[go: up one dir, main page]

JP5779452B2 - Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery - Google Patents

Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5779452B2
JP5779452B2 JP2011189402A JP2011189402A JP5779452B2 JP 5779452 B2 JP5779452 B2 JP 5779452B2 JP 2011189402 A JP2011189402 A JP 2011189402A JP 2011189402 A JP2011189402 A JP 2011189402A JP 5779452 B2 JP5779452 B2 JP 5779452B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
zinc alloy
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011189402A
Other languages
Japanese (ja)
Other versions
JP2013051170A (en
Inventor
矢野 睦
睦 矢野
高橋 康文
康文 高橋
藤本 正久
正久 藤本
井上 大輔
大輔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2011189402A priority Critical patent/JP5779452B2/en
Publication of JP2013051170A publication Critical patent/JP2013051170A/en
Application granted granted Critical
Publication of JP5779452B2 publication Critical patent/JP5779452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池の負極活物質及び非水電解質二次電池に関する。   The present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.

パーソナルコンピューター、携帯電話などの携帯電子機器の電源などとして、非水電解質二次電池が用いられている。近年、これらの携帯機器の小型化、軽量化に伴い、非水電解質二次電池の高容量化、高エネルギー密度化の要望が高まってきている。また、非水電解質二次電池のサイクル特性の向上も求められている。   Nonaqueous electrolyte secondary batteries are used as power sources for portable electronic devices such as personal computers and mobile phones. In recent years, with the reduction in size and weight of these portable devices, there is an increasing demand for higher capacity and higher energy density of nonaqueous electrolyte secondary batteries. There is also a need for improved cycle characteristics of nonaqueous electrolyte secondary batteries.

例えば、特許文献1では、負極活物質に用いられる黒鉛が改良された、高容量でサイクル特性に優れたリチウムイオン二次電池が提案されている。   For example, Patent Document 1 proposes a lithium-ion secondary battery with improved capacity and excellent cycle characteristics, in which graphite used for the negative electrode active material is improved.

特開2009−245613号公報JP 2009-245613 A

本発明は、非水電解質二次電池を高容量化し、且つサイクル特性を向上することができる負極活物質、及び非水電解質二次電池を提供することを主な目的とする。   The main object of the present invention is to provide a negative electrode active material capable of increasing the capacity of a non-aqueous electrolyte secondary battery and improving cycle characteristics, and a non-aqueous electrolyte secondary battery.

本発明の非水電解質二次電池の負極活物質は、黒鉛と、亜鉛合金とを含む。亜鉛合金は、一般式:MZn1−xで表される。一般式において、Mは、Ni,Cu及びFeからなる群から選ばれる少なくとも1種を示す。一般式(1)において、xは、0<x<1の関係を満たす。 The negative electrode active material of the nonaqueous electrolyte secondary battery of the present invention includes graphite and a zinc alloy. The zinc alloy is represented by a general formula: M x Zn 1-x . In the general formula, M represents at least one selected from the group consisting of Ni, Cu and Fe. In the general formula (1), x satisfies the relationship 0 <x <1.

亜鉛合金は、多結晶であることが好ましい。   The zinc alloy is preferably polycrystalline.

一般式において、Mは、Niであることが好ましい。   In the general formula, M is preferably Ni.

一般式において、xは、0<x≦0.01の関係を満たすことが好ましい。   In the general formula, x preferably satisfies the relationship 0 <x ≦ 0.01.

一般式において、xは、0<x≦0.0015の関係を満たすことが好ましい。   In the general formula, x preferably satisfies the relationship 0 <x ≦ 0.0015.

亜鉛合金は、負極活物質中に1質量%〜80質量%の範囲で含まれていることが好ましい。   The zinc alloy is preferably contained in the negative electrode active material in the range of 1% by mass to 80% by mass.

亜鉛合金は、負極活物質中に10質量%〜50質量%の範囲で含まれていることが好ましい。   The zinc alloy is preferably contained in the negative electrode active material in the range of 10% by mass to 50% by mass.

本発明の非水電解質二次電池は、本発明の非水電解質二次電池の負極活物質を含む負極と、正極と、非水電解質とを備えている。   The nonaqueous electrolyte secondary battery of the present invention includes a negative electrode including a negative electrode active material of the nonaqueous electrolyte secondary battery of the present invention, a positive electrode, and a nonaqueous electrolyte.

本発明によれば、非水電解質二次電池を高容量化し、且つサイクル特性を向上することができる負極活物質、及び非水電解質二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the negative electrode active material which can make a nonaqueous electrolyte secondary battery high capacity | capacitance, and can improve cycling characteristics can be provided, and a nonaqueous electrolyte secondary battery.

実施例において作製した試験セルの略図的断面図である。It is a schematic sectional drawing of the test cell produced in the Example.

以下、本発明の好ましい実施形態の一例について説明する。但し、下記の実施形態は、単なる一例である。本発明は、下記の実施形態に何ら限定されない。   Hereinafter, an example of a preferred embodiment of the present invention will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.

[負極活物質]
本実施形態において、非水電解質二次電池の負極活物質は、黒鉛と亜鉛合金とを含む。
[Negative electrode active material]
In the present embodiment, the negative electrode active material of the nonaqueous electrolyte secondary battery includes graphite and a zinc alloy.

