[go: up one dir, main page]

JP5777303B2 - Battery deterioration detection device, battery deterioration detection method and program thereof - Google Patents

Battery deterioration detection device, battery deterioration detection method and program thereof Download PDF

Info

Publication number
JP5777303B2
JP5777303B2 JP2010176565A JP2010176565A JP5777303B2 JP 5777303 B2 JP5777303 B2 JP 5777303B2 JP 2010176565 A JP2010176565 A JP 2010176565A JP 2010176565 A JP2010176565 A JP 2010176565A JP 5777303 B2 JP5777303 B2 JP 5777303B2
Authority
JP
Japan
Prior art keywords
value
storage battery
battery
current
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010176565A
Other languages
Japanese (ja)
Other versions
JP2012037337A (en
Inventor
克明 森田
克明 森田
伸郎 吉岡
伸郎 吉岡
豊原 尚
尚 豊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Heavy Industries Machinery Technology Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Heavy Industries Machinery Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Heavy Industries Machinery Technology Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010176565A priority Critical patent/JP5777303B2/en
Priority to PCT/JP2011/067709 priority patent/WO2012018028A1/en
Priority to CN201180034365.0A priority patent/CN103080762B/en
Publication of JP2012037337A publication Critical patent/JP2012037337A/en
Application granted granted Critical
Publication of JP5777303B2 publication Critical patent/JP5777303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、蓄電池の劣化を検知する電池劣化検知装置および電池劣化検知方法ならびにそのプログラムに関する。   The present invention relates to a battery deterioration detection device, a battery deterioration detection method, and a program for detecting deterioration of a storage battery.

蓄電池に蓄えられた電力を用いて電気制御を行う電気システムにおいては、電池の劣化状態を早期に検知しユーザに通知する仕組みを有することが望ましい。これにより、蓄電池の早期交換による過剰コストの発生や、蓄電池の交換遅延による電気システムの障害発生を未然に防止することが可能となる。なお、電池の劣化を検知する技術として、特許文献1が開示されている。   In an electric system that performs electric control using electric power stored in a storage battery, it is desirable to have a mechanism for detecting a battery deterioration state early and notifying a user. Thereby, it becomes possible to prevent the occurrence of excessive costs due to the early replacement of the storage battery and the failure of the electric system due to the replacement delay of the storage battery. Patent Document 1 is disclosed as a technique for detecting battery deterioration.

特開2003−153454号公報JP 2003-153454 A

ところで、上述の特許文献1の技術は、リチウムイオン二次電池を定電流充電し、電圧が規定電圧値に到達した後、連続して電圧を維持する定電圧充電に移行する。そして、充電方法が定電圧充電に切り替わった時点で電池に流れる電流と、所定時間経過後に電池に流れる電流とから電流挙動を測定し、電池の劣化度合いを推定するものである。   By the way, the technique of the above-mentioned patent document 1 shifts to the constant voltage charge which maintains a voltage continuously, after carrying out constant current charge of the lithium ion secondary battery and a voltage reaches | attains a regulation voltage value. Then, the current behavior is measured from the current flowing through the battery when the charging method is switched to constant voltage charging and the current flowing through the battery after a predetermined time has elapsed, and the degree of deterioration of the battery is estimated.

しかしながら、特許文献1の技術では、蓄電池の負荷パターンが想定できない場合には、定電流充電を行い電圧が規定電圧値に到達した後に定電圧充電に切り替えができるような状況がいつ発生するか分からないため、所望の時間に蓄電池の劣化を検知できないという問題点がある。
また、蓄電池の温度が変化する環境で電流や電圧から劣化度合いを推定する場合、温度が電池特性に与える影響を排除する必要がある。
However, in the technique of Patent Document 1, when the load pattern of the storage battery cannot be assumed, it is understood when a situation occurs in which constant current charging is performed and switching to constant voltage charging can be performed after the voltage reaches a specified voltage value. Therefore, there is a problem that deterioration of the storage battery cannot be detected at a desired time.
Moreover, when estimating a deterioration degree from an electric current or a voltage in the environment where the temperature of a storage battery changes, it is necessary to exclude the influence which temperature has on a battery characteristic.

そこでこの発明は、上述の課題を解決することのできる電池劣化検知装置および電池劣化検知方法ならびにそのプログラムを提供することを目的としている。   Accordingly, an object of the present invention is to provide a battery deterioration detection device, a battery deterioration detection method, and a program thereof that can solve the above-described problems.

上記目的を達成するために、本発明は、蓄電池に入出力する電流値と、前記蓄電池にかかる電圧値とを取得し、前記電流値が一定値以上変動した場合の当該電流値の変動動幅と、そのときの前記電圧値の変動幅とを用いて前記蓄電池の現在の内部抵抗値を算出する内部抵抗値算出部と、前記現在の内部抵抗値を、前記蓄電池の現在の温度に対応する内部抵抗初期値により除して、前記蓄電池の現在の温度における当該蓄電池の劣化率を算出し、前記蓄電池が寿命であると判定されるべき状態である時の内部抵抗値Rlimitであって運用時に想定される蓄電池の最大充電率であるときの開回路電圧値をV_VOCmaxとし当該開回路電圧値V_VOCmaxであるときに前記蓄電池に対する充電の電流値が前記蓄電池における最大電流設計値Icmaxである場合における前記蓄電池にかかる電圧値(V_VOCmax+(Icmax×Rlimit))と、運用時に想定される蓄電池の最小充電率であるときの開回路電圧値をV_VOCminとし当該開回路電圧V_VOCminであるときに前記蓄電池に対する放電の電流値が前記蓄電池における最大電流設計値Idmaxである場合における前記蓄電池にかかる電圧値(V_VOCmin−(Idmax×Rlimit))と、の何れかが前記蓄電池の許容電圧値を外れる時の前記内部抵抗値Rlimitの、前記蓄電池の内部抵抗初期値に対する割合を示す限界劣化率と、前記現在の温度における前記蓄電池の劣化率とを比較して当該劣化率が前記限界劣化率以上である場合に警告情報をモニタ装置へ出力する電池劣化情報処理部と、を備えることを特徴とする電池劣化検知装置である。 In order to achieve the above object, the present invention obtains a current value to be input to and output from a storage battery and a voltage value applied to the storage battery, and the fluctuation range of the current value when the current value fluctuates more than a certain value. And an internal resistance value calculation unit that calculates the current internal resistance value of the storage battery using the fluctuation range of the voltage value at that time, and the current internal resistance value corresponds to the current temperature of the storage battery by dividing by the internal resistance initial value, calculates the deterioration rate of the battery at the current temperature of the storage battery, the storage battery or an internal resistance Rlimit when a condition should be determined to be a life, operational When the open circuit voltage value when the maximum charging rate of the storage battery is sometimes assumed is V_VOCmax, and when the open circuit voltage value is V_VOCmax, the charging current value for the storage battery is the maximum current design value Icmax in the storage battery Previous The value of the voltage applied to the storage battery (V_VOCmax + (Icmax × Rlimit) ), the open circuit voltage value when the minimum charging rate of the storage battery that is assumed during operation and V_VOCmin of discharging of the storage battery when it is in the open circuit voltage V_VOCmin the value of the voltage applied to the storage battery when a maximum design current Idmax current value in said storage battery (V_VOCmin- (Idmax × Rlimit)) , one of said internal resistance when outside the allowable voltage value of said battery Warning information when the degradation rate is equal to or greater than the critical degradation rate by comparing the critical degradation rate indicating the ratio of the value Rlimit to the initial internal resistance value of the storage battery and the degradation rate of the storage battery at the current temperature. A battery deterioration information processing unit for outputting the battery deterioration information to a monitor device.

また本発明は、上述の電池劣化検知装置において、前記内部抵抗値算出部は、前記電流値が一定値以上変動する前の所定の期間、前記蓄電池に入出流する電流の変動が規定値以下となる状態が続いた場合に、前記現在の内部抵抗値を算出することを特徴とする。   In the battery deterioration detection device according to the present invention, the internal resistance value calculation unit may determine that the fluctuation of the current flowing into and out of the storage battery is not more than a specified value for a predetermined period before the current value fluctuates more than a certain value. When the state continues, the current internal resistance value is calculated.

また本発明は、上述の電池劣化検知装置が、前記蓄電池の異なる温度それぞれにおける内部抵抗初期値を記憶する内部抵抗初期値記憶部と、を備え、前記内部抵抗値算出部は、前記取得した前記蓄電池の温度に対応する内部抵抗初期値を、前記内部抵抗初期値記憶部に記録されている異なる温度それぞれにおける内部抵抗初期値に基づいて算出することを特徴とする。   The battery deterioration detection device according to the present invention further includes an internal resistance initial value storage unit that stores an internal resistance initial value at each of different temperatures of the storage battery, and the internal resistance value calculation unit acquires the acquired The internal resistance initial value corresponding to the temperature of the storage battery is calculated based on the internal resistance initial value at each of different temperatures recorded in the internal resistance initial value storage unit.

また本発明は、上述の電池劣化検知装置において、前記電池劣化情報処理部は、算出した複数の劣化率の平均を算出して、当該劣化率の平均値を前記モニタ装置へ出力することを特徴とする。   According to the present invention, in the battery deterioration detection device described above, the battery deterioration information processing unit calculates an average of a plurality of calculated deterioration rates, and outputs the average value of the deterioration rates to the monitor device. And

また本発明は、上述の電池劣化検知装置が、前記蓄電池の運用日数と劣化率との関係を示す平方根則と、前記蓄電池が寿命と判定されるべき状態での当該蓄電池の内部抵抗値における前記劣化率とを用いて、前記蓄電池が寿命と判断される寿命判定日数を算出し、当該寿命判定日数から現在の運用日数を減じて、前記蓄電池の残寿命日数を算出する残寿命日数算出部と、を備えることを特徴とする。   Further, according to the present invention, the above-described battery deterioration detection device has the square root rule indicating the relationship between the operation days of the storage battery and the deterioration rate, and the internal resistance value of the storage battery in a state where the storage battery should be determined to have a life. Using the deterioration rate, calculating the life determination days that the storage battery is determined to have a life, subtracting the current operation days from the life determination days, and calculating the remaining life days calculation unit for calculating the remaining life days of the storage battery; It is characterized by providing.

