[go: up one dir, main page]

JP5773693B2 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP5773693B2
JP5773693B2 JP2011060604A JP2011060604A JP5773693B2 JP 5773693 B2 JP5773693 B2 JP 5773693B2 JP 2011060604 A JP2011060604 A JP 2011060604A JP 2011060604 A JP2011060604 A JP 2011060604A JP 5773693 B2 JP5773693 B2 JP 5773693B2
Authority
JP
Japan
Prior art keywords
power
power supply
coil
coils
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011060604A
Other languages
Japanese (ja)
Other versions
JP2012200032A (en
Inventor
和義 加々美
和義 加々美
堀内 学
学 堀内
田中 信吾
信吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2011060604A priority Critical patent/JP5773693B2/en
Priority to EP12761337.0A priority patent/EP2688181B1/en
Priority to PCT/JP2012/056239 priority patent/WO2012128093A1/en
Priority to CN2012800141615A priority patent/CN103477533A/en
Publication of JP2012200032A publication Critical patent/JP2012200032A/en
Priority to US14/027,703 priority patent/US9443651B2/en
Application granted granted Critical
Publication of JP5773693B2 publication Critical patent/JP5773693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、給電システムに係り、特に、給電側コイルから受電側コイルに非接触で電力を供給する給電システムに関するものである。   The present invention relates to a power feeding system, and more particularly to a power feeding system that supplies power from a power feeding side coil to a power receiving side coil in a contactless manner.

上述した給電システムとして、例えば図15及び図16に示すものが知られている(特許文献1、2)。同図に示すように、給電システム1は、給電部3と、受電部5と、を備えている。上記給電部3は、電力が供給される給電側ループアンテナ6と、給電側ループアンテナ6に対してその中心軸方向に対向するように離間して配置され当該給電側ループアンテナ6に電磁結合された給電側ヘリカルコイル7(=給電側コイル)と、が設けられている。上記給電側ループアンテナ6に電力が供給されると、その電力が電磁誘導により給電側ヘリカルコイル7に送られる。   As the power feeding system described above, for example, those shown in FIGS. 15 and 16 are known (Patent Documents 1 and 2). As shown in FIG. 1, the power supply system 1 includes a power supply unit 3 and a power reception unit 5. The power feeding unit 3 is arranged to be separated from the power feeding side loop antenna 6 to which power is supplied, so as to face the power feeding side loop antenna 6 in the central axis direction, and is electromagnetically coupled to the power feeding side loop antenna 6. And a power supply side helical coil 7 (= power supply side coil). When power is supplied to the power feeding side loop antenna 6, the power is sent to the power feeding side helical coil 7 by electromagnetic induction.

上記受電部5は、給電側ヘリカルコイル7に対してその中心軸方向に対向するように離間して配置されると電磁共鳴する受電側ヘリカルコイル8(=受電側コイル)と、この受電側ヘリカルコイル8に対してその中心軸方向に対向するように離間して配置され当該受電側ヘリカルコイル8に電磁結合された受電側ループアンテナ9と、が設けられている。給電側ヘリカルコイル7に電力が送られると、その電力が磁界の共鳴によって受電側ヘリカルコイル8にワイヤレスで送られる。   The power receiving unit 5 includes a power receiving side helical coil 8 (= power receiving side coil) that electromagnetically resonates when the power receiving unit 5 is spaced apart from the power feeding side helical coil 7 so as to face the central axis direction thereof, and the power receiving side helical coil. There is provided a power receiving side loop antenna 9 which is disposed so as to be opposed to the coil 8 in the central axis direction and is electromagnetically coupled to the power receiving side helical coil 8. When power is sent to the power supply side helical coil 7, the power is wirelessly sent to the power receiving side helical coil 8 by magnetic field resonance.

さらに、受電側ヘリカルコイル8に電力が送られると、その電力が電磁誘導によって受電側ループアンテナ9に送られ、この受電側ループアンテナ9に接続された負荷に供給される。上述した給電システム1によれば、給電側ヘリカルコイル7と受電側ヘリカルコイル8との電磁共鳴により非接触で給電側から受電側に電力を供給することができる。   Further, when power is sent to the power receiving side helical coil 8, the power is sent to the power receiving side loop antenna 9 by electromagnetic induction and supplied to a load connected to the power receiving side loop antenna 9. According to the power feeding system 1 described above, electric power can be supplied from the power feeding side to the power receiving side in a non-contact manner by electromagnetic resonance between the power feeding side helical coil 7 and the power receiving side helical coil 8.

そして、上述した受電部5を自動車4に設け、給電部3を道路2などに設けることにより、上述した給電システム1を利用してワイヤレスで自動車4に搭載された負荷に電力を供給することが考えられている。ところで、上述した給電システム1においては、給電側ヘリカルコイル7の中心軸C1と、受電側ヘリカルコイル8の中心軸C2と、が同軸となるように、自動車4を停車させることは難しく、図17に示すように中心軸C1、C2にずれdが生じることがある。 Then, by providing the power receiving unit 5 described above in the automobile 4 and providing the power feeding unit 3 in the road 2 or the like, it is possible to supply power to the load mounted on the automobile 4 wirelessly using the power feeding system 1 described above. It is considered. Incidentally, in the power supply system 1 described above, the center axis C 1 of the feed-side helical coil 7, the central axis C 2 of the power receiving helical coil 8, but so as to be coaxial, thereby stopping the car 4 is difficult, As shown in FIG. 17, there may be a deviation d between the central axes C 1 and C 2 .

本発明者らは、上述した図16に示す給電システム1である従来品において、上述した受電側ヘリカルコイル8を図16中のX方向に移動して、中心軸C1、C2のずれdxを0mm〜2.3d1mmの範囲で変化させたときの受電側ループアンテナ9の伝送効率をシミュレーションした。結果を図3の点線で示す。 In the conventional product that is the power feeding system 1 shown in FIG. 16, the present inventors move the power receiving side helical coil 8 in the X direction in FIG. 16, and the shift dx between the central axes C 1 and C 2 . The transmission efficiency of the power-receiving-side loop antenna 9 was simulated when the value was changed in the range of 0 mm to 2.3 d 1 mm. The result is shown by the dotted line in FIG.

なお、このとき受電側ループアンテナ9としては径R12が0.5d1mmのものを用い、受電側ヘリカルコイル8としては径R22がd1mmのものを用いている。また、給電側ループアンテナ6としては径R11が2.67d1mmのものを用い、給電側ヘリカルコイル7としては径R21が3d1mmのものを用いている。即ち、給電側ヘリカルコイル7の径R21は受電側ヘリカルコイル8の径R22のおよそ3倍となる。さらに、給電側ヘリカルコイル7と受電側ヘリカルコイル8との距離L1は0.67d1mmに固定し、給電側ループアンテナ6、受電側ループアンテナ9の特性インピーダンスは、何れも50Ωとしている。 At this time the diameter R 12 is as a power receiving side loop antenna 9 is used as the 0.5d 1 mm, the diameter R 22 is as power receiving helical coil 8 is used as the d 1 mm. In addition, a power supply side loop antenna 6 having a diameter R 11 of 2.67 d 1 mm is used, and a power supply side helical coil 7 having a diameter R 21 of 3 d 1 mm is used. That is, the diameter R 21 of the power supply side helical coil 7 is approximately three times the diameter R 22 of the power reception side helical coil 8. Further, the distance L 1 between the power supply side helical coil 7 and the power reception side helical coil 8 is fixed to 0.67 d 1 mm, and the characteristic impedances of the power supply side loop antenna 6 and the power reception side loop antenna 9 are both 50Ω.

図3に示すように、中心軸C1、C2のずれdxが0mm〜d1mmであれば、伝送効率は100%近くになるが、中心軸C1、C2のずれdxがd1mmを超える伝送効率が低下しはじめ、ずれdxが大きくなるに従って伝送効率の低下も大きくなる、という問題があった。 As shown in FIG. 3, if the deviation dx between the central axes C 1 and C 2 is 0 mm to d 1 mm, the transmission efficiency is nearly 100%, but the deviation dx between the central axes C 1 and C 2 is d 1. There has been a problem that the transmission efficiency exceeding mm begins to decrease, and the transmission efficiency decreases as the deviation dx increases.

また、本発明者らは、上述した図16に示す給電システム1において、上述した受電側ヘリカルコイル8を図16中のXY平面上において中心軸C1、C2のずれ(dx、dy)を0mm≦dx≦1.5d1mm、0≦dy≦1.5d1mmの範囲で変化させたときの受電側ループアンテナ9の伝送効率をシミュレーションした。結果を図18に示す。 In addition, in the power feeding system 1 shown in FIG. 16 described above, the inventors of the above-described power-receiving-side helical coil 8 shift the deviation (dx, dy) between the central axes C 1 and C 2 on the XY plane in FIG. The transmission efficiency of the power-receiving-side loop antenna 9 when changing in the range of 0 mm ≦ dx ≦ 1.5 d 1 mm and 0 ≦ dy ≦ 1.5 d 1 mm was simulated. The results are shown in FIG.

同図に示すように、中心軸C1、C2のずれdx、dyが0mm〜d1mmであれば、伝送効率は100%近くになるが、中心軸C1、C2のずれdx、dyがd1mmを超える伝送効率が低下しはじめ、ずれxが大きくなるに従って伝送効率の低下も大きくなる、という問題があった。 As shown in the figure, if the deviations dx and dy of the central axes C 1 and C 2 are 0 mm to d 1 mm, the transmission efficiency is close to 100%, but the deviations dx of the central axes C 1 and C 2 There is a problem that the transmission efficiency when dy exceeds d 1 mm begins to decrease, and the decrease in transmission efficiency increases as the deviation x increases.

また、特許文献3には、給電側コイルを自動車の進行方向に沿って複数並べて配置する給電システムが提案されている。この給電システムは、複数の給電側コイルのうち自動車の進行方向後ろ側から前側に向かって1つづつ順次電力を給電させて、自動車を進行方向に向かって移動させるものであり、自動車を停車したまま給電できるものではない。   Further, Patent Document 3 proposes a power feeding system in which a plurality of power feeding coils are arranged side by side along the traveling direction of an automobile. In this power feeding system, electric power is sequentially fed one by one from the rear side to the front side in the traveling direction of the automobile among the plurality of feeding side coils, and the automobile is moved in the traveling direction, and the automobile is stopped. It cannot be fed as it is.