黒鉛としては、例えば天然黒鉛、人造黒鉛、メソフェーズカーボン小球体などが挙げられる。   Examples of graphite include natural graphite, artificial graphite, and mesophase carbon microspheres.

黒鉛の形状は、特に限定されないが、粉末状であることが好ましい。   The shape of the graphite is not particularly limited, but is preferably a powder.

黒鉛の平均粒子径は、5μm〜30μm程度であることが好ましく、10μm〜25μm程度であることがより好ましい。なお、本発明において、黒鉛の平均粒子径は、島津製作所社製レーザー回折式粒度分布測定装置(SALAD−2000)を用いて測定した値である。   The average particle diameter of the graphite is preferably about 5 μm to 30 μm, and more preferably about 10 μm to 25 μm. In the present invention, the average particle diameter of graphite is a value measured using a laser diffraction particle size distribution analyzer (SALAD-2000) manufactured by Shimadzu Corporation.

黒鉛は、負極活物質中に20質量%〜99質量%程度の範囲で含まれることが好ましく、50質量%〜90質量%程度の範囲で含まれることがより好ましい。   Graphite is preferably contained in the negative electrode active material in a range of about 20% by mass to 99% by mass, and more preferably in a range of about 50% by mass to 90% by mass.

負極活物質に含まれる黒鉛は、1種類のみであってもよいし、2種類以上であってもよい。   Only one type of graphite may be contained in the negative electrode active material, or two or more types may be used.

亜鉛合金は、下記一般式(1)で表される化合物である。   The zinc alloy is a compound represented by the following general formula (1).

Zn1−x (1) M x Zn 1-x (1)

一般式(1)において、Mは、Ni,Cu及びFeからなる群から選ばれる少なくとも1種である。Mは、Niであることが好ましい。   In the general formula (1), M is at least one selected from the group consisting of Ni, Cu and Fe. M is preferably Ni.

亜鉛合金の形状は、特に限定されないが、粉末状であることが好ましい。   Although the shape of a zinc alloy is not specifically limited, It is preferable that it is a powder form.

亜鉛合金の平均粒子径は、5μm〜25μm程度であることが好ましく、10μm〜20μm程度であることがより好ましい。なお、本発明において、亜鉛合金の平均粒子径は、島津製作所社製レーザー回折式粒度分布測定装置(SALAD−2000)を用いて測定した値である。   The average particle diameter of the zinc alloy is preferably about 5 μm to 25 μm, and more preferably about 10 μm to 20 μm. In addition, in this invention, the average particle diameter of a zinc alloy is the value measured using the Shimadzu Corporation laser diffraction type particle size distribution measuring apparatus (SALAD-2000).

亜鉛合金は、多結晶であることが好ましい。   The zinc alloy is preferably polycrystalline.

また、一般式(1)において、xは、0<x<1の関係を満たす。一般式(1)において、xは、0<x≦0.01の関係を満たすことが好ましく、0<x≦0.0015の関係を満たすことがより好ましく、0<x≦0.0005の関係を満たすことが特に好ましい。xの下限値は、0.00001であることがより好ましい。   In the general formula (1), x satisfies the relationship 0 <x <1. In the general formula (1), x preferably satisfies the relationship 0 <x ≦ 0.01, more preferably satisfies the relationship 0 <x ≦ 0.0015, and the relationship 0 <x ≦ 0.0005. It is particularly preferable to satisfy The lower limit value of x is more preferably 0.00001.

一般式(1)において、xが、x≦0.01の関係を満たすことにより、亜鉛とM(Ni,Cu及びFeからなる群から選ばれる少なくとも1種)とを容易に合金化することができる。   In general formula (1), when x satisfies the relationship x ≦ 0.01, zinc and M (at least one selected from the group consisting of Ni, Cu and Fe) can be easily alloyed. it can.

一般式(1)で表される亜鉛合金は、ガスアトマイズ法、水アトマイズ法などの公知の方法により得ることができる。   The zinc alloy represented by the general formula (1) can be obtained by a known method such as a gas atomizing method or a water atomizing method.

亜鉛合金は、負極活物質中に1質量%〜80質量%程度の範囲で含まれることが好ましく、10質量%〜50質量%程度の範囲で含まれることがより好ましい。   The zinc alloy is preferably included in the negative electrode active material in the range of about 1% by mass to 80% by mass, and more preferably in the range of about 10% by mass to 50% by mass.

負極活物質に含まれる亜鉛合金は、1種類のみであってもよいし、2種類以上であってもよい。   There may be only one type of zinc alloy contained in the negative electrode active material, or two or more types.

負極活物質は、黒鉛と亜鉛合金とを混合することにより得られる。黒鉛と亜鉛合金との混合比(黒鉛:亜鉛合金)は、質量比で99:1〜20:80程度の範囲であることが好ましく、90:10〜50:50程度の範囲であることがより好ましい。   The negative electrode active material can be obtained by mixing graphite and a zinc alloy. The mixing ratio of graphite and zinc alloy (graphite: zinc alloy) is preferably in the range of about 99: 1 to 20:80 by mass ratio, and more preferably in the range of about 90:10 to 50:50. preferable.

黒鉛と亜鉛合金との混合方法は、負極活物質において、黒鉛と亜鉛合金とが均一に分散するように混合できる方法であれば特に限定されない。   The method for mixing graphite and zinc alloy is not particularly limited as long as it can be mixed so that graphite and zinc alloy are uniformly dispersed in the negative electrode active material.

[負極]
負極活物質を、結着剤、溶剤などと混合し、負極集電体と一体化することにより、非水電解質二次電池の負極とすることができる。より具体的には、負極活物質、結着剤及び溶剤を含むスラリーを作製し、これを負極集電体上に塗布した後乾燥し、圧延ローラーを用いて圧延して、非水電解質二次電池の負極とすることができる。
[Negative electrode]
The negative electrode active material is mixed with a binder, a solvent, and the like, and integrated with the negative electrode current collector, whereby the negative electrode of the nonaqueous electrolyte secondary battery can be obtained. More specifically, a slurry containing a negative electrode active material, a binder and a solvent is prepared, applied to the negative electrode current collector, dried, rolled using a rolling roller, and non-aqueous electrolyte secondary It can be a negative electrode of a battery.

[非水電解質二次電池]
非水電解質二次電池は、上述の負極と、正極と、非水電解質とを備える。
[Nonaqueous electrolyte secondary battery]
The nonaqueous electrolyte secondary battery includes the above-described negative electrode, positive electrode, and nonaqueous electrolyte.

正極は、正極活物質を含む。正極活物質を、結着剤、溶剤などと混合し、正極集電体と一体化することにより、非水電解質二次電池の正極とすることができる。   The positive electrode includes a positive electrode active material. The positive electrode active material is mixed with a binder, a solvent, and the like, and integrated with the positive electrode current collector, whereby the positive electrode of the nonaqueous electrolyte secondary battery can be obtained.

正極活物質としては、非水電解質二次電池において一般に使用される公知のものが使用できる。正極活物質としては、例えば、リチウム・コバルト複合酸化物(例えばLiCoO)、リチウム・ニッケル複合酸化物(例えばLiNiO)、リチウム・マンガン複合酸化物(例えばLiMn、LiMnO)、リチウム・ニッケル・コバルト複合酸化物(例えばLiNi1−xCo)、リチウム・マンガン・コバルト複合酸化物(例えばLiMn1−xCo)、リチウム・ニッケル・コバルト・マンガン複合酸化物(例えばLiNiCoMn(x+y+z=1))、リチウム・ニッケル・コバルト・アルミ複合酸化物(例えばLiNiCoAl(x+y+z=1))、Li含有遷移金属酸化物などが挙げられる。正極活物質は、1種類のみからなってもよいし、2種類以上の混合物であってもよい。 As the positive electrode active material, known materials generally used in non-aqueous electrolyte secondary batteries can be used. Examples of the positive electrode active material include lithium-cobalt composite oxide (for example, LiCoO 2 ), lithium-nickel composite oxide (for example, LiNiO 2 ), lithium-manganese composite oxide (for example, LiMn 2 O 4 , LiMnO 2 ), lithium Nickel-cobalt composite oxide (for example, LiNi 1-x Co x O 2 ), lithium-manganese-cobalt composite oxide (for example, LiMn 1-x Co x O 2 ), lithium-nickel-cobalt-manganese composite oxide ( For example, LiNi x Co y Mn z O 2 (x + y + z = 1)), lithium-nickel-cobalt-aluminum composite oxide (for example, LiNi x Co y Al z O 2 (x + y + z = 1)), Li-containing transition metal oxide, etc. Is mentioned. The positive electrode active material may be composed of only one type or a mixture of two or more types.

正極に含まれる結着剤としては、例えば、ポリフッ化ビニリデンが挙げられる。   Examples of the binder contained in the positive electrode include polyvinylidene fluoride.

正極に含まれる溶剤としては、N−メチル−2−ピロリドンなどの非プロトン性溶媒などが挙げられる。   Examples of the solvent contained in the positive electrode include aprotic solvents such as N-methyl-2-pyrrolidone.

非水電解質としては、公知の非水電解質二次電池において一般に使用されているものが使用できる。非水電解質としては、例えば、非水系溶媒に溶質を溶解させた非水電解液などが使用できる。   As the nonaqueous electrolyte, those generally used in known nonaqueous electrolyte secondary batteries can be used. As the non-aqueous electrolyte, for example, a non-aqueous electrolyte solution in which a solute is dissolved in a non-aqueous solvent can be used.

非水系溶媒としては、公知の非水電解質二次電池において一般に使用されている非水電
解質が使用できる。非水系溶媒としては、例えば、環状カーボネート、鎖状カーボネートなどが挙げられる。環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネートなどを用いることができる。また、鎖状カーボネートとしては、例えば、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどが挙げられる。非水系溶媒は、1種類のみからなってもよいし、2種類以上の混合物であってもよい。
As the non-aqueous solvent, a non-aqueous electrolyte generally used in known non-aqueous electrolyte secondary batteries can be used. Examples of non-aqueous solvents include cyclic carbonates and chain carbonates. As the cyclic carbonate, for example, ethylene carbonate, propylene carbonate, vinylene carbonate and the like can be used. Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate. The non-aqueous solvent may consist of only one type or a mixture of two or more types.

溶質としては、公知の非水電解質二次電池において一般に使用されている非水電解質が使用できる。溶質としては、例えば、LiPF,LiBF,LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,LiClO,Li10Cl10,Li12Cl12などが挙げられる。溶質は、1種類のみからなってもよいし、2種類以上の混合物であってもよい。 As the solute, a non-aqueous electrolyte generally used in known non-aqueous electrolyte secondary batteries can be used. Examples of the solute include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 and the like. The solute may consist of only one type or a mixture of two or more types.

