[go: up one dir, main page]

JP5775971B2 - 空気熱交換器 - Google Patents

空気熱交換器 Download PDF

Info

Publication number
JP5775971B2
JP5775971B2 JP2014534102A JP2014534102A JP5775971B2 JP 5775971 B2 JP5775971 B2 JP 5775971B2 JP 2014534102 A JP2014534102 A JP 2014534102A JP 2014534102 A JP2014534102 A JP 2014534102A JP 5775971 B2 JP5775971 B2 JP 5775971B2
Authority
JP
Japan
Prior art keywords
refrigerant flow
downstream
refrigerant
flow path
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014534102A
Other languages
English (en)
Other versions
JPWO2014038038A1 (ja
Inventor
航 佐藤
航 佐藤
佐々木 重幸
重幸 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5775971B2 publication Critical patent/JP5775971B2/ja
Publication of JPWO2014038038A1 publication Critical patent/JPWO2014038038A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は冷媒が流れる扁平管と空気と熱交換する伝熱フィンからなる空気熱交換器に係り、特に扁平管の内部にインナーフィンを備えた空気熱交換器に関するものである。
空気熱交換器は種々の産業機器に使用されており、代表的には空調機器の熱交換器や温水器用ヒートポンプの熱交換器として広く使用されている。ただし、以下に説明する本発明はこれらの空気熱交換器に限られるものではない。
このような空気熱交換器は、冷媒が流れる2つの管状のヘッダと、2つのヘッダを結ぶように配置される複数の扁平管と、これらの複数の扁平管の夫々の間に設けられた複数の伝熱フィンとから構成されている。扁平管の夫々はヘッダに直交して流体的に接続され、扁平管を介して一方のヘッダから他方のヘッダに冷媒を流すように構成されている。また、伝熱フィンは扁平管に直交するように熱的に接続されており、扁平管からの熱(温度が高い)、或いは冷熱(温度が低い)を伝熱フィンによって空気と熱交換するように構成されている。
一つの扁平管の内部にはヘッダに連通している複数の細い冷媒流路が設けられており、この細かい冷媒流路は波状の形状を持つインナーフィンによって形成されている。冷媒は、この冷媒流路を通って一方のヘッダから扁平管へ流れ、更に他方のヘッダに流れるようになっている。ヘッダ、扁平管、伝熱フィン、及びインナーフィンは、熱伝導率の高い金属材料、例えばアルミニウムで形成される。これらの部材は、蝋材や接着剤によって互いに接合されている。そして、このような構造の空気熱交換器の伝熱フィンや扁平管に送風ファンから空気を送風して熱交換を行なうものである。
空気熱交換器では冷媒と空気との熱交換を行い、冷媒は一方のヘッダに導入された後に扁平管へ分配される。扁平管内に導入された冷媒の熱または冷熱は、扁平管から伝熱面積を拡大する伝熱フィンへ伝わり、伝熱フィン間を流れる空気と熱交換を行うようになっている。
扁平管の内部は、上述したように冷媒と扁平管の接触面積を増大させるため複数の冷媒流路を形成している。この冷媒流路は冷媒の進行方向に沿った波型形状(以下、コルゲート形状という)のインナーフィンを扁平管に内装することで形成されている。
今まで提案されていた従来の扁平管に形成した複数の冷媒流路は、インナーフィンによって一方のヘッダから他方のヘッダまで独立した流路に形成されており、一方のヘッダから扁平管内の冷媒流路に入った冷媒は、扁平管の出口まで他の冷媒流路の冷媒と混合することなく流れていた。そのため、冷媒流路の入口で各冷媒通路への冷媒の分配比率が不均一となった場合、冷媒流路の出口まで分配比率の不均一さは改善されないまま流れていくことになる。したがって、冷媒流路毎に冷媒の分配比率が不均一となった場合、例えば冷媒が過剰に流れる冷媒流路と冷媒の流れが不足する冷媒流路が扁平管内で生じるため、熱交換効率が低下する恐れがある
最近では熱交換器の大型化の要請が強くなってきており、この要請に応えるためには扁平管を冷媒の流れ方向に長くする必要がある。このため、扁平管を長くすると扁平管の冷媒流路の分配比率が不均一となった影響が更に大きくなり、熱交換器の交換熱量を増大させることができないという課題があった。
また、空調機器の室外機が冷房運転している時を考えると、扁平管に流れる冷媒は温度が高くなっている。このため扁平管の熱交換を考えると、扁平管の表面において風上側は空気の温度が低いため風下側に比べて熱伝達効率が高い傾向にある。このため、扁平管内の冷媒流路においても、風上側と風下側での熱交換効率が不均一になる現象がある。
そして、伝熱面積を拡大するために、扁平管を送風方向に長くした場合では風下側は熱交換効率が低くなる。例えば、冷媒が不足した冷媒流路が扁平管の風上側に存在し、風下側の冷媒流路に過剰な冷媒が流れている場合、効果的な熱交換が行えず熱交換器全体としての交換熱量を増大できないという課題があった。
このような課題を解決するために、扁平管への冷媒の分配比率を均一にするような構造が検討されてきた。例えば、特開2004−61065号公報(特許文献1)では、扁平管内に冷媒流路を形成するために配置されたコルゲート形状のインナーフィンに複数の冷媒流路が途中で合流するような連通領域を形成することで、扁平管内の冷媒の分配比率の偏りを防ぐ構造が開示されている。
特開2004−61065号公報
しかしながら、特許文献1に開示されている扁平管は連通領域の上下流のインナーフィンのコルゲート形状の幅(ピッチ)が均一で、しかも連通領域を挟んで対向する上流側の冷媒流路の出口と下流側の冷媒通路の入口が同一形状で相互に向かい合って対称に開口し、更にこれらの出口と入口を結ぶ仮想線が直線状になるように構成されている。
このため、冷媒の流速が大きい場合では冷媒は慣性力によって連通領域を直進してそのまま進行するようになり、相互に対向した冷媒流路に沿って流れる割合が高くなる。このため、連通領域で冷媒の分配比率の偏りがさほど改善されないという課題があった。
