[go: up one dir, main page]

JP5773330B2 - Ceramic sintered plate containing uniaxially oriented acicular Si3N4 particles - Google Patents

Ceramic sintered plate containing uniaxially oriented acicular Si3N4 particles Download PDF

Info

Publication number
JP5773330B2
JP5773330B2 JP2011106872A JP2011106872A JP5773330B2 JP 5773330 B2 JP5773330 B2 JP 5773330B2 JP 2011106872 A JP2011106872 A JP 2011106872A JP 2011106872 A JP2011106872 A JP 2011106872A JP 5773330 B2 JP5773330 B2 JP 5773330B2
Authority
JP
Japan
Prior art keywords
particles
ceramic
plate
substrate
ceramic sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011106872A
Other languages
Japanese (ja)
Other versions
JP2012236743A (en
Inventor
慎介 青木
慎介 青木
長瀬 敏之
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011106872A priority Critical patent/JP5773330B2/en
Publication of JP2012236743A publication Critical patent/JP2012236743A/en
Application granted granted Critical
Publication of JP5773330B2 publication Critical patent/JP5773330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Ceramic Products (AREA)

Description

本発明は、セラミックス焼結板に関し、さらに詳しくは、すぐれた熱伝導性と接合強度が要求される大電流・大電圧を制御する高放熱性絶縁基板として用いられるセラミックス焼結板に関する。   The present invention relates to a ceramic sintered plate, and more particularly to a ceramic sintered plate used as a high heat dissipation insulating substrate for controlling a large current and a large voltage that require excellent thermal conductivity and bonding strength.

従来、半導体素子の中でも電力供給のためのパワーモジュールは発熱量が比較的高く、これを搭載する基板としては、例えば、AlN、Al、Si、SiC等からなるセラミックス基板上にアルミニウム層をAl−Si系等のろう材料を介して接合させたパワーモジュール用基板が用いられている。このアルミニウム層は、後工程のエッチングにおいて回路が形成されて回路層となる。そして、エッチング後は、この回路層の表面にはんだ材を介して半導体チップ等のパワー素子(電子部品)が搭載されパワーモジュールが構成される。セラミックス基板の中でもSiは、機械的強度に優れており、高温かつ衝撃が加わるような、例えば、自動車のエンジンルームなどの過酷な使用条件下においても割れ等の問題を回避することができるため、注目を集めている例えば、特許文献1参照。 Conventionally, a power module for supplying power among semiconductor elements has a relatively high calorific value. As a substrate on which the module is mounted, for example, on a ceramic substrate made of AlN, Al 2 O 3 , Si 3 N 4 , SiC, or the like. In addition, a power module substrate is used in which an aluminum layer is bonded via a brazing material such as an Al—Si system. This aluminum layer becomes a circuit layer by forming a circuit in etching in a later step. After etching, a power module is configured by mounting a power element (electronic component) such as a semiconductor chip on the surface of the circuit layer via a solder material. Among ceramic substrates, Si 3 N 4 is excellent in mechanical strength and can avoid problems such as cracking even under severe use conditions such as high temperature and impact, for example, in an automobile engine room. For example, see Patent Document 1 that has attracted attention.

なお、セラミックス基板の下面にも放熱のための熱伝導層としてAl等の金属板が接合され、この金属板を介してヒートシンク等の放熱板上にパワーモジュール用基板全体が接合されたものが知られている。   It is known that a metal plate such as Al is bonded to the lower surface of the ceramic substrate as a heat conductive layer for heat dissipation, and the entire power module substrate is bonded to a heat sink such as a heat sink via the metal plate. It has been.

前述のパワーモジュール用基板のセラミックス基板として、セラミックス材料を焼結してなるセラミックス焼結板を適用することが可能である。例えば、セラミックス焼結板は、セラミックス粒子を母材とするマトリックスと、このマトリックスに分散されるセラミックス球状粒子およびセラミックス板状粒子とから形成されている(例えば、特許文献2参照)。   A ceramic sintered plate obtained by sintering a ceramic material can be used as the ceramic substrate of the power module substrate described above. For example, a ceramic sintered plate is formed of a matrix having ceramic particles as a base material, and ceramic spherical particles and ceramic plate-like particles dispersed in the matrix (see, for example, Patent Document 2).

また、種結晶を含む原料粉末からなるセラミックス原料粉末に有機溶媒を加えてスラリーを作製する工程と、該工程より作製したスラリーが、1テスラ以上の磁場中で特定の原料粉末を配向させた成形体を作製する工程と、前記成形体を焼成し、主結晶相が特定の方向に配向した焼結体を得る工程からなる配向性を有するセラミックスの製造方法が知られている(例えば、特許文献3参照)   In addition, a process for producing a slurry by adding an organic solvent to a ceramic raw material powder composed of a raw material powder containing seed crystals, and a molding in which a slurry produced from the process is oriented with a specific raw material powder in a magnetic field of 1 Tesla or more There is known a method for producing a ceramic having orientation, comprising a step of producing a body and a step of firing the molded body to obtain a sintered body in which a main crystal phase is oriented in a specific direction (for example, Patent Literature 3)

特開2009−76649号公報JP 2009-76649 A 特開平7−82047号公報Japanese Patent Laid-Open No. 7-82047 特開2002−121076号公報JP 2002-121076 A

しかしながら、前述の特許文献1,2に開示されたようなSiは高強度であるが、熱伝導率についてはAlN(約170W/m℃)と比較して、低い(約70W/m℃)ため、高熱伝導性を得るためには基板の厚みを薄くする必要があり、その背反事項として強度が弱くなるという問題があった。 However, Si 3 N 4 as disclosed in the aforementioned Patent Documents 1 and 2 has high strength, but its thermal conductivity is lower (about 70 W / m than that of AlN (about 170 W / m ° C.)). Therefore, in order to obtain high thermal conductivity, it is necessary to reduce the thickness of the substrate, and there is a problem that strength is weakened as a contradiction matter.