また、非水電解質としては、非水電解液をポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に含浸させたゲル状ポリマー電解質などを用いることもできる。   Further, as the non-aqueous electrolyte, a gel polymer electrolyte obtained by impregnating a non-aqueous electrolyte solution with a polymer electrolyte such as polyethylene oxide or polyacrylonitrile can be used.

本実施形態の非水電解質二次電池において、負極活物質に含まれる亜鉛合金が、亜鉛とNi,CuまたはFeとの合金である場合、亜鉛合金が多結晶となりやすい。特に、亜鉛とNiとの合金である場合に、亜鉛合金が多結晶となりやすい。負極活物質に含まれる亜鉛合金が多結晶である場合、電極反応の活性面が増大する。よって、負極活物質に含まれる亜鉛合金が、亜鉛とNi,CuまたはFeとの合金である場合、特に、亜鉛とNiとの合金である場合には、非水電解質二次電池をさらに高容量化、高エネルギー密度化することができる。   In the nonaqueous electrolyte secondary battery of the present embodiment, when the zinc alloy contained in the negative electrode active material is an alloy of zinc and Ni, Cu, or Fe, the zinc alloy tends to be polycrystalline. In particular, in the case of an alloy of zinc and Ni, the zinc alloy tends to be polycrystalline. When the zinc alloy contained in the negative electrode active material is polycrystalline, the active surface of the electrode reaction increases. Therefore, when the zinc alloy contained in the negative electrode active material is an alloy of zinc and Ni, Cu or Fe, particularly when the zinc alloy is an alloy of zinc and Ni, the capacity of the nonaqueous electrolyte secondary battery is further increased. And high energy density.

本実施形態の非水電解質二次電池において、一般式(1):MZn1−xで表される亜鉛合金は、xが0<x≦0.01の関係を満たすことが好ましい。合金化が容易となるためである。また、xが0<x≦0.0015の関係を満たす場合に、非水電解質二次電池をより高容量化、高エネルギー密度化することができ、xが0<x≦0.0005の関係を満たす場合に、非水電解質二次電池を特に高容量化、高エネルギー密度化することができる。 In the nonaqueous electrolyte secondary battery of the present embodiment, the zinc alloy represented by the general formula (1): M x Zn 1-x preferably satisfies the relationship of 0 <x ≦ 0.01. This is because alloying becomes easy. Further, when x satisfies the relationship of 0 <x ≦ 0.0015, the nonaqueous electrolyte secondary battery can have a higher capacity and higher energy density, and the relationship of x is 0 <x ≦ 0.0005. When satisfying the above, it is possible to increase the capacity and the energy density of the nonaqueous electrolyte secondary battery.

さらに、本実施形態の非水電解質二次電池において、負極活物質中に、黒鉛に加えて、亜鉛合金が1質量%〜80質量%の範囲で含まれていることにより、非水電解質二次電池をより高容量化、高エネルギー密度化することができる。特に、亜鉛合金が10質量%〜50質量%の範囲で含まれていることにより、非水電解質二次電池をさらに高容量化、高エネルギー密度化することができる。   Furthermore, in the non-aqueous electrolyte secondary battery of this embodiment, in addition to graphite, zinc alloy is contained in the negative electrode active material in the range of 1% by mass to 80% by mass. The battery can be increased in capacity and energy density. In particular, when the zinc alloy is contained in the range of 10% by mass to 50% by mass, the nonaqueous electrolyte secondary battery can be further increased in capacity and energy density.

以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.

(実施例1)
[亜鉛合金粉末の作製]
亜鉛合金粉末として、水アトマイズ法により、平均粒径が約20μmのニッケル亜鉛合金(Ni0.00050Zn0.99950)粉末を作製した。なお、ニッケル亜鉛合金の平均粒子径は、レーザー回折式粒度分布測定装置として島津製作所社製SALAD−2000を用い、粉末抵抗は粉末抵抗測定システムとして三菱化学株式会社製PD−41を用いて測定した。
Example 1
[Preparation of zinc alloy powder]
As a zinc alloy powder, a nickel zinc alloy (Ni 0.00050 Zn 0.99950 ) powder having an average particle size of about 20 μm was prepared by a water atomization method. The average particle size of the nickel zinc alloy was measured using SALAD-2000 manufactured by Shimadzu Corporation as a laser diffraction particle size distribution measuring device, and the powder resistance was measured using PD-41 manufactured by Mitsubishi Chemical Corporation as a powder resistance measuring system. .

[負極の作製]
負極活物質として、上記のようにして得られたニッケル亜鉛合金と、平均粒子径が約25μmの人造黒鉛を用いた。ニッケル亜鉛合金と人造黒鉛を、質量比(ニッケル亜鉛合金:人造黒鉛)が30:70となるように、乳鉢を用いて混合した。次に、得られた混合物に、結着剤としてポリフッ化ビニリデンを、負極活物質と結着剤の質量比(負極活物質:結着剤)が90:10となるように混合した。さらに、溶剤としてN−メチル−2−ピロリドンを加え、混練して負極合剤スラリーを作製した。
[Production of negative electrode]
As the negative electrode active material, the nickel-zinc alloy obtained as described above and artificial graphite having an average particle diameter of about 25 μm were used. The nickel zinc alloy and the artificial graphite were mixed using a mortar so that the mass ratio (nickel zinc alloy: artificial graphite) was 30:70. Next, polyvinylidene fluoride as a binder was mixed with the obtained mixture so that the mass ratio of the negative electrode active material to the binder (negative electrode active material: binder) was 90:10. Further, N-methyl-2-pyrrolidone was added as a solvent and kneaded to prepare a negative electrode mixture slurry.

得られた負極合剤スラリーを、厚さ10μmの銅箔からなる負極集電体の上に塗布した。これを80℃で乾燥させた後、圧延ローラーを用いて圧延し、集電タブを取り付けて、負極を作製した。   The obtained negative electrode mixture slurry was applied onto a negative electrode current collector made of a copper foil having a thickness of 10 μm. After drying this at 80 degreeC, it rolled using the rolling roller, the current collection tab was attached, and the negative electrode was produced.

[試験セルの作製]
上記の負極を用いて、アルゴン雰囲気下のグローブボックス中において、図1に示すような試験セル1を作製した。上記の負極を作用極2とし、対極3及び参照極4としてそれぞれ金属リチウムを用いた。作用極2、対極3及び参照極4には、それぞれ電極タブ8が取り付けた。作用極2と対極3との間及び作用極2と参照極4との間に、それぞれポリエチレン製のセパレーター5を介在させ、非水電解液6と共にアルミニウムラミネートで構成されたラミネート容器7内に封入して、実施例1の試験セルA1とした。
[Production of test cell]
Using the above negative electrode, a test cell 1 as shown in FIG. 1 was produced in a glove box under an argon atmosphere. The negative electrode was used as the working electrode 2, and metallic lithium was used as the counter electrode 3 and the reference electrode 4. Electrode tabs 8 were attached to the working electrode 2, the counter electrode 3, and the reference electrode 4, respectively. A polyethylene separator 5 is interposed between the working electrode 2 and the counter electrode 3, and between the working electrode 2 and the reference electrode 4, and enclosed in a laminate container 7 made of an aluminum laminate together with a non-aqueous electrolyte 6. Thus, a test cell A1 of Example 1 was obtained.

なお、非水電解液6として、エチレンカーボネートとエチルメチルカーボネートを3:7の体積比で混合させた混合溶媒に、ヘキサフルオロリン酸リチウム(LiPF)を濃度が1モル/リットルとなるように溶解させたものを用いた。 In addition, as a non-aqueous electrolyte solution 6, lithium hexafluorophosphate (LiPF 6 ) is mixed to a mixed solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3: 7 so that the concentration becomes 1 mol / liter. What was dissolved was used.

(実施例2)
亜鉛合金粉末として、Ni0.00050Zn0.99950の代わりにCu0.00050Zn0.99950を用いたこと以外は、実施例1と同様にして試験セルA2を作製した。
(Example 2)
Test cell A2 was produced in the same manner as in Example 1 except that Cu 0.00050 Zn 0.99950 was used instead of Ni 0.00050 Zn 0.99950 as the zinc alloy powder.

(実施例3)
亜鉛合金粉末として、Ni0.00050Zn0.99950の代わりにFe0.00050Zn0.99950を用いたこと以外は、実施例1と同様にして試験セルA3を作製した。
(Example 3)
Test cell A3 was produced in the same manner as in Example 1 except that Fe 0.00050 Zn 0.99950 was used instead of Ni 0.00050 Zn 0.99950 as the zinc alloy powder.

(比較例1)
負極活物質として、人造黒鉛を添加せず、亜鉛合金粉末Ni0.00050Zn0.99950のみを負極活物質として用いたこと以外は、実施例1と同様にして比較例1の試験セルXを作製した。
(Comparative Example 1)
The test cell X of Comparative Example 1 was prepared in the same manner as in Example 1 except that artificial graphite was not added as the negative electrode active material and only zinc alloy powder Ni 0.00050 Zn 0.99950 was used as the negative electrode active material. Produced.

(比較例2)
負極活物質として、人造黒鉛を添加せず、純亜鉛粉末のみを負極活物質として用いたこと以外は、実施例1と同様にして比較例2の試験セルYを作製した。
(Comparative Example 2)
A test cell Y of Comparative Example 2 was produced in the same manner as in Example 1 except that artificial graphite was not added as the negative electrode active material and only pure zinc powder was used as the negative electrode active material.

(比較例3)
負極活物質として、人造黒鉛のみを用いたこと以外は、実施例1と同様にして比較例3の試験セルZを作製した。
(Comparative Example 3)
A test cell Z of Comparative Example 3 was produced in the same manner as in Example 1 except that only artificial graphite was used as the negative electrode active material.

[充放電試験]
上記のように作製した実施例1〜3で作製した試験セルA1〜A3、比較例1〜3で作製した試験セルX〜Zの各試験セルについて、以下の充放電試験を行った。
[Charge / discharge test]
The following charge / discharge tests were performed on the test cells A1 to A3 prepared in Examples 1 to 3 and the test cells X to Z prepared in Comparative Examples 1 to 3 prepared as described above.

各試験セルについて、室温下、0.75mA/cm、0.25mA/cm及び0.1mA/cmの各定電流において、それぞれ0V(vs.Li/Li)に達するまで充電した後、0.25mA/cmの定電流で電位が1.0V(vs.Li/Li)に達するまで放電し、それぞれ1サイクル目と6サイクル目における初期放電容量を求めた。結果を表1に示す。 For each test cell, at room temperature, 0.75 mA / cm 2, at the constant current of 0.25 mA / cm 2 and 0.1 mA / cm 2, were charged to the respective reaches 0V (vs.Li/Li +) The battery was discharged at a constant current of 0.25 mA / cm 2 until the potential reached 1.0 V (vs. Li / Li + ), and the initial discharge capacities at the first and sixth cycles were obtained. The results are shown in Table 1.

Figure 0005779452
Figure 0005779452

表1に示す結果から、人造黒鉛と亜鉛合金(ニッケル亜鉛合金、銅亜鉛合金または鉄亜鉛合金)を負極活物質とした試験セルA1〜A3においては、純亜鉛または人造黒鉛を負極活物質として単独で用いた試験セルY,Zに比べて、初期放電容量及び6サイクル目放電容量が大きいことが分かる。また、試験セルA1〜A3は、負極活物質としてニッケル亜鉛合金のみを用いた試験セルXと比べても、初期放電容量及び6サイクル目放電容量が大きいことが分かる。特に、6サイクル目放電容量については、試験セルA1〜A3は、試験セルX〜Zに比して、顕著に大きい。   From the results shown in Table 1, in test cells A1 to A3 in which artificial graphite and zinc alloy (nickel zinc alloy, copper zinc alloy or iron zinc alloy) are used as the negative electrode active material, pure zinc or artificial graphite is used alone as the negative electrode active material. It can be seen that the initial discharge capacity and the sixth cycle discharge capacity are larger than those of the test cells Y and Z used in FIG. Moreover, test cell A1-A3 shows that an initial stage discharge capacity and a 6th cycle discharge capacity are large compared with the test cell X which uses only a nickel zinc alloy as a negative electrode active material. In particular, for the sixth cycle discharge capacity, the test cells A1 to A3 are significantly larger than the test cells X to Z.

なお、負極活物質の粉末抵抗の値から、試験セルA1〜A3及びXで用いた亜鉛合金は、多結晶化していることが分かる。試験セルA1及びXのニッケル亜鉛合金において、特に多結晶化が進んでいることが分かる。   In addition, it turns out that the zinc alloy used by test cell A1-A3 and X is polycrystallized from the value of the powder resistance of a negative electrode active material. It can be seen that in the nickel-zinc alloys of test cells A1 and X, polycrystallization is particularly advanced.

(実施例4)
亜鉛合金として、Ni0.00050Zn0.99950の代わりにNi0.00010Zn0.99990を用いたこと以外は、実施例1と同様にして試験セルA4を作製した。亜鉛合金の粉末抵抗は、1.20Ω/cmであった。
Example 4
As zinc alloy, Ni except for using Ni 0.00010 Zn .99990 instead of 0.00050 Zn .99950, to prepare a test cell A4 in the same manner as in Example 1. The powder resistance of the zinc alloy was 1.20 Ω / cm 3 .

(実施例5)
亜鉛合金として、Ni0.00050Zn0.99950の代わりにNi0.00025Zn0.99975を用いたこと以外は、実施例1と同様にして試験セルA5を作製した。亜鉛合金の粉末抵抗は、1.30Ω/cmであった。
(Example 5)
As zinc alloy, Ni except for using Ni 0.00025 Zn 0.99975 instead of 0.00050 Zn .99950, to prepare a test cell A5 in the same manner as in Example 1. The powder resistance of the zinc alloy was 1.30 Ω / cm 3 .

(実施例6)
亜鉛合金として、Ni0.00050Zn0.99950の代わりにNi0.00075Zn0.99925を用いたこと以外は、実施例1と同様にして試験セルA6を作製した。亜鉛合金の粉末抵抗は、1.45Ω/cmであった。
(Example 6)
As zinc alloy, Ni except for using Ni 0.00075 Zn .99925 instead of 0.00050 Zn .99950, to prepare a test cell A6 in the same manner as in Example 1. The powder resistance of the zinc alloy was 1.45 Ω / cm 3 .

(実施例7)
亜鉛合金粉末として、Ni0.00050Zn0.99950の代わりにNi0.00100Zn0.99900を用いたこと以外は、実施例1と同様にして試験セルA7を作製した。亜鉛合金の粉末抵抗は、1.30Ω/cmであった。
(Example 7)
As the zinc alloy powder, Ni except for using Ni 0.00100 Zn 0.99900 instead of 0.00050 Zn 0.99950, to prepare a test cell A7 in the same manner as in Example 1. The powder resistance of the zinc alloy was 1.30 Ω / cm 3 .

(実施例8)
亜鉛合金として、Ni0.00050Zn0.99950の代わりにNi0.00150Zn0.99850を用いたこと以外は、実施例1と同様にして試験セルA8を作製した。亜鉛合金の粉末抵抗は、1.10Ω/cmであった。
(Example 8)
As zinc alloy, Ni except for using Ni 0.00150 Zn 0.99850 instead of 0.00050 Zn .99950, to prepare a test cell A8 in the same manner as in Example 1. The powder resistance of the zinc alloy was 1.10 Ω / cm 3 .

[充放電試験]
実施例4〜8で作製した各試験セルA4〜A8について、実施例1〜3及び比較例1〜3と同様にして、充放電試験を行い、初期放電容量を測定した。結果を実施例1の試験セルA1の結果と共に表2に示す。
[Charge / discharge test]
About each test cell A4-A8 produced in Examples 4-8, it carried out similarly to Examples 1-3 and Comparative Examples 1-3, the charge / discharge test was done, and the initial stage discharge capacity was measured. The results are shown in Table 2 together with the results of the test cell A1 of Example 1.

Figure 0005779452
Figure 0005779452

表2に示す結果より、NiZn1−xのxが、0<x≦0.0015の関係を満たす亜鉛合金を用いた場合、高い初期放電容量を示すことが分かる。NiZn1−xのxが、0<x≦0.001の関係を満たす亜鉛合金を用いた場合、さらに高い初期放電容量を示し、xが、0<x≦0.0005の関係を満たす亜鉛合金を用いた場合、特に高い初期放電容量を示すことが分かる。 From the results shown in Table 2, it can be seen that when a zinc alloy satisfying the relationship of 0 <x ≦ 0.0015 is used, x of Ni x Zn 1-x exhibits a high initial discharge capacity. When a zinc alloy satisfying a relationship of 0 <x ≦ 0.001 is used for x of Ni x Zn 1-x, a higher initial discharge capacity is exhibited, and x satisfies a relationship of 0 <x ≦ 0.0005. It can be seen that when a zinc alloy is used, a particularly high initial discharge capacity is exhibited.

(実施例9)
負極活物質において、ニッケル亜鉛合金と人造黒鉛との混合比を、質量比で30:70(ニッケル亜鉛合金:人造黒鉛)とする代わりに、5:95としたこと以外は、実施例1と同様にして、セルA9を作製した。
Example 9
The negative electrode active material was the same as in Example 1 except that the mixing ratio of the nickel zinc alloy and the artificial graphite was 5:95 instead of 30:70 (nickel zinc alloy: artificial graphite) in mass ratio. Thus, a cell A9 was produced.

(実施例10)
負極活物質において、ニッケル亜鉛合金と人造黒鉛との混合比を、質量比で30:70(ニッケル亜鉛合金:人造黒鉛)とする代わりに、10:90としたこと以外は、実施例1と同様にして、セルA10を作製した。
(Example 10)
The negative electrode active material was the same as in Example 1 except that the mixing ratio of the nickel zinc alloy and the artificial graphite was 10:90 instead of 30:70 (nickel zinc alloy: artificial graphite) in mass ratio. Thus, a cell A10 was produced.

(実施例11)
負極活物質において、ニッケル亜鉛合金と人造黒鉛との混合比を、質量比で30:70(ニッケル亜鉛合金:人造黒鉛)とする代わりに、50:50としたこと以外は、実施例1と同様にして、セルA11を作製した。
(Example 11)
The negative electrode active material was the same as Example 1 except that the mixing ratio of the nickel zinc alloy and artificial graphite was 50:50 instead of 30:70 (nickel zinc alloy: artificial graphite) in mass ratio. Thus, a cell A11 was produced.

(実施例12)
負極活物質において、ニッケル亜鉛合金と人造黒鉛との混合比を、質量比で30:70(ニッケル亜鉛合金:人造黒鉛)とする代わりに、65:35としたこと以外は、実施例1と同様にして、セルA12を作製した。
(Example 12)
The negative electrode active material was the same as in Example 1 except that the mixing ratio of the nickel zinc alloy and artificial graphite was 65:35 instead of 30:70 (nickel zinc alloy: artificial graphite) in mass ratio. Thus, a cell A12 was produced.

(実施例13)
負極活物質において、ニッケル亜鉛合金と人造黒鉛との混合比を、質量比で30:70(ニッケル亜鉛合金:人造黒鉛)とする代わりに、80:20としたこと以外は、実施例1と同様にして、セルA13を作製した。
(Example 13)
In the negative electrode active material, the mixing ratio of the nickel zinc alloy and the artificial graphite was the same as that of Example 1 except that the mixing ratio was 80:20 instead of 30:70 (nickel zinc alloy: artificial graphite). Thus, a cell A13 was produced.

[充放電試験]
実施例9〜14で作製した各試験セルA9〜A13について、実施例1〜3及び比較例1〜3と同様にして、充放電試験を行い、初期放電容量を測定した。結果を実施例1の試験セルA1の結果と共に表3に示す。
[Charge / discharge test]
About each test cell A9-A13 produced in Examples 9-14, it carried out similarly to Examples 1-3 and Comparative Examples 1-3, the charge / discharge test was done, and the initial stage discharge capacity was measured. The results are shown in Table 3 together with the results of the test cell A1 of Example 1.

Figure 0005779452
Figure 0005779452

表3に示す結果より、負極活物質中に亜鉛合金粉末が5〜80質量%の範囲で含まれていることにより、高い初期放電容量が得られることが分かる。負極活物質中に亜鉛合金粉末が10〜50質量%の範囲で含まれていることにより、特に高い初期放電容量が得られることが分かる。   From the results shown in Table 3, it can be seen that high initial discharge capacity can be obtained when the zinc alloy powder is contained in the negative electrode active material in the range of 5 to 80% by mass. It can be seen that a particularly high initial discharge capacity can be obtained when the negative electrode active material contains zinc alloy powder in the range of 10 to 50 mass%.

1…試験セル
2…作用極
3…対極
4…参照極
5…セパレーター
6…非水電解液
7…ラミネート容器
8…電極タブ
DESCRIPTION OF SYMBOLS 1 ... Test cell 2 ... Working electrode 3 ... Counter electrode 4 ... Reference electrode 5 ... Separator 6 ... Non-aqueous electrolyte 7 ... Laminate container 8 ... Electrode tab

Claims (7)

黒鉛と、
一般式:MZn1−x(式中、Mは、Ni,Cu及びFeからなる群から選ばれる少なくとも1種を示す。xは、0<x<0.01の関係を満たす。)で表される亜鉛合金と、
を含む、非水電解質二次電池の負極活物質。
Graphite,
General formula: M x Zn 1-x (wherein M represents at least one selected from the group consisting of Ni, Cu and Fe. X satisfies the relationship 0 <x < 0.01 ). A zinc alloy represented,
A negative electrode active material for a non-aqueous electrolyte secondary battery.
前記亜鉛合金は、多結晶である、請求項1に記載の非水電解質二次電池の負極活物質。   The negative electrode active material of the nonaqueous electrolyte secondary battery according to claim 1, wherein the zinc alloy is polycrystalline. 前記一般式において、Mは、Niである、請求項1または2に記載の非水電解質二次電池の負極活物質。   The negative electrode active material of the nonaqueous electrolyte secondary battery according to claim 1, wherein M is Ni in the general formula. 前記一般式において、xは、0<x≦0.0015の関係を満たす、請求項1〜3のいずれか一項に記載の非水電解質二次電池の負極活物質。 4. The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 , wherein x in the general formula satisfies a relationship of 0 <x ≦ 0.0015. 5. 前記亜鉛合金は、前記負極活物質中に1質量%〜80質量%の範囲で含まれている、請求項1〜のいずれか一項に記載の非水電解質二次電池の負極活物質。 The said zinc alloy is a negative electrode active material of the nonaqueous electrolyte secondary battery as described in any one of Claims 1-4 contained in the range of 1 mass%-80 mass% in the said negative electrode active material. 前記亜鉛合金は、前記負極活物質中に10質量%〜50質量%の範囲で含まれている、請求項に記載の非水電解質二次電池の負極活物質。 The said zinc alloy is a negative electrode active material of the nonaqueous electrolyte secondary battery of Claim 5 contained in the range of 10 mass%-50 mass% in the said negative electrode active material. 前記請求項1〜のいずれか一項に記載の負極活物質を含む負極と、
正極と、
非水電解質と、
を備える、非水電解質二次電池。
A negative electrode comprising the negative electrode active material according to any one of claims 1 to 6 ,
A positive electrode;
A non-aqueous electrolyte,
A non-aqueous electrolyte secondary battery.
JP2011189402A 2011-08-31 2011-08-31 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Active JP5779452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011189402A JP5779452B2 (en) 2011-08-31 2011-08-31 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011189402A JP5779452B2 (en) 2011-08-31 2011-08-31 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013051170A JP2013051170A (en) 2013-03-14
JP5779452B2 true JP5779452B2 (en) 2015-09-16

Family

ID=48013042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011189402A Active JP5779452B2 (en) 2011-08-31 2011-08-31 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5779452B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328241B (en) * 2016-08-20 2018-09-18 广州倬粤动力新能源有限公司 A kind of silver-tin alloy composite graphite alkene electrode material and preparation method thereof
WO2021065862A1 (en) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2021065861A1 (en) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2021241001A1 (en) * 2020-05-28 2021-12-02

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4399879B2 (en) * 1998-12-02 2010-01-20 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2003151543A (en) * 2001-11-14 2003-05-23 Sony Corp Negative electrode active substance and nonaqueous electrolyte secondary battery
KR101386163B1 (en) * 2007-07-19 2014-04-17 삼성에스디아이 주식회사 Composite anode material, and anode and lithium battery using the same
JP2012079470A (en) * 2010-09-30 2012-04-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2013051170A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
US9203111B2 (en) Secondary battery
US9368786B2 (en) Positive active material and lithium battery including the same
JP5259268B2 (en) Nonaqueous electrolyte secondary battery
JP6137088B2 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
JP5477472B2 (en) Electrode active material and non-aqueous electrolyte secondary battery equipped with the same
JP6595176B2 (en) Lithium ion secondary battery
US9337479B2 (en) Nonaqueous electrolyte secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
CN102361095A (en) Lithium ion battery with high specific power and preparation method for same
JP2024522673A (en) Electrochemical and Electronic Devices
JP2024525681A (en) Lithium-ion batteries, battery units, battery packs and electrical devices
JP5322259B2 (en) Positive electrode for secondary battery and lithium secondary battery using the same
JP2004185931A (en) Nonaqueous electrolyte secondary battery
JP5779452B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2014011023A (en) Nonaqueous electrolyte secondary battery
WO2024082287A1 (en) Lithium ion battery having improved electrolyte viscosity and cb value and electric device
JP5006599B2 (en) Lithium ion secondary battery
JP5279362B2 (en) Nonaqueous electrolyte secondary battery
JP7122653B2 (en) Non-aqueous electrolyte secondary battery
JP2008084766A (en) Non-aqueous electrolyte secondary battery
JP2007227239A (en) Anode for a lithium secondary battery and lithium secondary cell
WO2023137701A1 (en) Electrochemical device, and electronic device comprising same
JP2010218855A (en) Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2008171661A (en) Lithium-ion secondary battery
JP5605867B2 (en) Positive electrode for secondary battery and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5779452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250