JP5765877B2 - Conductive core-sheath composite acrylic fiber for brush - Google Patents
Conductive core-sheath composite acrylic fiber for brush Download PDFInfo
- Publication number
- JP5765877B2 JP5765877B2 JP2009102064A JP2009102064A JP5765877B2 JP 5765877 B2 JP5765877 B2 JP 5765877B2 JP 2009102064 A JP2009102064 A JP 2009102064A JP 2009102064 A JP2009102064 A JP 2009102064A JP 5765877 B2 JP5765877 B2 JP 5765877B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- conductive
- hair
- brush
- acrylonitrile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Brushes (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Multicomponent Fibers (AREA)
Description
ブラシ製造工程において機械植えが可能となる毛材の原料となる単糸繊度の小さい導電性アクリル繊維。 A conductive acrylic fiber with a small single yarn fineness, which is a raw material for bristle materials that can be machine-planted in the brush manufacturing process.
従来から、電子写真複写機や、プリンターなどで使用される帯電又はクリーニングブラシや、静電気の発生を嫌う用途で使用される除電ブラシなどでは、導電性繊維が毛材として使用されてきた。毛材とはマルチフィラメントであって、繊維が収束され1000ktex程度の太さの束となったものであり、通常はブラシのサイズに合わせた長さにカットした後に使用される。各用途で使用されているブラシにおいては、製造された繊維をそのままブラシ状に加工する場合と、毛材として収束されたものを加工する場合があるが、本発明は毛材を使用してブラシを製造する場合において、好適に使用されるブラシ用導電性繊維に関するものである。
毛材からブラシを製造する場合においては、毛材として繊維を収束される工程の作業効率とブラシの製造工程においる毛さばき性能が要求性能として挙げられている。毛さばき性能とは、ブラシの基材に毛材を植え込む作業を行う際に、毛材が絡まないように分離しやすいかどうかを示すものであり、特に工業用ブラシのように機械作業で植え込みを行う場合には、ブラシ生産の効率の点から重要な要素となる。機械植えでは、毛材をカットした毛束から、適量を機械で摘み取り基材に植え込みを行うので、毛さばき性能が悪い場合は毛束の繊維が絡み、作業を安定に行うことができないと連続生産ができないと言う問題が発生する。従って、導電繊維の毛材から工業用ブラシを製造する場合においても、毛さばき性能を有するものが求められていた。
Conventionally, conductive fibers have been used as hair materials in electrification or cleaning brushes used in electrophotographic copying machines, printers, etc., and static elimination brushes used in applications that do not like the generation of static electricity. The hair material is a multifilament, which is a bundle of fibers having a thickness of about 1000 ktex, and is usually used after being cut into a length corresponding to the size of the brush. In the brush used in each application, there are a case where the manufactured fiber is processed into a brush shape as it is, and a case where the fibers are converged as a hair material, but the present invention uses a hair material to make a brush. In the case of manufacturing a conductive fiber for a brush that is preferably used.
In the case of manufacturing a brush from bristle material, the work efficiency of the process of converging fibers as bristle material and the hair separation performance in the brush production process are listed as required performance. The hair separation performance indicates whether it is easy to separate the hair material so that it does not get entangled when planting the hair material on the base material of the brush. Is an important factor in terms of brush production efficiency. In machine planting, an appropriate amount is picked from the hair bundle cut from the hair material and planted on the base material, so if the hair separation performance is poor, the fibers of the hair bundle are entangled, and the work cannot be performed stably. The problem that production is not possible occurs. Therefore, even when manufacturing an industrial brush from a conductive fiber bristle material, a material having hair separation performance has been demanded.