また、特許文献2に開示されたセラミックス粒子を母材とするマトリックスと、このマトリックスに分散されるセラミックス球状粒子およびセラミックス板状粒子とから形成されたセラミックス焼結体では、機械的特性は改善されるものの焼結体中に多くの粒子界面が存在することになるため、熱伝導率が低下するという問題があった。   Further, in the ceramic sintered body formed from the matrix using ceramic particles disclosed in Patent Document 2 as a base material and ceramic spherical particles and ceramic plate-like particles dispersed in the matrix, the mechanical properties are improved. However, since many particle interfaces exist in the sintered body, there is a problem that the thermal conductivity is lowered.

さらに、特許文献3に開示されたセラミックスの製造方法によれば、配向性を高めることによりセラミックス焼結板そのものの熱伝導率を向上させることができるが、セラミックス焼結板と熱源である金属板との接触面における主結晶相と金属板との接触面積が減少するためパワーモジュールに適用したときに所望の熱伝導率を得ることができないという問題があった。   Furthermore, according to the ceramic manufacturing method disclosed in Patent Document 3, the thermal conductivity of the ceramic sintered plate itself can be improved by increasing the orientation, but the ceramic sintered plate and the metal plate as the heat source Since the contact area between the main crystal phase and the metal plate at the contact surface with the metal plate decreases, there is a problem that a desired thermal conductivity cannot be obtained when applied to a power module.

そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、基板の厚みを低減させることなく熱伝導性を向上させたセラミックス焼結板を提供することである。   Therefore, a technical problem to be solved by the present invention, that is, an object of the present invention is to provide a ceramic sintered plate having improved thermal conductivity without reducing the thickness of the substrate.

前記目的を達成するために、本発明者らが鋭意研究を重ねた結果、本発明は、以下の手段を提案している。   In order to achieve the above object, the present inventors have made intensive studies, and the present invention proposes the following means.

すなわち、本発明は、少なくとも針状Si粒子と粒状非晶質Si粒子とが焼結されたセラミックス焼結板であって、針状Si粒子がC軸配向し、かつ、相対密度が94〜98%であるセラミックス焼結板によって、前記の課題を解決するものである。 That is, the present invention is a ceramic sintered plate in which at least acicular Si 3 N 4 particles and granular amorphous Si 3 N 4 particles are sintered, and the acicular Si 3 N 4 particles are C-axis oriented. And the said subject is solved by the ceramic sintered board whose relative density is 94 to 98%.

さらに、本発明は、前記の構成に加えて、針状Si粒子の面方向断面における面積率が、85〜95%であることによって、前記課題を一層解決するものである。
本発明は、針状Si粒子と粒状非晶質Si粒子を焼結してなるセラミックス焼結体で形成されたセラミックス基板の表面に回路層となる金属板を接合したパワーモジュール用基板において、前記セラミックス焼結体の構成要素である針状Si粒子をC軸配向させるとともに、前記C軸が金属板の回路面に垂直となるようにセラミックス焼結板と金属板とが接合されていることを特徴とする。
Furthermore, the present invention is, in addition to the arrangement, the area ratio in the plane cross section of the needle-shaped Si 3 N 4 particles, by 85 to 95% is to further solve the problems.
The present invention provides a power obtained by bonding a metal plate serving as a circuit layer to the surface of a ceramic substrate formed of a ceramic sintered body obtained by sintering acicular Si 3 N 4 particles and granular amorphous Si 3 N 4 particles. In the module substrate, the needle-like Si 3 N 4 particles, which are constituent elements of the ceramic sintered body, are oriented along the C axis, and the ceramic sintered plate and the metal are arranged so that the C axis is perpendicular to the circuit surface of the metal plate. The board is joined.

本発明に係るセラミックス焼結板は、針状Si粒子のC軸方向の熱伝導率が垂直方向と比較して大きいことに着目し(C軸方向:約180W/m℃、垂直方向:約70W/m℃)、針状Si粒子をC軸方向に配向させた成形体を焼結したものを金属板に対して垂直方向に設置することにより高い放熱性を有する基板を得ている。 The ceramic sintered plate according to the present invention pays attention to the fact that the thermal conductivity in the C-axis direction of the acicular Si 3 N 4 particles is larger than the vertical direction (C-axis direction: about 180 W / m ° C., vertical direction : About 70 W / m ° C.), and a substrate having high heat dissipation by placing a sintered body in which needle-like Si 3 N 4 particles are oriented in the C-axis direction in a direction perpendicular to the metal plate. It has gained.

さらに、粒状非晶質Si粒子を針状Si粒子に混在させることにより、特に、セラミックス焼結板の表面、すなわち金属板との接触面において、粒状非晶質Si粒子が針状Si粒子と針状Si粒子との間に生じる空間を塞ぎ、金属板との接触面積を増加させるので熱伝導性を向上させることができる。 Further, by mixing a particulate amorphous Si 3 N 4 particles acicular Si 3 N 4 particles, in particular, the surface of the sintered ceramic plate, i.e. the contact surface of the metal plate, granular amorphous Si 3 N Since the four particles block the space formed between the acicular Si 3 N 4 particles and the acicular Si 3 N 4 particles and increase the contact area with the metal plate, the thermal conductivity can be improved.

ここで、本発明において、セラミックス焼結板の相対密度が94%より下回ると接合強度が低下するため好ましくなく、98%を超えると微小粒状Si粒子の存在割合が大きくなり、熱伝導率の低下を招くため好ましくない。そこで相対密度は、94〜98%と定めた。 Here, in the present invention, if the relative density of the ceramic sintered plate is less than 94%, the bonding strength is lowered, which is not preferable. If it exceeds 98%, the existence ratio of the fine granular Si 3 N 4 particles is increased, and the heat conduction is increased. This is not preferable because it causes a decrease in rate. Therefore, the relative density was set to 94 to 98%.

また、本発明において、針状Si粒子の面方向断面における面積率が85%より下回ると針状Si粒子の存在割合が少なくなり、熱伝導率の低下を招くため好ましくなく、95%を超えると相対密度が上がらず、接合強度、基板強度が低下するため好ましくない。そこで、針状Si粒子の面方向断面における面積率は、85〜95%と定めた。 Further, in the present invention, if the area ratio in the cross section in the plane direction of the acicular Si 3 N 4 particles is less than 85%, the proportion of the acicular Si 3 N 4 particles is decreased, which causes a decrease in thermal conductivity, which is not preferable. If it exceeds 95%, the relative density does not increase, and the bonding strength and the substrate strength decrease. Therefore, the area ratio in the plane cross section of the needle-shaped Si 3 N 4 particles was determined to be 85% to 95%.

本発明に係るセラミックス焼結板によれば、焼結板の厚みを低減させることなく高放熱性を有するセラミックス焼結板を得ることができることから、すぐれた機械的強度およびすぐれた熱伝導率を兼ね備えたパワーモジュール用基板が提供される。   According to the ceramic sintered plate according to the present invention, it is possible to obtain a ceramic sintered plate having high heat dissipation without reducing the thickness of the sintered plate, so that excellent mechanical strength and excellent thermal conductivity can be obtained. A power module substrate is also provided.

本発明のセラミックス焼結板を用いたパワーモジュール用基板の一実施態様を示す概略断面図である。It is a schematic sectional drawing which shows one embodiment of the board | substrate for power modules using the ceramic sintered board of this invention. 本発明のセラミックス焼結板の配向性を示す模式図で、(a)焼結板の斜視図、(b)焼結板の断面の模式図である。It is a schematic diagram which shows the orientation of the ceramic sintered plate of this invention, (a) The perspective view of a sintered plate, (b) The schematic diagram of the cross section of a sintered plate.

以下、図面を参照し、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明のセラミックス焼結板を用いて構成したパワーモジュール用基板の一実施態様を示す概略斜視図である。   FIG. 1 is a schematic perspective view showing an embodiment of a power module substrate constructed using the ceramic sintered plate of the present invention.

本実施形態に係るパワーモジュール用基板10は、図1に示すように、矩形板状のセラミックス基板11しており、このセラミックス基板11のパワーモジュール用基板の表側に回路層となる回路層用金属板13が積層されるとともに、裏面側に放熱のための熱伝導層となる熱伝導層用金属板12が積層された構成である。例えば、これら回路層用金属板13および熱伝導層用金属板12は、純Alにより形成されている。   As shown in FIG. 1, the power module substrate 10 according to the present embodiment is a rectangular plate-shaped ceramic substrate 11. In this configuration, the plate 13 is laminated, and the heat conduction layer metal plate 12 serving as a heat conduction layer for heat radiation is laminated on the back surface side. For example, the circuit layer metal plate 13 and the heat conductive layer metal plate 12 are made of pure Al.

セラミックス基板11は、後述する針状Siと粒状非晶質Si粒子とが成形・焼結されたセラミックス焼結板によって構成されている。ここで、セラミックス基板11は、その厚さが例えば0.635mmとなっている。 The ceramic substrate 11 is constituted by a ceramic sintered plate in which acicular Si 3 N 4 and granular amorphous Si 3 N 4 particles described later are formed and sintered. Here, the thickness of the ceramic substrate 11 is, for example, 0.635 mm.

熱伝導層用金属板12は、例えば、Al(アルミニウム)のような高熱伝導率を有する金属により形成されており、ロウ材層16によってセラミックス基板11に接合固定されている。ここで、熱伝導層用金属板12の厚さは、例えば0.6mmとなっている。また、ロウ材層16は、例えばAl−Si(珪素)系(例えばAl:93重量%、Si:7重量%、厚さ10μm以上15μm)またはAl−Ge(ゲルマニウム)系のロウ材により形成されている。   The heat conductive layer metal plate 12 is formed of a metal having a high thermal conductivity such as Al (aluminum), and is bonded and fixed to the ceramic substrate 11 by a brazing material layer 16. Here, the thickness of the metal plate 12 for heat conductive layers is, for example, 0.6 mm. The brazing material layer 16 is formed of, for example, an Al—Si (silicon) -based brazing material (for example, Al: 93 wt%, Si: 7 wt%, a thickness of 10 μm to 15 μm) or an Al—Ge (germanium) brazing material. ing.

回路層用金属板13は、熱伝導層用金属板12と同様に、例えば、Alのような高熱伝導率を有する金属により形成されており、間隔を適宜あけて配置されることで回路を構成する。そして、回路層用金属板13は、ロウ材層17によってセラミックス基板11に接合固定されている。ここで、回路層用金属板13の厚さは、例えば0.6mmとなっている。また、ロウ材層17は、例えば、Al−Si系またはAl−Ge系のロウ材により形成されている。   The metal plate for circuit layer 13 is formed of a metal having a high thermal conductivity such as Al, for example, similarly to the metal plate for heat conduction layer 12, and constitutes a circuit by being arranged at an appropriate interval. To do. The circuit layer metal plate 13 is bonded and fixed to the ceramic substrate 11 by the brazing material layer 17. Here, the thickness of the circuit layer metal plate 13 is, for example, 0.6 mm. The brazing material layer 17 is made of, for example, an Al—Si or Al—Ge brazing material.

また、回路層用金属板13の上面には、電子部品18がハンダ層19によって固着される。ここで、電子部品18としては、例えば、半導体チップが適用可能であり、半導体チップとしてIGBT(Insulated Gate Bipolar Transistor)などのパワーデバイスが挙げられる。   Further, the electronic component 18 is fixed to the upper surface of the circuit layer metal plate 13 by a solder layer 19. Here, as the electronic component 18, for example, a semiconductor chip can be applied, and examples of the semiconductor chip include a power device such as an IGBT (Insulated Gate Bipolar Transistor).

また、本実施形態のパワーモジュール用基板10に用いられるセラミックス基板11は、以下に示す方法により製造することにより、構成要素である針状Si粒子がC軸方向に配向したものとなっている。
[C軸配向したセラミックス焼結体の製造方法]
まず、窒化珪素粉末を準備する。窒化珪素粉末としては、主たるセラミック粉末として針状Si粒子を、粒状非晶質Si粒子を用いることができる。これは、粒状非晶質Si粒子よりも針状Si粒子が磁場中で配向しやすく、さらに、あらかじめ配向した粒状非晶質Si粒子からなる種結晶を基にして結晶が成長し、針状Si粒子からなる針状結晶が配向した組織が形成される。従って、高配向度を得るため、針状Si粒子は85〜95wt%加えることが重要である。
In addition, the ceramic substrate 11 used for the power module substrate 10 of the present embodiment is manufactured by the following method, so that the needle-like Si 3 N 4 particles, which are constituent elements, are oriented in the C-axis direction. ing.
[Method for producing C-axis oriented ceramic sintered body]
First, silicon nitride powder is prepared. As the silicon nitride powder, acicular Si 3 N 4 particles and granular amorphous Si 3 N 4 particles can be used as the main ceramic powder. This granular amorphous Si 3 N 4 acicular Si 3 N 4 particles are easily oriented in a magnetic field than particulate, further based on a seed crystal composed of pre-oriented granular amorphous Si 3 N 4 particles As a result, the crystal grows, and a structure in which the needle-like crystal composed of needle-like Si 3 N 4 particles is oriented is formed. Therefore, in order to obtain a high degree of orientation, it is important to add 85 to 95 wt% of acicular Si 3 N 4 particles.

また、針状Si粒子の平均粒子径は、少なくとも長径が0.4〜2.5μm、特に0.6〜2.0μm、さらには0.8〜1.5μmであることが好ましい。この粒径範囲に制御することにより、主たる粒子自身がスラリー中で移動しやすく、磁場中での配向が効率よく行える。 The average particle size of the acicular Si 3 N 4 particles is preferably at least a major axis of 0.4 to 2.5 μm, particularly 0.6 to 2.0 μm, and more preferably 0.8 to 1.5 μm. By controlling to this particle size range, the main particles themselves can easily move in the slurry and can be efficiently aligned in a magnetic field.

そして、針状Si粒子に対して、Fe、Co、Ni等の磁性金属をコーティングする。コーティングの方法としては、例えば、スパッタリング、蒸着、湿式化学メッキが用いられる。そして、このコーティングされた針状Si粒子と粒状非晶質Si粒子とを混合した原料粉末に対して、エタノールやイソプロピルアルコール等の有機溶剤および所望によりバインダーを加えた後、公知の混練方法、例えば、ボールミル、振動ミル、回転ミル、バレルミル等により原料粉末を均一に混合粉砕してスラリーを作成する。 The needle-like Si 3 N 4 particles are coated with a magnetic metal such as Fe, Co, or Ni. As a coating method, for example, sputtering, vapor deposition, or wet chemical plating is used. Then, to the raw material powder obtained by mixing the coated needle-like Si 3 N 4 particles and the granular amorphous Si 3 N 4 particles, an organic solvent such as ethanol or isopropyl alcohol and a binder as required are added, A raw material powder is uniformly mixed and pulverized by a known kneading method, for example, a ball mill, a vibration mill, a rotary mill, a barrel mill or the like, to prepare a slurry.

これらの有機溶剤、バインダー自身が磁場中の配向に与える影響は小さいが、これらの添加率はスラリーの粘度が小さく、かつ固体含有率が大きくなるような組み合わせが、粒子配向を短時間で完了させ同時に成形時の粒子分散性を高めるために好ましい。例えば、スラリー粘度として100sec−1における粘度が1.0Pa・s以下、好ましくは0.5Pa・s以下であり、かつ固体含有率が30〜60容量%、好ましくは40〜50容量%が望ましい。 Although these organic solvents and the binder itself have little influence on the orientation in the magnetic field, the combination of these addition ratios with low slurry viscosity and high solids content completes particle orientation in a short time. At the same time, it is preferable for improving the particle dispersibility during molding. For example, as the slurry viscosity, the viscosity at 100 sec −1 is 1.0 Pa · s or less, preferably 0.5 Pa · s or less, and the solid content is 30 to 60% by volume, preferably 40 to 50% by volume.

次に、得られたスラリーを磁場中で成形する。磁場強度は、高配向度を得るために1T以上が必要で、特に5T以上、さらには9T以上が好ましい。スラリーは磁場発生装置の超伝導磁石中で成形するが、このとき磁場の印加方向は基板と水平な方向、即ち基板の面方向(磁力線が基板の面方向と平行)であることが重要である。その結果、針状Si粒子のa軸は、磁場の印加方向に対して平行な方向に配向し、c軸は磁場の印加方向に垂直な方向に向く。即ち、図2に磁場の方向を矢印で示したように、磁場を基板の面方向に印加する。 Next, the obtained slurry is formed in a magnetic field. In order to obtain a high degree of orientation, the magnetic field strength needs to be 1T or more, particularly 5T or more, and more preferably 9T or more. The slurry is formed in the superconducting magnet of the magnetic field generator. At this time, it is important that the magnetic field is applied in the direction parallel to the substrate, that is, the surface direction of the substrate (the lines of magnetic force are parallel to the surface direction of the substrate). . As a result, the a-axis of the acicular Si 3 N 4 particles is oriented in a direction parallel to the magnetic field application direction, and the c-axis is oriented in a direction perpendicular to the magnetic field application direction. That is, the magnetic field is applied in the direction of the surface of the substrate as indicated by the arrow in FIG.

この磁場中における粒子の配向は短時間で完了するため、成形体を固化するためにスラリー中に紫外線硬化性の有機樹脂、例えば、アクリル系樹脂、メタクリレート、ポリカルボン酸アンモニウム、ポリジオレフィン系樹脂等を含有させておき、紫外線を照射させることにより固化を短時間に行って配向を成形体に凍結させることが重要である。また、紫外線硬化性樹脂の代わりに、熱硬化性樹脂および熱可塑性樹脂を用いて、温度を上げたり、下げたりすることで成形体を得ることもできる。例えば、ポリジオレフィン系樹脂が熱可塑性樹脂として用いることができ、また、ポリジオレフィン系樹脂に硬化触媒としてケトンパーオキサイド類、パーオキシエステル類、パーオキシカーボネート類などの有機過酸化物等を添加して熱硬化性樹脂として用いることができる。   Since the orientation of the particles in the magnetic field is completed in a short time, an ultraviolet curable organic resin such as an acrylic resin, methacrylate, ammonium polycarboxylate, polydiolefin resin or the like is used in the slurry to solidify the molded body. It is important to solidify in a short time by irradiating ultraviolet rays and freeze the orientation in the compact. Moreover, a molded object can also be obtained by raising or lowering temperature using a thermosetting resin and a thermoplastic resin instead of an ultraviolet curable resin. For example, polydiolefin resins can be used as thermoplastic resins, and organic peroxides such as ketone peroxides, peroxyesters, peroxycarbonates and the like are added to the polydiolefin resins as curing catalysts. And can be used as a thermosetting resin.

成形方法としてはドクターブレード法、カレンダーロール法、圧延法、押し出し成形法、鋳込み成型法、射出成形法等の周知の成形方法でよいが、低粘度のスラリーを成形させるためにはドクターブレード法などいわゆるテープ成形法、石膏などの型を用いる鋳込み成形法または射出成形法が望ましい。   As a molding method, a known molding method such as a doctor blade method, a calender roll method, a rolling method, an extrusion molding method, a cast molding method, an injection molding method or the like may be used, but a doctor blade method or the like may be used to form a low-viscosity slurry. A so-called tape molding method, a casting molding method using a mold such as plaster, or an injection molding method is desirable.

その後、得られた成形体を弱酸化性雰囲気中にて脱バインダー処理した後、窒素などの非酸化性雰囲気中で、1500〜2000℃の温度で焼成することにより配向したセラミックス焼結板を作製することができる。   After that, the obtained molded body was debindered in a weakly oxidizing atmosphere, and then fired in a non-oxidizing atmosphere such as nitrogen at a temperature of 1500 to 2000 ° C. to produce an oriented ceramic sintered plate. can do.

さらに、粒状非晶質Si粒子の粒径に制限はないが、磁場印加時に針状Si粒子が回転しやすいように粒状非晶質Si粒子もアスペクト比が3以下、特に2以下の小さいものを用いた方が良い。例えば、粒状非晶質Si粒子の平均粒径が0.4〜2.5μm、特に0.6〜2.0μmであることが好ましい。平均粒径が2.5μmを超えると高磁場において主たる粒子である針状Si粒子の配向の邪魔となり、粒子配向が妨げられやすくなる傾向がある。 Further, the particle size of the granular amorphous Si 3 N 4 particles is not limited, but the granular amorphous Si 3 N 4 particles also have an aspect ratio of 3 so that the acicular Si 3 N 4 particles are easily rotated when a magnetic field is applied. In the following, it is particularly preferable to use a small one of 2 or less. For example, the average particle diameter of the granular amorphous Si 3 N 4 particles is preferably 0.4 to 2.5 μm, particularly preferably 0.6 to 2.0 μm. When the average particle size exceeds 2.5 μm, the orientation of the acicular Si 3 N 4 particles, which are the main particles in a high magnetic field, is obstructed, and the particle orientation tends to be hindered.

また、粒状非晶質Si粒子および針状Si粒子の比表面積はそれぞれ10m/g以下、特に7m/g以下、さらに5m/g以下であることが好ましい。10m/gを超えるとスラリーの粘度が高くなって粒子配向を阻害しやすくなる傾向がある。 The specific surface areas of the granular amorphous Si 3 N 4 particles and the acicular Si 3 N 4 particles are each preferably 10 m 2 / g or less, particularly 7 m 2 / g or less, and more preferably 5 m 2 / g or less. If it exceeds 10 m 2 / g, the viscosity of the slurry tends to be high and particle orientation tends to be hindered.

以下に、実施例に基づき本発明の一軸配向した針状Si粒子を含有するセラミックス焼結板について、具体的に説明する。 The ceramic sintered plate containing uniaxially oriented needle-like Si 3 N 4 particles of the present invention will be specifically described below based on examples.

平均直径0.5μm、平均長さ1.0μm、比表面積8m/gの針状Si粒子(東芝セラミックス社製、製品名:窒化ケイ素粉末)に対し、無電解めっき法にて表面上に平均厚さ約0.1μmの層状Feめっきを施した。 Surfaces of acicular Si 3 N 4 particles (product name: silicon nitride powder, manufactured by Toshiba Ceramics) with an average diameter of 0.5 μm, an average length of 1.0 μm, and a specific surface area of 8 m 2 / g by electroless plating A layered Fe plating having an average thickness of about 0.1 μm was applied thereon.

このコーティングされた針状Si粒子と、アスペクト比2、平均粒径が 10−20 nm、比表面積115m/gの粒状非晶質Si粒子(KFO社製、製品名:窒化ケイ素ナノ粉末)とを表1に示した配合比で混合した原料粉末に対して、イソプロピルアルコールおよびバインダー(本実施例では紫外線硬化性のアクリル系樹脂であるメタクリル酸アクリル酸共重合体)を加えた後、公知の混練方法、ボールミルにより原料粉末を均一に混合粉砕してスラリーを作成した。 These coated needle-like Si 3 N 4 particles and granular amorphous Si 3 N 4 particles having an aspect ratio of 2, an average particle diameter of 10-20 nm, and a specific surface area of 115 m 2 / g (manufactured by KFO, product name: The raw material powder mixed with the compounding ratio shown in Table 1 is mixed with isopropyl alcohol and a binder (in this example, a methacrylic acid acrylic acid copolymer which is an ultraviolet curable acrylic resin). After the addition, a raw material powder was uniformly mixed and pulverized by a known kneading method and a ball mill to prepare a slurry.

スラリーの100sec−1における粘度および固体含有率は表1に記載のとおりであった。 The viscosity and solid content at 100 sec −1 of the slurry were as shown in Table 1.

次に、得られたスラリーを磁場発生装置の超伝導磁石中(磁場強度10T)で成形した。成形方法としてはドクターブレード法を用い、板状(板厚0.635mm、一辺が30mmの正方形)に成形した。磁場の印加方向は基板と水平な方向、即ち基板の面方向(磁力線が基板の面方向と平行)とした。成形体が磁場中にあるうちに紫外線を照射し、スラリー中に含まれる紫外線硬化性の有機樹脂を硬化させた。   Next, the obtained slurry was molded in a superconducting magnet (magnetic field strength: 10 T) of a magnetic field generator. As a forming method, a doctor blade method was used to form a plate shape (plate thickness 0.635 mm, a square having a side of 30 mm). The application direction of the magnetic field was a direction horizontal to the substrate, that is, the surface direction of the substrate (lines of magnetic force were parallel to the surface direction of the substrate). While the molded body was in a magnetic field, ultraviolet rays were irradiated to cure the ultraviolet curable organic resin contained in the slurry.

得られた成形体を弱酸化性雰囲気中にて脱バインダー処理した後、窒素雰囲気中で、1700℃の温度で焼成することにより配向したセラミックス焼結板を得た。   The obtained molded body was debindered in a weakly oxidizing atmosphere, and then fired in a nitrogen atmosphere at a temperature of 1700 ° C. to obtain an oriented ceramic sintered plate.

このようにして得られた本発明セラミックス焼結体(実施例1〜3)に対して、相対密度(%)、曲げ強度(MPa)、熱伝導率(W/m・k)、接合強度(ヒートサイクル剥離の有無)をそれぞれ測定した。   For the ceramic sintered bodies of the present invention thus obtained (Examples 1 to 3), relative density (%), bending strength (MPa), thermal conductivity (W / m · k), bonding strength ( The presence or absence of heat cycle peeling was measured.

なお、相対密度は、Siの理論密度に対する比率で算出した。 The relative density was calculated as a ratio to the theoretical density of Si 3 N 4 .

また、曲げ強度の試験は、JIS・R1601で規定されるファインセラミックスの曲げ強さ試験方法により行い、熱伝導率の測定は、JIS・R1611で規定されるファインセラミックスのレーザーフラッシュ法による熱伝導率試験方法により行った。   In addition, the bending strength test is performed by the fine ceramic bending strength test method specified by JIS R1601, and the thermal conductivity is measured by the laser flash method of the fine ceramics specified by JIS R1611. The test was performed.

接合強度は、以下のように作成したパワーモジュールについて評価した。   The bonding strength was evaluated for a power module prepared as follows.

各実施例のセラミックス基板の両面に、Al−Si合金のろう材箔を介して28mm角のアルミニウム金属層(回路層の厚み0.6mm、放熱層の厚み1.5mm)を配置した。そして、各積層体の両面にカーボン製のクッションシートを積層してベース板と押圧板との間に配置して加熱処理(650℃、2.5×10Pa)を施し、それぞれパワーモジュール用基板を得た。 A 28 mm square aluminum metal layer (circuit layer thickness: 0.6 mm, heat dissipation layer thickness: 1.5 mm) was disposed on both surfaces of the ceramic substrate of each example via a brazing foil of Al-Si alloy. Then, a carbon cushion sheet is laminated on both surfaces of each laminate, placed between the base plate and the pressing plate, and subjected to heat treatment (650 ° C., 2.5 × 10 5 Pa) for each power module. A substrate was obtained.

こうして得られたパワーモジュール用基板に、−40℃×30分→室温×10分→105℃×30℃→室温×10分を1サイクルとするヒートサイクルを1000回実施した。その後、超音波探傷により、焼結板の剥離を観察した。   The power module substrate thus obtained was subjected to 1000 heat cycles of -40 ° C. × 30 minutes → room temperature × 10 minutes → 105 ° C. × 30 ° C. → room temperature × 10 minutes as one cycle. Thereafter, peeling of the sintered plate was observed by ultrasonic flaw detection.

なお、比較のために針状Si粒子の配合量を変化させ、相対密度が本発明で規定する94〜98%から外れるものを作成し、比較例セラミックス焼結体(比較例1〜2)とした。また、針状Si粒子と焼結助剤を原料として、針状Si粒子を配向させて形成した相対密度が99%以上のものを従来例セラミックス焼結体(従来例1)、同じく針状Si粒子を配向させずに形成させた相対密度が99%以上のものを従来例セラミックス焼結体(従来例2)とした。これらに対しても本発明セラミックス焼結体と同様の測定を行いその結果を、同じく表1に示した。 For comparison, the amount of needle-like Si 3 N 4 particles was changed, and the one with a relative density deviated from 94 to 98% defined in the present invention was prepared. 2). Further, a ceramic sintered body with a relative density of 99% or more formed by acicular Si 3 N 4 particles and a sintering aid as raw materials and oriented with needle-like Si 3 N 4 particles (conventional example 1) ), And a conventional ceramic sintered body (conventional example 2) having a relative density of 99% or more formed without orientation of acicular Si 3 N 4 particles. Also for these, the same measurement as that of the ceramic sintered body of the present invention was performed, and the results are also shown in Table 1.

Figure 0005773330
表1に示す結果から明らかなように、本発明によるセラミックス焼結板は、接合強度および曲げ強度が高く、しかも熱伝導率も高いため、パワーモジュール用のセラミックス基板にきわめて適していることがわかる。一方、本発明の条件から外れる比較例、従来例のセラミックス焼結板は、接合強度、曲げ強度、熱伝導率の少なくとも1つにおいて不十分な値を示すため、本発明によるセラミックス焼結板に比べて、パワーモジュール用のセラミックス基板に適していないことがわかる。
Figure 0005773330
As is apparent from the results shown in Table 1, the ceramic sintered plate according to the present invention has a high bonding strength and bending strength, and also has a high thermal conductivity. Therefore, it can be seen that the ceramic sintered plate is very suitable for a ceramic substrate for a power module. . On the other hand, the comparative and conventional ceramic sintered plates that deviate from the conditions of the present invention show insufficient values in at least one of bonding strength, bending strength, and thermal conductivity. In comparison, it can be seen that it is not suitable for ceramic substrates for power modules.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、本実施形態ではセラミックス焼結板をパワーモジュール用基板に用いる例について説明したが、これに限られず、高い接合強度と熱伝導率が要求される分野であれば、いかなる分野にも適用可能である。   In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention. For example, in the present embodiment, an example in which a ceramic sintered plate is used for a power module substrate has been described. It is.

1 ・・・ セラミックス焼結板
2 ・・・ 針状Si粒子
3 ・・・ 粒状非晶質Si粒子
10 ・・・ パワーモジュール用基板
11 ・・・ セラミックス基板
12 ・・・ 熱伝導層用金属板
13 ・・・ 回路層用金属板
16、17 ・・・ ロウ材層
18 ・・・ 電子部品
19 ・・・ ハンダ層
1 ... sintered ceramic plate 2 ... needle Si 3 N 4 particles 3 ... particulate amorphous Si 3 N 4 particles 10 ... power module substrate 11 ... ceramic substrate 12 ... Metal plate for heat conduction layer 13 ... Metal plates for circuit layer 16, 17 ... Brazing material layer 18 ... Electronic component 19 ... Solder layer

Claims (2)

セラミックス基板の表面に回路層となる金属板を接合したパワーモジュール用基板であって、前記セラミックス基板は針状SiA power module substrate in which a metal plate serving as a circuit layer is bonded to a surface of a ceramic substrate, wherein the ceramic substrate is a needle-like Si substrate. 3 N 4 粒子と粒状非晶質SiParticles and granular amorphous Si 3 N 4 粒子とが焼結されたセラミックス焼結板であり、前記セラミックス焼結板の相対密度が94〜98%であり、前記セラミックス焼結板の構成要素である針状SiA sintered ceramic plate in which particles are sintered, the relative density of the sintered ceramic plate is 94 to 98%, and acicular Si that is a constituent element of the sintered ceramic plate 3 N 4 粒子をC軸配向させるとともに、前記C軸が前記金属板の回路面に垂直となるようにセラミックス焼結板と金属板とが接合されていることを特徴とするパワーモジュール用基板。A power module substrate, wherein the ceramic sintered plate and the metal plate are joined so that the particles are oriented along the C axis and the C axis is perpendicular to a circuit surface of the metal plate. 前記セラミックス焼結板の構成要素である針状Si粒子の面方向断面における面積率が、85〜95%であることを特徴とする請求項1に記載のパワーモジュール用基板。


2. The power module substrate according to claim 1, wherein an area ratio in a cross section in a plane direction of acicular Si 3 N 4 particles which are constituent elements of the ceramic sintered plate is 85 to 95% .


JP2011106872A 2011-05-12 2011-05-12 Ceramic sintered plate containing uniaxially oriented acicular Si3N4 particles Active JP5773330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106872A JP5773330B2 (en) 2011-05-12 2011-05-12 Ceramic sintered plate containing uniaxially oriented acicular Si3N4 particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106872A JP5773330B2 (en) 2011-05-12 2011-05-12 Ceramic sintered plate containing uniaxially oriented acicular Si3N4 particles

Publications (2)

Publication Number Publication Date
JP2012236743A JP2012236743A (en) 2012-12-06
JP5773330B2 true JP5773330B2 (en) 2015-09-02

Family

ID=47460007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106872A Active JP5773330B2 (en) 2011-05-12 2011-05-12 Ceramic sintered plate containing uniaxially oriented acicular Si3N4 particles

Country Status (1)

Country Link
JP (1) JP5773330B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6471927B2 (en) * 2013-08-27 2019-02-20 地方独立行政法人神奈川県立産業技術総合研究所 Method for manufacturing silicon nitride ceramic substrate
KR101963274B1 (en) * 2014-10-10 2019-03-28 삼성전기주식회사 Multi-layer ceramic substrate and method for manufacturing the same
WO2016140359A1 (en) * 2015-03-05 2016-09-09 公益財団法人神奈川科学技術アカデミー Ceramic including aligned crystals, production process therefor, and heat radiation material
JP2017216422A (en) * 2016-06-02 2017-12-07 住友電気工業株式会社 Sheet material manufacturing method and sheet material
JP2019178054A (en) * 2018-03-30 2019-10-17 Tdk株式会社 Core material and heat dissipation substrate
CN116134608A (en) * 2020-07-29 2023-05-16 日本精细陶瓷有限公司 Silicon nitride substrate and manufacturing method thereof
JP7455184B1 (en) 2022-12-23 2024-03-25 株式会社Maruwa Silicon nitride thin plate and silicon nitride resin composite plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615437B2 (en) * 1994-09-20 1997-05-28 工業技術院長 High strength and high toughness silicon nitride sintered body and method for producing the same
JPH1192231A (en) * 1997-09-19 1999-04-06 Ishikawajima Harima Heavy Ind Co Ltd Method for producing high toughness silicon nitride ceramics
JP3561145B2 (en) * 1998-04-27 2004-09-02 京セラ株式会社 Silicon nitride heat dissipation member and method of manufacturing the same
JPH11217272A (en) * 1998-02-02 1999-08-10 Hitachi Metals Ltd Silicon nitride sintered member having oriented crystal and its production
JP2002121076A (en) * 2000-10-10 2002-04-23 Kyocera Corp Method for producing ceramics and ceramic substrate produced using the same

Also Published As

Publication number Publication date
JP2012236743A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5773330B2 (en) Ceramic sintered plate containing uniaxially oriented acicular Si3N4 particles
Bai Low-temperature sintering of nanoscale silver paste for semiconductor device interconnection
TWI634094B (en) Resin impregnated boron nitride sintered body and use thereof
WO2009131217A1 (en) Heat dissipating base body and electronic device using the same
JP5473407B2 (en) Ceramic substrate, heat dissipation substrate, and electronic device
JP6096094B2 (en) Laminated body, insulating cooling plate, power module, and manufacturing method of laminated body
CN104276823B (en) High insulating silicon carbide/boron nitride ceramic material and preparation method thereof
CN102781878B (en) Ceramic sintered compact, circuit board using the same, electronic device and thermoelectric conversion module
WO2006118003A1 (en) Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same
JP2013041884A (en) Semiconductor device
KR20200021925A (en) Composite Sintered Body, Electrostatic Chuck Member and Electrostatic Chuck Device
Zhu et al. Low temperature processing of nanocrystalline lead zirconate titanate (PZT) thick films and ceramics by a modified sol-gel route
CN116134608A (en) Silicon nitride substrate and manufacturing method thereof
JP2010235335A (en) Ceramic sintered body, heat dissipation base and electronic device
JP5804838B2 (en) Ceramic joint
JP2007230791A (en) Ceramic circuit board and manufacturing method thereof
JP5743752B2 (en) Circuit board
JP4404602B2 (en) Ceramics-metal composite and high heat conduction heat dissipation substrate using the same
JP2000128654A (en) Silicon nitride composite substrate
JP2006228804A (en) Ceramic substrate for semiconductor module and its manufacturing method
CN113614910A (en) Silicon nitride sintered body, method for producing same, laminate, and power module
JP5119825B2 (en) Power module substrate
JP2002121076A (en) Method for producing ceramics and ceramic substrate produced using the same
JP2022026653A (en) Graphite laminate, graphite plate, and manufacturing method of graphite laminate
JPS61270263A (en) Manufacture of high heat conductive aluminum nitride sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5773330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150621

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250