また本発明は、電池劣化検知装置の電池劣化検知方法であって、蓄電池に入出力する電流値と、前記蓄電池にかかる電圧値とを取得し、前記電流値が一定値以上変動した場合の当該電流値の変動動幅と、そのときの前記電圧値の変動幅とを用いて前記蓄電池の現在の内部抵抗値を算出し、前記現在の内部抵抗値を、前記蓄電池の現在の温度に対応する内部抵抗初期値により除して、前記蓄電池の現在の温度における当該蓄電池の劣化率を算出し、前記蓄電池が寿命であると判定されるべき状態である時の内部抵抗値Rlimitであって運用時に想定される蓄電池の最大充電率であるときの開回路電圧値をV_VOCmaxとし当該開回路電圧値V_VOCmaxであるときに前記蓄電池に対する充電の電流値が前記蓄電池における最大電流設計値Icmaxである場合における前記蓄電池にかかる電圧値(V_VOCmax+(Icmax×Rlimit))と、運用時に想定される蓄電池の最小充電率であるときの開回路電圧値をV_VOCminとし当該開回路電圧V_VOCminであるときに前記蓄電池に対する放電の電流値が前記蓄電池における最大電流設計値Idmaxである場合における前記蓄電池にかかる電圧値(V_VOCmin−(Idmax×Rlimit))と、の何れかが前記蓄電池の許容電圧値を外れる時の前記内部抵抗値Rlimitの、前記蓄電池の内部抵抗初期値に対する割合を示す限界劣化率と、前記現在の温度における前記蓄電池の劣化率とを比較して当該劣化率が前記限界劣化率以上である場合に警告情報をモニタ装置へ出力することを特徴とする。 Further, the present invention provides a battery deterioration detection method for a battery deterioration detection device, wherein a current value input / output to / from a storage battery and a voltage value applied to the storage battery are acquired, and the current value when the current value fluctuates by a certain value or more. The current internal resistance value of the storage battery is calculated using the fluctuation range of the current value and the fluctuation range of the voltage value at that time, and the current internal resistance value corresponds to the current temperature of the storage battery. by dividing by the internal resistance initial value, calculates the deterioration rate of the battery at the current temperature of the storage battery, the storage battery or an internal resistance Rlimit when a condition should be determined to be a life, operational when the current value of charging of the battery when it is in the open-circuit voltage value V_VOCmax and V_VOCmax the open circuit voltage value when the maximum charging rate of the battery is the maximum design current Icmax in the storage battery during envisioned The value of the voltage applied to the serial storage battery (V_VOCmax + (Icmax × Rlimit) ), and discharging of the battery when it is in the open circuit voltage V_VOCmin open circuit voltage value as V_VOCmin when the minimum charging rate of the storage battery that is assumed during operation the internal when the voltage value the current value according to the battery when the maximum design current Idmax in the storage battery with the (V_VOCmin- (Idmax × Rlimit)) , one of, departing from the allowable voltage value of said battery A warning is given when the deterioration rate is equal to or greater than the limit deterioration rate by comparing the limit deterioration rate indicating the ratio of the resistance value Rlimit to the initial internal resistance value of the storage battery and the deterioration rate of the storage battery at the current temperature. The information is output to a monitor device.

また本発明は、電池劣化検知装置のコンピュータを、蓄電池に入出力する電流値と、前記蓄電池にかかる電圧値とを取得し、前記電流値が一定値以上変動した場合の当該電流値の変動動幅と、そのときの前記電圧値の変動幅とを用いて前記蓄電池の現在の内部抵抗値を算出する内部抵抗値算出処理、前記現在の内部抵抗値を、前記蓄電池の現在の温度に対応する内部抵抗初期値により除して、前記蓄電池の現在の温度における当該蓄電池の劣化率を算出し、前記蓄電池が寿命であると判定されるべき状態である時の内部抵抗値Rlimitであって運用時に想定される蓄電池の最大充電率であるときの開回路電圧値をV_VOCmaxとし当該開回路電圧値V_VOCmaxであるときに前記蓄電池に対する充電の電流値が前記蓄電池における最大電流設計値Icmaxである場合における前記蓄電池にかかる電圧値(V_VOCmax+(Icmax×Rlimit))と、運用時に想定される蓄電池の最小充電率であるときの開回路電圧値をV_VOCminとし当該開回路電圧V_VOCminであるときに前記蓄電池に対する放電の電流値が前記蓄電池における最大電流設計値Idmaxである場合における前記蓄電池にかかる電圧値(V_VOCmin−(Idmax×Rlimit))と、の何れかが前記蓄電池の許容電圧値を外れる時の前記内部抵抗値Rlimitの、前記蓄電池の内部抵抗初期値に対する割合を示す限界劣化率と、前記現在の温度における前記蓄電池の劣化率とを比較して当該劣化率が前記限界劣化率以上である場合に警告情報をモニタ装置へ出力する電池劣化情報処理、として機能させることを特徴とするプログラムである。
The present invention also provides a computer of a battery deterioration detection device for acquiring a current value input to and output from a storage battery and a voltage value applied to the storage battery, and changing the current value when the current value fluctuates more than a certain value. The internal resistance value calculation process for calculating the current internal resistance value of the storage battery using the width and the fluctuation range of the voltage value at that time, the current internal resistance value corresponds to the current temperature of the storage battery by dividing by the internal resistance initial value, calculates the deterioration rate of the battery at the current temperature of the storage battery, the storage battery or an internal resistance Rlimit when a condition should be determined to be a life, operational If the current value of charging of the battery when it is in the open-circuit voltage value V_VOCmax and V_VOCmax the open circuit voltage value when the maximum charging rate of the battery is the maximum design current Icmax in the storage battery during envisioned A voltage value applied to the battery in (V_VOCmax + (Icmax × Rlimit) ), to said battery when it is in the open circuit voltage V_VOCmin open circuit voltage value as V_VOCmin when the minimum charging rate of the storage battery that is assumed during operation the value of the voltage applied to the battery when the current value of the discharge is the maximum design current Idmax in the storage battery (V_VOCmin- (Idmax × Rlimit)) , one of said when outside the allowable voltage value of said battery When the limit deterioration rate indicating the ratio of the internal resistance value Rlimit to the initial internal resistance value of the storage battery is compared with the deterioration rate of the storage battery at the current temperature, the deterioration rate is equal to or greater than the limit deterioration rate. It is a program characterized by functioning as battery deterioration information processing for outputting warning information to a monitor device.

本発明によれば、蓄電池の電流パラメータ値、電圧パラメータ値、温度パラメータ値を断続的に取得し、それのパラメータ値を用いて、そのときの内部抵抗値を算出し、蓄電池の劣化率を算出するとともに、当該精度のよい劣化率を用いて限界劣化率以上となったかを判定している。従って、蓄電池の負荷パターンに関係なく、電池の劣化状態を検知することができる。   According to the present invention, the current parameter value, voltage parameter value, and temperature parameter value of the storage battery are intermittently obtained, and the internal resistance value at that time is calculated using the parameter values, and the deterioration rate of the storage battery is calculated. At the same time, it is determined whether the deterioration rate is equal to or higher than the limit deterioration rate using the accurate deterioration rate. Therefore, the deterioration state of the battery can be detected regardless of the load pattern of the storage battery.

電池劣化検知装置の構成を示すブロック図である。It is a block diagram which shows the structure of a battery deterioration detection apparatus. BMSと蓄電池の概略構成図である。It is a schematic block diagram of BMS and a storage battery. コントローラの機能ブロック図である。It is a functional block diagram of a controller. 蓄電池の内部抵抗値と温度との関係を示す図である。It is a figure which shows the relationship between the internal resistance value of a storage battery, and temperature. 二次電池の等価回路を示す図である。It is a figure which shows the equivalent circuit of a secondary battery. 蓄電池の運用日数と劣化率の関係を示すグラフである。It is a graph which shows the relationship between the operation days of a storage battery, and a deterioration rate.

以下、本発明の一実施形態による電池劣化検知装置について図面を参照して説明する。
図1は、同実施形態による電池劣化検知装置の構成を示すブロック図である。
本実施形態において電池劣化検知装置1は、例えば蓄電池に蓄積された電力に基づいて動作するRTG(Rubber Tierd Gantry crane)や、APM(Automated People Mover)、LRT(Light Rail Transit)などの新交通システムの車両等に備えられている。
そして、当該電池劣化検知装置1は、蓄電池10、BMS(Battery Management System)20、コントローラ(Programmable Logic Controller)30、表示装置40、電力負荷50を備えている。
Hereinafter, a battery deterioration detection apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the battery deterioration detection device according to the embodiment.
In the present embodiment, the battery deterioration detection device 1 is a new transportation system such as RTG (Rubber Tiered Gantry crane), APM (Automated People Mover), or LRT (Light Rail Transit) that operates based on electric power stored in a storage battery. The vehicle is equipped.
The battery deterioration detection device 1 includes a storage battery 10, a BMS (Battery Management System) 20, a controller (Programmable Logic Controller) 30, a display device 40, and a power load 50.

