[go: up one dir, main page]

JP5765527B2 - Method for producing solidified body for water retention roadbed material - Google Patents

Method for producing solidified body for water retention roadbed material Download PDF

Info

Publication number
JP5765527B2
JP5765527B2 JP2011065688A JP2011065688A JP5765527B2 JP 5765527 B2 JP5765527 B2 JP 5765527B2 JP 2011065688 A JP2011065688 A JP 2011065688A JP 2011065688 A JP2011065688 A JP 2011065688A JP 5765527 B2 JP5765527 B2 JP 5765527B2
Authority
JP
Japan
Prior art keywords
water
solidified body
fly ash
gypsum
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011065688A
Other languages
Japanese (ja)
Other versions
JP2012201527A (en
Inventor
崇 眞保
崇 眞保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2011065688A priority Critical patent/JP5765527B2/en
Publication of JP2012201527A publication Critical patent/JP2012201527A/en
Application granted granted Critical
Publication of JP5765527B2 publication Critical patent/JP5765527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、フライアッシュに石膏及び生石灰を添加材として加え、水で混練した後成形し、次いで混練物の蒸気養生を行って製造される保水性路盤材用固化体の製造方法に関する。   The present invention relates to a method for producing a solidified body for water-retaining roadbed material produced by adding gypsum and quicklime as additives to fly ash, kneading with water, molding, and then steam curing the kneaded product.

近年、都市部や建築物が密集している地域では、アスファルト舗装またはコンクリート建築物からの放熱、照り返しによる輻射熱、ビル等の空調による排熱などによる熱によって気温が上昇するヒートアイランド現象が問題視されている。   In recent years, heat island phenomenon in which the temperature rises due to heat from asphalt pavement or concrete buildings, radiant heat from reflection, exhaust heat from air conditioning of buildings, etc. has been seen as a problem in urban areas and densely populated areas. ing.

このヒートアイランド現象の緩和策として、近年、保水性を有する舗装によって雨水を舗装内に保水しておき、晴天時に水分が蒸発する際の気化熱によって路面の熱を奪い温度上昇を抑制する提案が種々成されている。   As measures to mitigate this heat island phenomenon, various proposals have been made in recent years to keep rainwater in the pavement by water-retaining pavement, and to take away the heat of the road surface by the heat of vaporization when moisture evaporates in fine weather and suppress the temperature rise. It is made.

前記保水性舗装の路盤材として、フライアッシュに石膏及び生石灰を添加材として加え、水で混練した後成形し、次いで混練物の蒸気養生を行って固化体(以下、保水性路盤材用固化体という。)を得た後、これを破砕して路盤材として使用することが提案されている。   As a roadbed material for the water-retaining pavement, gypsum and quicklime are added to fly ash as additives, kneaded with water, molded, and then subjected to steam curing of the kneaded product (hereinafter, solidified for water-retained roadbed material). It has been proposed to use it as a roadbed material after it has been obtained.

例えば、下記特許文献1では、石炭灰に石灰及び石膏を添加材として加え、水で混練した後成形し、ついで混練物の養生を行った後、養生固化体を破砕して粒状固化体を製造する方法において、つぎの(a)〜(e)の工程、すなわち、
(a)石炭灰と添加材との混合及び混練水による混練をフルード数0.5〜2.0の範囲で混合・混練する工程、(b)石炭灰、添加材及び水による混練物の温度が30〜55℃の範囲となるように、石炭灰温度及び/又は石灰量に応じて混練水温度を制御する工程、(c) 混練物を成形し、成形体のかさ比重を1.55以上とする工程、(d) 成形体を前養生して圧縮強度を0.1〜2N /mm2 の範囲とした後、本養生する工程、(e) 固化体を破砕機とふるいとの組合せにて、粒状体とする工程、を有することを特徴とする石炭灰を原料とする粒状固化体の製造方法が提案されている。
For example, in Patent Document 1 below, lime and gypsum are added to coal ash as additives, kneaded with water and then molded, and after curing the kneaded product, the cured solidified body is crushed to produce a granular solidified body. In the method, the following steps (a) to (e):
(A) Step of mixing and kneading mixing of coal ash and additive and kneading with kneaded water in a fluid number range of 0.5 to 2.0, (b) Temperature of kneaded product with coal ash, additive and water The step of controlling the kneading water temperature according to the coal ash temperature and / or the amount of lime so that the temperature is in the range of 30 to 55 ° C., (c) molding the kneaded material, and the bulk specific gravity of the molded body is 1.55 or more (D) The pre-curing of the molded body to obtain a compressive strength in the range of 0.1 to 2 N / mm2, and then the main curing process. (E) The solidified body is combined with a crusher and a sieve. There is proposed a method for producing a granular solid body using coal ash as a raw material, which has a step of forming a granular body.