特開2010−124522号公報JP 2010-124522 A 特開2010−68657号公報JP 2010-68657 A 特開2009−71909号公報JP 2009-71909 A

そこで、本発明は、給電側コイルと受電側コイルとの中心軸のずれに起因する伝送効率の低下を抑制し、給電部から受電部へ高効率で電力を供給することができる給電システムを提供することを課題とする。   Therefore, the present invention provides a power feeding system that can suppress a reduction in transmission efficiency due to a shift of the central axis between the power feeding side coil and the power receiving side coil and can supply power from the power feeding unit to the power receiving unit with high efficiency. The task is to do.

上述した課題を解決するための請求項1記載の発明は、電力が供給される複数の給電側コイルと、前記複数の給電側コイルに対してその中心軸方向に対向するように離間して配置されると当該給電側コイルと電磁共鳴して前記給電側コイルからの電力が伝送される受電側コイルと、前記複数の給電側コイルのうち前記受電側コイルに最も近い位置に配置されている1つを近接コイルとして検出する位置検出手段と、前記複数の給電側コイルのうち前記位置検出手段により検出された前記近接コイルのみ電力を供給する第1電力供給手段と、前記複数の給電側コイルに順次電力を供給する第2電力供給手段と、前記各給電側コイルでの前記電力の反射波を検出する反射波検出手段と、備え、前記位置検出手段が、前記複数の給電側コイルのうち、前記第2電力供給手段による電力供給中に前記反射波検出手段により検出された反射波が最も小さいものを前記近接コイルとして検出することを特徴とする給電システムに存する。 The invention according to claim 1 for solving the above-described problem is arranged such that a plurality of power supply side coils to which electric power is supplied are spaced apart from the plurality of power supply side coils so as to face the central axis direction. Then, the power receiving side coil that is electromagnetically resonated with the power feeding side coil and the power from the power feeding side coil is transmitted, and of the plurality of power feeding side coils, 1 is disposed closest to the power receiving side coil. Position detecting means for detecting one as a proximity coil, first power supply means for supplying power only to the proximity coil detected by the position detection means among the plurality of power supply side coils, and the plurality of power supply side coils A second power supply means for sequentially supplying power; and a reflected wave detection means for detecting a reflected wave of the power at each of the power supply side coils, wherein the position detection means is one of the plurality of power supply side coils. It consists in power supply system and detecting those reflected wave detected smallest by the reflected wave detection means during power supply by the second power supply unit as the proximity coil.

請求項記載の発明は、前記給電側コイル及び前記受電側コイルが、円形のヘリカル状に形成され、前記複数の給電側コイルは、互いに一部が重ねられるように配置されていることを特徴とする請求項に記載の給電システムに存する。 The invention according to claim 2 is characterized in that the power feeding side coil and the power receiving side coil are formed in a circular helical shape, and the plurality of power feeding side coils are arranged so as to partially overlap each other. It exists in the electric power feeding system of Claim 1 .

請求項記載の発明は、前記給電側コイル及び前記受電側コイルが、四角形のスパイラル状に形成され、前記複数の給電側コイルが、同一平面上に互いに離間して配置されていることを特徴とする請求項に記載の給電システムに存する。 According to a third aspect of the present invention, the power feeding side coil and the power receiving side coil are formed in a square spiral shape, and the plurality of power feeding side coils are arranged apart from each other on the same plane. It exists in the electric power feeding system of Claim 1 .

以上説明したように請求項1記載の発明によれば、給電側コイルを複数設けることにより、給電側コイルと受電側コイルとの中心軸のずれによって生じる伝送効率の低下を抑制することができる。しかも、第1電力給電手段が、複数の給電側コイルのうち位置検出手段により検出された近接コイルのみ電力を供給することにより、複数の給電側コイルに同時に電力が供給されることによって生じる干渉がなくなり、より一層、給電側コイルと受電側コイルとの中心軸のずれによって生じる伝送効率の低下を抑制することができる。このため、給電部から受電部へ高効率で電力を供給することができる。   As described above, according to the first aspect of the present invention, by providing a plurality of power supply side coils, it is possible to suppress a decrease in transmission efficiency caused by a shift of the central axis between the power supply side coil and the power reception side coil. In addition, since the first power supply unit supplies power only to the proximity coil detected by the position detection unit among the plurality of power supply side coils, there is interference caused by supplying power to the plurality of power supply side coils simultaneously. Accordingly, it is possible to further suppress a decrease in transmission efficiency caused by the shift of the central axis between the power feeding side coil and the power receiving side coil. For this reason, electric power can be supplied from the power feeding unit to the power receiving unit with high efficiency.

請求項記載の発明によれば、位置検出手段が、複数の給電側コイルのうち反射波検出手段により検出された反射波が最も少ないものを近接コイルとして検出するので、受電側コイルに定期的に信号を送信しなくても近接コイルを検出することができ、より一層、高効率で給電部から受電部へ電力を供給することができる。 According to the first aspect of the present invention, since the position detection means detects the least reflected wave detected by the reflected wave detection means from among the plurality of power supply side coils as the proximity coil, The proximity coil can be detected without transmitting a signal to the power source, and power can be supplied from the power feeding unit to the power receiving unit with higher efficiency.

請求項記載の発明によれば、交流電力の供給を互いに隣り合った一方から他方に切り替える地点での伝送効率の低下を抑制することができる。 According to invention of Claim 2, the fall of the transmission efficiency in the point which switches supply of alternating current power from the mutually adjacent one to the other can be suppressed.

請求項記載の発明によれば、複数の給電側コイルの軸方向と直交する平面において、給電側コイルの並び方向及びこの並び方向に直交する方向の双方での給電側コイルと受電側コイルとの中心軸のずれによって生じる伝送効率の低下を抑制することができる。 According to invention of Claim 3, in the plane orthogonal to the axial direction of several electric power feeding side coils, the electric power feeding side coil and electric power receiving side coil in both the arrangement direction of an electric power feeding side coil and the direction orthogonal to this arrangement direction It is possible to suppress a decrease in transmission efficiency caused by a shift of the central axis.

第1参考例における給電システムを示す図である。It is a figure which shows the electric power feeding system in a 1st reference example . (A)及び(B)はそれぞれ、本発明の給電システムを構成する給電部及び受電部の斜視図及び側面図である。(A) And (B) is the perspective view and side view of the electric power feeding part and electric power receiving part which respectively comprise the electric power feeding system of this invention . 図16に示す従来品において中心軸C1、C2のずれxを0mm〜2.3d1mmの範囲内で変化させたときの伝送効率と、図2に示す本発明品Aにおいて中心軸C11、C2のずれdxを0〜3d1mmの範囲内で変化させたときの伝送効率と、をシミュレーションした結果を示すグラフである。In the conventional product shown in FIG. 16, the transmission efficiency when the deviation x of the central axes C 1 and C 2 is changed within the range of 0 mm to 2.3 d 1 mm and the central axis C in the product A of the present invention shown in FIG. 11 is a graph showing a simulation result of transmission efficiency when the deviation dx of C 2 is changed within a range of 0 to 3d 1 mm. 第2参考例における給電システムを示す図である。It is a diagram showing a paper collecting system that put the second reference example. 図4に示す受電側ヘリカルコイルの動作を示すタイムチャートである。It is a time chart which shows operation | movement of the receiving side helical coil shown in FIG. 第1実施形態における本発明の給電システムを示す図である。It is a figure which shows the electric power feeding system of this invention in 1st Embodiment . 第2実施形態における本発明の給電システムを構成する給電部及び受電部の側面図である。It is a side view of the electric power feeding part and power receiving part which comprise the electric power feeding system of this invention in 2nd Embodiment . 図7に示す2つの給電側ヘリカルコイルの重ね幅wを0.17d1mm、0.33d1mm、0.5d1mm、0.67d1mm、0.83d1mmとした本発明品B1〜B5において、中心軸C11、C2のずれdxを0mm〜2.5d1mmの範囲内で変化させたときの伝送効率を示すグラフである。The product B of the present invention in which the overlap width w of the two power supply side helical coils shown in FIG. 7 is 0.17d 1 mm, 0.33d 1 mm, 0.5d 1 mm, 0.67d 1 mm, 0.83d 1 mm in 1 .about.B 5, it is a graph showing a transmission efficiency when the central axis C 11, C 2 shift dx was varied in the range of 0mm~2.5d 1 mm. 図7に示す給電側ヘリカルコイルの重ね幅w=0.5d1mmの本発明品B2において、中心軸C11、C2のずれdy=0mm、0.67d1mm、d1mmに固定した状態で、ずれdx=0mm〜2.3d1mmの範囲で変化させたときの伝送効率を示すグラフである。At the feed side overlapping width of the helical coil w = 0.5d 1 mm of the present invention product B 2 shown in FIG. 7, the center axis C 11, C 2 deviation dy = 0mm, 0.67d 1 mm, the d 1 mm fixed in state is a graph showing a transmission efficiency when changing the range of displacement dx = 0mm~2.3d 1 mm. 第3実施形態における本発明の給電システムを構成する給電部及び受電部の斜視図である。It is a perspective view of the electric power feeding part and power receiving part which comprise the electric power feeding system of this invention in 3rd Embodiment . 第3実施形態における本発明の給電システムを構成する給電部及び受電部の斜視図である。It is a perspective view of the electric power feeding part and power receiving part which comprise the electric power feeding system of this invention in 3rd Embodiment . 比較品における中心軸C11、C2のずれ(dx、dy)と伝送効率との関係を示すグラフである。Deviation of the center axis C 11, C 2 in the comparative product (dx, dy) is a graph showing the relationship between the transmission efficiency. 図10に示す2つの給電側スパイラルコイルの距離L2を0.1d1mm、0.03d1mmとした本発明品C1、C2と、図11に示す2つの給電側スパイラルコイルの重ね幅wを0.17d1mm、0.33d1mm、0.5d1mm、0.67d1mmとした本発明品D1〜D4と、において、中心軸C11、C2のずれdxを0〜2.5d1mmの範囲内で変化させたときの伝送効率を示すグラフである。The products C 1 and C 2 of the present invention in which the distance L 2 between the two power supply side spiral coils shown in FIG. 10 is 0.1d 1 mm and 0.03d 1 mm and the two power supply side spiral coils shown in FIG. the width w of 0.17d 1 mm, 0.33d 1 mm, 0.5d 1 mm, and the present invention product D 1 to D 4 which was 0.67d 1 mm, in deviation of the center axis C 11, C 2 dx which is a graph showing a transmission efficiency when changing within the range of 0~2.5d 1 mm. 図10に示す2つの給電側スパイラルコイルの距離L2=0.03d1mmの本発明品C1において、中心軸C11、C2のずれdy=0mm、0.67d1mm、d1mmに固定した状態で、ずれdx=0mm〜3d1mmの範囲で変化させたときの伝送効率を示すグラフである。In two feeding side distance of the spiral coil L 2 = 0.03d 1 mm of the present inventions C1 shown in FIG. 10, the deviation dy = 0 mm of the center axis C11, C2, 0.67d 1 mm, was fixed to d 1 mm state is a graph showing a transmission efficiency when changing the range of displacement dx = 0mm~3d 1 mm. 従来の給電システムの一例を示す図である。It is a figure which shows an example of the conventional electric power feeding system. (A)及び(B)はそれぞれ、図15に示す給電システムを構成する給電部及び受電部の斜視図及び側面図である。(A) And (B) is the perspective view and side view of the electric power feeding part and electric power receiving part which respectively comprise the electric power feeding system shown in FIG. 従来の給電システムの問題点を説明するための説明図である。It is explanatory drawing for demonstrating the problem of the conventional electric power feeding system. 図16に示す従来品における中心軸C1、C1のずれ(dx、dy)と伝送効率との関係を示すグラフである。Is a graph showing the relationship between the deviation of the center axes C 1, C 1 (dx, dy) and the transmission efficiency in the conventional product shown in FIG. 16.