ここで、本発明の電池劣化検知装置1は、RTGやAPM、LRT以外にも、例えば、電気自動車、フォークリフトなどの産業車両や電車、電力負荷50である電気モータにプロペラまたはスクリューを接続した飛行機または船などの移動体に備えられたものであってもよい。さらに、電池劣化検知装置1は、例えば家庭用の電力貯蔵システムや、風車や太陽光のような自然エネルギー発電と組み合わせた系統連系円滑化蓄電システムなどの定置用のシステム内に備えられたものであってもよい。   Here, the battery deterioration detection apparatus 1 of the present invention is an airplane in which a propeller or a screw is connected to an electric motor that is an electric vehicle or an industrial vehicle such as an electric vehicle or a forklift, or an electric vehicle, in addition to RTG, APM, and LRT. Alternatively, it may be provided in a moving body such as a ship. Furthermore, the battery deterioration detection device 1 is provided in a stationary system such as a household power storage system or a grid-connected smoothing power storage system combined with a natural energy power generation such as a windmill or sunlight. It may be.

蓄電池10は、電池劣化検知装置1が備えられた電気システムの電力負荷50に電力を供給するものであり、本実施形態においては、二次電池11により構成される。なお、蓄電池10は、複数の二次電池11が直列に接続されることにより構成されるようにしてもよい。また、蓄電池10は複数の二次電池11を並列接続したものであってもよい。蓄電池10を構成する二次電池11には、温度、電圧、電流等を計測する各種センサーが取り付けられており、これらセンサーにより計測され且つ出力された計測情報は、後で詳述するBMS20に入力される。なお蓄電池10が複数の二次電池11によって構成される場合には、それぞれに、上記各種センサーが取り付けられる。   The storage battery 10 supplies power to the power load 50 of the electric system provided with the battery deterioration detection device 1, and is constituted by the secondary battery 11 in this embodiment. The storage battery 10 may be configured by connecting a plurality of secondary batteries 11 in series. The storage battery 10 may be a plurality of secondary batteries 11 connected in parallel. Various sensors for measuring temperature, voltage, current, etc. are attached to the secondary battery 11 constituting the storage battery 10, and the measurement information measured and output by these sensors is input to the BMS 20 described in detail later. Is done. In addition, when the storage battery 10 is comprised by the several secondary battery 11, the said various sensors are attached to each.

コントローラ30は、BMS20から送信される蓄電池10の上記計測情報などを受信し、当該計測情報に基づいて算出した蓄電池10の関連情報(蓄電池の劣化率や残寿命日数など)を、表示装置40を制御して、当該表示装置40に適宜表示させる。また、コントローラ30は、上記関連情報が異常値であると判断した場合には、表示装置40に内蔵された異常ランプ401を点灯させる等(光学的表示であればよいので、後述のモニタの画面に異常である旨の表示をしてもよい)するとともに、表示装置40に内蔵されたブザー等の音響装置を作動させて警報を鳴らし、光と音により視覚および聴覚を刺激してユーザの注意を促すようにしてもよい。   The controller 30 receives the measurement information of the storage battery 10 transmitted from the BMS 20 and displays the related information (such as the deterioration rate of the storage battery and the remaining life days) calculated based on the measurement information on the display device 40. It controls and makes it display on the said display apparatus 40 suitably. Further, when the controller 30 determines that the related information is an abnormal value, the controller 30 turns on an abnormal lamp 401 built in the display device 40 or the like. In addition, an alarm may be displayed by operating a sound device such as a buzzer built in the display device 40, and a visual and auditory sense is stimulated by light and sound. May be prompted.

表示装置40は、例えば上記音響装置を備えた液晶パネル等のモニタであり、コントローラ30からの制御に基づいて蓄電池10を構成する二次電池11の上記関連情報の表示等を行う。
電力負荷50は、例えば車両の車輪に接続された電気モータやインバータ等の電力変換器である。電力負荷50は、ワイパーなどを駆動する電気モータであってもよい。
The display device 40 is a monitor such as a liquid crystal panel including the acoustic device, for example, and displays the related information of the secondary battery 11 constituting the storage battery 10 based on the control from the controller 30.
The power load 50 is a power converter such as an electric motor or an inverter connected to a vehicle wheel, for example. The power load 50 may be an electric motor that drives a wiper or the like.

次に、BMS20について簡単に概説した後、その動作等につき詳述する。
図1に示すとおり、電池劣化検知装置1のBMS20は、CMU(Cell Monitor Unit)21と、BMU(Battery Management Unit)23を含んで構成される。
ここで、CMU21は、図示しないADC(Analog Digital Converter)を備えており、上記各種センサーが検知して出力する複数の上記計測情報をそれぞれアナログ信号として受け、これらアナログ信号をADCによってそれぞれに対応するデジタル信号に変換した後、上記関連情報を算出するための複数のパラメータとしてBMU23へ出力している。そして、本実施形態においては、図1に示すように、CMU21が二次電池11と信号線により接続されている。
Next, after briefly reviewing the BMS 20, its operation and the like will be described in detail.
As shown in FIG. 1, the BMS 20 of the battery deterioration detection device 1 includes a CMU (Cell Monitor Unit) 21 and a BMU (Battery Management Unit) 23.
Here, the CMU 21 includes an ADC (Analog Digital Converter) (not shown), receives a plurality of the measurement information detected and output by the various sensors as analog signals, and the analog signals correspond to the ADCs, respectively. After being converted into a digital signal, it is output to the BMU 23 as a plurality of parameters for calculating the related information. And in this embodiment, as shown in FIG. 1, CMU21 is connected with the secondary battery 11 by the signal wire | line.

また、BMU23は、CMU21から入力された蓄電池10の上記パラメータをコントローラ30に出力する。
なお、ここでは、CMU21は1つだけ示されているが、この態様に限定されない。例えば蓄電池10が複数の二次電池11によって構成されている場合には、CMU21を複数備えて、各CMU21に複数個ずつ二次電池11を接続してもよいし、複数の二次電池11に対して一対一の関係でCMU21が備わっていてもよい。すなわち、BMU23が劣化率算出処理や残寿命日数算出処理を行うために必要となる複数のパラメータをCMU21から取得できるのであれば、CMU21の個数はいくつであってもよい。CMU21を含んでBMU23が構成されるのであれば、BMS20はBMU23のみで構成されてもよい。
Further, the BMU 23 outputs the parameters of the storage battery 10 input from the CMU 21 to the controller 30.
Although only one CMU 21 is shown here, the present invention is not limited to this mode. For example, when the storage battery 10 includes a plurality of secondary batteries 11, a plurality of CMUs 21 may be provided, and a plurality of secondary batteries 11 may be connected to each CMU 21. On the other hand, the CMU 21 may be provided in a one-to-one relationship. That is, as long as the BMU 23 can acquire a plurality of parameters necessary for performing the deterioration rate calculation process and the remaining life days calculation process from the CMU 21, the number of the CMUs 21 may be any number. If the BMU 23 is configured including the CMU 21, the BMS 20 may be configured only by the BMU 23.

図2はBMSと蓄電池の概略構成図である。
次に、図2を用いてBMS20の内部構成および動作を詳述する。
図2に示すように、蓄電池10を構成する二次電池11に対して電圧計3が設けられている。具体的には、二次電池11の正極端子と負極端子との間に電圧計3が接続されている。そして、CMU21は、パラメータ値検出部211を備え、当該パラメータ値検出部211は電圧計3が計測し且つ出力した計測情報としての電圧値をアナログ信号として取得する(当該アナログ信号がパラメータ値検出部211に入力される)。
FIG. 2 is a schematic configuration diagram of a BMS and a storage battery.
Next, the internal configuration and operation of the BMS 20 will be described in detail with reference to FIG.
As shown in FIG. 2, a voltmeter 3 is provided for the secondary battery 11 constituting the storage battery 10. Specifically, the voltmeter 3 is connected between the positive electrode terminal and the negative electrode terminal of the secondary battery 11. The CMU 21 includes a parameter value detection unit 211. The parameter value detection unit 211 acquires a voltage value as measurement information measured and output by the voltmeter 3 as an analog signal (the analog signal is a parameter value detection unit). 211).

また、電力負荷50に流れる電流を測定するため、蓄電池10と電力負荷50の間に電流計2が接続されている。そして、上記パラメータ値検出部211は、電流計2が計測し且つ出力した計測情報としての電流値をアナログ信号として取得する(当該アナログ信号がパラメータ値検出部211に入力される)。
また、蓄電池10を構成する二次電池11の筐体には温度計4が取り付けられている。そして、上記パラメータ値検出部211は、温度計4が計測し且つ出力した計測情報としての温度値をアナログ信号として取得する(当該アナログ信号がパラメータ値検出部211に入力される)。
Further, the ammeter 2 is connected between the storage battery 10 and the power load 50 in order to measure the current flowing through the power load 50. The parameter value detection unit 211 acquires a current value as measurement information measured and output by the ammeter 2 as an analog signal (the analog signal is input to the parameter value detection unit 211).
A thermometer 4 is attached to the housing of the secondary battery 11 that constitutes the storage battery 10. Then, the parameter value detection unit 211 acquires a temperature value as measurement information measured and output by the thermometer 4 as an analog signal (the analog signal is input to the parameter value detection unit 211).

そして、上記パラメータ値検出部211は、上記ADCを内蔵しており、上記電流計2、電圧計3、温度計4から取得した電流値、電圧値、温度値であるアナログ信号をデジタル信号に変換して、それぞれに対応したパラメータの値としてBMU23に出力する。またBMU23は取得した電流値、電圧値、温度値をコントローラ30へ出力する。そして、コントローラ30は取得した電流値、電圧値、温度値を用いて、劣化率算出処理や残寿命日数算出処理を行う。   The parameter value detection unit 211 incorporates the ADC, and converts an analog signal obtained from the ammeter 2, the voltmeter 3, and the thermometer 4 into a digital signal. Then, the parameter value corresponding to each is output to the BMU 23. Further, the BMU 23 outputs the acquired current value, voltage value, and temperature value to the controller 30. Then, the controller 30 performs the deterioration rate calculation process and the remaining life days calculation process using the acquired current value, voltage value, and temperature value.