尚、分配比率を改善するために連通領域の長さを長くすることが考えられるが、連通領域の長さを長くするとこの領域内ではインナーフィンが存在しないため、扁平管の管壁と冷媒の間の熱伝達が悪くなって熱交換効率が低下するという不具合を生じるようになるのでこの方法は得策ではない。
更に、扁平管は風上側で熱交換効率が高いので、風上側の冷媒流路に気相と液相の混じった冷媒が流れる場合は特に熱交換効率が問題となる。特許文献1にあるような、連通領域の上下流のインナーフィンのコルゲート形状の幅(ピッチ)が均一で、しかも連通領域を挟んで対向する上流側の冷媒流路の出口と下流側の冷媒通路の入口が同一形状で相互に向かい合って対称に開口した構成においては、風上側の冷媒流路に気相と液相の混じった冷媒が流れると、この状態のままの冷媒が扁平管の出口まで流れていく恐れがあり、結果として気相を多く含む冷媒が風上側を流れて熱交換効率を向上できないという課題があった。
本発明の目的は、扁平管内に連通領域を介して形成された複数の冷媒流路間の分配比率の偏りを改善することで熱交換効率を向上した空気熱交換器を提供することにある。
更に本発明の他の目的は、扁平管内に連通領域を介して形成された複数の冷媒流路の内、連通領域の下流でしかも風上側の冷媒流路の熱交換効率を向上した空気熱交換器を提供することにある
本発明の特徴は、扁平管内に冷媒の流れに沿って複数の上流側冷媒流路、連通領域、及び複数の下流側冷媒流路を形成し、少なくとも一つの上流側冷媒通路の出口と下流側冷媒通路の入口をずらして配置したところにある。
本発明の他の特徴は、扁平管内に冷媒の流れに沿って複数の上流側冷媒流路、連通領域、及び複数の下流側冷媒流路を形成し、扁平管の風上側の少なくとも一つの下流側冷媒通路の入口の幅を上流側冷媒流路の出口の幅より狭くしたところにある。
本発明によれば、連通領域において上流側冷媒通路の出口と下流側冷媒通路の入口をずらして配置したので、冷媒流路を通過してきた流速の早い冷媒であっても下流側冷媒流路の入口の壁端面における衝突作用によって冷媒の流れが乱されることで分配比率が改善できるようになるものである。
また、本発明によれば、連通領域において下流側冷媒通路の入口の幅が上流側冷媒通路の出口の幅より狭いため、流れてきた冷媒に含まれる気相は幅が狭い下流側冷媒通路の入口に入りづらく、結果的に幅が狭い下流側冷媒通路の入口には液相が多い冷媒が流入するようになって風上側の冷媒流路の熱交換効率を向上することができるものである。
本発明が適用される空気熱交換器の全体構成を示す外観斜視図である。 本発明の第1の実施形態(実施例1)になる空気熱交換器の扁平管の断面を示す断面図である。 図2のz方向の扁平管の断面を示す断面図である。 図3に示す連通領域での冷媒の挙動を説明する説明図である。 本発明の第2の実施形態(実施例2)になる空気熱交換器の扁平管の断面を示す断面図である。 図5のz方向の扁平管の断面を示す断面図である。 図6に示す連通領域での冷媒の挙動を説明する説明図である。 本発明の第3の実施形態(実施例3)になる空気熱交換器の扁平管の断面を示す断面図である。 図8のz方向の扁平管の断面を示す断面図である。 本発明の第4の実施形態(実施例4)になる空気熱交換器の扁平管の断面を示す断面図である。 図10のz方向の扁平管の断面を示す断面図である。 本発明の第5の実施形態(実施例5)になる空気熱交換器の扁平管の断面を示す断面図である。 図12のz方向の扁平管の断面を示す断面図である。
以下、本発明の実施形態について図を用いて説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
まず、本発明を説明する前に図1を参照しながら本発明が適用される空気熱交換器の基本的な構成について説明する。
図1にあるように空気熱交換器1は図面上において上下にヘッダ3を備え、両ヘッダ3の間を扁平状の扁平管2によって接続されている。扁平管2は両ヘッダ3との間に直交するように複数本、ここでは8本設けられており、ヘッダ3と扁平管2とは内部で冷媒が流通するように夫々冷媒が流れる通路によって連通されている。各扁平管2はこれらに直交するように複数枚、ここでは15枚の伝熱フィン5が取り付けられており、ヘッダ3と伝熱フィン5とはほぼ平行な状態で配置されている。したがって、扁平管2からの熱、或いは冷熱は伝熱フィン5に伝わり、伝熱フィン5から空気に対して熱交換される。
このような空気熱交換器1において、本実施例では下側のヘッダ3から冷媒が扁平管2に供給され、冷媒は扁平管2を上昇しながら上側のヘッダ3に排出される。このような状態において、空気熱交換器1の手前、或いは後方に配置した送風ファンから熱交換器1に空気が送られると、空気は伝熱フィン5や扁平管2との間で冷媒に熱を供給したり、或いは冷媒から熱を吸収したりして熱交換をおこなうものである。
このような空気熱交換器において、次に本発明の具体的な実施形態について詳細に説明する。尚、本発明では複数の実施例を提案している。したがって、参照番号が同一のものは同一の構成要素、或いは同様の機能を有する構成要素を表しているものである。
本発明の第1の実施形態を図2乃至図4に基づき詳細に説明する。本実施例は、扁平管2の冷媒の進行方向から見て途中に形成した連通領域の下流側に形成した下流側冷媒流路の入口の少なくとも1か所の幅を、連通領域の上流側に形成した上流側冷媒流路の出口と異なる幅とし、しかも下流側冷媒流路の入口を上流側冷媒流路の出口に対してずらして配置した場合を示している。更に、本実施例においては風上側と風下側の下流側冷媒流路の入口の幅を上流側冷媒流路の出口の幅より短くしている構成を示している。
図2及び図3は空気熱交換器1の扁平管2及び扁平管2に内装されたコルゲート形状のインナーフィン21、22を示している。図2は一つの扁平管2を冷媒の流れ方向に直交する面で断面したものを示し、図3は扁平管2を冷媒流れ方向に沿った面で断面した、つまり図2のz方向の扁平管の断面を示している。尚、図中の矢印10は送風ファンによって送られる空気の流れを表している。
ここで、図2乃至図4においてx軸方向は空気熱交換器1の幅方向を示し、同様に伝熱フィン5及びヘッダ3の幅方向を示している。また、y軸方向は重力方向を示し、z軸方向は送風ファンによる空気の送風方向を示している。
また、以下で用いる「上流」及び「下流」の表現は、冷媒の流れ方向11に関するもので、下側のヘッダ3から上側のヘッダ3に向かって流れる冷媒の状態位置を示している。したがって、或る地点位置において冷媒の流れが始まる側を「上流」と表現し、冷媒が流れていく側を「下流」と表現している。
同様に、空気の流れにおいても「風上」及び「風下」の表現は、空気の送風方向10に関するもので、空気の流れが始まる側を「風上」と表現し、空気が流れていく側を「風下」と表現している。
図2及び図3においては一つの扁平管2、及びこの扁平管2の内部に設けた上流側インナーフィン21と下流側インナーフィン22を示している。扁平管2は断面が中空矩形状に形成された筒状直方体であり、その内部に複数の上流側冷媒流路6と、複数の下流側冷媒流路7、8とが形成されている。