(第1参考例)
以下、第1参考例における給電システムを図1及び図2に基づいて説明する。図1は、第1参考例における本発明の給電システムを示す図である。図2(A)及び(B)は、本発明の給電システムを構成する給電部及び受電部の斜視図及び側面図である。同図に示すように、給電システム1は、道路2上などに設けられた給電部3と、自動車4の腹部分などに設けられた受電部5と、を備えている。
(First Reference Example)
Hereinafter, the power feeding system in the first reference example will be described with reference to FIGS. 1 and 2. FIG. 1 is a diagram showing a power feeding system according to the present invention in a first reference example . 2A and 2B are a perspective view and a side view of a power feeding unit and a power receiving unit that constitute the power feeding system of the present invention . As shown in the figure, the power feeding system 1 includes a power feeding unit 3 provided on a road 2 and the like, and a power receiving unit 5 provided on an abdomen of an automobile 4 or the like.

給電部3は、図1及び図2に示すように、電力が供給される2つの給電側ループアンテナ6a、6bと、この給電側ループアンテナ6a、6bに対してその中心軸方向に対向するように離間して配置され、給電側ループアンテナ6a、6bに電磁結合された給電側ヘリカルコイル7a、7b(=給電側コイル)と、が設けられている。   As shown in FIGS. 1 and 2, the power feeding unit 3 is opposed to the two power feeding side loop antennas 6 a and 6 b to which power is supplied and the power feeding side loop antennas 6 a and 6 b in the central axis direction. Are provided, and are provided with power supply side helical coils 7a and 7b (= power supply side coils) electromagnetically coupled to the power supply side loop antennas 6a and 6b.

この給電側ループアンテナ6a、6bはそれぞれ、円形のループ状に設けられていて、その中心軸C11及びC12(図2)が道路2から自動車4の腹部分に向かう方向、即ち鉛直方向に沿うように配置されている。上述した給電側ループアンテナ6a、6bには、交流電源V(図1)からの交流電力が供給されている。これら給電側ループアンテナ6a、6bは互いに同一に設けられている。 Each of the feeding-side loop antennas 6a and 6b is provided in a circular loop shape, and its central axes C 11 and C 12 (FIG. 2) are directed from the road 2 toward the abdomen of the automobile 4, that is, in the vertical direction. It is arranged along. AC power from the AC power supply V (FIG. 1) is supplied to the above-described power supply side loop antennas 6a and 6b. These feeding-side loop antennas 6a and 6b are provided in the same manner.

上記給電側ヘリカルコイル7a、7bは、例えば巻線を円形のヘリカル状に巻いて構成されている。この給電側ヘリカルコイル7a、7bの径はそれぞれ、給電側ループアンテナ6a、6bの径よりも大きく設けられている。また、給電側ヘリカルコイル7a、7bは、互いに同一であり、上記給電側ループアンテナ6a、6bの自動車4側に給電側ループアンテナ6a、6bと同軸上に配置されている。本実施形態では、給電側ループアンテナ6a、6bは、給電側ヘリカルコイル7a、7bの最も自動車4から離れた側の巻線と同一平面上に配置されている。   The power supply side helical coils 7a and 7b are configured by winding a winding in a circular helical shape, for example. The diameters of the power supply side helical coils 7a and 7b are larger than the diameters of the power supply side loop antennas 6a and 6b, respectively. The feeding-side helical coils 7a and 7b are identical to each other, and are arranged coaxially with the feeding-side loop antennas 6a and 6b on the side of the automobile 4 of the feeding-side loop antennas 6a and 6b. In the present embodiment, the power supply side loop antennas 6a and 6b are arranged on the same plane as the windings of the power supply side helical coils 7a and 7b farthest from the automobile 4.

これにより、給電側ループアンテナ6a及び給電側ヘリカルコイル7aと、給電側ループアンテナ6b及び給電側ヘリカルコイル7bと、は互いに電磁結合できる範囲内、即ち、給電側ループアンテナ6a、6bに交流電力が供給され、交流電流が流れると給電側ヘリカルコイル7a、7bに電磁誘導が発生するような範囲内で、互いに離間して設けられている。また、上述した給電側ヘリカルコイル7a、7bは、同一平面上に互いにその並び方向Xにおいて距離L2(図2)だけ離間して設けられている。 As a result, the feeding loop antenna 6a and the feeding helical coil 7a and the feeding loop antenna 6b and the feeding helical coil 7b can be electromagnetically coupled to each other, that is, the feeding loop antennas 6a and 6b receive AC power. Provided and separated from each other within a range in which electromagnetic induction occurs in the feeding-side helical coils 7a and 7b when an alternating current flows. Further, the above-described feeding-side helical coils 7a and 7b are provided on the same plane so as to be separated from each other in the arrangement direction X by a distance L 2 (FIG. 2).

上記受電部5は、給電側ヘリカルコイル7a、7bに対してその中心軸方向に対向するように離間して配置されると電磁共鳴する受電側ヘリカルコイル8と、この受電側ヘリカルコイル8に対してその中心軸方向に対向するように配置され受電側ヘリカルコイル8に電磁結合された受電側ループアンテナ9と、が設けられている。   When the power receiving unit 5 is arranged so as to be opposed to the power supply side helical coils 7 a and 7 b in the direction of the central axis, the power receiving unit 5 electromagnetically resonates and the power receiving side helical coil 8 And a power receiving side loop antenna 9 which is disposed so as to face the central axis direction and is electromagnetically coupled to the power receiving side helical coil 8.

上記受電側ループアンテナ9には、図示しない車載バッテリなどの負荷が接続されている。また、受電側ループアンテナ9は、円形のループ状に設けられていて、その中心軸C2(図2)が自動車4の腹部分から道路2に向かう方向、即ち鉛直方向に沿うように配置されている。また、上記受電側ループアンテナ9は、上述した給電側ループアンテナ6a、6bの径よりも小さな径に設けられている。 The power receiving side loop antenna 9 is connected to a load such as an in-vehicle battery (not shown). Further, the power receiving side loop antenna 9 is provided in a circular loop shape, and its central axis C 2 (FIG. 2) is arranged so as to extend from the abdomen of the automobile 4 toward the road 2, that is, along the vertical direction. Yes. The power receiving side loop antenna 9 is provided with a diameter smaller than the diameter of the power feeding side loop antennas 6a and 6b described above.

上記受電側ヘリカルコイル8は、例えば巻線を円形のヘリカル状に巻いて構成されている。この受電側ヘリカルコイル8の径は、上記給電側ヘリカルコイル7a、7bの径よりも小さく、上記受電側ループアンテナ9の径よりも大きく設けられている。即ち、給電側ヘリカルコイル7a、7bの径は、受電側ヘリカルコイル8の径よりも大きくなるように設けられている。また、受電側ヘリカルコイル8は、上述した受電側ループアンテナ9の道路2側に、受電側ループアンテナ9と同軸上に配置されている。本実施形態では、受電側ループアンテナ9は、受電側ヘリカルコイル8の最も道路2から離れた側の巻線と同一平面上に配置されている。   The power receiving side helical coil 8 is configured by winding a winding in a circular helical shape, for example. The diameter of the power receiving side helical coil 8 is smaller than the diameter of the power feeding side helical coils 7 a and 7 b and larger than the diameter of the power receiving side loop antenna 9. That is, the diameters of the power supply side helical coils 7 a and 7 b are set to be larger than the diameter of the power reception side helical coil 8. The power receiving side helical coil 8 is arranged coaxially with the power receiving side loop antenna 9 on the road 2 side of the power receiving side loop antenna 9 described above. In the present embodiment, the power receiving side loop antenna 9 is disposed on the same plane as the winding of the power receiving side helical coil 8 farthest from the road 2.

これにより、受電側ループアンテナ9と受電側ヘリカルコイル8とは、互いに電磁結合する範囲内、即ち、受電側ヘリカルコイル8に交流電流が流れると受電側ループアンテナ9に誘導電流が発生する範囲内に、互いに離間して設けられている。   As a result, the power receiving side loop antenna 9 and the power receiving side helical coil 8 are within a range where they are electromagnetically coupled to each other, that is, within a range where an induction current is generated in the power receiving side loop antenna 9 when an alternating current flows through the power receiving side helical coil 8. Are spaced apart from each other.

上述した給電システム1によれば、自動車4の受電部5が道路2に設けた給電部3に近づいて給電側ヘリカルコイル7a、7bと受電側ヘリカルコイル8とが中心軸方向に互いに間隔を空けて対向したときに、給電側ヘリカルコイル7a、7bと受電側ヘリカルコイル8とが電磁共鳴して給電部3から受電部5に非接触で電力を供給できる。   According to the power feeding system 1 described above, the power receiving unit 5 of the automobile 4 approaches the power feeding unit 3 provided on the road 2, and the power feeding side helical coils 7a and 7b and the power receiving side helical coil 8 are spaced from each other in the central axis direction. Then, the power supply side helical coils 7a and 7b and the power reception side helical coil 8 are electromagnetically resonated, and power can be supplied from the power supply unit 3 to the power reception unit 5 without contact.

詳しく説明すると、上記給電側ループアンテナ6a、6bに交流電流が供給されると、その電力が電磁誘導により給電側ヘリカルコイル7a、7bに送られる。即ち、給電側ヘリカルコイル7a、7bには、給電側ループアンテナ6a、6bを介して電力が供給される。給電側ヘリカルコイル7a、7bに電力が送られると、その電力が磁界の共鳴によって受電側ヘリカルコイル8にワイヤレスで送られる。さらに、受電側ヘリカルコイル8に電力が送られると、その電力が電磁誘導によって受電側ループアンテナ9に送られ、この受電側ループアンテナ9に接続された負荷に供給される。   More specifically, when an alternating current is supplied to the power supply side loop antennas 6a and 6b, the electric power is sent to the power supply side helical coils 7a and 7b by electromagnetic induction. That is, power is supplied to the power supply side helical coils 7a and 7b via the power supply side loop antennas 6a and 6b. When power is sent to the power supply side helical coils 7a and 7b, the power is wirelessly sent to the power receiving side helical coil 8 due to magnetic field resonance. Further, when power is sent to the power receiving side helical coil 8, the power is sent to the power receiving side loop antenna 9 by electromagnetic induction and supplied to a load connected to the power receiving side loop antenna 9.

また、上述した給電システム1は、さらに図1に示すように、給電側ループアンテナ6aと交流電源Vとの間に設けられたスイッチ10aと、給電側ループアンテナ6bと交流電源Vとの間に設けられたスイッチ10bと、これらスイッチ10a、10bのオンオフを制御するCPU11と、受電側ヘリカルコイル8の近傍に配置された送信器12と、2つの給電側ヘリカルコイル7a、7bの近傍にそれぞれ配置された2つの受信器13a及び13bと、を備えている。   Further, as shown in FIG. 1, the above-described power feeding system 1 includes a switch 10 a provided between the power feeding side loop antenna 6 a and the AC power source V, and a power feeding side loop antenna 6 b and the AC power source V. The provided switch 10b, the CPU 11 for controlling on / off of the switches 10a and 10b, the transmitter 12 arranged in the vicinity of the power receiving side helical coil 8, and the two feeding side helical coils 7a and 7b are arranged respectively. Two receivers 13a and 13b.

上記スイッチ10a及び10bは、互いに並列に接続されてる。これにより、スイッチ10aをオンして、スイッチ10bをオフすると、交流電源Vからの交流電力は、給電側ループアンテナ6aのみ供給され、給電側ループアンテナ6bには供給されない。一方、スイッチ10aをオフして、スイッチ10bをオンすると、交流電源Vからの交流電力は、給電側ループアンテナ6bのみに供給され、給電側ループアンテナ6aには供給されない。   The switches 10a and 10b are connected in parallel to each other. Thus, when the switch 10a is turned on and the switch 10b is turned off, the AC power from the AC power supply V is supplied only to the power feeding side loop antenna 6a and not to the power feeding side loop antenna 6b. On the other hand, when the switch 10a is turned off and the switch 10b is turned on, the AC power from the AC power supply V is supplied only to the power supply side loop antenna 6b and not supplied to the power supply side loop antenna 6a.

上記CPU11は、これらスイッチ10a及び10bと、後述する受信器13a及び13bと、に接続されていて、給電部3全体の制御を司る。上記送信器12は、受電側ヘリカルコイル8近傍に配置されるように自動車4の腹部分に設置されている。上記送信器12は、光信号を送信する発光素子や無線信号を送信する送信アンテナと、これら発光素子や送信アンテナを制御する送信回路などから構成されていて、定期的に上記光信号又は無線信号を鉛直下側に向けて送信している。   The CPU 11 is connected to the switches 10a and 10b and receivers 13a and 13b, which will be described later, and controls the entire power feeding unit 3. The transmitter 12 is installed in the abdomen of the automobile 4 so as to be arranged in the vicinity of the power receiving side helical coil 8. The transmitter 12 includes a light emitting element that transmits an optical signal, a transmission antenna that transmits a radio signal, a transmission circuit that controls the light emitting element and the transmission antenna, and the like. Is transmitted vertically downward.

上記受信器13aは、給電側ヘリカルコイル7a近傍に配置されるように道路2上に設置されている。受信器13bは、給電側ヘリカルコイル7b近傍に配置されるように道路2上に設置されている。上記受信器13a及び13bは、それぞれ光信号を受信する受光素子や無線信号を受信する受信アンテナと、この受信素子や受信アンテナが受信した信号を検波する受信回路などから構成されていて、上記送信器12から送られる光信号又は無線信号を受信し、その結果をCPU11に対して出力している。   The receiver 13a is installed on the road 2 so as to be arranged in the vicinity of the power supply side helical coil 7a. The receiver 13b is installed on the road 2 so as to be disposed in the vicinity of the power supply side helical coil 7b. Each of the receivers 13a and 13b includes a light receiving element that receives an optical signal, a receiving antenna that receives a radio signal, a receiving circuit that detects a signal received by the receiving element and the receiving antenna, and the like. The optical signal or radio signal sent from the device 12 is received, and the result is output to the CPU 11.

上記CPU11は、位置検出手段として働き、上記受信器13a及び13bからの受信結果に基づいて2つの給電側ヘリカルコイル7a、7bのうち受電側ヘリカルコイル8に最も近い位置に配置されている1つを近接コイルとして検出する。具体的には、CPU11は、受信器13aが受信した信号レベルが受信器13bが受信した信号レベルよりも高いとき給電側ヘリカルコイル7aを近接コイルとして検出し、受信器13bが受信した信号レベルが受信器13aが受信した信号レベルよりも高いとき給電側ヘリカルコイル7bを近接コイルとして検出する。   The CPU 11 functions as position detection means, and is arranged at a position closest to the power receiving side helical coil 8 out of the two power feeding side helical coils 7a and 7b based on the reception results from the receivers 13a and 13b. Is detected as a proximity coil. Specifically, the CPU 11 detects the power supply side helical coil 7a as a proximity coil when the signal level received by the receiver 13a is higher than the signal level received by the receiver 13b, and the signal level received by the receiver 13b is When the signal level is higher than the signal level received by the receiver 13a, the power supply side helical coil 7b is detected as a proximity coil.

そして、CPU11は、第1電力供給手段として働き、2つの給電側ヘリカルコイル7a及び7bのうち上述したように検出した近接コイルのみに電力を供給するようにスイッチ10a、10bのオンオフを制御する。具体的には、給電側ヘリカルコイル7aが近接コイルとして検出された場合、CPU11は、スイッチ10aをオン、スイッチ10bをオフして給電側ヘリカルコイル7aのみに交流電源Vからの電力が供給されるように制御する。一方、給電側ヘリカルコイル7bが近接コイルとして検出された場合、CPU11は、スイッチ10aをオフ、スイッチ10bをオンして給電側ヘリカルコイル7bのみに交流電源Vからの電力が供給されるように制御する。   Then, the CPU 11 functions as a first power supply unit and controls on / off of the switches 10a and 10b so as to supply power only to the proximity coil detected as described above of the two power supply side helical coils 7a and 7b. Specifically, when the power supply side helical coil 7a is detected as a proximity coil, the CPU 11 turns on the switch 10a, turns off the switch 10b, and the power from the AC power supply V is supplied only to the power supply side helical coil 7a. To control. On the other hand, when the power supply side helical coil 7b is detected as a proximity coil, the CPU 11 turns off the switch 10a and turns on the switch 10b so that the power from the AC power supply V is supplied only to the power supply side helical coil 7b. To do.

上述した給電システム1によれば、給電側ヘリカルコイル7a、7bを複数設けることにより、給電側ヘリカルコイル7a、7bと受電側ヘリカルコイル8との中心軸C1112及びC2のずれによって生じる伝送効率の低下を抑制することができる。しかも、CPU11が、2つの給電側ヘリカルコイル7a、7bのうち1つの近接コイルのみ電力を供給することにより、複数の給電側ヘリカルコイル7a、7bに同時に電力が供給されることによって生じる干渉がなくなり、より一層、給電側ヘリカルコイル7a、7bと受電側ヘリカルコイル8との中心軸C1112及びC2のずれによって生じる伝送効率の低下を抑制することができる。このため、給電部3から受電部5へ高効率で電力を供給することができる。 According to the sheet collecting system 1 described above, the power feeding side helical coil 7a, by providing a plurality of 7b, deviation of the center axis C 11, 12 and C 2 of the feed-side helical coil 7a, 7b and the receiving side helical coil 8 It is possible to suppress a decrease in transmission efficiency caused by the above. In addition, since the CPU 11 supplies power to only one proximity coil of the two power supply side helical coils 7a and 7b, interference caused by simultaneous power supply to the plurality of power supply side helical coils 7a and 7b is eliminated. Further, it is possible to suppress a decrease in transmission efficiency caused by the shift of the central axes C 11 , 12 and C 2 between the power supply side helical coils 7 a and 7 b and the power reception side helical coil 8. For this reason, electric power can be supplied from the power feeding unit 3 to the power receiving unit 5 with high efficiency.

また、上述した第1参考例の給電システム1によれば、CPU11が、2つの受信器13a、13bにより受信された信号に基づいて近接コイルを検出するので、正確に近接コイルを検出することができる。 Further, according to the power supply system 1 of the first reference example described above, since the CPU 11 detects the proximity coil based on the signals received by the two receivers 13a and 13b, the proximity coil can be accurately detected. it can.

次に、本発明者らは、図16に示す給電システム1である従来品において、上述した中心軸C1、C2のずれdxを0〜2.3d1mmの範囲で変化させたときの給電側ヘリカルコイル7から受電側ヘリカルコイル8への伝送効率をシミュレーションすると共に、図2に示す給電システム1である本発明品Aにおいて、上述した中心軸C11と中心軸C2との並び方向Xにおけるずれdxを0mm〜3d1mmの範囲で変化させたときの給電側ヘリカルコイル7a、7bから受電側ヘリカルコイル8への伝送効率をシミュレーションして本実施形態の効果を確認した。結果を図3に示す。 Next, in the conventional product which is the power feeding system 1 shown in FIG. 16, the inventors changed the above-described deviation dx between the central axes C 1 and C 2 within a range of 0 to 2.3 d 1 mm. with simulating the transmission efficiency from the feeding side helical coil 7 to the power receiving side helical coil 8, the arrangement direction of the present invention product a, which is a power supply system 1 shown in FIG. 2, the central axis C 11 and the central axis C 2 of the above-described The effect of this embodiment was confirmed by simulating the transmission efficiency from the power supply side helical coils 7a and 7b to the power reception side helical coil 8 when the deviation dx in X was changed in the range of 0 mm to 3d 1 mm. The results are shown in FIG.

なお、給電側ヘリカルコイル7、7a、7bは、互いに同一であり、径R21=3d1mmとしている。給電側ループアンテナ6、6a、6bも、互いに同一である。受電側ヘリカルコイル8は、従来品も本発明品Aも同一であり、受電側ループアンテナ9は、従来品も本発明品Aも同一である。また、距離L1は、従来品も本発明品Aも同じ0.67d1mmに固定され、距離L2は0.05d1mmに固定されている。 The feeding-side helical coils 7, 7a, 7b are the same as each other and have a diameter R 21 = 3d 1 mm. The feeding-side loop antennas 6, 6a, 6b are also the same. The power receiving side helical coil 8 is the same for both the conventional product and the product A of the present invention, and the power receiving side loop antenna 9 is the same for the conventional product and the product A of the present invention. The distance L 1 is fixed at 0.67 d 1 mm, which is the same for both the conventional product and the product A of the present invention, and the distance L 2 is fixed at 0.05 d 1 mm.

さらに、本発明品Aにおいては、ずれdxが0mm〜1.5d1mmの場合、給電側ループアンテナ6a及び給電側ヘリカルコイル7aのみに交流電源Vが供給され、ずれdxが1.5d1mm〜3d1mmの場合、給電側ループアンテナ6b及び給電側ヘリカルコイル7bのみに交流電力Vが供給されるものとした。また、このシミュレーションにおいて、受電側ループアンテナ9の特性インピーダンスは50Ωに固定し、給電側ループアンテナ6a、6bのうち交流電源Vが供給される方の特性インピーダンスを50Ωとし、交流電源Vが遮断される方の特性インピーダンスを1000オームに設定し、擬似的なオープン状態とした。 Further, in the product A of the present invention, when the deviation dx is 0 mm to 1.5 d 1 mm, the AC power supply V is supplied only to the feeding loop antenna 6a and the feeding helical coil 7a, and the deviation dx is 1.5 d 1 mm. In the case of ˜3d 1 mm, the AC power V is supplied only to the power supply side loop antenna 6b and the power supply side helical coil 7b. In this simulation, the characteristic impedance of the power receiving side loop antenna 9 is fixed to 50Ω, the characteristic impedance of the power supply side loop antennas 6a and 6b to which the AC power supply V is supplied is set to 50Ω, and the AC power supply V is cut off. The characteristic impedance of one of the two was set to 1000 ohms to make a pseudo open state.

図3に示すように、従来品ではずれdxが大きくなるに従い伝送効率は次第に低下していったが、本発明品Aでは、給電の切り替えポイント付近での伝送効率の若干の低下はあるものの、それを超えた位置では再び高効率エリアとなり、高効率伝送エリアが連続的に作成できているといえる。   As shown in FIG. 3, in the conventional product, the transmission efficiency gradually decreased as the deviation dx increased. However, in the product A of the present invention, although there is a slight decrease in the transmission efficiency near the power supply switching point, Beyond that, it becomes a high-efficiency area again, and it can be said that a high-efficiency transmission area has been created continuously.

(第2参考例)
次に、第2参考例について説明する。上述した第1参考例では、受電側ヘリカルコイル8に送信器12を近接配置し、給電側ヘリカルコイル7a、7bにそれぞれ受信器13a、13bを近接配置し、CPU11は、受信器13a、13bにより受信された送信器12からの光信号又は無線信号に基づいて近接コイルを検出していたが、第2参考例では、これら送信器12、受信器13a、13bを廃止している。
(Second reference example)
Next, a second reference example will be described. In the first reference example described above, the transmitter 12 is disposed close to the power receiving side helical coil 8, the receivers 13a and 13b are disposed close to the power feeding side helical coils 7a and 7b, respectively, and the CPU 11 is operated by the receivers 13a and 13b. The proximity coil is detected based on the received optical signal or radio signal from the transmitter 12, but in the second reference example , the transmitter 12 and the receivers 13a and 13b are omitted .

即ち、第2参考例では、図4に示すように、受電側ヘリカルコイル8に両端に接続され、この受電側ヘリカルコイル8に電力を供給して定期的に無線信号としてのパイロット信号(図5参照)を送信させる送信手段としての送信回路14と、2つの給電側ヘリカルコイル7a、7bの両端にそれぞれ接続され、2つの給電側ヘリカルコイル7a、7bが受信したパイロット信号を検波する受信回路15a、15bと、をさらに備えている。受信回路15a、15bは、検波したパイロット信号をCPU11に対して供給する。 That is, in the second reference example , as shown in FIG. 4, the power receiving side helical coil 8 is connected at both ends, and power is supplied to the power receiving side helical coil 8 to periodically pilot signals (FIG. 5). And a receiving circuit 15a connected to both ends of the two power supply side helical coils 7a and 7b and detecting the pilot signals received by the two power supply side helical coils 7a and 7b. , 15b. The receiving circuits 15a and 15b supply the detected pilot signal to the CPU 11.

CPU11は、受信回路15a、15bのうち受信したパイロット信号の受信レベルが最も高いものに対応する給電側ヘリカルコイル7a、7bを近接コイルとして検出する。即ち、CPU11は、受信回路15aによって受信されたパイロット信号の受信レベルが受信回路15bによって受信されたパイロット信号の受信レベルよりも高い場合、給電側ヘリカルコイル7aを近接コイルとして検出し、逆に、受信回路15bによって受信されたパイロット信号の受信レベルが受信回路15aによって受信されたパイロット信号の受信レベルよりも高い場合、給電側ヘリカルコイル7bを近接コイルとして検出する。   The CPU 11 detects the feeding-side helical coils 7a and 7b corresponding to the receiving circuit 15a and 15b having the highest received level of the received pilot signal as a proximity coil. That is, when the reception level of the pilot signal received by the reception circuit 15a is higher than the reception level of the pilot signal received by the reception circuit 15b, the CPU 11 detects the power supply side helical coil 7a as a proximity coil. When the reception level of the pilot signal received by the reception circuit 15b is higher than the reception level of the pilot signal received by the reception circuit 15a, the power supply side helical coil 7b is detected as a proximity coil.

上述した第2参考例によれば、CPU11が、2つの給電側ヘリカルコイル7a、7bのうち受電側ヘリカルコイル8からのパイロット信号の受信レベルが最も高いものを近接コイルとして検出するので、給電側ヘリカルコイル7a、7bや受電側ヘリカルコイル8とは別に光信号や無線信号を送信、受信する送信器12、受信器13a、13bを設ける必要がないので、部品点数の削減を図ることができる。 According to the second reference example described above, the CPU 11 detects the one having the highest reception level of the pilot signal from the power receiving side helical coil 8 among the two power supply side helical coils 7a and 7b as the proximity coil. Since there is no need to provide the transmitter 12 and the receivers 13a and 13b for transmitting and receiving optical signals and radio signals separately from the helical coils 7a and 7b and the power receiving side helical coil 8, the number of components can be reduced.

(第1実施形態)
次に、第実施形態について説明する。第実施形態においても、無線器12、受信器13a、13bを廃止している。即ち、第実施形態では、図6に示すように、2つの給電側ループアンテナ6a、6bのそれぞれと交流電源Vとの間にそれぞれ設けられ、2つの給電側ヘリカルコイル7a、7bから給電側ループアンテナ6a、6bを介して交流電源Vに向かう反射波を検出する反射波検出手段としての反射波検出器16a、16bをさらに備えている。上記反射波検出器16a、16bとしては、方向性検出器やサーキュレータなどが考えられる。反射波検出器16a、16bは、検出した反射波をCPU11に対して出力する。
(First embodiment)
Next, the first embodiment will be described. Also in the first embodiment, the wireless device 12 and the receivers 13a and 13b are omitted. That is, in the first embodiment, as shown in FIG. 6, two power supply side loop antennas 6a and 6b are provided between the AC power supply V and the two power supply side helical coils 7a and 7b, respectively. Reflected wave detectors 16a and 16b are further provided as reflected wave detecting means for detecting reflected waves directed to the AC power supply V via the loop antennas 6a and 6b. As the reflected wave detectors 16a and 16b, directional detectors, circulators, and the like are conceivable. The reflected wave detectors 16 a and 16 b output the detected reflected wave to the CPU 11.

給電側ヘリカルコイル7a、7bは、受電側ヘリカルコイル8が自身から離れると反射特性が劣化する。これを利用して、CPU11は、反射波検出器16a、16bが検出した反射波が、最も小さいものを近接コイルとして検出する。具体的には、CPU11は、第2電力供給手段として働き、まずスイッチ10a、10bを時間差を持って順次オンして、給電側ヘリカルコイル7a、7bに順番に短時間で電力を供給する。このとき、CPU11は、反射波検出器16a、16bによって検出された反射波のレベルが最も低いものを近接コイルとして検出し、検出した近接コイルのみに電力を供給するようにスイッチ10a、10bを制御する。   The power supply-side helical coils 7a and 7b deteriorate in reflection characteristics when the power-receiving-side helical coil 8 is separated from itself. By utilizing this, the CPU 11 detects the smallest reflected wave detected by the reflected wave detectors 16a and 16b as a proximity coil. Specifically, the CPU 11 functions as a second power supply unit, and first sequentially turns on the switches 10a and 10b with a time difference to supply power sequentially to the power supply side helical coils 7a and 7b in a short time. At this time, the CPU 11 detects the lowest reflected wave level detected by the reflected wave detectors 16a and 16b as a proximity coil, and controls the switches 10a and 10b so as to supply power only to the detected proximity coil. To do.

その後、CPU11は、近接コイルの反射波をモニタして、反射波が一定量を下回ると、近接コイルへの給電を停止し、スイッチ10a、10bを時間差を持って順次オンして、給電側ヘリカルコイル7a、7bに順番に短時間で電力を供給する。そして、CPU11は、最初と同様に反射波検出器16a、16bによって検出された反射波のレベルが最も低いものを近接コイルとして検出し、検出した近接コイルのみに電力を供給するようにスイッチ10a、10bを制御する。以下これを繰り返す。   Thereafter, the CPU 11 monitors the reflected wave of the proximity coil. When the reflected wave falls below a certain amount, the CPU 11 stops the power supply to the proximity coil, sequentially turns on the switches 10a and 10b with a time difference, and the power supply side helical Electric power is supplied to the coils 7a and 7b in a short time in order. Then, the CPU 11 detects the lowest reflected wave level detected by the reflected wave detectors 16a and 16b as a proximity coil in the same manner as the first, and switches 10a and 10a to supply power only to the detected proximity coil. 10b is controlled. This is repeated below.

上述した第実施形態によれば、CPU11が、2つの給電側ヘリカルコイル7a、7bのうち反射波検出器16a、16bにより検出された反射波が最も少ないものを近接コイルとして検出するので、受電側ヘリカルコイル8に定期的に信号を送信しなくても近接コイルを検出することができ、より一層、高効率で給電部3から受電部5へ電力を供給することができる。 According to the first embodiment described above, the CPU 11 detects, as the proximity coil, the one with the least number of reflected waves detected by the reflected wave detectors 16a and 16b among the two power supply side helical coils 7a and 7b. The proximity coil can be detected without periodically transmitting a signal to the side helical coil 8, and power can be supplied from the power feeding unit 3 to the power receiving unit 5 with higher efficiency.

(第2実施形態)
次に、第実施形態について説明する。上述した第実施形態では、給電側ヘリカルコイル7a及び7bを互いに離間して配置していたが、第実施形態では、図7に示すように、給電側ヘリカルコイル7a及び7bを一部重ねて配置している。このように、給電側ヘリカルコイル7a及び7bを一部重ねて配置することにより、交流電源Vからの電力供給を給電側ループアンテナ6aから給電側ループアンテナ6bに切り替えるポイントでの伝送効率の低下を防ぐことができる。
(Second Embodiment)
Next, a second embodiment will be described. In the first embodiment described above, the feeding-side helical coils 7a and 7b are spaced apart from each other, but in the second embodiment, as shown in FIG. 7, the feeding-side helical coils 7a and 7b are partially overlapped. Arranged. In this way, by arranging the feeding-side helical coils 7a and 7b to overlap each other, the transmission efficiency is reduced at the point where the power supply from the AC power supply V is switched from the feeding-side loop antenna 6a to the feeding-side loop antenna 6b. Can be prevented.

次に、本発明者らは、図7に示す構成の給電システム1において重ね幅wが互いに異なる本発明品B1〜B5について、上述した中心軸C11、C2の並び方向Xにおけるずれdxを0〜2.5d1mmの範囲で変化させたときの給電側ヘリカルコイル7a、7bから受電側ヘリカルコイル8への伝送効率をシミュレーションして効果を確認した。結果を図8に示す。 Next, the inventors of the power supply system 1 having the configuration shown in FIG. 7, the deviations in the arrangement direction X of the central axes C 11 and C 2 described above regarding the products B 1 to B 5 of the present invention having different overlapping widths w. The effect was confirmed by simulating the transmission efficiency from the power supply side helical coils 7a and 7b to the power reception side helical coil 8 when dx was changed in the range of 0 to 2.5 d 1 mm. The results are shown in FIG.

なお、本発明品B1のw=0.17d1mm、本発明品B2のw=0.33d1mm、本発明品B3のw=0.5d1mm、本発明品B4のw=0.67d1mm、本発明品B5のw=0.83d1mmとした。また、交流電源Vからの電力供給を給電側ループアンテナ6aから給電側ループアンテナ6bに切り替えるポイントを本発明品B1についてはx=1.42d1mm、本発明品B2についてはx=1.34d1mm、本発明品B3についてはx=1.26d1mm、本発明品B4についてはx=1.17d1mm、本発明品B5についてはx=1.09d1mmとしている。また、本発明品B1〜B5における給電側ループアンテナ6a、6b、給電側ヘリカルコイル7a、7b、受電側ヘリカルコイル8、受電側ループアンテナ9は、本発明品Aと同一のものを用いている。給電側ヘリカルコイル7a及び7bの中心軸方向Zの距離L3=0.017d1mmとした。 Incidentally, the present invention product B 1 w = 0.17d 1 mm, the present invention product B 2 w = 0.33d 1 mm, the present invention product B 3 w = 0.5d 1 mm, the present invention product B 4 It was w = 0.67d 1 mm, the present invention product B 5 w = 0.83d 1 mm. Further, the AC power source for the present invention product B 1 point for switching to the power supply side loop antenna 6b power supply from the power supply side loop antenna 6a from the V x = 1.42d 1 mm, the present invention product B 2 is x = 1 .34d 1 mm, x = 1.26d 1 mm for the present invention product B 3, the present invention product B 4 is x = 1.17d 1 mm, as x = 1.09d 1 mm for the present invention product B 5 Yes. Further, the feeding-side loop antenna 6a in the present invention product B 1 .about.B 5, 6b, power feeding side helical coil 7a, 7b, power receiving helical coil 8, the power receiving side loop antenna 9, using the same as the present invention product A ing. The distance L 3 in the central axis direction Z of the power supply side helical coils 7a and 7b was set to 0.017d 1 mm.

図3に示すように、上述した第1実施形態においては、交流電源Vからの電力供給を給電側ループアンテナ6aから給電側ループアンテナ6bに切り替えるポイントであるdx=1.5d1mmで最も伝送効率が低く、65.6%であった。これに対して、図8に示すように、重ね幅wを設けることにより、伝送効率を70%以上にすることができた。詳しく説明すると、図8に示すように、第実施形態においては、0.5d1mmまでは重ね幅wが大きくなるにつれて切り替えポイント付近で生じる伝送効率の低下が軽減されていったが、重ね幅w=0.83d1mmでは重ね幅w=0.5d1mmよりも伝送効率低下が大きいことが分かった。 As shown in FIG. 3, in the first embodiment described above, transmission is most achieved at dx = 1.5 d 1 mm, which is a point at which the power supply from the AC power supply V is switched from the feeding loop antenna 6a to the feeding loop antenna 6b. The efficiency was low, 65.6%. On the other hand, as shown in FIG. 8, the transmission efficiency can be increased to 70% or more by providing the overlap width w. More specifically, as shown in FIG. 8, in the second embodiment, the decrease in transmission efficiency that occurs near the switching point is reduced as the overlap width w increases up to 0.5d 1 mm. transmission efficiency lower than the width w = 0.83d 1 mm in overlapping width w = 0.5d 1 mm was found to be greater.

具体的には、第1実施形態で示す本発明品Aにおいては、最も伝送効率の低い切り替えポイントでの伝送効率は65.6%であったのに対し、重ね幅w=0.5d1mmの場合、最も伝送効率の低い切り替えポイントでの伝送効率は85.3%となり、20%近い効率アップが見込めることが分かった。また、重ね幅wを過度に大きくすると、ずれdxに対向した高効率伝送エリアの縮小につながるため、あまり得策でないといえる。よって、重ね幅wには最適値があり、第実施形態においては0.5d1mm〜0.67d1mmの範囲に設定される。 Specifically, in the product A of the present invention shown in the first embodiment, the transmission efficiency at the switching point with the lowest transmission efficiency was 65.6%, whereas the overlap width w = 0.5 d 1 mm. In this case, the transmission efficiency at the switching point with the lowest transmission efficiency is 85.3%, which indicates that an efficiency increase of nearly 20% can be expected. Further, if the overlap width w is excessively increased, it leads to a reduction in the high-efficiency transmission area facing the deviation dx. Therefore, the overlapping width w has the optimum value, in the second embodiment is set in the range of 0.5d 1 mm~0.67d 1 mm.

(第3実施形態)
次に、本発明者らは図7に示す本発明品B3(w=0.5d1mm)について、並び方向X及び軸方向Zの双方に直交する直交方向Y(図2)におけるずれdy=0mm、0.67d1mm、d1mmにそれぞれ固定した状態で、ずれdxを0mm〜2.3d1mmの範囲で変化させたときの伝送効率をシミュレーションした。結果を図9に示す。同図に示すように、ずれdy=0mmのときは伝送効率が最も低いところでも85.3%であったのに対し、ずれdy=d1mmでは35.7%と大幅な効率低下が生じている。
(Third embodiment)
Next, the inventors of the present invention B 3 (w = 0.5 d 1 mm) shown in FIG. 7 are displaced in the orthogonal direction Y (FIG. 2) perpendicular to both the arrangement direction X and the axial direction Z. = 0mm, 0.67d 1 mm, while fixed to d 1 mm, were simulated transmission efficiency when changing the shift dx in the range of 0mm~2.3d 1 mm. The results are shown in FIG. As shown in the figure, when the deviation dy = 0 mm, the transmission efficiency was 85.3% even at the lowest point, but when the deviation dy = d 1 mm, the efficiency dropped significantly to 35.7%. ing.

そこで、上述した第1及び第2実施形態においては、給電側コイル及び受電側コイルとして、巻線をヘリカル状に巻いて形成した給電側ヘリカルコイル7a、7b、受電側ヘリカルコイル8を用いていたが、第3実施形態では、図10及び図11に示すように、給電側コイル及び受電側コイルとして、基板などの平面上に導線をスパイラル状に巻いて形成した給電側スパイラルコイル17a、17b、受電側スパイラルコイル18を用いている。これら給電側スパイラルコイル17a、17b及び受電側スパイラルコイル18は、正方形状に巻かれている。給電側ループアンテナ6a、6b及び受電側ループアンテナ9も正方形のループ状に設けられている。給電側スパイラルコイル17a、17bとしては、図10に示すように互いに離間させてもよいし、図11に示すように重ねてもよい。 Therefore, in the first and second embodiments described above, the feeding-side helical coils 7a and 7b and the receiving-side helical coil 8 formed by winding the windings in a helical shape are used as the feeding-side coil and the receiving-side coil. However, in the third embodiment, as shown in FIGS. 10 and 11, as the power supply side coil and the power reception side coil, power supply side spiral coils 17a, 17b formed by spirally winding a conductive wire on a plane such as a substrate, A power receiving side spiral coil 18 is used. The power supply side spiral coils 17a and 17b and the power reception side spiral coil 18 are wound in a square shape. The power feeding side loop antennas 6a and 6b and the power receiving side loop antenna 9 are also provided in a square loop shape. The power supply side spiral coils 17a and 17b may be separated from each other as shown in FIG. 10, or may be overlapped as shown in FIG.

上述した第3実施形態によれば、給電側スパイラルコイル17a、17bと受電側スパイラスコイル18との並び方向X及び直交方向Yの両方向における中心軸C11、C12及びC2のずれによって生じる伝送効率の低下を抑制することができる。 According to the third embodiment described above, transmission caused by the shift of the central axes C 11 , C 12, and C 2 in both the alignment direction X and the orthogonal direction Y of the power supply side spiral coils 17 a and 17 b and the power reception side spiral coil 18. A decrease in efficiency can be suppressed.

次に、本発明者らは、給電側スパイラルコイルが1つ、給電側ループアンテナが1つの比較品において、上述した受電側スパイラルコイル18をXY平面上において中心軸C11、C2のずれ(dx、dy)を0mm≦dx≦1.5d1mm、0≦dy≦1.5d1mmの範囲で変化させたときの給電側スパイラルコイル17a、17bから受電側スパイラルコイル18への伝送効率をシミュレーションした。結果を図12に示す。図16に示す従来品では伝送効率の分布は、図18に示すように、ずれ(dx、dy)=(0mm、0mm)を中心に同心円だったものが、比較品での伝送効率の分布は、図12に示すように、正方形状に近い形状となり、従来品よりも比較品の方が高効率エリアが広くなっていると言える。 Next, the inventors of the present invention have compared the power receiving side spiral coil 18 on the XY plane with the center axes C 11 and C 2 shifted (in a comparative product having one power supply side spiral coil and one power supply side loop antenna). dx, dy) when the transmission efficiency is changed from 0 mm ≦ dx ≦ 1.5 d 1 mm and 0 ≦ dy ≦ 1.5 d 1 mm to the transmission efficiency from the power supply side spiral coils 17 a and 17 b to the power reception side spiral coil 18. Simulated. The results are shown in FIG. In the conventional product shown in FIG. 16, the distribution of the transmission efficiency is concentric with the deviation (dx, dy) = (0 mm, 0 mm) as shown in FIG. As shown in FIG. 12, the shape is close to a square shape, and it can be said that the comparative product has a higher efficiency area than the conventional product.

また、本発明者らは、図10に示す構成の給電システム1において距離L2が互いに異なる本発明品C1、C2について、ずれdxを0mm〜2.5d1mmの範囲で変化させたときの給電側スパイラルコイル17a、17bから受電側スパイラルコイル18への伝送効率をシミュレーションした。また、図11に示す構成の給電システム1において重ね幅wが互いに異なる本発明品D1〜D4について、ずれdxを0mm〜2.5d1mmの範囲で変化させたときの給電側スパイラルコイル17a、17bから受電側スパイラルコイル18への伝送効率をシミュレーションした。結果を図13に示す。 Further, the inventors changed the deviation dx in the range of 0 mm to 2.5 d 1 mm for the products C 1 and C 2 of the present invention having different distances L 2 in the power feeding system 1 having the configuration shown in FIG. The transmission efficiency from the power supply side spiral coils 17a and 17b to the power reception side spiral coil 18 was simulated. Further, in the power supply system 1 having the configuration shown in FIG. 11, the power supply side spiral coil when the deviation dx is changed in the range of 0 mm to 2.5 d 1 mm for the products D 1 to D 4 of the present invention having different overlapping widths w. The transmission efficiency from 17a, 17b to the power receiving side spiral coil 18 was simulated. The results are shown in FIG.

なお、本発明品C1、C2、D1〜D4においては、給電側ループアンテナ6a、6bは、互いに同一であり、一辺L11を2.79d1mmとしている。給電側スパイラルコイル17a、17bも互いに同一であり、一辺L21を本発明品A、Bの給電側ヘリカルコイル7a、7bの径R21と同じ3d1mmとしている。受電側スパイラルコイル18も、一辺L12を本発明品A、Bの受電側ヘリカルコイル8の径R22と同じd1mmとしいる。受電側ループアンテナ9は、一辺L12を0.35d1mmとしている。また、距離L2は、0.67d1mmに固定している。 In the products C 1 , C 2 , and D 1 to D 4 of the present invention, the power feeding side loop antennas 6a and 6b are the same as each other, and one side L 11 is 2.79d 1 mm. Feeding-side spiral coils 17a, 17b are also identical to each other, and one side L 21 Invention Product A, the feeding-side helical coil 7a of B, the same 3d 1 mm and the diameter R 21 of 7b. The power receiving side spiral coil 18 also has one side L 12 having the same d 1 mm as the diameter R 22 of the power receiving side helical coil 8 of the products A and B of the present invention. The power receiving side loop antenna 9 has one side L 12 of 0.35 d 1 mm. The distance L 2 is fixed at 0.67 d 1 mm.

図13から明らかなように本発明品C1、C2、本発明品D1〜D5は最低伝送効率を何れも70%以上にすることができた。特に、本発明品C1は、最低伝送効率を83%とすることができ、最も高効率にできることが分かった。 As apparent from FIG. 13, the products C 1 and C 2 of the present invention and the products D 1 to D 5 of the present invention all have the minimum transmission efficiency of 70% or more. In particular, it was found that the product C 1 of the present invention can have the lowest transmission efficiency of 83% and the highest efficiency.

次に、本発明者らは、本発明品C1(L2=0.03d1mm)について、ずれdy=0mm、0.67d1mm、d1mmにそれぞれ固定した状態で、ずれdxを0mm〜2.3d1mmの範囲で変化させたときの伝送効率をシミュレーションて、本発明の効果を確認した。結果を図14に示す。図9に示すように、本発明品B2においては伝送効率が最も低下するずれdx=1.24d1mmの位置において、ずれdy=0mmでは85.3%、ずれdy=0.67d1mmでは60.4%、ずれdy=d1mmでは35.7%と直交方向Yのずれによって伝送効率の大幅な低下が起きた。これに対して、図14に示すように、本発明品C1では伝送効率が最も低下するずれdx=1.5d1mmの位置において、ずれdy=0mmでは82.9%、ずれdy=0.67d1mmでは81.5%、ずれdy=d1mmでも76.7%と伝送効率の低下をより一層抑制できることが分かった。 Next, we will present invention product C 1 (L 2 = 0.03d 1 mm), the deviation dy = 0mm, 0.67d 1 mm, while fixed to d 1 mm, the displacement dx The effect of the present invention was confirmed by simulating the transmission efficiency when changing in the range of 0 mm to 2.3 d 1 mm. The results are shown in FIG. As shown in FIG. 9, in the product B 2 of the present invention, at the position of the deviation dx = 1.24 d 1 mm where the transmission efficiency is most reduced, the deviation dy = 0 mm is 85.3%, and the deviation dy = 0.67 d 1 mm. In this case, the transmission efficiency was greatly reduced due to the deviation in the orthogonal direction Y, which was 60.4%, and the deviation dy = d 1 mm was 35.7%. On the other hand, as shown in FIG. 14, in the product C 1 of the present invention, at the position of the deviation dx = 1.5 d 1 mm at which the transmission efficiency is most reduced, the deviation dy = 0 mm is 82.9%, and the deviation dy = 0. in .67d 1 mm 81.5%, it was found that a decrease in transmission efficiency 76.7.% to displacement dy = d 1 mm can be further suppressed.

上述した第3実施形態によれば、給電側スパイラルコイル17a、17b及び受電側スパイラルコイル18を、四角形のスパイラル状に形成し、これら2つの給電側スパイラルコイル17a、17bを、同一平面上に互いに離間して配置することにより、2つの給電側スパイラルコイル17a、17bの軸方向Zと直交するXY平面において、給電側スパイラルコイル17a、17bの並び方向X及びこの並び方向Yに直交する方向の双方での中心軸C11、C12及びC2のずれによって生じる伝送効率の低下を抑制することができる。 According to the third embodiment described above, the power supply side spiral coils 17a and 17b and the power reception side spiral coil 18 are formed in a square spiral shape, and these two power supply side spiral coils 17a and 17b are mutually connected on the same plane. By arranging them apart from each other, both the arrangement direction X of the power supply side spiral coils 17a and 17b and the direction orthogonal to the arrangement direction Y in the XY plane orthogonal to the axial direction Z of the two power supply side spiral coils 17a and 17b. It is possible to suppress a decrease in transmission efficiency caused by the shift of the central axes C 11 , C 12, and C 2 .

なお、上述した第1〜第3実施形態によれば、2つの給電側コイルを並べていたが、本発明はこれに限ったものではない。給電側コイルとしては、3つ以上並べてよい。また、これを発展させて多数の給電側コイルを互い違いに並べることでより一層高伝送効率エリアの拡大を図ることができる。また、直線的な給電側コイルの並びだけでなく、平面的に給電側コイルを配置することで、受電側コイルの平面上の動きにも対応して電力伝送を行うことができる。 In addition, according to the 1st-3rd embodiment mentioned above, although the two electric power feeding side coils were arranged, this invention is not limited to this. Three or more power supply coils may be arranged. Further, by developing this and arranging a large number of feeding side coils in a staggered manner, it is possible to further expand the high transmission efficiency area. In addition to arranging the power supply side coils not only in a linear arrangement of the power supply side coils but also in a plane, it is possible to transmit power corresponding to the movement of the power reception side coil on the plane.

また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

1 給電システム
7a 給電側ヘリカルコイル(給電側コイル)
7b 給電側ヘリカルコイル(給電側コイル)
8 受電側ヘリカルコイル(受電側コイル)
11 CPU(位置検出手段、第1電力供給手段、第2電力供給手段)
12 送信器
13a 受信器
13b 受信器
14 送信回路(送信手段)
15a 受信回路(受信手段)
15b 受信回路(受信手段)
16a 反射波検出器(反射波検出手段)
16b 反射波検出器(反射波検出手段)
17a 給電側スパイラルコイル(給電側コイル)
17b 給電側スパイラルコイル(給電側コイル)
18 受電側スパイラルコイル(受電側コイル)
1 Power supply system 7a Power supply side helical coil (power supply side coil)
7b Power supply side helical coil (power supply side coil)
8 Receiving side helical coil (Receiving side coil)
11 CPU (position detection means, first power supply means, second power supply means)
12 transmitter 13a receiver 13b receiver 14 transmission circuit (transmission means)
15a Receiving circuit (receiving means)
15b Receiving circuit (receiving means)
16a Reflected wave detector (reflected wave detecting means)
16b Reflected wave detector (reflected wave detecting means)
17a Feeding side spiral coil (feeding side coil)
17b Power supply side spiral coil (power supply side coil)
18 Receiving side spiral coil (receiving side coil)

Claims (3)

電力が供給される複数の給電側コイルと、
前記複数の給電側コイルに対してその中心軸方向に対向するように離間して配置されると当該給電側コイルと電磁共鳴して前記給電側コイルからの電力が伝送される受電側コイルと、
前記複数の給電側コイルのうち前記受電側コイルに最も近い位置に配置されている1つを近接コイルとして検出する位置検出手段と、
前記複数の給電側コイルのうち前記位置検出手段により検出された前記近接コイルのみ電力を供給する第1電力供給手段と、
前記複数の給電側コイルに順次電力を供給する第2電力供給手段と、
前記各給電側コイルでの前記電力の反射波を検出する反射波検出手段と、備え、
前記位置検出手段が、前記複数の給電側コイルのうち、前記第2電力供給手段による電力供給中に前記反射波検出手段により検出された反射波が最も小さいものを前記近接コイルとして検出する
ことを特徴とする給電システム。
A plurality of power supply coils to which power is supplied;
A power receiving side coil that is electromagnetically resonated with the power feeding side coil and is transmitted with electric power from the power feeding side coil when spaced apart to face the central axis direction with respect to the plurality of power feeding side coils;
Position detecting means for detecting, as a proximity coil, one of the plurality of power supply side coils disposed at a position closest to the power reception side coil;
First power supply means for supplying power only to the proximity coil detected by the position detection means among the plurality of power feeding coils;
Second power supply means for sequentially supplying power to the plurality of power supply side coils;
A reflected wave detection means for detecting a reflected wave of the electric power in each of the power supply side coils; and
The position detection means detects, as the proximity coil, the one with the smallest reflected wave detected by the reflected wave detection means during the power supply by the second power supply means among the plurality of power supply side coils. Characteristic power supply system.
前記給電側コイル及び前記受電側コイルが、円形のヘリカル状に形成され、
前記複数の給電側コイルは、互いに一部が重ねられるように配置されている
ことを特徴とする請求項に記載の給電システム。
The power feeding side coil and the power receiving side coil are formed in a circular helical shape,
The power supply system according to claim 1 , wherein the plurality of power supply side coils are arranged so as to partially overlap each other.
前記給電側コイル及び前記受電側コイルが、四角形のスパイラル状に形成され、
前記複数の給電側コイルが、同一平面上に互いに離間して配置されている
ことを特徴とする請求項に記載の給電システム。
The power feeding side coil and the power receiving side coil are formed in a square spiral shape,
The power supply system according to claim 1 , wherein the plurality of power supply side coils are spaced apart from each other on the same plane.
JP2011060604A 2011-03-18 2011-03-18 Power supply system Active JP5773693B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011060604A JP5773693B2 (en) 2011-03-18 2011-03-18 Power supply system
EP12761337.0A EP2688181B1 (en) 2011-03-18 2012-03-12 Power supply system
PCT/JP2012/056239 WO2012128093A1 (en) 2011-03-18 2012-03-12 Power supply system
CN2012800141615A CN103477533A (en) 2011-03-18 2012-03-12 Power supply system
US14/027,703 US9443651B2 (en) 2011-03-18 2013-09-16 Power supplying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060604A JP5773693B2 (en) 2011-03-18 2011-03-18 Power supply system

Publications (2)

Publication Number Publication Date
JP2012200032A JP2012200032A (en) 2012-10-18
JP5773693B2 true JP5773693B2 (en) 2015-09-02

Family

ID=47181698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060604A Active JP5773693B2 (en) 2011-03-18 2011-03-18 Power supply system

Country Status (1)

Country Link
JP (1) JP5773693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170057667A (en) * 2015-11-17 2017-05-25 삼성전자주식회사 Method and device to transfer power wirelessly

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390850B2 (en) 2012-07-13 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Power transmitting device, power feeding system, and power feeding method
CN109017346B (en) * 2012-11-12 2022-01-25 奥克兰联合服务有限公司 Vehicle or moving object detection
JP5716725B2 (en) 2012-11-21 2015-05-13 トヨタ自動車株式会社 Power transmission device and power transmission system
JP6001471B2 (en) * 2013-02-05 2016-10-05 トヨタ自動車株式会社 Power transmission device and power reception device
JP6138504B2 (en) * 2013-02-05 2017-05-31 国立大学法人埼玉大学 Power transmission device and power reception device
JP6309197B2 (en) 2013-03-05 2018-04-11 矢崎総業株式会社 Coil unit and power supply system
US9772401B2 (en) * 2014-03-17 2017-09-26 Qualcomm Incorporated Systems, methods, and apparatus for radar-based detection of objects in a predetermined space
JP6550718B2 (en) 2014-10-28 2019-07-31 トヨタ自動車株式会社 Power transmission system
JP6358098B2 (en) * 2015-01-08 2018-07-18 Tdk株式会社 Power feeding device and non-contact power transmission device
JP6583037B2 (en) * 2016-02-16 2019-10-02 Tdk株式会社 Wireless power transmission system
JP7406352B2 (en) * 2019-11-19 2023-12-27 Hoya株式会社 endoscope equipment
JP7557977B2 (en) 2020-07-01 2024-09-30 株式会社大林組 Embedded structure of coil for non-contact power supply

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092752A (en) * 1998-09-11 2000-03-31 Matsushita Electric Ind Co Ltd Non-contact power supply unit
JP5324901B2 (en) * 2008-12-09 2013-10-23 日立コンシューマエレクトロニクス株式会社 Non-contact power transmission system
JP2010183812A (en) * 2009-02-09 2010-08-19 Toyota Industries Corp Resonant contactless charging system
MY158462A (en) * 2009-04-08 2016-10-14 Access Business Group Int Llc Selectable coil array
JP2010246348A (en) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd Power-receiving device and power-transmitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170057667A (en) * 2015-11-17 2017-05-25 삼성전자주식회사 Method and device to transfer power wirelessly
KR102543298B1 (en) * 2015-11-17 2023-06-14 삼성전자주식회사 Method and device to transfer power wirelessly

Also Published As

Publication number Publication date
JP2012200032A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5773693B2 (en) Power supply system
WO2012128093A1 (en) Power supply system
US11040631B2 (en) Electronic device and method for transmitting and receiving wireless power
CN104025468B (en) Interference mitigation for multiple induction systems
US10230258B2 (en) Portable device and apparatus for wirelessly charging the portable device from energy transmitted by a transmitter
JP4911148B2 (en) Contactless power supply
JP6090528B2 (en) Wireless power supply device
WO2013002240A1 (en) Power feeding system design method and power feeding system
US9000620B2 (en) Apparatus and method of dividing wireless power in wireless resonant power transmission system
US20160013661A1 (en) Resonators for wireless power transfer systems
US10461564B2 (en) Coil structure for inductive and resonant wireless charging transmitter and integral control method for the same
CN103532249A (en) Device for the inductive transmission of electric energy
JP2014175514A (en) Power feeding-side coil and non-contact power feeding apparatus
JP6232191B2 (en) Power feeding unit, power receiving unit, and power feeding system
JP2012200031A (en) Power supply system
JP2021093883A (en) Non-contact power supply system
WO2013002241A1 (en) Electrical supply system
JP2018148681A (en) Mobile power supply system
KR20140073085A (en) Wireless Power Relay Apparatus and Wireless Power Transmission System
WO2013128518A1 (en) Power transmitting device, power receiving device, power supply system, and electronic device
JP2012135108A (en) Feeding system
JP5825882B2 (en) Power supply system
JP2013013274A (en) Power supply system
JP2018074855A (en) Non-contact power transmission device
JP6511364B2 (en) Wireless power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150630

R150 Certificate of patent or registration of utility model

Ref document number: 5773693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250