図3はコントローラの機能ブロック図である。
図3に示すように、コントローラ30は、パラメータ取得部31、記憶部32(内部抵抗初期値記憶部)、劣化率算出処理を行う電池劣化情報処理部33、残寿命日数算出処理を行う残寿命日数算出部34、蓄電池10の内部抵抗値を算出する内部抵抗値算出部35を備えている。
まず、パラメータ取得部31は、蓄電池10内に設けられた二次電池11の端子間電圧値(二次電池11における正極端子と負極端子の間の電圧値)に相当するパラメータの値(二次電池11の当該電圧のパラメータを端子間電圧パラメータVといい、その値を端子間電圧パラメータ値という)を、BMS20から入力して取得する。
また、パラメータ取得部31は、電流計2より計測された蓄電池10に入出流する電流値に相当するパラメータの値(当該パラメータを電流パラメータIといい、この値を電流パラメータ値という)をBMS20から入力して取得する。
また、パラメータ取得部31は、温度計4より計測された蓄電池10を構成する二次電池11の筐体の温度のパラメータの値(当該パラメータを温度パラメータTといい、この値を温度パラメータ値という)をBMS20から入力して取得する。
そして、パラメータ取得部31は、取得した電流パラメータ値、電圧パラメータ値、温度パラメータ値を内部抵抗値算出部35へ出力し、また記憶部32に記録する。
FIG. 3 is a functional block diagram of the controller.
As shown in FIG. 3, the controller 30 includes a parameter acquisition unit 31, a storage unit 32 (an internal resistance initial value storage unit), a battery deterioration information processing unit 33 that performs a deterioration rate calculation process, and a remaining life that performs a remaining life days calculation process. The number of days calculation part 34 and the internal resistance value calculation part 35 which calculates the internal resistance value of the storage battery 10 are provided.
First, the parameter acquisition unit 31 has a parameter value (secondary value) corresponding to a voltage value between terminals of a secondary battery 11 provided in the storage battery 10 (voltage value between a positive terminal and a negative terminal in the secondary battery 11). The parameter of the voltage of the battery 11 is referred to as an inter-terminal voltage parameter V, and its value is referred to as an inter-terminal voltage parameter value).
Further, the parameter acquisition unit 31 obtains a parameter value corresponding to the current value flowing into and out of the storage battery 10 measured by the ammeter 2 (this parameter is referred to as a current parameter I, and this value is referred to as a current parameter value) from the BMS 20. Enter to get.
Further, the parameter acquisition unit 31 is a parameter value of the temperature of the casing of the secondary battery 11 constituting the storage battery 10 measured by the thermometer 4 (this parameter is called a temperature parameter T, and this value is called a temperature parameter value). ) Is input from the BMS 20 and acquired.
Then, the parameter acquisition unit 31 outputs the acquired current parameter value, voltage parameter value, and temperature parameter value to the internal resistance value calculation unit 35 and records them in the storage unit 32.

ここで、内部抵抗値算出部35は、前回以前にパラメータ取得部31から取得した電流パラメータ値と電圧パラメータ値と温度パラメータ値とをメモリ等に記憶している。そして、内部抵抗値算出部35は、前回取得した電流パラメータ値と、今回パラメータ取得部31から取得した電流パラメータ値とを比較して、一定の値以上変動したかを判定する。そして、内部抵抗値算出部35は、前回と今回の電流パラメータ値が一定の値以上変動していると判定した場合には、蓄電池10の内部抵抗値を算出する。なお、前回と今回の電流パラメータ値が一定の値以上変動していない場合には、蓄電池10の内部抵抗の算出時にノイズが混入してしまう可能性がある。従って、前回と今回の電流パラメータ値が一定値以上変動していない場合には、内部抵抗値算出部35は、蓄電池10の内部抵抗値の算出を停止する。なおこの内部抵抗値の算出の処理において、内部抵抗値算出部35は、前回と今回の電流パラメータ値の差を算出して電流パラメータ値の変動値ΔIを得、また、前回と今回の電圧パラメータ値の差を算出して電圧パラメータ値の変動値ΔVを得る。そして、内部抵抗値算出部35は、算出したΔIが一定値以上であるかを判定し、一定値以上であれば、蓄電池10の内部抵抗値Rを、電流パラメータ値の変動値ΔIと、当該電流パラメータ値が変動した際の電圧パラメータ値の変動値ΔVとを用いて、R=ΔV÷ΔIにより算出する。   Here, the internal resistance value calculation unit 35 stores the current parameter value, the voltage parameter value, and the temperature parameter value acquired from the parameter acquisition unit 31 before the previous time in a memory or the like. Then, the internal resistance value calculation unit 35 compares the current parameter value acquired last time with the current parameter value acquired from the current parameter acquisition unit 31, and determines whether or not the value has fluctuated by a certain value or more. Then, the internal resistance value calculation unit 35 calculates the internal resistance value of the storage battery 10 when it is determined that the current parameter values of the previous time and the current time fluctuate by a certain value or more. In addition, when the current parameter value of the last time and this time does not fluctuate more than a fixed value, noise may be mixed when calculating the internal resistance of the storage battery 10. Therefore, when the current and current current parameter values have not changed by a certain value or more, the internal resistance value calculation unit 35 stops calculating the internal resistance value of the storage battery 10. In this internal resistance value calculation process, the internal resistance value calculation unit 35 calculates the difference between the current parameter value of the previous time and the current value to obtain the fluctuation value ΔI of the current parameter value, and also the voltage parameter of the previous time and the current time. The difference between the values is calculated to obtain a fluctuation value ΔV of the voltage parameter value. Then, the internal resistance value calculating unit 35 determines whether the calculated ΔI is equal to or greater than a certain value. If the calculated ΔI is equal to or greater than the certain value, the internal resistance value R of the storage battery 10 is set to the current parameter value variation value ΔI Using the fluctuation value ΔV of the voltage parameter value when the current parameter value fluctuates, R = ΔV ÷ ΔI is calculated.

図4は蓄電池の内部抵抗値と温度との関係を示す図である。
コントローラ30は、予め記憶部32に蓄電池10の複数の温度に応じた内部抵抗値の初期値Rini(以降、内部抵抗初期値Riniと呼ぶこととする)を記憶している。ここで、図4で示すように、蓄電池10の内部抵抗値は、温度が上昇するに従って、反比例的に内部抵抗値が低くなることが知られている。また図4で示すように、蓄電池10の内部抵抗値は、当該蓄電池10が劣化するに従って、矢印方向にその抵抗の特性(内部抵抗値と温度との関係)が変化することが知られている。つまり、蓄電池10が劣化すると、同じ温度であっても、劣化前と比べて内部抵抗値が増加することが知られている。
FIG. 4 is a diagram showing the relationship between the internal resistance value of the storage battery and the temperature.
The controller 30 stores in advance an initial value Rini of an internal resistance value corresponding to a plurality of temperatures of the storage battery 10 (hereinafter referred to as an internal resistance initial value Rini) in the storage unit 32. Here, as shown in FIG. 4, it is known that the internal resistance value of the storage battery 10 decreases in inverse proportion as the temperature rises. Further, as shown in FIG. 4, it is known that the internal resistance value of the storage battery 10 changes its resistance characteristic (relationship between the internal resistance value and temperature) in the direction of the arrow as the storage battery 10 deteriorates. . That is, it is known that when the storage battery 10 deteriorates, the internal resistance value increases even before the deterioration, even at the same temperature.

そして、蓄電池10(二次電池11)の劣化率γは、内部抵抗初期値Riniに対する現在の内部抵抗値Rの割合であり、劣化率算出式γ=R÷Riniで計算することが出来る。しかしながら、図4で示すように、蓄電池10の温度に応じて内部抵抗初期値Riniの値も変化する。従って、現在の内部抵抗値を算出した際の蓄電池10の温度と同一の温度であるときの蓄電池10の内部抵抗初期値Riniを用いることにより、精度のよい劣化率γを算出することができる。そして、内部抵抗値算出部35は、前回と今回の電流パラメータ値が一定値以上変動したと判定した直前に、新たに取得した温度パラメータ値が示す温度と同じ温度における、蓄電池10の内部抵抗初期値Riniを算出する。   The deterioration rate γ of the storage battery 10 (secondary battery 11) is a ratio of the current internal resistance value R to the internal resistance initial value Rini, and can be calculated by the deterioration rate calculation formula γ = R ÷ Rini. However, as shown in FIG. 4, the internal resistance initial value Rini also changes according to the temperature of the storage battery 10. Therefore, by using the internal resistance initial value Rini of the storage battery 10 at the same temperature as the temperature of the storage battery 10 when the current internal resistance value is calculated, it is possible to calculate the deterioration rate γ with high accuracy. Then, the internal resistance value calculating unit 35 immediately starts the internal resistance initial value of the storage battery 10 at the same temperature as the temperature indicated by the newly acquired temperature parameter value immediately before determining that the current parameter value of the previous time and the current value fluctuated by a certain value or more. The value Rini is calculated.