これらの冷媒流路6、7、8は上流側インナーフィン21と下流側インナーフィン22の2つのコルゲート形状のインナーフィンを扁平管2の内部に介装することで形成されるもので、扁平管2の送風方向の長さに対してコルゲート形状の幅(ピッチ)によってその流路の数が決められる。
ここで、コルゲート形状とは冷媒の流動方向に沿って複数の仕切壁を形成するものであり、冷媒の流動方向に直交する断面が曲線状の波打った複数の仕切壁を形成する形状、三角形が繰り返される複数の仕切壁を形成する形状、矩形が繰り返される複数の仕切壁を形成する形状等を備えるもので、要はこのインナーフィンによって複数の細かい冷媒流路6、7、8が形成されれば良いものである。
そして、図3にあるように扁平管2の上流側には上流側インナーフィン21が設けられ、上流側インナーフィン21の下流側に連通領域23が設けられ、更に連通領域23の下流側に下流側インナーフィン22が設けられている。この連通領域23は扁平管2を冷媒の流動方向に対して直交して横切るように形成されており、この連通領域23には細かい冷媒流路6、7、8は存在しない構成とされている。つまり、インナーフィンの仕切壁が存在しない構成となっている。
したがって、上流側インナーフィン21によって形成された冷媒流路6の入口6Aから流入した冷媒は冷媒流路6を通って上流側インナーフィン21によって形成された冷媒流路6の出口6Bから連通領域23に流出して合流する。連通領域23に流れ出た冷媒は、下流側インナーフィン22によって形成された冷媒流路7、8の入口7A、8Aから冷媒通路7、8を通って下流側インナーフィン22によって形成された冷媒流路7、8の出口7B、8Bから上側のヘッダ3に流出する。尚、上流側インナーフィン21と下流側インナーフィン22は扁平管2の内部に蝋付けによって接合されている。
ここで、コルゲート形状の上流側インナーフィン22によって形成される複数の冷媒流路6の幅(ピッチ)Wは略均一とされている。一方、本実施例においては、下流側インナーフィン22の幅(ピッチ)は、上流側インナーフィン21のコルゲート形状と同じ幅(ピッチ)であるが、半分の幅だけずらして配置する構成としている。したがって、送風方向から見て扁平管2に形成された両側の冷媒流路7はその間の冷媒流路8の幅より半分の幅となって冷媒の流通面積が狭くなっている。
このように、下流側インナーフィン22を半分の幅だけずらした配置することによって、下流側インナーフィン22によって形成される複数の冷媒流路7、8の内で、両側の冷媒流路7をその間の冷媒通路8の幅よりも狭くすることができ、しかも上流側インナーフィン21で形成された冷媒流路6の出口6Bと下流側インナーフィン22で形成された冷媒流路7、8の入口7A、8Aが対称的に対向することがなく、冷媒の流れ方向から見てずれて位置するようになる。
つまり、上流側インナーフィン21によって形成された冷媒流路6の出口6Bを延長した仮想線上に、下流側インナーフィン22によって形成される冷媒流路7,8の入口7A、8Aが冷媒の流れ方向から見て重ならないようにずらされている。
ここで、下流側インナーフィン22によって形成される冷媒流路の両側の幅の狭い冷媒流路7の幅をrとし、この間の冷媒流路8の幅をrとすると、これらの関係はr<rとなる。更に、下流側の冷媒流路8と上流側の冷媒流路6の幅は等しくr=Wである。
図4は扁平管2を流れる冷媒の挙動を説明する図であり、扁平管2の冷媒11の流れ方向に沿ったyz面の断面における連通領域23付近を拡大したものである。まず、扁平管2にヘッダ3から冷媒11が流入するが、このとき、複数の冷媒流路6に流入する冷媒の分配比率は冷媒11が流入するときの環境に依存するため不均一になりやすい。
しかしながら、冷媒11が上流側の冷媒流路6を通過したのち、下流側インナーフィン22と上流側インナーフィン21の間に形成した連通領域23に到達すると、この連通領域23には下流側インナーフィン22と上流側インナーフィン21がないため、冷媒の流動方向に対して直交する方向、すなわちZ軸方向にも移動することができる環境となっている。
そして、上流側冷媒流路6の出口6Bと下流側冷媒流路7、8の出口7A、8Aとは開口部分が冷媒の流れ方向から見て重ならないようにずれているため、上流側冷媒流路6の出口6Bから流れ出た冷媒12(液相及び気相を含む)は下流側冷媒流路7、8の入口7A、8Aの壁端面と衝突する。この入口7A、8Aの壁端面の衝突部分において冷媒は入口7A、8Aの壁端面の存在によってその進行方向を変えられる。
方向を変えられた冷媒は渦を生じたりして乱流となり、この乱流はさらに隣接する冷媒の流れに影響を与えるので、連通領域23内で冷媒の流れは特許文献1の構造に比べて大きく乱れることになる。このため、連通領域23内においては上流側冷媒流路6の出口6Bから流れ出た冷媒の流速や圧力のばらつきが緩和され、下流側冷媒流路7、8の入口7A、8Aに流れ込む冷媒の分配比率の不均一を改善することができる。
また、連通領域23で形成された乱流を含む冷媒の流れは下流側冷媒流路7、8の入口7A、8Aに流れ込むが、乱流を含んでいるので下流側インナーフィン22との間で熱交換効率が向上する効果も期待できる。
更に、気相を多く含む冷媒11は液相に比べて流速が早い傾向があるため、幅が広い冷媒流路8に流入しやすい。そのため、上流側冷媒流路6において空気と熱交換の完了した冷媒の気相は幅が広い冷媒流路8に流入しやすい。一方で、幅の狭い冷媒流路7には液相を多く含む冷媒が毛管力によって流入しやすい。これらの相乗的な作用によって幅の狭い下流側冷媒流路7に液相を多く含む冷媒が多く流れるようになる。
したがって、上流側冷媒流路6の出口6Bと、連通領域23と、幅の狭い下流側冷媒流路7の入口7Aと、幅の広い下流側冷媒流路8の入口8Aは液相と気相を分離して液相を多く含む冷媒を幅の狭い下流側冷媒流路7に送る気相分離機能を備えていることになる。
本実施例においては、扁平管2の風上側と風下側に幅の狭い下流側冷媒流路7が形成されているが、少なくとも風上側に幅の狭い下流側冷媒流路7が形成されるので風上側で液相を多く含む冷媒が多く流れるようになる。これによって、熱交換効率の高い風上側の冷媒流路7に液相を多く含む冷媒が流れることで、熱交換器1全体としての空気と冷媒11の熱交換が効率的に行われる。
ここで、冷媒の流れ方向から見て、扁平管2に内装するインナーフィンの数および連通領域23の数は扁平管2の長さに応じて任意に定めることができる。また、下流側インナーフィン22のコルゲート形状の幅(ピッチ)は上流側インナーフィン21の幅(ピッチ)に比べて狭めても広げてもよいが、実際には狭める方がより望ましい。