次いで、下記特許文献2では、石炭灰に、石灰及び/又は石膏を添加剤として加え、水で混練し、成形を行い、蒸気処理にて養生を行って固化させた後、破砕することにより粒状固化体を得る粒状固化体の製造方法であって、修正塩基度((CaO+Fe23+MgO)/SiO2(重量比))が0.1以上で、かつ、反応性指数(修正塩基度/(R2O/Al232(重量比))が10以上の石炭灰を原料灰として使用する粒状固化体の製造方法が提案されている。 Next, in Patent Document 2 below, coal ash is added with lime and / or gypsum as an additive, kneaded with water, molded, cured by steam treatment, solidified, and then granulated by crushing A method for producing a granular solid product to obtain a solidified product, wherein the corrected basicity ((CaO + Fe 2 O 3 + MgO) / SiO 2 (weight ratio)) is 0.1 or more, and the reactivity index (corrected basicity / There has been proposed a method for producing a granular solid using coal ash having (R 2 O / Al 2 O 3 ) 2 (weight ratio) of 10 or more as raw ash.

一方、上記保水性路盤材用固化体を保水性路盤層の内、上層路盤層に適用するためには、圧縮強度が15N/mm以上、吸水量が25%以上を管理基準としている(自社管理基準)。なお、圧縮強度及び吸水率は蒸気養生直後の数値である。 On the other hand, in order to apply the above solidified body for water retention roadbed material to the upper roadbed layer among the water retention roadbed layers, the management standard is that the compressive strength is 15 N / mm 2 or more and the water absorption is 25% or more (in-house Management standards). The compressive strength and water absorption are values immediately after steam curing.

従来より、本出願人が実施している上層路盤材に適用される保水性路盤材用固化体の配合は下表1のとおりである。また、使用したフライアッシュの物性は表2のとおりである。

Figure 0005765527
Figure 0005765527
Conventionally, the composition of the solidified body for water retaining roadbed material applied to the upper layer roadbed material implemented by the present applicant is as shown in Table 1 below. Table 2 shows the physical properties of the fly ash used.
Figure 0005765527
Figure 0005765527

表1から分かるように、分級細粉C1の場合は、高性能AE減水剤を使用することなく、流動性、圧縮強度及び吸水率が確保されているが、分級細粉J1の場合は、流動性を確保するためにナフタリンスルフォン酸系の高性能AE減水剤が添加されている。   As can be seen from Table 1, in the case of the classified fine powder C1, fluidity, compressive strength and water absorption are secured without using a high-performance AE water reducing agent. In order to ensure the properties, a naphthalene sulfonic acid-based high performance AE water reducing agent is added.

特許第3455184号公報Japanese Patent No. 3455184 特開2008−104941号公報JP 2008-104941 A

しかしながら、上記特許文献1に係る粒状固化体は、保水性路盤の下層路盤層の砕石として適用されるものであり、圧縮強度は0.1〜2(N/mm2)の範囲とするものであるため、上層路盤層の砕石として使用することはできない。 However, the granular solid body according to Patent Document 1 is applied as a crushed stone of the lower roadbed layer of the water retention roadbed, and the compressive strength is in the range of 0.1 to 2 (N / mm 2 ). Therefore, it cannot be used as a crushed stone for the upper roadbed layer.

上記特許文献2に係る固化体においては、表2の実施例1〜4で、圧縮強度15〜21(N/mm2)の固化体が得られているが、使用したフライアッシュは強熱減量がフライアッシュII種の内でも強熱減量が1.0〜1.40%といったかなり高品質のフライアッシュを使用しているものであり、強熱減量が2〜5%のフライアッシュII種品や分級していないフライアッシュ原粉などは使用することができないため、フライアッシュの有効利用の途の拡大を図ることはできない。下表3に参考までにフライアッシュの品質規格(JIS A6201)を示す。

Figure 0005765527
In the solidified body according to Patent Document 2, solidified bodies having a compressive strength of 15 to 21 (N / mm 2 ) were obtained in Examples 1 to 4 in Table 2, but the fly ash used was reduced in ignition. Is a fly ash type II product that uses a very high quality fly ash with a loss on ignition of 1.0 to 1.40% among the types of fly ash type II. In addition, since fly ash raw powder that has not been classified cannot be used, it is not possible to expand the effective use of fly ash. Table 3 shows fly ash quality standards (JIS A6201) for reference.
Figure 0005765527

また、本出願人が実施している上表1に示した配合の場合も、分級細粉C1は強熱減量が1.8%であり、分級細粉J1は強熱減量が0.6%であり、高品質のフライアッシュを使用しているが、仮に強熱減量が2〜5%のフライアッシュII種品や分級していないフライアッシュ原粉を使用した場合は、所定の流動性や圧縮強度を確保することが困難となる。   In addition, in the case of the combination shown in Table 1 above, the classification fine powder C1 has an ignition loss of 1.8%, and the classification fine powder J1 has an ignition loss of 0.6%. Quality fly ash is used, but if you use a fly ash type II product with an ignition loss of 2 to 5% or unclassified fly ash raw powder, ensure the prescribed fluidity and compressive strength Difficult to do.

そこで本発明の主たる課題は、強熱減量が2〜5%のフライアッシュII種品や分級していないフライアッシュ原粉の使用範囲の拡大を図るために、これらのフライアッシュを使用した場合でも、十分な流動性と、圧縮強度と、吸水率とを備えた保水性路盤材用固化体の製造方法を提供することにある。   Therefore, the main problem of the present invention is that even when these fly ash is used in order to expand the range of use of fly ash type II products having a loss on ignition of 2 to 5% and unclassified fly ash raw powder. An object of the present invention is to provide a method for producing a solidified body for water retention roadbed material having sufficient fluidity, compressive strength, and water absorption.

前記課題を解決するために請求項1に係る本発明として、フライアッシュに石膏及び生石灰を添加材として加え、水で混練した後成形し、混練物の蒸気養生を行って保水性路盤材用固化体を製造する方法において、
強熱減量が2〜5%のフライアッシュII種品又は分級していないフライアッシュ原粉を用い、水粉体比を0.33〜0.37、水生石灰比を4.00〜4.50、石膏生石灰比を0.60〜0.70を基準配合とする条件の下で、スチレン−マレイン酸−アリルエーテル系の高性能AE減水剤を所定量添加して混練物を作製し、この混練物を蒸気養生し、圧縮強度が15N/mm以上、吸水量が25%以上の保水性路盤材用固化体を得ることを特徴とする保水性路盤材用固化体の製造方法が提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, as the present invention, gypsum and quicklime are added to fly ash as additives, kneaded with water, molded, and steam-cured of the kneaded product to solidify the water retaining roadbed material In a method of manufacturing a body,
Use a fly ash type II product with an ignition loss of 2 to 5% or unclassified fly ash raw powder, a water powder ratio of 0.33 to 0.37, and an aquatic lime ratio of 4.00 to 4.50. Under a condition that the gypsum quicklime ratio is 0.60 to 0.70 as a standard blend, a predetermined amount of a high-performance AE water reducing agent of styrene-maleic acid-allyl ether system is added to prepare a kneaded material, and this kneading There is provided a method for producing a solidified body for water-retaining roadbed material, characterized by subjecting the product to steam curing to obtain a solidified body for water-retained roadbed material having a compressive strength of 15 N / mm 2 or more and a water absorption of 25% or more. .

上記請求項1記載の発明では、強熱減量が2〜5%のフライアッシュII種品又は分級していないフライアッシュ原粉を用い、水粉体比を0.33〜0.37、水生石灰比を4.00〜4.50、石膏生石灰比を0.60〜0.70を基準配合とする条件の下で、各種の高性能AE減水剤の内、特にスチレン−マレイン酸−アリルエーテル系の高性能AE減水剤を選択的に用いることによって、圧縮強度が15N/mm以上、吸水量が25%以上の保水性路盤材用固化体を得るようにしたものである。 In the invention of claim 1, the fly ash type II product having an ignition loss of 2 to 5% or the unclassified fly ash raw powder is used, the water powder ratio is 0.33 to 0.37, and the aquatic lime is used. Under the condition that the ratio is 4.00 to 4.50 and the ratio of gypsum quicklime is 0.60 to 0.70, among various high-performance AE water reducing agents, especially styrene-maleic acid-allyl ether system By selectively using the high-performance AE water reducing agent, a solidified body for water retention roadbed material having a compressive strength of 15 N / mm 2 or more and a water absorption of 25% or more is obtained.

請求項2に係る本発明として、前記高性能AE減水剤は、全粉体量に対して0.8〜1.0重量%とする請求項1記載の保水性路盤材用固化体の製造方法が提供される。   The manufacturing method of the solidified body for water retention roadbed materials according to claim 1, wherein the high-performance AE water reducing agent is 0.8 to 1.0% by weight based on the total powder amount. Is provided.

上記請求項2記載の発明は、前記高性能AE減水剤は、全粉体量に対して0.8〜1.0重量%の割合で混合することにより、所定の流動性と、圧縮強度と、吸水率とを確保するようにしたものである。前記高性能AE減水剤が多すぎる場合は脱型が不能となり、少なすぎる場合は材料分離が生じる可能性がある。   The invention according to claim 2 is characterized in that the high-performance AE water reducing agent is mixed at a ratio of 0.8 to 1.0% by weight with respect to the total amount of powder, so that predetermined fluidity, compressive strength, The water absorption rate is ensured. If the high-performance AE water reducing agent is too much, demolding is impossible, and if it is too little, material separation may occur.

請求項3に係る本発明として、前記石膏は、湿潤状態の脱硫石膏を用いる請求項1、2いずれかに記載の保水性路盤材用固化体の製造方法が提供される。   As the present invention according to claim 3, there is provided a method for producing a solidified body for a water retention roadbed material according to any one of claims 1 and 2, wherein the gypsum is wet desulfurized gypsum.

上記請求項3記載の発明は、前記石膏として湿潤状態の脱硫石膏を用いるようにするものである。湿潤状態の脱硫石膏は、火力発電所において副産物として発生するものであり、これを使用することにより経済的となる。なお、後述の試験で明らかなように、市販の乾燥状態の二水石膏を使用した場合と、湿潤状態の脱硫石膏を使用した場合とで大きな差は生じていないことから、湿潤状態の脱硫石膏を使用しても同等の品質を得ることが可能である。   According to the third aspect of the invention, wet desulfurized gypsum is used as the gypsum. Wet desulfurized gypsum is generated as a by-product in thermal power plants and is economical to use. As will be apparent from the following test, there is no significant difference between the use of commercially available dry dihydrate gypsum and the use of wet desulfurized gypsum. Even if it is used, it is possible to obtain the same quality.

以上詳説のとおり本発明によれば、強熱減量が2〜5%のフライアッシュII種品や分級していないフライアッシュ原粉の使用範囲の拡大を図るために、これらのフライアッシュを使用した場合でも、十分な流動性と、圧縮強度と、吸水率とを備えた保水性路盤材用固化体を得ることが可能となる。   As described in detail above, according to the present invention, these fly ash were used in order to expand the range of use of fly ash type II products having a loss on ignition of 2 to 5% and unclassified fly ash raw powder. Even in this case, it is possible to obtain a solidified body for water retention roadbed material having sufficient fluidity, compressive strength, and water absorption.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る保水性路盤材用固化体の製造方法は、フライアッシュに石膏及び生石灰を添加材として加え、水で混練した後成形し、混練物の蒸気養生を行って保水性路盤材用固化体を製造する方法において、
強熱減量が2〜5%のフライアッシュII種品又は分級していないフライアッシュ原粉を用い、水粉体比を0.33〜0.37、水生石灰比を4.00〜4.50、石膏生石灰比を0.60〜0.70を基準配合とする条件の下で、スチレン−マレイン酸−アリルエーテル系の高性能AE減水剤を所定量添加して混練物を作製し、この混練物を蒸気養生し、圧縮強度が15N/mm以上、吸水量が25%以上の保水性路盤材用固化体を得るものである。
The method for producing a solidified body for water-retaining roadbed material according to the present invention includes adding gypsum and quicklime as additives to fly ash, kneading with water, molding, and steam curing of the kneaded product to solidify the water-retained roadbed material. In a method of manufacturing a body,
Use a fly ash type II product with an ignition loss of 2 to 5% or unclassified fly ash raw powder, a water powder ratio of 0.33 to 0.37, and an aquatic lime ratio of 4.00 to 4.50. Under a condition that the gypsum quicklime ratio is 0.60 to 0.70 as a standard blend, a predetermined amount of a high-performance AE water reducing agent of styrene-maleic acid-allyl ether system is added to prepare a kneaded material, and this kneading The material is steam-cured to obtain a solidified body for water retention roadbed material having a compressive strength of 15 N / mm 2 or more and a water absorption of 25% or more.

以下、本発明に至る過程に従いながら、順に詳述する。
〔予備試験〕
先ず、最初に、フライアッシュとして、分級され強熱減量が低い高品質のものを用いた場合と、強熱減量が2〜5%のフライアッシュII種品又は分級していないフライアッシュ原粉を用いた場合とで、圧縮強度にどの程度の差が生じるかについて試験を行った。
Hereinafter, it will be described in detail in order while following the process leading to the present invention.
〔Preliminary test〕
First, as a fly ash, a high-quality one that is classified and has a low loss on ignition, and a fly ash type II product having an ignition loss of 2 to 5% or an unclassified fly ash raw powder are used. A test was conducted to determine how much difference in compressive strength occurs when used.

試験は、表4に示す原粉3種類、分級品2種類の計5種類のフライアッシュを用いる。二水石膏生石灰比は0.6〜0.7の範囲とするのが望ましいため、0.66で固定し、水粉体比(水/フライアッシュ+二水石膏+生石灰)と水生石灰比を変化させて、流動性の指標とする15打フローが19.0±0.5cmとなるように配合選定を行った。また、二水石膏については、脱硫石膏(湿潤)と市販(乾燥)との2ケースについて行った。これらの試験結果を表5に示す。

Figure 0005765527
Figure 0005765527
The test uses 5 types of fly ash in total, 3 types of raw powders shown in Table 4 and 2 types of classified products. Since the dihydrate gypsum quicklime ratio is desirably in the range of 0.6 to 0.7, it is fixed at 0.66, and the water powder ratio (water / fly ash + dihydrate gypsum + quicklime) and the aquatic lime ratio are set. The composition was selected so that the 15-stroke flow as an index of fluidity was 19.0 ± 0.5 cm. As for dihydrate gypsum, two cases of desulfurized gypsum (wet) and commercially available (dry) were performed. These test results are shown in Table 5.
Figure 0005765527
Figure 0005765527

表5に示されるように、原粉T1〜T3を用いた配合は、水粉体比が0.4を越え、固化体の圧縮強度は15N/mm2を下回る結果となった。一方、分級細粉J2、C2については水粉体比が0.35を下回り、固化体の圧縮強度は15N/mm2を越える結果となった。また、脱硫石膏(湿潤)を使用したケースと市販(乾燥)を使用したケースとの間で大きな差が無いことが判明した。 As shown in Table 5, the composition using the raw powders T1 to T3 resulted in a water powder ratio exceeding 0.4, and the compression strength of the solidified body was below 15 N / mm 2 . On the other hand, as for the classified fine powders J2 and C2, the water powder ratio was less than 0.35, and the compression strength of the solidified body exceeded 15 N / mm 2 . It was also found that there was no significant difference between the case using desulfurized gypsum (wet) and the case using commercially available (dry).

上記試験の結果から、水生石灰比は4.0〜4.5が望ましいと思われるため、水生石灰比を4.1で固定した上で、水粉体比のみを変化させて、流動性の指標とする15打フローが19.0±0.5cmとなるように配合選定を行った。この試験結果を表6に示す。

Figure 0005765527
From the results of the above test, the aquatic lime ratio seems to be preferably 4.0 to 4.5. Therefore, after fixing the aquatic lime ratio at 4.1, only the water powder ratio is changed, The formulation was selected so that the 15-stroke flow as an index was 19.0 ± 0.5 cm. The test results are shown in Table 6.
Figure 0005765527

表5の試験と対比して、水粉体比を低く設定する対策を採ったが、原粉T1〜T3を用いた配合は、圧縮強度15N/mm2を満足させることは出来なかった。なお、原粉T3については、表5の結果よりも圧縮強度が低くなっている。
〔本試験〕
以上の予備試験結果を踏まえて、更に下記の対策が必要であることが知見された。
(1)水粉体比を更に低く設定する必要があること。
(2)水粉体比を低く設定すると、十分な流動性が確保されないことが予想されるため、高性能AE減水剤の添加が必要になること。
(3)好適な高性能AE減水剤の選定が重要となること。
In contrast to the test of Table 5, a measure was taken to set the water-powder ratio low, but the blend using raw powders T1 to T3 could not satisfy the compressive strength of 15 N / mm 2 . The raw powder T3 has a lower compressive strength than the results shown in Table 5.
〔main exam〕
Based on the above preliminary test results, it was found that the following measures are necessary.
(1) The water powder ratio needs to be set lower.
(2) If the water-powder ratio is set low, it is expected that sufficient fluidity will not be ensured, so the addition of a high-performance AE water reducing agent is necessary.
(3) It is important to select a suitable high performance AE water reducing agent.

以上の知見を踏まえて、原粉T1を選定した上で、水粉体比を0.30、0.35、0.41の3ケースとし、下表7に示す3種類の高性能AE減水剤を用いて試験を行った。その試験結果を表8に示す。   Based on the above knowledge, the raw powder T1 was selected, the water powder ratio was set to three cases of 0.30, 0.35, and 0.41, and tests were performed using the three types of high-performance AE water reducing agents shown in Table 7 below. It was. The test results are shown in Table 8.

なお、高性能AE減水剤を添加することから、流動性の指標として、0打フローで流動性(数値)を示し材料分離を起こさないことを優先的な評価項目とし(0打フローで数値が得られれば、材料分離を起こしていないと判断:○)、0打フローで数値が得られない場合(材料分離を起こしている:×)にのみ、所定の流動性を確保できるかを確認するため15打フロー試験を行った。

Figure 0005765527
Figure 0005765527
In addition, since a high performance AE water reducing agent is added, as an index of fluidity, the priority evaluation item is to show fluidity (numerical value) at zero stroke flow and no material separation (numerical value at zero stroke flow). If it is obtained, it is judged that the material separation has not occurred: ○), and if the numerical value cannot be obtained with a zero stroke flow (material separation has occurred: x), it is confirmed whether the predetermined fluidity can be secured. Therefore, a 15 stroke flow test was conducted.
Figure 0005765527
Figure 0005765527

表8から明らかなように、高性能AE減水剤:TYPE-2では、水粉体比が0.30、0.35の各ケースについては練り混ぜができない状況であった。水粉体比0.41では15打フローが流動性の基準値を満たさなかった。   As is clear from Table 8, in the case of high-performance AE water reducing agent: TYPE-2, mixing was not possible in each case where the water powder ratio was 0.30 and 0.35. At the water powder ratio of 0.41, the 15 stroke flow did not meet the standard value of fluidity.

また、高性能AE減水剤:TYPE-3では、水粉体比が0.30のケースは練り混ぜが不可であり、水粉体比が0.35のケースは0打フロー:32.8cmが得られたが、圧縮強度は5.4N/mm2となり強度を全く確保することができなかった。また、水粉体比0.41では15打フローが基準を満たさないとともに、圧縮強度も不十分であった。 In addition, in the case of high performance AE water reducing agent: TYPE-3, mixing is impossible in the case of water powder ratio of 0.30, and in the case of water powder ratio of 0.35, 0 shot flow: 32.8cm was obtained. The compressive strength was 5.4 N / mm 2 , and the strength could not be secured at all. Further, when the water powder ratio was 0.41, the 15-stroke flow did not satisfy the standard, and the compressive strength was insufficient.

これらに対して、高性能AE減水剤TYPE-1では、水粉体比が0.30のケースは脱型不能となったが、水粉体比が0.35のケースでは0打フロー:32.5cmが得られるとともに、圧縮強度は19.1N/mm2であり十分な強度が得られた。水粉体比0.41では15打フローが基準を満たさないとともに、圧縮強度も不十分であった。 On the other hand, in the case of the high-performance AE water reducing agent TYPE-1, the case where the water powder ratio is 0.30 cannot be removed, but in the case where the water powder ratio is 0.35, 0 stroke flow: 32.5 cm is obtained. At the same time, the compressive strength was 19.1 N / mm 2 and a sufficient strength was obtained. At a water powder ratio of 0.41, the 15 stroke flow did not meet the standard, and the compressive strength was insufficient.

以上より、高性能AE減水剤は、TYPE-1のマリアリムA−20(スチレン−マレイン酸−アリルエーテル系)とするのが望ましく、水粉体比については中心値を0.35とし、これに概ね±0.02の変動幅を見込んだ範囲、すなわち0.33〜0.37の範囲であれば、0打フローが得られることが推測される。また、高性能AE減水剤の使用量は、全粉体重量(フライアッシュ+二水石膏+生石灰)に対して、0.80〜1.00重量%とするのが望ましいことが推察される。   From the above, it is desirable that the high-performance AE water reducing agent is Marialim A-20 of TYPE-1 (styrene-maleic acid-allyl ether type), and the center value of the water powder ratio is 0.35. It is estimated that a 0-stroke flow can be obtained in the range where the fluctuation range of 0.02 is expected, that is, in the range of 0.33 to 0.37. Moreover, it is guessed that the usage-amount of a high performance AE water reducing agent is 0.80-1.00 weight% with respect to the total powder weight (fly ash + dihydrate gypsum + quicklime).

次に、高性能AE減水剤として、マリアリムA−20(スチレン−マレイン酸−アリルエーテル系)を採用し、水粉体比:0.35、水生石灰比:4.1、二水石膏生石灰比:0.66とする条件の配合の下で、フライアッシュ原粉T1〜T3を使用した各ケースについて、0打フロー、圧縮強度、吸水率の試験を行った。その結果を下表9に示す。

Figure 0005765527
Next, Marialim A-20 (styrene-maleic acid-allyl ether type) is adopted as a high-performance AE water reducing agent, and the water powder ratio is 0.35, the aquatic lime ratio is 4.1, and the dihydrate gypsum quicklime ratio is 0.66. Under the condition blending, each case using fly ash raw powders T1 to T3 was subjected to a test of zero stroke flow, compressive strength, and water absorption. The results are shown in Table 9 below.
Figure 0005765527

表9より、フライアッシュ原粉T1〜T3のいずれのケースにおいても、0打フローを指標値とする流動性、圧縮強度15N/mm2以上、吸水率25%以上とした保水性路盤材用固化体を得ることができた。 From Table 9, in all cases of fly ash raw powders T1 to T3, solidification for water-retaining roadbed materials with flowability with 0-stroke flow as the index value, compressive strength of 15 N / mm 2 or more, and water absorption of 25% or more I was able to get a body.

このようにして得られた保水性路盤材用固化体については、粉砕し上層路盤材として使用することができる。   The solidified body for water retention roadbed material thus obtained can be pulverized and used as an upper layer roadbed material.

Claims (3)

フライアッシュに石膏及び生石灰を添加材として加え、水で混練した後成形し、混練物の蒸気養生を行って保水性路盤材用固化体を製造する方法において、
強熱減量が2〜5%のフライアッシュII種品又は分級していないフライアッシュ原粉を用い、水粉体比を0.33〜0.37、水生石灰比を4.00〜4.50、石膏生石灰比を0.60〜0.70を基準配合とする条件の下で、スチレン−マレイン酸−アリルエーテル系の高性能AE減水剤を所定量添加して混練物を作製し、この混練物を蒸気養生し、圧縮強度が15N/mm以上、吸水量が25%以上の保水性路盤材用固化体を得ることを特徴とする保水性路盤材用固化体の製造方法。
In the method for producing a solidified body for water-retaining roadbed material by adding gypsum and quicklime as additives to fly ash, shaping after kneading with water, and performing steam curing of the kneaded product,
Use a fly ash type II product with an ignition loss of 2 to 5% or unclassified fly ash raw powder, a water powder ratio of 0.33 to 0.37, and an aquatic lime ratio of 4.00 to 4.50. Under a condition that the gypsum quicklime ratio is 0.60 to 0.70 as a standard blend, a predetermined amount of a high-performance AE water reducing agent of styrene-maleic acid-allyl ether system is added to prepare a kneaded material, and this kneading A method for producing a solidified body for water-retaining roadbed material, characterized by subjecting the product to steam curing to obtain a solidified body for water-retained roadbed material having a compressive strength of 15 N / mm 2 or more and a water absorption of 25% or more.
前記高性能AE減水剤は、全粉体量に対して0.8〜1.0重量%とする請求項1記載の保水性路盤材用固化体の製造方法。   The said high-performance AE water reducing agent is a manufacturing method of the solidified body for water retention roadbed materials of Claim 1 made into 0.8 to 1.0 weight% with respect to the total amount of powder. 前記石膏は、湿潤状態の脱硫石膏を用いる請求項1、2いずれかに記載の保水性路盤材用固化体の製造方法。   The said gypsum is a manufacturing method of the solidified body for water retention roadbed materials in any one of Claim 1, 2 using the desulfurization gypsum of a wet state.
JP2011065688A 2011-03-24 2011-03-24 Method for producing solidified body for water retention roadbed material Expired - Fee Related JP5765527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065688A JP5765527B2 (en) 2011-03-24 2011-03-24 Method for producing solidified body for water retention roadbed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065688A JP5765527B2 (en) 2011-03-24 2011-03-24 Method for producing solidified body for water retention roadbed material

Publications (2)

Publication Number Publication Date
JP2012201527A JP2012201527A (en) 2012-10-22
JP5765527B2 true JP5765527B2 (en) 2015-08-19

Family

ID=47182892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065688A Expired - Fee Related JP5765527B2 (en) 2011-03-24 2011-03-24 Method for producing solidified body for water retention roadbed material

Country Status (1)

Country Link
JP (1) JP5765527B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105541254A (en) * 2015-12-31 2016-05-04 宁波高新区围海工程技术开发有限公司 Environment-friendly curing agent for processing high-water-content sludge
CN105777031A (en) * 2016-01-29 2016-07-20 济南大学 Fluorgypsum-based floor board and preparation method thereof
CN106630894B (en) * 2016-12-02 2019-12-13 首钢环境产业有限公司 Inorganic binder and preparation method thereof
JP7370204B2 (en) * 2019-09-27 2023-10-27 太平洋セメント株式会社 Cement composition for steam-cured products

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149368A (en) * 1980-04-21 1981-11-19 Kawasaki Heavy Ind Ltd Manufacture of hardened body chiefly based on coal ash
JPS5969464A (en) * 1982-10-06 1984-04-19 川崎重工業株式会社 Method for producing hardened material using coal ash as main raw material
JPS5969463A (en) * 1982-10-06 1984-04-19 川崎重工業株式会社 Method for producing hardened material using coal ash as main raw material
JP3200811B2 (en) * 1997-10-20 2001-08-20 川崎重工業株式会社 Manufacturing method and apparatus for civil engineering materials using coal ash as a main raw material
JP4603120B2 (en) * 2000-01-28 2010-12-22 日油株式会社 Dispersant composition for coal ash, coal ash composition, and hydraulic material composition
JP4906374B2 (en) * 2006-03-14 2012-03-28 東京電力株式会社 Secondary concrete product and method for determining its composition

Also Published As

Publication number Publication date
JP2012201527A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
KR102520122B1 (en) Method for manufacturing hydraulic composition and mold for additive manufacturing equipment
CN113636786B (en) A kind of emulsified asphalt plant mix cold recycled asphalt mixture and preparation method thereof
JP5765527B2 (en) Method for producing solidified body for water retention roadbed material
JP2013006743A (en) Steel-making slag concrete
EP3129201B1 (en) Process for the preparation of masonry composite materials
JP6119278B2 (en) High water retention block and method for producing high water retention block
KR101222076B1 (en) Concrete composition containing blast furnance air-cooled slag as aggregate
JP6156659B2 (en) Ultra high strength concrete
CN105174823A (en) Asphalt concrete packing and asphalt concrete
JP2009149475A (en) Method for producing cement premix composition
JP6876489B2 (en) Fast-hardening concrete and its manufacturing method
JP2016216274A (en) Artificial stone material
JP2010180094A (en) Method for manufacturing water-retentive block
JP6440458B2 (en) Embedded formwork board
CN103373827A (en) Cement-based material
JP6460312B2 (en) Hydraulic composition
KR20140106215A (en) Composition of artificial aggregate and making method using inorganic sludge particle
KR20120091781A (en) Method of making asphalt concrete filler using stainless steel slag powder
TW201800360A (en) Hydration hardened body and method for manufacturing the same
JP5919940B2 (en) High water retention block and method for producing high water retention block
JP6172476B2 (en) Low shrinkage concrete
JP2009215092A (en) Component of high-flow concrete, and method for producing high-flow concrete
JP5605235B2 (en) Concrete composition and concrete molded article using the composition
JP2001348254A (en) Method for manufacturing lightweight aggregate from coal ash
JP6233840B2 (en) Coal ash solidified product containing shell powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150602

R150 Certificate of patent or registration of utility model

Ref document number: 5765527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees