にして合成樹脂鏡を作成した。スズ:インジウム=19:81とした。
Example 4
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the amounts of tin and indium were changed. Tin: indium = 19: 81.

(実施例5)
スズとインジウムの量を変えたこと以外は実施例1と同様にして合成樹脂鏡を作成した。スズ:インジウム=30:70とした。
(Example 5)
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the amounts of tin and indium were changed. Tin: indium = 30: 70.

(実施例6)
スズとインジウムの量を変えたこと以外は実施例1と同様にして合成樹脂鏡を作成した。スズ:インジウム=40:60とした。
(Example 6)
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the amounts of tin and indium were changed. Tin: indium = 40: 60.

(実施例7)
スズとインジウムの量を変えたこと以外は実施例1と同様にして合成樹脂鏡を作成した。スズ:インジウム=47:53とした。
(Example 7)
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the amounts of tin and indium were changed. Tin: indium = 47: 53.

(実施例8)
スズとインジウムの量を変えたこと以外は実施例1と同様にして合成樹脂鏡を作成した。スズ:インジウム=48:52とした。
(Example 8)
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the amounts of tin and indium were changed. Tin: indium = 48: 52.

(実施例9)
スズとインジウムの量を変えたこと以外は実施例1と同様にして合成樹脂鏡を作成した。スズ:インジウム=49:51とした。融点120.5℃のピークが1つであったが120〜140℃の箇所に歪みがあった。
Example 9
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the amounts of tin and indium were changed. Tin: indium = 49: 51. There was one peak with a melting point of 120.5 ° C, but there was distortion at a location of 120-140 ° C.

(実施例10)
スズとインジウムの量を変えたこと以外は実施例1と同様にして合成樹脂鏡を作成した。スズ:インジウム=50:50とした。融点120.3℃のピークが1つであったが120〜140℃の箇所に歪みがあった。
(実施例11)
スズとインジウムの量を変えたこと以外は実施例1と同様にして合成樹脂鏡を作成した。スズ:インジウム=15:85とした。
(Example 10)
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the amounts of tin and indium were changed. Tin: indium = 50: 50. There was one peak with a melting point of 120.3 ° C., but there was distortion at 120 to 140 ° C.
(Example 11)
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the amounts of tin and indium were changed. Tin: indium = 15: 85.

(比較例1)
スズとインジウムの量を変えたこと以外は実施例1と同様にして合成樹脂鏡を作成した。スズ:インジウム=52:48とした。融点120.3℃のピークが1つであったが120〜140℃の箇所に歪みがあった。
(Comparative Example 1)
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the amounts of tin and indium were changed. Tin: indium = 52: 48. There was one peak with a melting point of 120.3 ° C., but there was distortion at 120 to 140 ° C.

(比較例2)
スズとインジウムの量を変えたこと以外は実施例1と同様にして合成樹脂鏡を作成した。スズ:インジウム=12:88とした。
(Comparative Example 2)
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the amounts of tin and indium were changed. Tin: Indium was set to 12:88.

(比較例3)
金属反射膜をインジウムのみとしたこと以外は実施例1と同様にして合成樹脂鏡を作成した。
(Comparative Example 3)
A synthetic resin mirror was prepared in the same manner as in Example 1 except that the metal reflective film was only indium.

上記の合成樹脂鏡のそれぞれについて以下の試験を行い、それら結果を表2に示す。   The following tests were performed for each of the above synthetic resin mirrors, and the results are shown in Table 2.

(成形性試験1)
実施例と比較例で得た試料を140℃に予め温度を設定した恒温槽内に6分間放置し金属反射膜の状態を確認した。
(Formability test 1)
The samples obtained in the examples and comparative examples were left in a thermostatic bath whose temperature was set to 140 ° C. for 6 minutes, and the state of the metal reflective film was confirmed.

(成形性試験2)
実施例と比較例で得た試料を140℃に予め温度を設定した恒温槽内に10分間放置し金属反射膜の状態を確認した。
(Formability test 2)
The samples obtained in the examples and comparative examples were left in a thermostatic bath whose temperature was set to 140 ° C. for 10 minutes, and the state of the metal reflective film was confirmed.

(成形性試験3)
実施例と比較例で得た試料表面の温度が130〜140℃になるように成形装置のヒーター設定温度を300℃、加熱時間70〜80秒と調節し、図3に示すように大きさの異なる直方体を重ねた形状の内部空間を有する型を用いて真空成型を行い金属反射膜の状態を確認した。
(Formability test 3)
The heater set temperature of the molding apparatus is adjusted to 300 ° C. and the heating time is 70 to 80 seconds so that the surface temperature of the sample obtained in the example and the comparative example is 130 to 140 ° C., and the size is as shown in FIG. Vacuum forming was performed using a mold having an internal space in which different rectangular parallelepipeds were stacked, and the state of the metal reflective film was confirmed.

(評価基準)
下記を金属反射膜の状態を示す基準とした。
◎:鏡として使用可能な金属光沢を有しておりクラックも白化も全く起こしていない。
○:鏡として使用可能な金属光沢を有しているが部分的且つ僅かにクラックまたは白化を起こしている。
△:鏡として使用可能な金属光沢を有しているが部分的にクラックまたは白化を起こしている。
×:鏡として使用可能な金属光沢を有しておらず全体的にクラックまたは白化を起こしている。
(Evaluation criteria)
The following was used as a reference indicating the state of the metal reflective film.
(Double-circle): It has the metallic luster which can be used as a mirror, and neither a crack nor whitening has occurred.
○: Metallic luster that can be used as a mirror, but partially or slightly cracked or whitened.
(Triangle | delta): It has the metallic luster which can be used as a mirror, but has cracked or whitened partially.
X: It does not have the metallic luster which can be used as a mirror, but has cracked or whitened as a whole.

Figure 0005784923
Figure 0005784923

本発明によれば、加熱成形が可能な合成樹脂鏡として、広く適用できる。   The present invention can be widely applied as a synthetic resin mirror that can be thermoformed.

1 アクリル樹脂基板
2 金属反射膜
3 保護塗膜
4 一辺175mm
5 一辺115mm
6 深さ20mm
7 深さ20mm
DESCRIPTION OF SYMBOLS 1 Acrylic resin board | substrate 2 Metal reflecting film 3 Protective coating film 4 175mm of one side
5 side 115mm
6 Depth 20mm
7 Depth 20mm

Claims (2)

アクリル樹脂基板上に金属反射膜および保護塗膜がこの順に積層された合成樹脂鏡であって、金属反射膜がスズ13〜48質量%、インジウム87〜52質量%を含有する合金からなる合成樹脂鏡。 A synthetic resin mirror in which a metal reflection film and a protective coating film are laminated in this order on an acrylic resin substrate, and the metal reflection film is made of an alloy containing 13 to 48 mass% tin and 87 to 52 mass% indium. mirror. 金属反射膜をスパッタリングまたは真空蒸着により形成する工程と、前記金属反射膜上に保護塗膜を形成する工程を有する請求項1に記載の合成樹脂鏡の製造方法。   The method for producing a synthetic resin mirror according to claim 1, comprising a step of forming a metal reflective film by sputtering or vacuum deposition, and a step of forming a protective coating film on the metal reflective film.
JP2011034632A 2011-02-21 2011-02-21 Synthetic resin mirror and manufacturing method thereof Active JP5784923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011034632A JP5784923B2 (en) 2011-02-21 2011-02-21 Synthetic resin mirror and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011034632A JP5784923B2 (en) 2011-02-21 2011-02-21 Synthetic resin mirror and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012171175A JP2012171175A (en) 2012-09-10
JP5784923B2 true JP5784923B2 (en) 2015-09-24

Family

ID=46974529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011034632A Active JP5784923B2 (en) 2011-02-21 2011-02-21 Synthetic resin mirror and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5784923B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115619A (en) * 1977-01-07 1978-09-19 The Dow Chemical Company Highly reflective multilayer metal/polymer composites
JPH0785727B2 (en) * 1986-01-22 1995-09-20 筒中プラスチック工業株式会社 Synthetic resin mirror molding product manufacturing method

Also Published As

Publication number Publication date
JP2012171175A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
KR101902669B1 (en) Decorative coatings for plastic substrates
TW314600B (en)
CN106575005B (en) Infra Red reflective films
CN101971063B (en) Reflective article
CA2889908C (en) Substrate equipped with a multilayer comprising a partial metal film, glazing unit and process
JP2017106906A (en) Radiowave transmission type cover having metallic luster
TWI433768B (en) Insert sheet and manufacturing method thereof
RU2013132426A (en) ENERGY PROTECTIVE POLYMER FILM
JP6739310B2 (en) Light-transmissive conductive film, manufacturing method thereof, light control film and manufacturing method thereof
JP5784923B2 (en) Synthetic resin mirror and manufacturing method thereof
KR20210011048A (en) Film for advertisement
JP2017214607A (en) Method for manufacturing light reflection mirror, and vapor deposition apparatus
WO2017119335A1 (en) Method for manufacturing reflective film
JP2018530665A (en) Color-treated substrate and method for color development therefor
JPWO2015194485A1 (en) Laminate
JP2018118394A (en) Semi-transmissive resin mirror and manufacturing method thereof
US9643386B2 (en) Low emissivity film and window having the same
KR102209188B1 (en) Film for advertisement
JP2018079599A (en) Optical sheet
CN211180277U (en) PET reflective film
JP6928309B2 (en) How to manufacture a reflector
TWM466012U (en) Panel of display screen
CN110908026A (en) Single-layer PET (polyethylene terephthalate) reflective film and backlight module
JP6997491B2 (en) Laminated film, metallic products, metallic signboards
KR20160110061A (en) Low Emissivity films and windows including thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150723

R150 Certificate of patent or registration of utility model

Ref document number: 5784923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350