このとき、内部抵抗値算出部35は、新たに取得した温度パラメータ値が示す温度の近傍の複数の温度に応じた内部抵抗初期値Riniを記憶部32から読取り、補間計算等によって、新たに取得した温度パラメータに応じた内部抵抗初期値Riniを算出する。そして、内部抵抗値算出部35は、算出した内部抵抗値Rと内部抵抗初期値Riniを電池劣化情報処理部33へ出力する。そして、電池劣化情報処理部33は、上述の劣化率値算出式によって、蓄電池10の現在の劣化率γを算出する。
そして、電池劣化情報処理部33は、所定の期間ごとに、内部抵抗値算出部35から当該内部抵抗値算出部35の算出した内部抵抗値Rと内部抵抗初期値Riniを入力して取得し、劣化率γを算出して表示装置40へ出力する。このとき、当該所定期間内に複数の劣化率γを算出するような場合には、電池劣化情報処理部33は、その平均値を表示装置40へ出力する。表示装置40はコントローラ30から入力して取得した劣化率γをモニタ等に表示する。
At this time, the internal resistance value calculation unit 35 reads the internal resistance initial value Rini corresponding to a plurality of temperatures in the vicinity of the temperature indicated by the newly acquired temperature parameter value from the storage unit 32, and newly acquires it by interpolation calculation or the like. The internal resistance initial value Rini corresponding to the temperature parameter is calculated. Then, the internal resistance value calculation unit 35 outputs the calculated internal resistance value R and the internal resistance initial value Rini to the battery deterioration information processing unit 33. Then, the battery deterioration information processing unit 33 calculates the current deterioration rate γ of the storage battery 10 using the above-described deterioration rate value calculation formula.
The battery deterioration information processing unit 33 inputs and acquires the internal resistance value R and the internal resistance initial value Rini calculated by the internal resistance value calculation unit 35 from the internal resistance value calculation unit 35 for each predetermined period. The deterioration rate γ is calculated and output to the display device 40. At this time, when a plurality of deterioration rates γ are calculated within the predetermined period, the battery deterioration information processing unit 33 outputs the average value to the display device 40. The display device 40 displays the deterioration rate γ acquired by inputting from the controller 30 on a monitor or the like.

また、電池劣化情報処理部33は、算出した劣化率γや、その平均値が、蓄電池の寿命と判定する限界劣化率γlimit(劣化率の寿命判定値)以上となった場合には、蓄電池10が寿命であると判定し、警告情報を表示装置40へ出力する。すると表示装置40は異常ランプ401を点灯させる等してユーザに蓄電池の以上を知らせる。なお、電池劣化情報処理部33は、算出した劣化率γや、その平均値が、限界劣化率γlimit以上となったかどうかを判定するにあたり、記憶部32から限界劣化率γlimitを読み取って、算出した劣化率γや、その平均値と比較する。   Further, when the calculated deterioration rate γ or the average value thereof is equal to or greater than the limit deterioration rate γlimit (lifetime determination value of deterioration rate) for determining the life of the storage battery, the battery deterioration information processing unit 33 Is determined to be a lifetime, and warning information is output to the display device 40. Then, the display device 40 informs the user of the storage battery by turning on the abnormal lamp 401 or the like. The battery deterioration information processing unit 33 reads the limit deterioration rate γlimit from the storage unit 32 and determines whether the calculated deterioration rate γ and the average value are equal to or higher than the limit deterioration rate γlimit. Compare with the deterioration rate γ and its average value.

上述の処理によれば、蓄電池10の電流パラメータ値、電圧パラメータ値、温度パラメータ値を断続的に取得し、それらのパラメータ値を用いて、そのときの内部抵抗値Rを算出し、また、蓄電池10の劣化率を算出するとともに、当該劣化率γを用いて限界劣化率γlimit以上となったかを判定している。従って、蓄電池10の負荷パターンに関係なく、電池の劣化状態を検知することができる。
また、現在の内部抵抗値を算出した際の蓄電池10の温度と同一の温度であるときの蓄電池10の内部抵抗初期値Riniを用いることにより、精度のよい劣化率γを算出し、その劣化率γを用いて限界劣化率γlimit以上となったかを判定している。従って、温度が蓄電池の内部抵抗に与える影響を排除して劣化状態を検知するため、精度よく劣化状態を判定することができる。
また、蓄電池10の精度の良い劣化状態を表示装置40で表示することが出来るため、蓄電池10の早期交換による過剰コストの発生や、交換遅延による不具合を未然に、より適切なタイミングで防止することが可能となる。
According to the above-described processing, the current parameter value, voltage parameter value, and temperature parameter value of the storage battery 10 are intermittently obtained, and the internal resistance value R at that time is calculated using these parameter values. The deterioration rate of 10 is calculated, and it is determined whether the deterioration rate γ is equal to or greater than the limit deterioration rate γlimit. Therefore, the deterioration state of the battery can be detected regardless of the load pattern of the storage battery 10.
Further, by using the internal resistance initial value Rini of the storage battery 10 at the same temperature as the temperature of the storage battery 10 when the current internal resistance value is calculated, an accurate deterioration rate γ is calculated, and the deterioration rate It is determined whether or not the critical deterioration rate γlimit is equal to or greater than γ. Therefore, since the deterioration state is detected by eliminating the influence of the temperature on the internal resistance of the storage battery, the deterioration state can be accurately determined.
In addition, since the display device 40 can display a highly accurate deterioration state of the storage battery 10, it is possible to prevent occurrence of excessive cost due to early replacement of the storage battery 10 or malfunction due to replacement delay at a more appropriate timing. Is possible.

ここで、限界劣化率γlimitの詳細について説明する。
限界劣化率γlimitは、蓄電池10の内部抵抗初期値Riniに対する、蓄電池10が寿命であると判定されるべき状態である時の内部抵抗値Rlimitの割合であり、γlimit=Rrimit÷Riniで計算することが出来る。ここで、蓄電池10が寿命であると判定されるべき状態である時の内部抵抗値Rlimitは、運用時に想定される蓄電池10の最大SOC(state of charge;充電率)であるときの開回路電圧をV_VOCmax、充電時に蓄電池10に流入する最大電流設計値をIcmaxとした場合における、運用時の蓄電池10にかかる電圧値=V_VOCmax+(Icmax×Rlimit)、または、運用時に想定される蓄電池10の最小SOCであるときの開回路電圧をV_VOCmin、放電時に蓄電池10に流入する最大電流設計値をIdmaxとした場合における、運用時の蓄電池10にかかる電圧値=V_VOCmin−(Idmax×Rlimit)の何れかが、蓄電池10の許容電圧値を外れる時の内部抵抗値である。
Here, the details of the limit deterioration rate γlimit will be described.
The limit deterioration rate γlimit is a ratio of the internal resistance value Rlimit when the storage battery 10 is to be determined to have a life to the initial internal resistance value Rini of the storage battery 10, and is calculated by γlimit = Rlimit ÷ Rini. I can do it. Here, the internal resistance value Rlimit when the storage battery 10 is to be determined to have a lifetime is the open circuit voltage when the storage battery 10 is assumed to have a maximum SOC (state of charge) during operation. Is V_VOCmax, and the maximum current design value flowing into the storage battery 10 during charging is Icmax, the voltage value applied to the storage battery 10 during operation = V_VOCmax + (Icmax × Rlimit), or the minimum SOC of the storage battery 10 assumed during operation When V_VOCmin is the open circuit voltage when Id and the maximum current design value flowing into the storage battery 10 during discharge is Idmax, the voltage value applied to the storage battery 10 during operation = V_VOCmin− (Idmax × Rlimit) It is an internal resistance value when the allowable voltage value of the storage battery 10 deviates.

また、上述の、充電時に蓄電池10に流入する最大電流設計値Icmaxは、蓄電池10の特性である最大充電電力設計値をPcmax、最小電池電圧設計値をVminとすると、Icmax=|Pcmax÷Vmin|で算出される値である。また、上述の、放電時に蓄電池10に流入する最大電流設計値Idmaxは、蓄電池10の最小充電電力設計値をPcmin、最小電池電圧設計値をVminとすると、Icmax=|Pcmax÷Vmin|で算出される値である。   In addition, the maximum current design value Icmax flowing into the storage battery 10 at the time of charging described above is expressed as Icmax = | Pcmax ÷ Vmin |, where Pcmax is the maximum charge power design value and Vmin is the minimum battery voltage design value. Is a value calculated by. Further, the maximum design current value Idmax flowing into the storage battery 10 at the time of discharging is calculated as Icmax = | Pcmax ÷ Vmin |, where Pcmin is the minimum charge power design value of the storage battery 10 and Vmin is the minimum battery voltage design value. Value.

電池劣化情報処理部33は、上述の処理のほか、パラメータ取得部31から入力して取得した電圧パラメータ値と、記憶部32に記録されている蓄電池10の許容電圧値とを比較して、電圧パラメータ値が許容電圧値を超えた場合にも、蓄電池の寿命と判定し、警告情報を表示装置40へ出力する。このときも、表示装置40は異常ランプ401を点灯させる等してユーザに蓄電池の以上を知らせる。   In addition to the above-described processing, the battery deterioration information processing unit 33 compares the voltage parameter value acquired by input from the parameter acquisition unit 31 with the allowable voltage value of the storage battery 10 recorded in the storage unit 32 to determine the voltage Even when the parameter value exceeds the allowable voltage value, it is determined that the life of the storage battery is reached, and warning information is output to the display device 40. Also at this time, the display device 40 informs the user that the storage battery is over by, for example, turning on the abnormal lamp 401.

なお、上述の処理において、電池劣化情報処理部33は、前回取得した電流パラメータ値と、今回パラメータ取得部31から取得した電流パラメータ値とを比較して、一定の値以上変動したかを判定し、電流パラメータ値が一定の値以上変動していると判定した場合に、蓄電池10の内部抵抗値を算出している。しかしながら、さらに、電池劣化情報処理部33は、電流パラメータ値が一定の値以上変動していると判定した直前において、蓄電池10を構成する二次電池11に入出流する電流パラメータ値の変動が規定値以下の状態が一定時間t以上続いた場合にのみ、蓄電池10の内部抵抗値を算出するようにしてもよい。   In the above-described processing, the battery deterioration information processing unit 33 compares the current parameter value acquired last time with the current parameter value acquired from the current parameter acquisition unit 31, and determines whether or not the value has changed by a certain value or more. When it is determined that the current parameter value fluctuates by a certain value or more, the internal resistance value of the storage battery 10 is calculated. However, the battery deterioration information processing unit 33 further defines the fluctuation of the current parameter value flowing into and out of the secondary battery 11 constituting the storage battery 10 immediately before determining that the current parameter value fluctuates more than a certain value. You may make it calculate the internal resistance value of the storage battery 10 only when the state below a value continues more than the fixed time t.

図5は二次電池の等価回路を示す図である。
つまり、この図で示すように蓄電池10を構成する二次電池11はコンデンサ成分を包含しており、電流変化のあった直後はコンデンサ成分の電圧Vcの影響を受け、ΔV/ΔIで検出される内部抵抗値のバラツキが大きくなる。従って、このばらつきを小さくするために、蓄電池10を構成する二次電池11に入出流する電流パラメータ値の変動が規定値以下の状態が一定時間t以上続いた場合にのみ、蓄電池10を構成する二次電池11の内部抵抗値を算出することが望ましい、なお、この一定時間tの値は、図5で示すCR回路の時定数よりも大きければよい。
これにより、さらに、内部抵抗値Rや劣化率γの検知精度が向上し、蓄電池10の劣化状態の判定の精度を向上させることができる。
FIG. 5 is a diagram showing an equivalent circuit of the secondary battery.
That is, as shown in this figure, the secondary battery 11 constituting the storage battery 10 includes a capacitor component. Immediately after the current changes, the secondary battery 11 is affected by the voltage Vc of the capacitor component and is detected by ΔV / ΔI. Variations in internal resistance value increase. Therefore, in order to reduce this variation, the storage battery 10 is configured only when a change in the current parameter value flowing into and out of the secondary battery 11 that constitutes the storage battery 10 continues for a predetermined time t or longer. It is desirable to calculate the internal resistance value of the secondary battery 11. Note that the value of the predetermined time t only needs to be larger than the time constant of the CR circuit shown in FIG.
Thereby, the detection accuracy of the internal resistance value R and the deterioration rate γ is further improved, and the accuracy of determination of the deterioration state of the storage battery 10 can be improved.

図6は蓄電池の運用日数と劣化率の関係を示すグラフである。
この図が示すように、蓄電池10の運用日数が増加するにつれて、蓄電池10の劣化率γが、限界劣化率γlimit(寿命判定値)に近づいていく。より具体的には、運用日数と劣化率の関係は、蓄電池10の内部抵抗の上昇が充放電のサイクル数や運用日数の平方根に比例するという平方根則に基づくことが知られており、平方根測式γ=1+k√Nで表される。なお、Nは運用日数、kは劣化加速係数を表し、運用開始時はγ=1.0である。
ここで、上記平方根則式と、現在の運用日数Nと劣化率γとから、劣化加速係数kを算出することができる。またこの劣化加速係数kと限界劣化率γlimitとを用いて、劣化率がγlimitとなる際の寿命判定日数Nlimitを算出することができる。コントローラ30の残寿命日数算出部34は、この寿命判定日数Nlimitを、ある定められたタイミングで算出し、記憶部32に記録する。そして、残寿命日数算出部34は、例えば、蓄電池10の運用開始時からの経過日数を記憶部32に随時記録しており、算出した寿命判定日数Nlimitから、記憶部32に記録されている経過日数を減算して、残寿命日数を算出する。そして、残寿命日数算出部34は、算出した残寿命日数を表示装置40へ出力する。これにより表示装置40は残寿命日数をモニタに表示する。
このような処理により、ユーザに予測算寿命日数を通知することができ、より容易に、蓄電池の早期交換による過剰コストの発生や、交換遅延による不具合を未然に防止することができる。
なお、上述の処理において、ある定められたタイミングで寿命判定日数Nlimitを算出しているが、所定の間隔で、複数の寿命判定日数Nlimitを求め、最新の寿命判定日数Nlimitを用いて、そのときの蓄電池10の状態で示される残寿命日数を算出するようにしてもよい。
FIG. 6 is a graph showing the relationship between the operation days of the storage battery and the deterioration rate.
As shown in this figure, as the number of operating days of the storage battery 10 increases, the deterioration rate γ of the storage battery 10 approaches the limit deterioration rate γlimit (lifetime determination value). More specifically, it is known that the relationship between the number of operating days and the deterioration rate is based on the square root rule that the increase in the internal resistance of the storage battery 10 is proportional to the number of charge / discharge cycles and the square root of the operating days. It is expressed by the equation γ = 1 + k√N. N represents the number of operating days, k represents a deterioration acceleration coefficient, and γ = 1.0 at the start of operation.
Here, the deterioration acceleration coefficient k can be calculated from the above square root law equation, the current operation days N, and the deterioration rate γ. Further, using this deterioration acceleration coefficient k and the limit deterioration rate γlimit, the life determination days Nlimit when the deterioration rate becomes γlimit can be calculated. The remaining life days calculation unit 34 of the controller 30 calculates the life determination days Nlimit at a predetermined timing and records it in the storage unit 32. And the remaining life days calculation part 34 records the elapsed days from the time of the operation start of the storage battery 10 at any time, for example in the memory | storage part 32, and the progress currently recorded on the memory | storage part 32 from the calculated lifetime determination days Nlimit. Subtract the number of days to calculate the remaining life days. Then, the remaining life days calculation unit 34 outputs the calculated remaining life days to the display device 40. As a result, the display device 40 displays the remaining life on the monitor.
By such a process, it is possible to notify the user of the estimated calculation life days, and it is possible to more easily prevent occurrence of excessive cost due to early replacement of the storage battery and malfunction due to replacement delay.
In the above-described processing, the life determination days Nlimit is calculated at a predetermined timing, but a plurality of life determination days Nlimit are obtained at predetermined intervals, and the latest life determination days Nlimit is used. The remaining life days indicated by the state of the storage battery 10 may be calculated.

また、蓄電池10が複数の二次電池11で構成される場合には、それぞれの二次電池11に対して、劣化率の算出や、寿命かどうかの判定や、残寿命日数の算出をするようにすれば良い。または、蓄電池10を構成する複数の二次電池11を一度に交換しなければならないような場合には、複数の二次電池11を一つの纏まりとして算出される蓄電池10の内部抵抗値(各二次電池11の内部抵抗値の合計)や劣化率(各二次電池の劣化率の平均値)を用いて、蓄電池10単位で寿命かどうかの判定や、残寿命日数の算出をするようにしてもよい。   When the storage battery 10 is composed of a plurality of secondary batteries 11, the deterioration rate is calculated for each secondary battery 11, whether it is a lifetime, or the remaining life days are calculated. You can do it. Alternatively, when a plurality of secondary batteries 11 constituting the storage battery 10 must be replaced at a time, the internal resistance value of the storage battery 10 (each of the two secondary batteries 11 calculated as a group) is calculated. By using the total internal resistance value of the secondary battery 11) and the deterioration rate (average value of the deterioration rate of each secondary battery), it is determined whether or not the battery life is 10 units, and the remaining life days are calculated. Also good.

上述の電池劣化検知装置1のコントローラ30、表示装置40は内部に、コンピュータシステムを有している。そして、上述した各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。   The controller 30 and the display device 40 of the battery deterioration detection device 1 described above have a computer system inside. Each process described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing the program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。   The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

1・・・電池劣化検知装置、2・・・電流計、3・・・電圧計、4・・・温度計、10・・・蓄電池、11・・・二次電池、20・・・BMS、21・・・CMU、23・・・BMU、30・・・コントローラ、31・・・パラメータ取得部、32・・・記憶部、33・・・電池劣化情報処理部、34・・・残寿命日数算出部、35・・・内部抵抗値算出部、40・・・表示装置、50・・・電力負荷   DESCRIPTION OF SYMBOLS 1 ... Battery deterioration detection apparatus, 2 ... Ammeter, 3 ... Voltmeter, 4 ... Thermometer, 10 ... Storage battery, 11 ... Secondary battery, 20 ... BMS, 21 ... CMU, 23 ... BMU, 30 ... controller, 31 ... parameter acquisition unit, 32 ... storage unit, 33 ... battery deterioration information processing unit, 34 ... remaining life days Calculation unit 35 ... Internal resistance value calculation unit 40 ... Display device 50 ... Electric power load

Claims (7)

蓄電池に入出力する電流値と、前記蓄電池にかかる電圧値とを取得し、前記電流値が一定値以上変動した場合の当該電流値の変動動幅と、そのときの前記電圧値の変動幅とを用いて前記蓄電池の現在の内部抵抗値を算出する内部抵抗値算出部と、
前記現在の内部抵抗値を、前記蓄電池の現在の温度に対応する内部抵抗初期値により除して、前記蓄電池の現在の温度における当該蓄電池の劣化率を算出し、前記蓄電池が寿命であると判定されるべき状態である時の内部抵抗値Rlimitであって運用時に想定される蓄電池の最大充電率であるときの開回路電圧値をV_VOCmaxとし当該開回路電圧値V_VOCmaxであるときに前記蓄電池に対する充電の電流値が前記蓄電池における最大電流設計値Icmaxである場合における前記蓄電池にかかる電圧値(V_VOCmax+(Icmax×Rlimit))と、運用時に想定される蓄電池の最小充電率であるときの開回路電圧値をV_VOCminとし当該開回路電圧V_VOCminであるときに前記蓄電池に対する放電の電流値が前記蓄電池における最大電流設計値Idmaxである場合における前記蓄電池にかかる電圧値(V_VOCmin−(Idmax×Rlimit))と、の何れかが前記蓄電池の許容電圧値を外れる時の前記内部抵抗値Rlimitの、前記蓄電池の内部抵抗初期値に対する割合を示す限界劣化率と、前記現在の温度における前記蓄電池の劣化率とを比較して当該劣化率が前記限界劣化率以上である場合に警告情報をモニタ装置へ出力する電池劣化情報処理部と、
を備えることを特徴とする電池劣化検知装置。
Obtaining the current value input / output to / from the storage battery and the voltage value applied to the storage battery, the fluctuation range of the current value when the current value fluctuates more than a certain value, and the fluctuation range of the voltage value at that time An internal resistance value calculation unit for calculating a current internal resistance value of the storage battery using
The current internal resistance value is divided by the internal resistance initial value corresponding to the current temperature of the storage battery, the deterioration rate of the storage battery at the current temperature of the storage battery is calculated, and the storage battery is determined to have a lifetime an internal resistance value Rlimit when a condition to be, for the battery when it is in the open-circuit voltage value V_VOCmax and V_VOCmax the open circuit voltage value when the maximum charging rate of the storage battery that is assumed during operation Voltage value (V_VOCmax + (Icmax x Rlimit)) applied to the storage battery when the current value of charging is the maximum current design value Icmax for the storage battery, and the open circuit voltage when the minimum charging rate of the storage battery is assumed during operation When the value is V_VOCmin and the open circuit voltage is V_VOCmin, the electric current applied to the storage battery when the discharge current value to the storage battery is the maximum current design value Idmax in the storage battery A pressure value (V_VOCmin- (Idmax × Rlimit)) , one of, the internal resistance value Rlimit when outside the allowable voltage value of the battery, and limits the deterioration ratio indicating the ratio of the internal resistance initial value of the battery A battery deterioration information processing unit that compares the deterioration rate of the storage battery at the current temperature and outputs warning information to the monitor device when the deterioration rate is greater than or equal to the limit deterioration rate;
A battery deterioration detection device comprising:
前記内部抵抗値算出部は、前記電流値が一定値以上変動する前の所定の期間、前記蓄電池に入出流する電流の変動が規定値以下となる状態が続いた場合に、前記現在の内部抵抗値を算出する
ことを特徴とする請求項1に記載の電池劣化検知装置。
The internal resistance value calculation unit is configured to detect the current internal resistance when a change in the current flowing into and out of the storage battery is below a specified value for a predetermined period before the current value fluctuates more than a predetermined value. The battery deterioration detection device according to claim 1, wherein a value is calculated.
前記蓄電池の異なる温度それぞれにおける内部抵抗初期値を記憶する内部抵抗初期値記憶部と、を備え、
前記内部抵抗値算出部は、前記取得した前記蓄電池の温度に対応する内部抵抗初期値を、前記内部抵抗初期値記憶部に記録されている異なる温度それぞれにおける内部抵抗初期値に基づいて算出する
ことを特徴とする請求項1または請求項2に記載の電池劣化検知装置。
An internal resistance initial value storage unit that stores an internal resistance initial value at each different temperature of the storage battery, and
The internal resistance value calculation unit calculates an internal resistance initial value corresponding to the acquired temperature of the storage battery based on internal resistance initial values at different temperatures recorded in the internal resistance initial value storage unit. The battery deterioration detection device according to claim 1, wherein the battery deterioration detection device is a battery deterioration detection device.
前記電池劣化情報処理部は、算出した複数の劣化率の平均を算出して、当該劣化率の平均値を前記モニタ装置へ出力する
ことを特徴とする請求項1から請求項3の何れか一項に記載の電池劣化検知装置。
The battery deterioration information processing unit calculates an average of the plurality of calculated deterioration rates, and outputs the average value of the deterioration rates to the monitor device. The battery deterioration detection device according to item.
前記蓄電池の運用日数と劣化率との関係を示す平方根則と、前記蓄電池が寿命と判定されるべき状態での当該蓄電池の内部抵抗値における前記劣化率とを用いて、前記蓄電池が寿命と判断される寿命判定日数を算出し、当該寿命判定日数から現在の運用日数を減じて、前記蓄電池の残寿命日数を算出する残寿命日数算出部と、
を備えることを特徴とする請求項1から請求項4の何れか一項に記載の電池劣化検知装置。
Using the square root rule indicating the relationship between the number of operating days of the storage battery and the deterioration rate, and the deterioration rate in the internal resistance value of the storage battery in a state where the storage battery should be determined to have a lifetime, the storage battery is determined to have a lifetime. Calculating the remaining lifespan days, subtracting the current operation days from the lifespan determination days, and calculating the remaining life days of the storage battery,
5. The battery deterioration detection device according to claim 1, comprising:
電池劣化検知装置の電池劣化検知方法であって、
蓄電池に入出力する電流値と、前記蓄電池にかかる電圧値とを取得し、前記電流値が一定値以上変動した場合の当該電流値の変動動幅と、そのときの前記電圧値の変動幅とを用いて前記蓄電池の現在の内部抵抗値を算出し、
前記現在の内部抵抗値を、前記蓄電池の現在の温度に対応する内部抵抗初期値により除して、前記蓄電池の現在の温度における当該蓄電池の劣化率を算出し、前記蓄電池が寿命であると判定されるべき状態である時の内部抵抗値Rlimitであって運用時に想定される蓄電池の最大充電率であるときの開回路電圧値をV_VOCmaxとし当該開回路電圧値V_VOCmaxであるときに前記蓄電池に対する充電の電流値が前記蓄電池における最大電流設計値Icmaxである場合における前記蓄電池にかかる電圧値(V_VOCmax+(Icmax×Rlimit))と、運用時に想定される蓄電池の最小充電率であるときの開回路電圧値をV_VOCminとし当該開回路電圧V_VOCminであるときに前記蓄電池に対する放電の電流値が前記蓄電池における最大電流設計値Idmaxである場合における前記蓄電池にかかる電圧値(V_VOCmin−(Idmax×Rlimit))と、の何れかが前記蓄電池の許容電圧値を外れる時の前記内部抵抗値Rlimitの、前記蓄電池の内部抵抗初期値に対する割合を示す限界劣化率と、前記現在の温度における前記蓄電池の劣化率とを比較して当該劣化率が前記限界劣化率以上である場合に警告情報をモニタ装置へ出力する
ことを特徴とする電池劣化検知方法。
A battery deterioration detection method for a battery deterioration detection device, comprising:
Obtaining the current value input / output to / from the storage battery and the voltage value applied to the storage battery, the fluctuation range of the current value when the current value fluctuates more than a certain value, and the fluctuation range of the voltage value at that time The current internal resistance value of the storage battery is calculated using
The current internal resistance value is divided by the internal resistance initial value corresponding to the current temperature of the storage battery, the deterioration rate of the storage battery at the current temperature of the storage battery is calculated, and the storage battery is determined to have a lifetime an internal resistance value Rlimit when a condition to be, for the battery when it is in the open-circuit voltage value V_VOCmax and V_VOCmax the open circuit voltage value when the maximum charging rate of the storage battery that is assumed during operation Voltage value (V_VOCmax + (Icmax x Rlimit)) applied to the storage battery when the current value of charging is the maximum current design value Icmax for the storage battery, and the open circuit voltage when the minimum charging rate of the storage battery is assumed during operation When the value is V_VOCmin and the open circuit voltage is V_VOCmin, the electric current applied to the storage battery when the discharge current value to the storage battery is the maximum current design value Idmax in the storage battery A pressure value (V_VOCmin- (Idmax × Rlimit)) , one of, the internal resistance value Rlimit when outside the allowable voltage value of the battery, and limits the deterioration ratio indicating the ratio of the internal resistance initial value of the battery A battery deterioration detection method comprising: comparing a deterioration rate of the storage battery at the current temperature and outputting warning information to a monitor device when the deterioration rate is equal to or greater than the limit deterioration rate.
電池劣化検知装置のコンピュータを、
蓄電池に入出力する電流値と、前記蓄電池にかかる電圧値とを取得し、前記電流値が一定値以上変動した場合の当該電流値の変動動幅と、そのときの前記電圧値の変動幅とを用いて前記蓄電池の現在の内部抵抗値を算出する内部抵抗値算出処理、
前記現在の内部抵抗値を、前記蓄電池の現在の温度に対応する内部抵抗初期値により除して、前記蓄電池の現在の温度における当該蓄電池の劣化率を算出し、前記蓄電池が寿命であると判定されるべき状態である時の内部抵抗値Rlimitであって運用時に想定される蓄電池の最大充電率であるときの開回路電圧値をV_VOCmaxとし当該開回路電圧値V_VOCmaxであるときに前記蓄電池に対する充電の電流値が前記蓄電池における最大電流設計値Icmaxである場合における前記蓄電池にかかる電圧値(V_VOCmax+(Icmax×Rlimit))と、運用時に想定される蓄電池の最小充電率であるときの開回路電圧値をV_VOCminとし当該開回路電圧V_VOCminであるときに前記蓄電池に対する放電の電流値が前記蓄電池における最大電流設計値Idmaxである場合における前記蓄電池にかかる電圧値(V_VOCmin−(Idmax×Rlimit))と、の何れかが前記蓄電池の許容電圧値を外れる時の前記内部抵抗値Rlimitの、前記蓄電池の内部抵抗初期値に対する割合を示す限界劣化率と、前記現在の温度における前記蓄電池の劣化率とを比較して当該劣化率が前記限界劣化率以上である場合に警告情報をモニタ装置へ出力する電池劣化情報処理、
として機能させることを特徴とするプログラム。
The battery deterioration detection computer
Obtaining the current value input / output to / from the storage battery and the voltage value applied to the storage battery, the fluctuation range of the current value when the current value fluctuates more than a certain value, and the fluctuation range of the voltage value at that time An internal resistance value calculation process for calculating a current internal resistance value of the storage battery using
The current internal resistance value is divided by the internal resistance initial value corresponding to the current temperature of the storage battery, the deterioration rate of the storage battery at the current temperature of the storage battery is calculated, and the storage battery is determined to have a lifetime an internal resistance value Rlimit when a condition to be, for the battery when it is in the open-circuit voltage value V_VOCmax and V_VOCmax the open circuit voltage value when the maximum charging rate of the storage battery that is assumed during operation Voltage value (V_VOCmax + (Icmax x Rlimit)) applied to the storage battery when the current value of charging is the maximum current design value Icmax for the storage battery, and the open circuit voltage when the minimum charging rate of the storage battery is assumed during operation When the value is V_VOCmin and the open circuit voltage is V_VOCmin, the electric current applied to the storage battery when the discharge current value to the storage battery is the maximum current design value Idmax in the storage battery A pressure value (V_VOCmin- (Idmax × Rlimit)) , one of, the internal resistance value Rlimit when outside the allowable voltage value of the battery, and limits the deterioration ratio indicating the ratio of the internal resistance initial value of the battery Battery deterioration information processing for comparing the deterioration rate of the storage battery at the current temperature and outputting warning information to the monitor device when the deterioration rate is equal to or greater than the limit deterioration rate;
A program characterized by functioning as
JP2010176565A 2010-08-05 2010-08-05 Battery deterioration detection device, battery deterioration detection method and program thereof Active JP5777303B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010176565A JP5777303B2 (en) 2010-08-05 2010-08-05 Battery deterioration detection device, battery deterioration detection method and program thereof
PCT/JP2011/067709 WO2012018028A1 (en) 2010-08-05 2011-08-02 Battery deterioration detection device, battery deterioration detection method, and program therefor
CN201180034365.0A CN103080762B (en) 2010-08-05 2011-08-02 Deterioration of battery pick-up unit, deterioration of battery detection method and program thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176565A JP5777303B2 (en) 2010-08-05 2010-08-05 Battery deterioration detection device, battery deterioration detection method and program thereof

Publications (2)

Publication Number Publication Date
JP2012037337A JP2012037337A (en) 2012-02-23
JP5777303B2 true JP5777303B2 (en) 2015-09-09

Family

ID=45559525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176565A Active JP5777303B2 (en) 2010-08-05 2010-08-05 Battery deterioration detection device, battery deterioration detection method and program thereof

Country Status (3)

Country Link
JP (1) JP5777303B2 (en)
CN (1) CN103080762B (en)
WO (1) WO2012018028A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101498764B1 (en) * 2012-05-10 2015-03-04 주식회사 엘지화학 Method and apparatus for battery resistance estimation, and battery management system using the same
JP5737232B2 (en) * 2012-07-12 2015-06-17 トヨタ自動車株式会社 Device for determining the remaining life of stationary storage batteries
CN103576098B (en) * 2012-07-19 2016-12-21 华为技术有限公司 A kind of power source life on-line monitoring method, system and power supply
JP5994521B2 (en) 2012-09-21 2016-09-21 株式会社Gsユアサ State estimation device, open-circuit voltage characteristics generation method
JP6197479B2 (en) * 2013-08-23 2017-09-20 トヨタ自動車株式会社 Power storage system and method for estimating full charge capacity of power storage device
JP6180249B2 (en) * 2013-09-18 2017-08-16 Kyb株式会社 Battery capacity estimation apparatus and battery capacity estimation method
JP6148144B2 (en) * 2013-10-03 2017-06-14 三菱重工業株式会社 Deterioration rate identification device, degradation rate identification method, and program
JP6165620B2 (en) * 2013-12-19 2017-07-19 日立オートモティブシステムズ株式会社 Secondary battery module and secondary battery monitoring device
JP6443656B2 (en) * 2014-07-02 2018-12-26 パナソニックIpマネジメント株式会社 Battery status judgment device
CN104865445A (en) * 2014-08-29 2015-08-26 北汽福田汽车股份有限公司 Power battery inner resistance detection method and power battery health degree diagnosis method
CN105467324B (en) 2014-09-30 2020-03-03 株式会社杰士汤浅国际 Battery degradation determination device, battery degradation determination method, and battery pack
CN104267367A (en) * 2014-10-29 2015-01-07 安徽鑫龙电器股份有限公司 Error detection method for storage battery monitoring device
JP2018011366A (en) * 2014-11-19 2018-01-18 株式会社東芝 Storage battery management system and storage battery management method
JP6671016B2 (en) * 2015-03-09 2020-03-25 パナソニックIpマネジメント株式会社 Lending system and lending management method
JP6593769B2 (en) * 2015-03-09 2019-10-23 中国電力株式会社 Storage battery remaining life estimation method, storage battery check date determination method, storage battery remaining life estimation device, and storage battery remaining life estimation system
WO2016194271A1 (en) * 2015-06-05 2016-12-08 パナソニックIpマネジメント株式会社 Auxiliary battery status determination device and auxiliary battery status determination method
CN106707029B (en) * 2015-11-13 2020-10-23 北京宝沃汽车股份有限公司 Method for calculating internal resistance value of power battery and method and device for determining health degree
CN105699774B (en) * 2016-01-30 2020-12-08 埃斯倍风电科技(青岛)有限公司 Method for calibrating internal resistance initial value of battery pack of variable pitch system
JP2018179733A (en) * 2017-04-12 2018-11-15 日立化成株式会社 Battery life diagnostic device and battery life diagnostic method
JP6881154B2 (en) * 2017-08-23 2021-06-02 トヨタ自動車株式会社 Deterioration state estimation method for secondary batteries and secondary battery system
JP7006359B2 (en) * 2018-02-21 2022-01-24 トヨタ自動車株式会社 Battery smoke determination method and battery system
JP6977687B2 (en) * 2018-08-21 2021-12-08 トヨタ自動車株式会社 Inspection method and manufacturing method of power storage device
JP6973334B2 (en) * 2018-08-30 2021-11-24 トヨタ自動車株式会社 Secondary battery deterioration state estimation method and secondary battery system
CN109615043B (en) * 2018-12-13 2022-04-22 吴泽忠 A management system that monitors and counts vehicle breakdowns
JP6651063B1 (en) * 2019-06-12 2020-02-19 三菱電機株式会社 Charge / discharge control device and charge / discharge control method
CN110261791B (en) * 2019-07-22 2021-11-30 天能电池集团股份有限公司 Method for rapidly evaluating cycle life of storage battery pack
CN113125979A (en) * 2019-12-31 2021-07-16 华为技术有限公司 Storage battery internal resistance detection device and method
WO2021162105A1 (en) * 2020-02-12 2021-08-19 古河電気工業株式会社 Storage battery system deterioration determining device, storage battery system deterioration determining method, storage battery system, and storage battery monitoring device
JP6960488B2 (en) * 2020-03-03 2021-11-05 本田技研工業株式会社 Electric vehicle, display method
JP7086495B2 (en) * 2020-04-09 2022-06-20 矢崎総業株式会社 Battery monitoring device
JP7314855B2 (en) 2020-04-21 2023-07-26 トヨタ自動車株式会社 BATTERY STATE DETERMINATION DEVICE AND STATE DETERMINATION METHOD
CN111366866B (en) * 2020-04-22 2023-09-01 珠海新金珠电力设备有限公司 Monitoring device for measuring service life cycle of storage battery and calculating method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223164A (en) * 1999-01-29 2000-08-11 Ntt Docomo Inc Battery pack, and method and device for diagnosing capacity deterioration of same battery pack
JP4066732B2 (en) * 2002-07-12 2008-03-26 新神戸電機株式会社 Battery remaining capacity estimation method
JP4682509B2 (en) * 2003-11-26 2011-05-11 日産自動車株式会社 Battery open voltage calculation method and charge amount calculation method
CN101010596B (en) * 2004-08-25 2010-05-12 日本电气株式会社 Internal impedance detection device, internal impedance detection method, degradation degree detection device, and degradation degree detection method
JP2007057434A (en) * 2005-08-25 2007-03-08 Fuji Heavy Ind Ltd Deterioration state estimation system for power storage devices
JP2007121030A (en) * 2005-10-26 2007-05-17 Denso Corp Internal status detection system for vehicular electric storage device
JP2010019758A (en) * 2008-07-11 2010-01-28 Mitsumi Electric Co Ltd Battery state detection device

Also Published As

Publication number Publication date
JP2012037337A (en) 2012-02-23
CN103080762A (en) 2013-05-01
CN103080762B (en) 2016-01-20
WO2012018028A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5777303B2 (en) Battery deterioration detection device, battery deterioration detection method and program thereof
JP5174111B2 (en) Battery system
JP5260695B2 (en) Secondary battery life prediction apparatus, battery system, and secondary battery life prediction method
KR101288671B1 (en) Battery system
JP6084225B2 (en) Battery control device, secondary battery system
US10209317B2 (en) Battery control device for calculating battery deterioration based on internal resistance increase rate
JP6317031B2 (en) Battery control device and vehicle system
Vezzini Lithium-ion battery management
JP5035401B2 (en) Battery state detection method, battery state detection device, and arithmetic expression derivation method
JP5975876B2 (en) Method and apparatus for determining the maximum output power of a drive accumulator system
JP5148579B2 (en) Secondary battery abnormality prediction system
US20150369873A1 (en) Battery controller
US20120316814A1 (en) System and method for determining the state of health of electrochemical battery cells
US20150303532A1 (en) Battery System and Associated Method for Determining the Internal Resistance of Battery Cells or Battery Modules of Said Battery System
JP5812968B2 (en) Current sensor failure detection device, battery system, and current sensor failure detection method
US9148031B2 (en) Apparatus and method for varying usable band range of battery
JP7067549B2 (en) Power storage element management device and power storage element management method
WO2014156265A1 (en) Battery control device
CN103718054A (en) Device for monitoring an electrical accumulation battery and associated method
JP2007311255A (en) Battery pack state measuring device, battery pack deterioration judgment method and battery pack deterioration judgment program
CN104833921A (en) Battery pack charge state calculating method and calculating device
JP2012019577A (en) Battery system
EP3605123A1 (en) Storage battery control device and control method
JP2014059227A (en) Soundness calculation device for battery and soundness calculation method therefor
JP6086768B2 (en) Charge / discharge inspection system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150707

R150 Certificate of patent or registration of utility model

Ref document number: 5777303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350