一方で、上流側のインナーフィン21と下流側のインナーフィン22の間に形成する連通領域23を大きく広げると、インナーフィン21,22を含む扁平管2と冷媒11の接触面積が低減するため熱交換効率が低下する。そのため、扁平管2の内部に形成する連通領域23の長さは冷媒流路6の幅w及び冷媒流路8の幅rとほぼ同じ長さか、それ以上に設定されている。本実施例では例えば5mmから10mm程度とされている。また、上流側インナーフィン21と下流側インナーフィン22の冷媒流れ方向(Y軸方向)の長さは等しくなくともよく、上流側インナーフィン21を下流側インナーフィン22より長くしてもよい。この場合、下側のヘッダ3から冷媒が流れてくるので上流側インナーフィン21を長くした方が全体の熱交換効率は向上するものである。
尚、本実施例によれば上流側インナーフィン21と下流側インナーフィン22は同一の幅(ピッチ)を有した同一のインナーフィンを用い、一方のインナーフィンを他方のインナーフィンに対して幅の半分だけずらして配置するだけなので製造コストの面からも有利である。
次に本発明の第2の実施形態になる空気熱交換器を詳細に説明する。本実施例は下流側インナーフィン22の風上側の幅を風下側の幅より狭めたインナーフィンを使用している点で実施例1と異なっている。
図5、図6は第2の実施形態になる空気熱交換器1の扁平管2および扁平管2に内装された上流側インナーフィン21および下流側インナーフィン22を示している。図5は冷媒の流れ方向に直交するxz面の断面を示し、図6は冷媒の流れ方向に沿ったyz面の断面を示している。
実施例1と同様に、扁平管2には上流側インナーフィン21と下流側インナーフィン22の2つのコルゲート形状のインナーフィンが内装されて、複数の上流側冷媒流路6と、複数の下流側冷媒流路7、8とが形成されている。
ここで、扁平管内2に各冷媒流路6、7、8を形成するため、冷媒11の流れ方向から見て上流側に均一な幅のコルゲート形状の上流側インナーフィン21を内装し、下流側に上流側インナーフィン21と少なくとも1か所は幅の異なるコルゲート形状を有する下流側インナーフィン22を内装している。そして、この上流側インナーフィン21と下流側インナーフィン22の間に実施例1と同様に連通領域23を設けるようにしている。
上流側インナーフィン21はコルゲート形状の幅(ピッチ)を略均一としているため、上流側インナーフィン21によって形成される冷媒流路6の幅Wは均一となる。一方で、下流側インナーフィン22は、コルゲート形状の風上側の幅(ピッチ)を風下側の幅(ピッチ)に比べて冷媒の流通面積を狭くしている。これにより、下流側の冷媒流路7、8では風上側には幅の狭い冷媒流路7が形成され、風下側は上流側冷媒流路6と同じ幅rの冷媒流路8が形成される。よって、実施例1と同様にr<r2、=Wの関係を有している。
また、実施例1と同様に上流側インナーフィン21によって形成された冷媒流路6の出口6Bを延長した仮想線上に、下流側インナーフィン22によって形成される冷媒流路7,8の入口7A、8Aが冷媒の流れ方向から見て重ならないようにずらされている。
ここで、幅(ピッチ)の狭いインナーフィンと幅(ピッチ)の広いインナーフィンを連続して一体的に形成して扁平管2に内装することも可能であるが、幅(ピッチ)の狭いインナーフィンと幅(ピッチ)の広いインナーフィンを個別に形成し、両者を組み合わせて扁平管2に内装することも可能である。したがって、製造装置、製造コスト等を考慮して適切な方法を採用すればよい。
以上のような構成において、冷媒11が上流側の冷媒流路6を通過したのち、下流側インナーフィン22と上流側インナーフィン21の間に形成した連通領域23に到達すると、この連通領域23には下流側インナーフィン22と上流側インナーフィン21がないため、冷媒の流動方向に対して直交する方向、すなわちZ軸方向にも移動することができる環境となっている。
そして、上流側冷媒流路6の出口6Bと下流側冷媒流路7、8の出口7A、8Aとは開口部分が冷媒の流れ方向から見て重ならないようにずれているため、上流側冷媒流路6の出口6Bから流れ出た冷媒(液相及び気相を含む)は下流側冷媒流路7、8の入口7A、8Aの壁端面と衝突する。この入口7A、8Aの端面の衝突部分において冷媒は入口7A、8Aの壁端面の存在によってその進行方向を変えられる。
方向を変えられた冷媒は渦を生じたりして乱流となり、この乱流はさらに隣接する冷媒の流れに影響を与えるので、連通領域23内で冷媒の流れは特許文献1の構造に比べて大きく乱れることになる。このため、連通領域23内においては上流側冷媒流路6の出口6Bから流れ出た冷媒の流速や圧力のばらつきが緩和され、下流側冷媒流路7、8の入口7A、8Aに流れ込む冷媒の分配比率の不均一を改善することができる。
更に、本実施例の構造においては、以下に説明するように熱交換効率の高い扁平管2の風上側に液相の冷媒が流れるため、熱交換器全体の熱交換効率を高めることができる。図6は扁平管2を流れる冷媒の挙動を説明する図であり、扁平管2の冷媒11の流れ方向に沿ったyz面の断面における連通領域23付近を拡大したものである。
扁平管2の表面の熱伝達率は風下側より風上側の方が高いため、風下側に比べて風上側の方が交換熱量は多くなる。このため、扁平管2の上流側冷媒流路6に均一な分配比率の冷媒が導入されたとしても、冷媒流路6を流れるときに風上側の冷媒11との熱交換が進みやすいため、風上側では冷媒11と空気との熱交換が効率的に進められる。
例えば、熱交換器1を蒸発器として使用する場合、風上側の上流側冷媒流路6を冷媒が通過するとき、液相14の冷媒11が気相15に相変化し、気相15が多い状態で連通領域23に到達する。一方で、風下側の上流側冷媒流路6を通過している冷媒11は熱交換効率が高くないため、液相14が多いまま連通領域23に到達する。
連通領域23に到達した冷媒11は、冷媒流路6に対して直交する方向、すなわちz軸方向にも移動することができる。更に、下流側インナーフィン22によって形成される下流側冷媒流路7、8において、風上側は幅が狭い、つまり冷媒の流通面積を狭くした冷媒流路7となっている。ここで、気相15となった冷媒11は液相14に比べて流速が早いため、幅が狭い冷媒流路7ではなく、風下側の幅の広い冷媒流路8に流入しやすい傾向にある。
このため、空気と熱交換の完了した気相15は熱伝達率の低い風下側の下流側冷媒流路8に流入し易くなる。一方で、幅の狭い下流側冷媒流路7には液相14が毛管力によって流入しやすくなる。これらの相乗的な作用によって幅の狭い下流側冷媒流路7に液相を多く含む冷媒が多く流れるようになる。したがって、熱交換効率の高い風上側の下流側冷媒流路7に液相14が多く流れることで、熱交換器1全体としての空気と冷媒11の熱交換が効率的に行われるようになる。
尚、風上側の幅の狭い下流側冷媒流路7は1か所でなくとも良く任意の数とすることができるが、本実施例では送風方向から見て扁平管2の1/3程度の長さに亘って設けている。発明者等の知見によれば、扁平管2の送風方向から見て風下側は熱交換効率がさほど高くなく、扁平管2の半分程度までが熱交換効率が高いものである。よって、幅の狭い下流側冷媒流路7は風上側から風下側に向かって扁平管2の半分程度の間に設けることが望ましい。
したがって、扁平管2には送風方向において、少なくとも幅の狭い(冷媒の流通面積が狭い)下流側冷媒流路7と幅の広い(冷媒の流通面積が広い)下流側冷媒流路8とが形成されることになる。
次に本発明の第3の実施形態になる空気熱交換器を詳細に説明する。本実施例は下流側インナーフィン22の幅を風上側から風下側に向かって段階的に広めた点で実施例2と異なっている。
図8、図9は第3の実施形態になる空気熱交換器1の扁平管2および扁平管2に内装された上流側インナーフィン21および下流側インナーフィン22を示している。図7は冷媒の流れ方向に直交するxz面の断面を示し、図8は冷媒の流れ方向に沿ったyz面の断面を示している。
実施例2と同様に、上流側インナーフィン21はコルゲート形状の幅(ピッチ)が略一定であるので上流側冷媒流路6の幅は一定となる。一方で、下流側インナーフィン22はコルゲート形状の幅が風下側に比べて風上側は狭くなり、更に風下側に向かって徐々に幅が広がる形状となっている。つまり、下流側冷媒流路7、8の幅を風上側から幅x、幅x、幅xとした場合、x<x<xの関係を備えるように構成されている。また、上流側インナーフィン1の幅Wとの関係は、x1<x2=W<x3となっている。
ここで、幅x1、幅x2、幅xのように幅(ピッチ)の異なるインナーフィン22を連続して一体的に形成して扁平管2に内装することも可能であるが、幅(ピッチ)の異なるインナーフィンを個別に形成し、これらを組み合わせて扁平管2に内装することも可能である。したがって、製造装置、製造コスト等を考慮して適切な方法を採用すればよい。
冷媒の挙動は実施例2にあるような構造の空気熱交換器1と同様の挙動を示し、その効果も実質的に同様である。
すなわち、上流側冷媒流路6の出口6Bと下流側冷媒流路7、8の入口7A、8Aとは開口部分が冷媒の流れ方向から見て重ならないようにずれているため、上流側冷媒流路6の出口6Bから流れ出た冷媒(液相及び気相を含む)は下流側冷媒流路7、8の入口7A、8A、8Cの壁端面と衝突する。この入口7A、8A、8Cの壁端面の衝突部分において冷媒は入口7A、8A、8Cの壁端面の存在によってその進行方向を変えられる。
方向を変えられた冷媒は渦を生じたりして乱流となり、この乱流はさらに隣接する冷媒の流れに影響を与えるので、連通領域23内で冷媒の流れは大きく乱れることになる。このため、連通領域23内においては上流側冷媒流路6の出口6Bから流れ出た冷媒の流速や圧力のばらつきが緩和され、下流側冷媒流路7、8の入口7A、8A、8Cに流れ込む冷媒の分配比率の不均一を改善することができる。
更に、本実施例の構造においては、実施例2で説明したように熱交換効率の高い扁平管2の風上側に液相の冷媒が流れるため、熱交換器全体の熱交換効率を高めることができる。下流側インナーフィン22によって形成される下流側冷媒流路7、8において、風上側は幅が狭い冷媒流路7となっている。ここで、冷媒11の気相は液相に比べて流速が早いため、幅が狭い冷媒流路7ではなく、風下側の幅の広い冷媒流路8の入口8A、8Cに流入しやすい傾向にある。
このため、空気と熱交換の完了した気相は熱伝達率の低い風下側の下流側冷媒流路8の入口8A、8Cに流入し易くなる。一方で、幅の狭い下流側冷媒流路7には液相が毛管力によって流入しやすくなる。これらの相乗的な作用によって幅の狭い下流側冷媒流路7に液相を多く含む冷媒が多く流れるようになる。したがって、熱交換効率の高い風上側の下流側冷媒流路7に液相が多く流れることで、熱交換器1全体としての空気と冷媒11の熱交換が効率的に行われるようになる。
本実施例においては、最も幅の広い入口8Cを有する下流側冷媒流路8を扁平管2の最風下側に配置したのは、冷媒中の気相が開口面積の大きい通路に流れることを利用して熱交換にさほど貢献しない最風下側に気相をより集めることを期待したものである。これによって、冷媒の全体からみると風上側の幅の狭い下流側冷媒流路7側に液相が多く含まれた冷媒を流すことができるようになる。したがって、熱交換器1全体としての空気と冷媒11の熱交換が効率的に行われるようになる。
次に本発明の第4の実施形態になる空気熱交換器を詳細に説明する。本実施例は連通領域23Aを風上側から風下側に向かって所定の角度だけ傾けた点で実施例2と異なっている。尚、本実施例では上流側冷媒流路6とこれと同じ幅を有する下流側冷媒通路8はその出口6Bと入口8Aを重なるように対向させている。
図10、図11は第4の実施形態になる空気熱交換器1の扁平管2および扁平管2に内装された上流側インナーフィン21および下流側インナーフィン22を示している。図10は冷媒の流れ方向に直交するxz面の断面を示し、図11は冷媒の流れ方向に沿ったyz面の断面を示している。
実施例2と同様に、上流側インナーフィン21はコルゲート形状の幅(ピッチ)が略一定であるので上流側冷媒流路6の幅は一定となる。一方で、下流側インナーフィン22はコルゲート形状の幅が風下側に比べて風上側は狭くなっている。したがって、少なくとも幅が狭い入口7Aを有する下流側冷媒流路7において冷媒は実施例2と同様の挙動を振る舞うようになる。
すなわち、上流側冷媒流路6の出口6Bと下流側冷媒流路7の入口7Aとは開口部分が冷媒の流れ方向から見て重ならないようにずれているため、上流側冷媒流路6の出口6Bから流れ出た冷媒(液相及び気相を含む)は下流側冷媒流路7の入口7Aの壁端面と衝突する。この入口7Aの壁端面の衝突部分において冷媒は入口7Aの壁端面の存在によってその進行方向を変えられる。
方向を変えられた冷媒は渦を生じたりして乱流となり、この乱流はさらに隣接する冷媒の流れに影響を与えるので、連通領域23A内で冷媒の流れは大きく乱れることになる。このため、連通領域23A内においては上流側冷媒流路6の出口6Bから流れ出た冷媒の流速や圧力のばらつきが緩和され、下流側冷媒流路7の入口7Aに流れ込む冷媒の分配比率の不均一を改善することができる。
更に、本実施例の構造においては、実施例2で説明したように熱交換効率の高い扁平管2の風上側に液相の冷媒が流れるため、熱交換器全体の熱交換効率を高めることができる。下流側インナーフィン22によって形成される下流側冷媒流路7において、風上側は幅が狭い冷媒流路7となっている。ここで、冷媒11の気相は液相に比べて流速が早いため、幅が狭い冷媒流路7ではなく、風下側の幅の広い冷媒流路8の入口8Aに流入しやすい傾向にある。
このため、空気と熱交換の完了した気相は熱伝達率の低い風下側の下流側冷媒流路8の入口8Aに流入し易くなる。一方で、幅の狭い下流側冷媒流路7には液相が毛管力によって流入しやすくなる。これらの相乗的な作用によって幅の狭い下流側冷媒流路7に液相を多く含む冷媒が多く流れるようになる。したがって、熱交換効率の高い風上側の下流側冷媒流路7に液相が多く流れることで、熱交換器1全体としての空気と冷媒11の熱交換が効率的に行われるようになる。
尚、上流側冷媒流路6とこれと同じ幅を有する下流側冷媒通路8はその出口6Bと入口8Aを冷媒の流れ方向から見て重なるように対向させているので、冷媒は速度を落とさないでそのまま進行していく割合が多くなるが、風下側は上述したようにさほど熱交換効率が高くないので大きな問題とならない。その代りこの部分は冷媒の流速が速いので、幅が狭い入口7Aで分離された冷媒11の気相を取り込む効果が期待でき、幅が狭い入口7Aを備えた下流側冷媒通路7に液相を多く含む冷媒を送ることができるようになる。
また、本実施例において連通領域23Aは風上側から風下側に冷媒の進行方向に向かって所定の角度を備えて傾斜して形成されている。このため、送風ファンによって流れる最風上側の連通領域23Aを流れる空気はその進行方向において、徐々に連通領域23Aがずれていくことになるので扁平管2の局所的な熱交換効率の低下を防ぐことができる。つまり、連通領域23Aは冷媒11と扁平管2との接触面積が小さいため熱交換効率が高くない。このため実施例2のように連通領域23Aと空気10の流れが平行であると、局所的に空気10と扁平管2の熱交換効率が低下する。しかし、本実施例のように連通流路23Aが空気10の流れ方向に対して傾いていることで扁平管2の局所的な熱交換効率の低下を防ぐことができる。
尚、図11にある幅の広い下流側冷媒流路8は第2実施例にあるように、上流側インナーフィン21によって形成された冷媒流路6の出口6Bを延長した仮想線上に、下流側インナーフィン22によって形成される幅の広い冷媒流路8の入口8Aが冷媒の流れ方向から見て重ならないようにずらされるように構成しても良い。
次に本発明の第5の実施形態になる空気熱交換器を詳細に説明する。本実施例は幅の狭い下流側冷媒流路7、幅が上流側冷媒流路6の出口6Bと同じ下流側冷媒流路8、及び上流側冷媒流路と下流側冷媒通路を連続して形成した連続冷媒流路9を設けた点で実施例2と異なっている。
図12、図13は第5の実施形態になる空気熱交換器1の扁平管2および扁平管2に内装された上流側インナーフィン21および下流側インナーフィン22を示している。図12は冷媒の流れ方向に直交するxz面の断面を示し、図13は冷媒の流れ方向に沿ったyz面の断面を示している。
ここで、上流側の冷媒流路6と下流側の冷媒流路7は2つのインナーフィンを用いて別々に形成していなくともよく、一体のインナーフィン20に風上側から風下側に向かって所定の範囲にわたって連続する連通領域23を形成されている。このとき、連通領域23はインナーフィン20の風上側に形成し、上流側の冷媒流路6と下流側の冷媒流路7を形成する。風下側は、扁平管2の下端から上端まで連通し、互いに独立する冷媒流路9を形成する。また、下流側冷媒流路7は風上側で幅が狭く、これより風下側で広い幅を有する冷媒流路8として構成されている。尚、本実施例では上流側冷媒流路6とこれと同じ幅を有する下流側冷媒通路8はその出口6Bと入口8Aを重なるように対向させている。
そして、本実施例において上流側インナーフィン21はコルゲート形状の幅(ピッチ)が略一定であるので上流側冷媒流路6の幅は一定となる。一方で、インナーフィン20のコルゲート形状の幅が風下側に比べて風上側は狭くなっている。したがって、少なくとも幅が狭い入口7Aを有する下流側冷媒流路7において冷媒は実施例2と同様の挙動を振る舞うようになる。
すなわち、上流側冷媒流路6の出口6Bと下流側冷媒流路7の入口7Aとは開口部分が冷媒の流れ方向から見て重ならないようにずれているため、上流側冷媒流路6の出口6Bから流れ出た冷媒(液相及び気相を含む)は下流側冷媒流路7の入口7Aの壁端面と衝突する。この入口7Aの壁端面の衝突部分において冷媒は入口7Aの壁端面の存在によってその進行方向を変えられる。
方向を変えられた冷媒は渦を生じたりして乱流となり、この乱流はさらに隣接する冷媒の流れに影響を与えるので、連通領域23内で冷媒の流れは大きく乱れることになる。このため、連通領域23内においては上流側冷媒流路6の出口6Bから流れ出た冷媒の流速や圧力のばらつきが緩和され、下流側冷媒流路7の入口7Aに流れ込む冷媒の分配比率の不均一を改善することができる。
更に、本実施例の構造においては、実施例2で説明したように熱交換効率の高い扁平管2の風上側に液相の冷媒が流れるため、熱交換器全体の熱交換効率を高めることができるインナーフィン20によって形成される下流側冷媒流路7において、風上側は幅が狭い冷媒流路7となっている。ここで、冷媒11の気相は液相に比べて流速が早いため、幅が狭い冷媒流路7ではなく、風下側の幅の広い冷媒流路8の入口8Aに流入しやすい傾向にある。
このため、空気と熱交換の完了した気相は熱伝達率の低い風下側の下流側冷媒流路8の入口8Aに流入し易くなる。一方で、幅の狭い下流側冷媒流路7には液相が毛管力によって流入しやすくなる。これらの相乗的な作用によって幅の狭い下流側冷媒流路7に液相を多く含む冷媒が多く流れるようになる。したがって、熱交換効率の高い風上側の下流側冷媒流路7に液相が多く流れることで、熱交換器1全体としての空気と冷媒11の熱交換が効率的に行われるようになる。
上流側冷媒流路6とこれと同じ幅を有する下流側冷媒通路8はその出口6Bと入口8Aを冷媒の流れ方向から見て重なるように対向させているので、冷媒は速度を落とさないでそのまま進行していく割合が多くなるが、風下側は上述したようにさほど熱交換効率が高くないので大きな問題とならない。その代り、この部分は冷媒の流速が速いので、幅が狭い入口7Aで分離された冷媒11の気相を取り込む効果が期待でき、幅が狭い入口7Aを備えた下流側冷媒通路7に液相を多く含む冷媒を送ることができるようになる。
尚、扁平管2の風下側は熱伝達効率が低いため、風上側の冷媒流路7を流れる冷媒11に対して分配比率が不均一であっても熱交換器1全体に対する熱交換効率への影響は小さいのでさほど問題とならない。
本実施例においては、扁平管2に内装するインナーフィン20を一体で形成しているため、インナーフィン20を扁平管2にロー付けする際の取り扱いが容易になり、上流側冷媒流路6と下流側冷媒流路7の間に形成する連通う領域23の幅を均一に保つことができ、熱交換器1に配置する複数の扁平管2の品質を均一に保つことができる。このとき、扁平管2の内部を連通する冷媒流路9の数は1か所以上で任意に定めることができる。
最後に、本発明においては複数の実施例を提案したが、夫々の実施例を単独で実施しても良いし、更に2つ以上の実施例を適宜組み合わせてより適切な実施例とすることも可能である。
1…空気熱交換器、2…扁平管、3…ヘッダ、5…伝熱フィン、6…上流側冷媒流路、6A…入口、6B…出口、7…幅の狭い下流側冷媒流路、8…幅の広い下流側冷媒流路、7A、8A…入口、7B、8B…入口、9…独立連通冷媒流路、10…送風方向、11、12…冷媒、14…液相冷媒、15…気相冷媒、20…連続インナーフィン、21…上流側インナーフィン、22…下流側インナーフィン、23…連通領域。

Claims (13)

  1. 扁平管内に設けられ、冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の上流側冷媒流路を形成する上流側インナーフィンと、
    前記扁平管内に設けられ、前記夫々の上流側冷媒流路の下流において前記夫々の上流側冷媒流路の出口を繋ぐと共に前記仕切壁が存在しない連通領域と、
    前記扁平管内に設けられ、前記連通領域の下流において冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の下流側冷媒流路を形成する下流側インナーフィンとよりなり、
    前記下流側冷媒流路の少なくとも一つの前記下流側冷媒流路の入口と前記上流側冷媒流路の出口とは冷媒の流れから見てずれて重ならない位置に配置されていると共に
    前記扁平管の風上側の前記下流側冷媒流路は風下側の前記下流側冷媒流路より狭く構成されていることを特徴とする空気熱交換器
  2. 請求項1に記載の空気熱交換器において
    前記上流側インナーフィンと前記下流側インナーフィンの仕切壁の幅(ピッチ)は略同一であって、前記上流側インナーフィンに対して前記下流側インナーフィンは冷媒の流れから見てずれて配置されていることを特徴とする空気熱交換器
  3. 請求項1或いは請求項2に記載の空気熱交換器において
    前記上流側インナーフィンと前記下流側インナーフィンは、冷媒の流動方向に直交する断面が曲線状の波打った複数の仕切壁を形成する形状、三角形が繰り返される複数の仕切壁を形成する形状、矩形が繰り返される複数の仕切壁を形成する形状の少なくとも一つであることを特徴とする空気熱交換器
  4. 請求項2に記載の空気熱交換器において、
    前記上流側インナーフィンに対して前記下流側インナーフィンは冷媒の流れから見て前記下流側インナーフィンの幅の半分の幅だけずれて配置されていることを特徴とする空気熱交換器
  5. 扁平管内に設けられ、冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の上流側冷媒流路を形成する上流側インナーフィンと、
    前記扁平管内に設けられ、前記夫々の上流側冷媒流路の下流において前記夫々の上流側冷媒流路の出口を繋ぐと共に前記仕切壁が存在しない連通領域と
    前記扁平管内に設けられ、前記連通領域の下流において冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の下流側冷媒流路を形成する下流側インナーフィンとよりなり
    前記扁平管の風上側の前記下流側冷媒流路は風下側の前記下流側冷媒流路、及び前記上流側冷媒流路より狭く構成されていることを特徴とする空気熱交換器
  6. 請求項5に記載の空気熱交換器において
    前記上流側インナーフィンと前記下流側インナーフィンは、冷媒の流動方向に直交する断面が曲線状の波打った複数の仕切壁を形成する形状、三角形が繰り返される複数の仕切壁を形成する形状、矩形が繰り返される複数の仕切壁を形成する形状の少なくとも一つであることを特徴とする空気熱交換器
  7. 請求項6に記載の空気熱交換器において
    前記扁平管の風上側から見て前記扁平管の1/3〜1/2の範囲にある前記下流側冷媒流路は風下側の前記下流側冷媒流路、及び前記上流側冷媒流路より狭く構成されていることを特徴とする空気熱交換器
  8. 請求項5に記載の空気熱交換器において
    前記風下側の前記下流側冷媒流路と前記上流側冷媒流路はほぼ同じ大きさでることを特徴とする空気熱交換器
  9. 扁平管内に設けられ、冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の上流側冷媒流路を形成する上流側インナーフィンと
    前記扁平管内に設けられ、前記夫々の上流側冷媒流路の下流において前記夫々の上流側冷媒流路の出口を繋ぐと共に前記仕切壁が存在しない連通領域と
    前記扁平管内に設けられ、前記連通領域の下流において冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の下流側冷媒流路を形成する下流側インナーフィンとよりなり
    前記下流側冷媒流路は冷媒の流通路面積が狭い第1の下流側冷媒流路と冷媒の流通路面積が広い第2下流側冷媒流路とから構成され、前記第1の下流側冷媒流路は前記扁平管の風上側に配置されると共に
    前記第1の下流側冷媒流路と前記第2下流側冷媒流路の入口と前記上流側冷媒流路の前記出口とは冷媒の流れから見てずれて重ならない位置に配置されていることを特徴とする空気熱交換器
  10. 扁平管内に設けられ、冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の上流側冷媒流路を形成する上流側インナーフィンと
    前記扁平管内に設けられ、前記夫々の上流側冷媒流路の下流において前記夫々の上流側冷媒流路の出口を繋ぐと共に前記仕切壁が存在しない連通領域と
    記扁平管内に設けられ、前記連通領域の下流において冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の下流側冷媒流路を形成する下流側インナーフィンとよりなり
    前記下流側冷媒流路は冷媒の流通路面積が狭い第1の下流側冷媒流路と冷媒の流通路面積が広い第2下流側冷媒流路とから構成され、前記第1の下流側冷媒流路は前記扁平管の風上側に配置されると共に
    前記第2の下流側冷媒流路と前記上流側冷媒流路はほぼ同じ大きさで、かつ前記第2の下流側冷媒流路の入口と前記上流側冷媒流路の前記出口とは冷媒の流れから見て重なる位置に配置されていることを特徴とする空気熱交換器
  11. 請求項9或いは請求項10に記載の空気熱交換器において
    前記連通領域は前記扁平管の風上側から風下側に向けて冷媒の流動方向に所定の角度で傾けて形成されていることを特徴とする空気熱交換器
  12. 扁平管内に設けられ、冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の上流側冷媒流路を形成する上流側インナーフィンと
    前記扁平管内に設けられ、前記夫々の上流側冷媒流路の下流において前記夫々の上流側冷媒流路の出口を繋ぐと共に前記仕切壁が存在しない連通領域と
    前記扁平管内に設けられ、前記連通領域の下流において冷媒の流れ方向に沿って配置された複数の仕切壁によって複数の下流側冷媒流路を形成する下流側インナーフィンとよりなり
    前記下流側冷媒流路は冷媒の流通路面積が狭い第1の下流側冷媒流路、冷媒の流通路面積が広い第2下流側冷媒流路、及び前記上流側冷媒流と連続して形成された連続冷媒流路とから構成され、前記扁平管の風上側から見て前記第1の下流側冷媒流路、前記第2の下流側冷媒流路、前記連続冷媒流路の順で配置されると共に
    前記第2の下流側冷媒流路、前記連続流路及び前記上流側冷媒流路はほぼ同じ大きさで、かつ前記第2の下流側冷媒流路の入口と前記上流側冷媒流路の前記出口とは冷媒の流れから見て重なる位置に配置されていることを特徴とする空気熱交換器
  13. 請求項9、請求項10、及び請求項12のいずれかに記載の空気熱交換器において
    前記上流側インナーフィンと前記下流側インナーフィンは、冷媒の流動方向に直交する断面が曲線状の波打った複数の仕切壁を形成する形状、三角形が繰り返される複数の仕切壁を形成する形状、矩形が繰り返される複数の仕切壁を形成する形状の少なくとも一つであることを特徴とする空気熱交換器
JP2014534102A 2012-09-06 2012-09-06 空気熱交換器 Active JP5775971B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072742 WO2014038038A1 (ja) 2012-09-06 2012-09-06 空気熱交換器

Publications (2)

Publication Number Publication Date
JP5775971B2 true JP5775971B2 (ja) 2015-09-09
JPWO2014038038A1 JPWO2014038038A1 (ja) 2016-08-08

Family

ID=50236688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014534102A Active JP5775971B2 (ja) 2012-09-06 2012-09-06 空気熱交換器

Country Status (2)

Country Link
JP (1) JP5775971B2 (ja)
WO (1) WO2014038038A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107667061A (zh) * 2015-04-22 2018-02-06 Tgw机械有限公司 用于将件货存入货架中的方法和仓库系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531357B2 (ja) * 2014-07-16 2019-06-19 いすゞ自動車株式会社 コルゲートフィン式熱交換器
CN108627034A (zh) * 2017-03-25 2018-10-09 董广计 一种多通路平行分流的热交换器
JP6787301B2 (ja) * 2017-11-28 2020-11-18 株式会社デンソー 熱交換器のチューブ及び熱交換器
JP2019168171A (ja) * 2018-03-23 2019-10-03 サンデンホールディングス株式会社 熱交換器
JP6822525B2 (ja) * 2019-06-28 2021-01-27 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
US20250079109A1 (en) * 2022-08-19 2025-03-06 John Canazon X-Ray Tube with Corrugated Wall

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336861Y2 (ja) * 1974-12-05 1978-09-07
JPH04332393A (ja) * 1991-01-29 1992-11-19 Nippondenso Co Ltd 熱交換装置
JPH1047883A (ja) * 1996-07-30 1998-02-20 Mitsubishi Materials Corp 熱交換器
JPH11223398A (ja) * 1998-02-09 1999-08-17 Sanyo Electric Co Ltd 熱機関用の熱交換器
JP2002107082A (ja) * 2000-09-28 2002-04-10 Calsonic Kansei Corp 熱交換器用インナーフィン
JP2003042677A (ja) * 2001-07-27 2003-02-13 Calsonic Kansei Corp 熱交換器用インナーフィン
JP2004061065A (ja) * 2002-07-31 2004-02-26 Calsonic Kansei Corp 熱交換器のコア

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107667061A (zh) * 2015-04-22 2018-02-06 Tgw机械有限公司 用于将件货存入货架中的方法和仓库系统
US10710803B2 (en) 2015-04-22 2020-07-14 Tgw Mechanics Gmbh Method for transferring part-load consignments to a storage rack for storage, and storage system
CN107667061B (zh) * 2015-04-22 2020-07-24 Tgw机械有限公司 用于将件货存入货架中的方法和仓库系统

Also Published As

Publication number Publication date
JPWO2014038038A1 (ja) 2016-08-08
WO2014038038A1 (ja) 2014-03-13

Similar Documents

Publication Publication Date Title
JP5775971B2 (ja) 空気熱交換器
JP6664558B1 (ja) 熱交換器、熱交換器を備えた空気調和装置、および熱交換器を備えた冷媒回路
JP5071597B2 (ja) 熱交換器および空気調和機
US20060237178A1 (en) Heat exchanger
US20120103583A1 (en) Heat exchanger and fin for the same
JP5585543B2 (ja) 車両用冷却装置
US6431264B2 (en) Heat exchanger with fluid-phase change
JP2005083715A (ja) 熱交換器
JP4760542B2 (ja) 熱交換器
CN104011495A (zh) 热交换器
JP2008082672A (ja) 熱交換器
JP2010107130A (ja) 熱交換器ユニット及びこれを使用する空気調和機の室内機
JP2001304719A (ja) モジュール形多重流路扁平管蒸発器
WO2019031155A1 (ja) 熱交換器
CN101153771A (zh) 用于热交换器的板
JP5508818B2 (ja) エバポレータ
JP6897635B2 (ja) 水熱交換器
JP2007187435A (ja) 熱交換器
JP2008064457A (ja) 熱交換器
JPH0460387A (ja) 積層形熱交換器
JP2005308311A (ja) フィンチューブ
JP7006626B2 (ja) 熱交換器
JP2011158130A (ja) 熱交換器
JP7137832B2 (ja) 熱伝達装置
JP2011163621A (ja) 熱交換器

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5775971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250