毛材として利用される導電繊維としては、モノフィラメントの製造工程を利用したものが先行文献1により開示されている。先行文献1実施例では、太さ0.4mmの導電性モノフィラメントの製造法が示されているが、太繊度の導電繊維から得られた毛材では、毛さばき性が非常に優れるものの、電子写真複写機等均一な帯電性能が求められる用途には適用が難しいと言う問題があった。このため単糸の繊度が20dtex以下の導電繊維の毛材が求められていたが、モノフィラメントの製造方法では細繊度の導電繊維を得ることが難しかった。
一方、従来から導電性繊維は通常カーボンブラック等の導電性微粒子を含むポリマーを溶融紡糸して生産されてきた。
マルチフィラメントの製造工程を利用した特許文献2の実施例では、ポリエチレンテレフタレートを原料として、カーボンブラックを練り込んだポリマーを導電層とする300デニール、50フィラメントである導電繊維の製造方法が開示されている。通常空気冷却による溶融紡糸においてはノズル口から吐出されたポリマーを延伸した後巻き取りを行うために、総繊度が大きいものは生産効率が低いという問題があった。このため先行文献2の実施例の方法で得られた繊維から毛材を得ようとした場合、30000万本以上の繊維を収束しなければならないため、作業効率が悪いと言う問題があった。また、パーンやチーズに巻き取られた状態の繊維を解舒して収束を行う場合、実質的に撚りが入り、毛さばき性能が悪くなることも問題となっていた。一方、モノフィラメントの製造工程を利用した導電繊維では、太さ0.4mmの導電性モノフィラメントの製造法が特許文献2により開示されている。太繊度の導電繊維から得られた毛材では、毛さばき性が非常に優れるものの、電子写真複写機等の用途等均一な帯電性能が求められる用途には適用が難しいと言う問題があった。一方、細繊度の導電繊維を毛材として使用する場合、毛さばき性能が大幅に悪くなるために、機械植えを行うブラシ用途への展開ができないという問題を抱えていた。
On the other hand, conductive fibers have been conventionally produced by melt spinning a polymer containing conductive fine particles such as carbon black.
In an example of Patent Document 2 using a multifilament manufacturing process, a method of manufacturing 300 denier and 50 filament conductive fibers using polyethylene terephthalate as a raw material and a polymer kneaded with carbon black as a conductive layer is disclosed. Yes. In melt spinning by air cooling, since the polymer discharged from the nozzle port is stretched and then wound, there is a problem that a product having a large total fineness has low production efficiency. For this reason, when it was going to obtain a hair material from the fiber obtained by the method of the Example of the prior art document 2, since 30 million or more fibers had to be converged, there was a problem that work efficiency was bad. Moreover, when unwinding and converging fibers in a state of being wound up by parn or cheese, there is also a problem that the twisting is substantially entered and the hair separation performance is deteriorated. On the other hand, Patent Document 2 discloses a method for producing a conductive monofilament having a thickness of 0.4 mm in a conductive fiber using a monofilament production process. The hair material obtained from the conductive fiber having a large fineness has a problem that it is difficult to apply to a use that requires uniform charging performance such as an electrophotographic copying machine, although it has very good hairiness. On the other hand, when using conductive fibers having fineness as hair materials, the hair separation performance is greatly deteriorated, and therefore, there is a problem that it is not possible to develop the brush for mechanical planting.
均一な帯電と柔らかさが要求される工業用除電ブラシを、原料となる毛材から機械植えを行うことにより効率的に製造するにあたり、機械植えが可能な毛さばき性能を有し、十分な導電性能を有する毛材を得るための導電性繊維を提供することにある。 In order to efficiently produce an industrial static elimination brush that requires uniform charging and softness by mechanical planting from the hair material used as a raw material, it has a hair separation performance that enables mechanical planting and sufficient electrical conductivity. It is providing the electroconductive fiber for obtaining the hair material which has performance.
本発明の要旨は、単糸の繊度が9dtex以上20dtex以下、
芯部にカーボンブラックを30質量%以上含み、
印加電圧100Vにおける単繊維の抵抗値が103MΩ/cm以下、
繊維表面にシリコン系油剤を付着してなるブラシ用導電性芯鞘複合アクリル繊維にある。
The gist of the present invention is that the fineness of the single yarn is 9 dtex or more and 20 dtex or less,
Containing 30% by mass or more of carbon black in the core,
The resistance value of the single fiber at an applied voltage of 100 V is 10 3 MΩ / cm or less,
It exists in the conductive core-sheath composite acrylic fiber for brushes which adheres a silicon system oil agent to the fiber surface.
本発明により、均一な帯電が可能で毛先が柔らかい導電性工業用ブラシが、毛材を原料として機械作業により効率的に製造することが可能となる。 According to the present invention, a conductive industrial brush that can be uniformly charged and has soft bristles can be efficiently manufactured by mechanical work using bristle material as a raw material.
以下、本発明について詳しく説明する。
本発明の導電性繊維は導電性粒子を含む導電層を繊維の一部に形成している。導電性粒子としては、繊維の導電性能を繊維一本あたり抵抗値が103MΩ/cm以下とするためには、導電性粒子がカーボンブラックであることが望ましい。
カーボンブラックとしては、ファーネスブラック、チャネルブラック、サーマルブラック、アセチレンブラック等の種類があるが、製糸安定を確保できる種類のものであれば任意に選択することが可能である。カーボンブラックの基本的特性であるDBP吸収量は、70cm3/100g以上の値であることが好ましく、導電性能からは100cm3/100g以上であることがより好ましい。DBP吸収量が、70cm3/100gより小さい値のカーボンブラックを使用した場合、導電層のカーボンブラック濃度を紡糸性が得られる範囲で上限まで上げても導電性能が103MΩ/cm以下とならないために好ましくない。カーボンブラックの平均一次粒子径についても、特に限定されないが、本発明の紡糸技術を利用して繊維の導電性能が103MΩ/cm以下となる範囲で選択されることが望ましい。
The present invention will be described in detail below.
In the conductive fiber of the present invention, a conductive layer containing conductive particles is formed on a part of the fiber. As the conductive particles, it is desirable that the conductive particles are carbon black in order to set the conductive performance of the fibers to a resistance value of 10 3 MΩ / cm or less per fiber.
As carbon black, there are types such as furnace black, channel black, thermal black, acetylene black, etc., but any type can be selected as long as it is a type that can ensure the stability of yarn production. DBP absorption is a fundamental property of the carbon black is preferably greater than or equal 70cm 3/100 g, and more preferably 100 cm 3/100 g or more from the conductive performance. DBP absorption, when using carbon black 70cm 3/100 g smaller value, conductive performance is not a less 10 3 MΩ / cm even increase the carbon black concentration of the conductive layer to the upper limit to the extent that the spinning property can be obtained Therefore, it is not preferable. The average primary particle size of the carbon black is not particularly limited, but is preferably selected within the range where the fiber conductive performance is 10 3 MΩ / cm or less by using the spinning technique of the present invention.
カーボンブラックの添加濃度は導電性能が103MΩ/cmとなる範囲で決定されなければならない。添加部位となる導電層においてカーボンブラックの濃度が30質量%以上であることが好ましい。30質量%より少ないの場合には、カーボンブラックの種類によって前記導電性能を得られないことがあるために好ましくない。カーボンブラックの添加濃度の上限は紡糸可能な範囲で高いことが望ましいが、繊維の製造段階での安定性の点から、80質量%以下の範囲が特に望ましい。
カーボンブラックの繊維に対する添加量は、繊維の導電性能が103MΩ/cmとなる範囲で設定されなければならない。本発明の導電繊維においては、3質量%から20質量%の範囲が好ましく、製糸安定性を考慮すると3質量%から10質量%の範囲がさらに好ましい。
The concentration of carbon black to be added must be determined within a range where the conductive performance is 10 3 MΩ / cm. The concentration of carbon black is preferably 30% by mass or more in the conductive layer to be added. When the amount is less than 30% by mass, the conductive performance may not be obtained depending on the type of carbon black, which is not preferable. The upper limit of the carbon black addition concentration is desirably high within a range where spinning is possible, but a range of 80% by mass or less is particularly desirable from the viewpoint of stability at the fiber production stage.
The amount of carbon black added to the fiber must be set within a range where the conductive performance of the fiber is 10 3 MΩ / cm. In the conductive fiber of the present invention, the range of 3% by mass to 20% by mass is preferable, and the range of 3% by mass to 10% by mass is more preferable in consideration of the yarn forming stability.
本発明の導電繊維の非導電層には、アクリロニトリルを93質量%以上の割合で共重合された重合体であることが好ましい。アクリロニトリル以外の成分は、アクリロニトリルと共重合可能な不飽和モノマー、またはその重合体であればよい。
アクリロニトリルと共重合可能な不飽和モノマーとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシプロピル等のアクリル酸エステル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチル等のメタクリル酸エステル、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデンの不飽和モノマーが挙げられる。
The non-conductive layer of the conductive fiber of the present invention is preferably a polymer obtained by copolymerizing acrylonitrile at a ratio of 93% by mass or more. The component other than acrylonitrile may be an unsaturated monomer copolymerizable with acrylonitrile or a polymer thereof.
Examples of unsaturated monomers copolymerizable with acrylonitrile include, for example, acrylic acid esters such as methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and hydroxypropyl acrylate, ethyl methacrylate, and methacrylic acid. Methacrylic acid esters such as isopropyl, n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, diethylaminoethyl methacrylate, acrylic acid, methacrylic acid, maleic acid, itaconic acid, Unsaturation of acrylamide, N-methylolacrylamide, diacetoneacrylamide, styrene, vinyltoluene, vinyl acetate, vinylidene chloride, vinyl bromide, vinylidene bromide Nomar, and the like.
さらに染色性を改良する目的で共重合されるモノマーとして、p−スルホフェニルメタリルエーテル、メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、およびこれらのアルカリ金属塩が挙げられる。アクリロニトリルを含有するポリマーのアクリロニトリル含有量が93質量%未満では、繊維の熱収縮が大きくなるために、毛材または刷毛とした時に、ブラシ部分の形状安定性が低くなるために好ましくない。 Further, monomers that are copolymerized for the purpose of improving dyeability include p-sulfophenylmethallyl ether, methallylsulfonic acid, allylsulfonic acid, styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and alkalis thereof. Metal salts are mentioned. When the acrylonitrile content of the polymer containing acrylonitrile is less than 93% by mass, the thermal contraction of the fiber increases, and when the bristle or the brush is made, the shape stability of the brush portion is lowered, which is not preferable.
本発明の導電繊維の断面形状は特に限定されないが、導電層が非導電層に被覆された芯鞘断面形状であることが好ましい。導電層と非導電層の割合も製糸安定性が得られる範囲で特に限定されない。 The cross-sectional shape of the conductive fiber of the present invention is not particularly limited, but is preferably a core-sheath cross-sectional shape in which the conductive layer is covered with a non-conductive layer. The ratio of the conductive layer and the non-conductive layer is not particularly limited as long as the yarn production stability is obtained.
本発明の導電繊維の繊度は、単繊維が9dtex以上20dtex以下の範囲でなければならない。単繊維の繊度が9dtexより小さい場合、毛材とした時の毛さばき性が悪くなるために、機械植えによるブラシの製造工程で毛材が絡まることが問題となるために好ましくない。また、単繊維の繊度が20dtexを越える場合には、毛材として風合いが固くなり、微細な製品や柔らかい製品に使用される用途には適さないだけでなく、均一に帯電することが要求されるコピー機などの精密機器用途へ好適に使用できないために好ましくない。精密機器用途などに好適に使用される繊度としては、9dtex以上13dtex以下の範囲であることがさらに好ましい。 The fineness of the conductive fiber of the present invention must be in the range of 9 to 20 dtex for single fibers. When the fineness of the single fiber is smaller than 9 dtex, the hair separation property when used as a hair material is deteriorated, and it is not preferable because the hair material becomes entangled in the manufacturing process of the brush by mechanical planting. In addition, when the fineness of the single fiber exceeds 20 dtex, the texture becomes hard as a hair material and not only is not suitable for use in fine products and soft products, but is also required to be uniformly charged. This is not preferable because it cannot be suitably used for precision equipment such as a copying machine. The fineness suitably used for precision instrument applications and the like is more preferably in the range of 9 dtex to 13 dtex.
本発明の導電繊維の表面にはシリコン系油剤が塗布されていなければならない。単繊維の繊度が50dtexより大きい場合には、繊維の毛さばき性能が良いために、ブラシ製造工程で機械植えができる。しかしながら、繊度が細くなると機械にて毛材から植え込む量の毛材を取り分けた際に、毛材が絡まり連続的に機械植え作業ができなくなってしまう。このため従来は20dtexより細い毛材では機械植えができず、効率的にブラシを製造することができなかった。本発明では単繊維の繊度が20dtex以下の導電繊維において、毛さばき性を改善させるために、鋭意検討した結果、毛材として収束させる際に、繊維束にシリコン系油剤を塗布することにより、良好な毛さばき性のある導電繊維毛材を得ることができたのである。シリコン系油剤を含まない油剤を使用した場合、単繊維繊度が20dtex以下の繊維では、十分な毛さばき性が得られないのである。また、単繊維繊度が9dtexより小さい場合には、シリコン系油剤を塗布しても十分な毛さばき性を得ることができないために好ましくない。 The surface of the conductive fiber of the present invention must be coated with a silicone-based oil. When the fineness of the single fiber is greater than 50 dtex, the fiber can be planted in the brush manufacturing process because the fiber has good hair separation performance. However, if the fineness is reduced, when the amount of hair material to be planted from the hair material is separated by the machine, the hair material becomes entangled and continuous machine planting work cannot be performed. For this reason, conventionally, a hair material thinner than 20 dtex cannot be planted mechanically, and a brush cannot be manufactured efficiently. In the present invention, in a conductive fiber having a single fiber fineness of 20 dtex or less, as a result of intensive studies for improving the hair separation, it is preferable to apply a silicone-based oil to the fiber bundle when converging as a hair material. It was possible to obtain a conductive fiber bristle material having a good hair separation property. When an oil agent that does not contain a silicon-based oil agent is used, a fiber having a single fiber fineness of 20 dtex or less cannot provide sufficient bristle separation. Further, when the single fiber fineness is smaller than 9 dtex, it is not preferable because sufficient hair separation cannot be obtained even if a silicone oil is applied.
以下、実施例をあげて本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.
(実施例1)
水系懸濁重合法により、アクリロニトリル単位95%、酢酸ビニル単位4.4%、メタリルスルホン酸ソーダ単位0.6%からなる還元粘度1.6のアクリロニトリル系ポリマーを重合した。アクリルニトリルと酢酸ビニルの組成は、赤外分光々度計(日本分光社製、製品名:FT−IR660)を使用し、アクリルニトリルのニトリル基に起因する吸収と、酢酸ビニルのケトン基に起因する吸収の強度比を、既知量のモノマーより作成した検量線と比較して濃度を求めた。
前記アクリロニトリル系ポリマーをジメチルアセトアミドに溶解し、重合体濃度24質量%となるように溶解して鞘ポリマーの紡糸原液を得た。
前記アクリロニトリル系ポリマー14質量%とカーボンブラック(三菱化学株式会社製、製品名:MA100)を9質量%、ジメチルアセトアミドを77質量%として、カーボンブラックの分散液を調整し、前記溶液を芯ポリマーの紡糸原液とした。
孔径0.07μm、孔数1000の芯鞘複合ノズルを使用して、芯ポリマーの紡糸原液吐出量を1.42l/hr、鞘ポリマーの紡糸原液を8.24l/hrとして、ノズルから吐出して、貧溶媒(ジメチルアセトアミド 56質量%水溶液)中で凝固した。前記凝固繊維束を沸水中で、溶剤を洗浄しながら4.5倍延伸を施し、続いて油剤を付着させ、
150℃の熱ローラーで乾燥させたものを8本収束させ、単繊維繊度11dtex、総繊度8.8ktexの芯鞘複合導電アクリル繊維を得た。単繊維の抵抗値を測定するために、繊維を1cmの間隔で導電性ペースト(藤倉化成株式会社製、製品名:ドータイト)で固定し、100Vの印加電圧で抵抗値を測定し、N数20の対数平均値を求めたところ、1.5×101MΩ/cmの値が得られた。
前記芯鞘複合導電アクリル繊維に、油剤(主成分がアミノ変性ポリシロキサンである油剤を5g/l(松本油脂製薬株式会社製、製品名:シリコンソフナーN−20)、主成分が陽イオン基変性高分子である油剤を1g/l(松本油脂製薬株式会社製、製品名:TC−194)混合)を、浴比1:10として、60℃で15分間処理することにより、繊維表面にシリコン系油剤を付着させ、乾燥後、110本収束し引きそろえることによって970ktexの毛材を得た。
前記毛材を10cmにカットし、機械植毛を実施したところ、毛絡みもなく、安定に工業用ブラシを製造することができた。
Example 1
By an aqueous suspension polymerization method, an acrylonitrile polymer having a reduced viscosity of 1.6 consisting of 95% acrylonitrile units, 4.4% vinyl acetate units, and 0.6% sodium methallylsulfonate was polymerized. The composition of acrylonitrile and vinyl acetate is caused by absorption due to the nitrile group of acrylonitrile and the ketone group of vinyl acetate using an infrared spectrophotometer (manufactured by JASCO Corporation, product name: FT-IR660). The concentration was determined by comparing the absorption intensity ratio with a calibration curve prepared from a known amount of monomer.
The acrylonitrile-based polymer was dissolved in dimethylacetamide and dissolved to a polymer concentration of 24% by mass to obtain a spinning polymer stock solution.
A dispersion of carbon black was prepared by adjusting 14% by mass of the acrylonitrile-based polymer, 9% by mass of carbon black (manufactured by Mitsubishi Chemical Corporation, product name: MA100), and 77% by mass of dimethylacetamide. A spinning dope was obtained.
Using a core / sheath composite nozzle with a pore diameter of 0.07 μm and a number of holes of 1000, the core polymer spinning stock discharge rate is 1.42 l / hr, and the sheath polymer spinning stock solution is 8.24 l / hr. The solution was coagulated in a poor solvent (dimethylacetamide 56 mass% aqueous solution). The coagulated fiber bundle is stretched 4.5 times in boiling water while washing the solvent, followed by attaching an oil agent,
Eight fibers dried with a heat roller at 150 ° C. were converged to obtain a core-sheath composite conductive acrylic fiber having a single fiber fineness of 11 dtex and a total fineness of 8.8 ktex. In order to measure the resistance value of a single fiber, the fiber was fixed with a conductive paste (product name: Dotite) at an interval of 1 cm, the resistance value was measured with an applied voltage of 100 V, and N number 20 The logarithm average value of was obtained, and a value of 1.5 × 10 1 MΩ / cm was obtained.
The core-sheath composite conductive acrylic fiber has an oil agent (oil agent whose main component is amino-modified polysiloxane 5 g / l (manufactured by Matsumoto Yushi Seiyaku Co., Ltd., product name: Silicon Softener N-20), and the main component is a cationic group-modified. By treating 1 g / l of a polymer oil agent (Matsumoto Yushi Seiyaku Co., Ltd., product name: TC-194) with a bath ratio of 1:10 at 60 ° C. for 15 minutes, the surface of the fiber is silicon-based. An oil agent was attached, and after drying, 110 hairs were converged and pulled to obtain a hair material of 970 ktex.
When the hair material was cut into 10 cm and mechanical flocking was carried out, an industrial brush could be stably produced without tangling.
(比較例1)
実施例1で得られた8.8ktexの芯鞘複合導電アクリル繊維を、シリコン系油剤を付着させずに110本収束して970ktexの毛材を得た。前記毛材を10cmにカットし、機械植毛を行ったところ、毛束を取るところで毛絡みが発生し、連続生産することができなかった。
(Comparative Example 1)
110 8.8 ktex core-sheath composite conductive acrylic fibers obtained in Example 1 were converged without attaching a silicone-based oil agent to obtain a hair material of 970 ktex. When the hair material was cut into 10 cm and mechanical hair transplantation was performed, hair entanglement occurred where the hair bundle was taken, and continuous production was not possible.
(比較例2)
実施例1で得られた8.8ktexの芯鞘複合導電アクリル繊維に、ソルビタンモノパルミテート(三洋化成株式会社製、製品名:F−26)及び硬化ひまし油(松本油脂株式会社製、製品名:MCA−90)をそれぞれ1g/lとした油剤を、浴比1:10として60℃で15分間処理することにより、繊維表面に油剤を付着させた後、乾燥を行い110本収束し引きそろえることにより、970ktexの毛材を得た。前記毛材を10cmにカットし、機械植毛を行ったところ、毛絡みが発生し、連続生産することができなかっできなかった。
(Comparative Example 2)
To the 8.8 ktex core-sheath composite conductive acrylic fiber obtained in Example 1, sorbitan monopalmitate (manufactured by Sanyo Chemical Co., Ltd., product name: F-26) and hardened castor oil (manufactured by Matsumoto Yushi Co., Ltd., product name: MCA-90) is treated with an oil agent of 1 g / l respectively at a bath ratio of 1:10 at 60 ° C. for 15 minutes to attach the oil agent to the fiber surface, and then drying is performed to converge and align 110. As a result, a hair material of 970 ktex was obtained. When the hair material was cut into 10 cm and mechanical flocking was performed, hair entanglement occurred and continuous production could not be performed.
(比較例3)
実施例1と同様の方法により、単糸繊度が8dtexで、総繊度が6.4ktexの芯鞘複合導電繊維を得た。実施例1と同様の方法により、シリコン系油剤を付着させた毛材を調整し、機械植毛を行ったところ、毛絡みが発生し、連続生産することができなかった。
(Comparative Example 3)
By the same method as in Example 1, a core-sheath composite conductive fiber having a single yarn fineness of 8 dtex and a total fineness of 6.4 ktex was obtained. When the hair material to which the silicon-based oil was adhered was prepared by the same method as in Example 1 and mechanical flocking was performed, hair entanglement occurred and continuous production could not be performed.
(比較例4)
水系懸濁重合法により、アクリロニトリル単位95%、酢酸ビニル単位4.4%、メタリルスルホン酸ソーダ単位0.6%からなる還元粘度1.6のアクリロニトリル系ポリマーを重合した。アクリルニトリルと酢酸ビニルの組成は、赤外分光々度計(日本分光社製、製品名:FT−IR660)を使用し、アクリルニトリルのニトリル基に起因する吸収と、酢酸ビニルのケトン基に起因する吸収の強度比を、既知量のモノマーより作成した検量線と比較して濃度を求めた。
前記アクリロニトリル系ポリマーをジメチルアセトアミドに溶解し重合体濃度24質量%となるように溶解して鞘ポリマーの紡糸原液を得た。
前記アクリロニトリル系ポリマー18.4質量%とカーボンブラック(三菱化学株式会社製、製品名:MA100)を4.6質量%、ジメチルアセトアミドを77質量%としてカーボンブラックの分散液を調整し、この溶液を芯ポリマーの紡糸原液とした。
実施例1と同様の方法により、単繊維繊度11dtex、総繊度8.8ktexの芯鞘複合導電アクリル繊維を得た。単繊維の抵抗値を測定したところ、2.87×104MΩ/cmの値が得られた。
前記芯鞘複合導電アクリル繊維に、実施例1と同様の方法によりシリコン系油剤を付着させ、150本収束させて960ktexの毛材を得た。
前記毛材を10cmにカットし、機械植毛を実施したところ、安定に工業用ブラシを製造できることが確認されたが、導電性ブラシとして十分な除電性能を得ることができなかった。
(Comparative Example 4)
By an aqueous suspension polymerization method, an acrylonitrile polymer having a reduced viscosity of 1.6 consisting of 95% acrylonitrile units, 4.4% vinyl acetate units, and 0.6% sodium methallylsulfonate was polymerized. The composition of acrylonitrile and vinyl acetate is caused by absorption due to the nitrile group of acrylonitrile and the ketone group of vinyl acetate using an infrared spectrophotometer (manufactured by JASCO Corporation, product name: FT-IR660). The concentration was determined by comparing the absorption intensity ratio with a calibration curve prepared from a known amount of monomer.
The acrylonitrile-based polymer was dissolved in dimethylacetamide and dissolved to a polymer concentration of 24% by mass to obtain a sheath polymer spinning dope.
A carbon black dispersion was prepared by adjusting 18.4% by mass of the acrylonitrile-based polymer, 4.6% by mass of carbon black (product name: MA100, manufactured by Mitsubishi Chemical Corporation), and 77% by mass of dimethylacetamide. A core polymer spinning dope was obtained.
By the same method as in Example 1, a core-sheath composite conductive acrylic fiber having a single fiber fineness of 11 dtex and a total fineness of 8.8 ktex was obtained. When the resistance value of the single fiber was measured, a value of 2.87 × 10 4 MΩ / cm was obtained.
A silicone-based oil was adhered to the core-sheath composite conductive acrylic fiber by the same method as in Example 1, and 150 hairs were converged to obtain a hair material of 960 ktex.
When the bristle material was cut into 10 cm and mechanical flocking was carried out, it was confirmed that an industrial brush could be stably produced, but sufficient static elimination performance as a conductive brush could not be obtained.
(比較例5)
水系懸濁重合法により、アクリロニトリル単位92%、酢酸ビニル単位7.4%、メタリルスルホン酸ソーダ単位0.6%からなる還元粘度1.5のアクリロニトリル系ポリマーを重合した。アクリルニトリルと酢酸ビニルの組成は、赤外分光々度計(日本分光社製、製品名:FT−IR660)を使用し、アクリルニトリルのニトリル基に起因する吸収と、酢酸ビニルのケトン基に起因する吸収の強度比を、既知量のモノマーより作成した検量線と比較して濃度を求めた。
以下、実施例1と同様の方法により芯鞘複合導電アクリル繊維を得た。
前記芯鞘複合導電アクリル繊維に、主成分アミノ変性ポリシロキサンである油剤(松本油脂製薬株式会社製、製品名:シリコンソフナーN−20)を5g/l、主成分が陽イオン基変性高分子である油剤(松本油脂製薬株式会社製、製品名:TC−194)を1g/lとした油剤を、浴比1:10として60℃で15分間処理することにより、繊維表面にシリコン系油剤を付着させ乾燥させたところ、繊維の収縮が大きく、毛材として引き揃える工程で、均一な毛材を得ることができなかった。
(Comparative Example 5)
By an aqueous suspension polymerization method, an acrylonitrile polymer having a reduced viscosity of 1.5 comprising 92% acrylonitrile units, 7.4% vinyl acetate units, and 0.6% sodium methallylsulfonate was polymerized. The composition of acrylonitrile and vinyl acetate is caused by absorption due to the nitrile group of acrylonitrile and the ketone group of vinyl acetate using an infrared spectrophotometer (manufactured by JASCO Corporation, product name: FT-IR660). The concentration was determined by comparing the absorption intensity ratio with a calibration curve prepared from a known amount of monomer.
Thereafter, a core-sheath composite conductive acrylic fiber was obtained in the same manner as in Example 1.
The core-sheath composite conductive acrylic fiber has 5 g / l of an oil agent (manufactured by Matsumoto Yushi Seiyaku Co., Ltd., product name: Silicon Softener N-20) as a main component amino-modified polysiloxane, and the main component is a cationic group-modified polymer. A silicone oil is attached to the fiber surface by treating an oil agent of 1 g / l with a certain oil agent (Matsumoto Yushi Seiyaku Co., Ltd., product name: TC-194) at a bath ratio of 1:10 at 60 ° C. for 15 minutes. When it was allowed to dry, the fiber contraction was large, and a uniform bristle material could not be obtained in the process of aligning as a bristle material.
Claims (2)
芯部にカーボンブラックを30質量%以上含み、
印加電圧100Vにおける単繊維の抵抗値が103MΩ/cm以下、
繊維表面にシリコン系油剤を付着させた機械植えブラシ用導電性芯鞘複合アクリル繊維。 The single yarn fineness is 11 dtex or more and 20 dtex or less,
Containing 30% by mass or more of carbon black in the core,
The resistance value of the single fiber at an applied voltage of 100 V is 10 3 MΩ / cm or less,
Conductive core-sheath composite acrylic fiber for mechanical planting brushes with a silicone oil adhered to the fiber surface.
アクリロニトリルを93質量%以上含有するポリマーである請求項1記載の機械植えブラシ用導電性芯鞘複合アクリル繊維
The polyacrylonitrile polymer used in the sheath is
The conductive core-sheath composite acrylic fiber for mechanical plant brush according to claim 1, which is a polymer containing 93% by mass or more of acrylonitrile.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009102064A JP5765877B2 (en) | 2009-04-20 | 2009-04-20 | Conductive core-sheath composite acrylic fiber for brush |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009102064A JP5765877B2 (en) | 2009-04-20 | 2009-04-20 | Conductive core-sheath composite acrylic fiber for brush |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010246838A JP2010246838A (en) | 2010-11-04 |
JP5765877B2 true JP5765877B2 (en) | 2015-08-19 |
Family
ID=43309884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009102064A Expired - Fee Related JP5765877B2 (en) | 2009-04-20 | 2009-04-20 | Conductive core-sheath composite acrylic fiber for brush |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5765877B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9776207B2 (en) | 2013-05-24 | 2017-10-03 | The Procter & Gamble Company | Methods and assemblies for applying flowable substances to substrates |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56165014A (en) * | 1980-05-19 | 1981-12-18 | Japan Exlan Co Ltd | Antistatic filament of combined sheath-core type |
JPH09204133A (en) * | 1996-01-26 | 1997-08-05 | Toshiba Corp | Image forming device |
US5689791A (en) * | 1996-07-01 | 1997-11-18 | Xerox Corporation | Electrically conductive fibers |
JP2003345120A (en) * | 2002-05-29 | 2003-12-03 | T & M Kk | Developing device |
JP4564322B2 (en) * | 2004-10-01 | 2010-10-20 | 三菱レイヨン株式会社 | Method for producing conductive acrylic fiber |
JP4773849B2 (en) * | 2005-06-02 | 2011-09-14 | 三菱レイヨン株式会社 | Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property |
-
2009
- 2009-04-20 JP JP2009102064A patent/JP5765877B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010246838A (en) | 2010-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3012359A1 (en) | Polyacrylonitrile-based precursor fiber for carbon fibre, and production method therefor | |
JP5552114B2 (en) | Artificial hair fiber, its use and production method | |
JP4773849B2 (en) | Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property | |
JP5112973B2 (en) | Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same | |
JP2017536486A (en) | Use, stabilization, and carbonization of polyacrylonitrile / carbon composite fibers | |
JPH0151564B2 (en) | ||
JP2006348462A (en) | Method for producing acrylonitrile-based precursor fiber for carbon fiber | |
JP5765877B2 (en) | Conductive core-sheath composite acrylic fiber for brush | |
CN111719212B (en) | A kind of preparation method of flexible woven graphene conductive yarn | |
İçoğlu et al. | Controlled fiber deposition via modeling the auxiliary electrodes of the needleless electrospinning to produce continuous nanofiber bundles | |
JP2012188781A (en) | Carbon fiber and method for manufacturing the same | |
JP5964638B2 (en) | Carbon fiber chopped strand and method for producing the same | |
KR101788634B1 (en) | Method for Producing Carbon NanoTube Fiber | |
CN1306082C (en) | Acrylic synthetic fiber for improved styling | |
JP2002302828A (en) | Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same | |
JP3227528B2 (en) | Conductive acrylic fiber and method for producing the same | |
HUP0301876A2 (en) | Acrylonitrile-based fiber bundle for carbon fiber precursor and method for preparation thereof | |
JP4604911B2 (en) | Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber | |
JP4564322B2 (en) | Method for producing conductive acrylic fiber | |
JP2001271219A (en) | Semiconductive fiber and its use | |
CN116612934B (en) | Preparation method of elastic conductive film and high-conductivity fiber | |
JP5700240B2 (en) | Acrylic fiber paper and manufacturing method thereof | |
JP6191182B2 (en) | Carbon fiber bundle and manufacturing method thereof | |
JP2006274507A (en) | Flame resistant fiber | |
JP2009221632A (en) | Sheath-core conjugate conductive acrylic filament |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120308 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130718 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131125 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140313 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140320 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20140516 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150424 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150616 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5765877 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |