JP5762641B2 - 斜流タービン - Google Patents
斜流タービン Download PDFInfo
- Publication number
- JP5762641B2 JP5762641B2 JP2014534117A JP2014534117A JP5762641B2 JP 5762641 B2 JP5762641 B2 JP 5762641B2 JP 2014534117 A JP2014534117 A JP 2014534117A JP 2014534117 A JP2014534117 A JP 2014534117A JP 5762641 B2 JP5762641 B2 JP 5762641B2
- Authority
- JP
- Japan
- Prior art keywords
- hub
- shroud
- blade
- leading edge
- wing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012530 fluid Substances 0.000 claims description 82
- 230000002093 peripheral effect Effects 0.000 claims description 68
- 238000011144 upstream manufacturing Methods 0.000 claims description 27
- 230000007423 decrease Effects 0.000 claims description 16
- 230000008859 change Effects 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 description 24
- 230000004044 response Effects 0.000 description 14
- 230000001052 transient effect Effects 0.000 description 14
- 230000001133 acceleration Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/04—Blade-carrying members, e.g. rotors for radial-flow machines or engines
- F01D5/043—Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
- F01D5/048—Form or construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D1/00—Non-positive-displacement machines or engines, e.g. steam turbines
- F01D1/02—Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
- F01D1/026—Impact turbines with buckets, i.e. impulse turbines, e.g. Pelton turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/026—Scrolls for radial machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2210/00—Working fluids
- F05D2210/40—Flow geometry or direction
- F05D2210/43—Radial inlet and axial outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/24—Rotors for turbines
- F05D2240/241—Rotors for turbines of impulse type
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Supercharger (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
本発明は、小型ガスタービン、過給機、エキスパンダー等に用いられる斜流タービンに関するものである。
過渡応答性が要求されるターボチャージャでは、排気エネルギーを吸気圧力の上昇へ変換する「効率の向上」と、ターボチャージャ付きエンジンの出力増加の遅れ「所謂ターボラグ」の低減のための「回転加速度の向上」が要望されている。
そのため、コンプレッサ、タービンの効率向上と、タービンホイールの小型軽量化によるロータの慣性モーメントの低減を行い、加速時のターボエンジンのレスポンスの向上が行われている。
そのため、コンプレッサ、タービンの効率向上と、タービンホイールの小型軽量化によるロータの慣性モーメントの低減を行い、加速時のターボエンジンのレスポンスの向上が行われている。
一般に、「空力的な効率向上」のためには、例えば翼枚数を増加し翼負荷を低減することが有効な手段であるが、一方で、重量が増加、慣性質量が増加するため、「回転加速度の低下」が生じるという問題があり、このような背反する効果を両立させる手段が要望されている。
タービンの効率低下を抑制するもの、特に斜流タービンにおける効率低下を抑制するものとして、本出願人は、特許文献1で示す斜流タービンの技術を提案している。
図17を参照して、この特許文献1に開示されている斜流タービンについて説明する。
図17を参照して、この特許文献1に開示されている斜流タービンについて説明する。
中心軸線Kを中心に回転するハブ205と、ハブ外周面206上に複数枚立設され、前縁247が上流側に向かって凸とされている動翼207と、動翼207の外径側端縁225を覆うシュラウド部227を有するケーシング213と、動翼207の上流側に形成され、動翼207の前縁247に向けて作動流体を供給する空間であるスクロール223と、を備えている斜流タービン201であって、スクロール223は、スクロール分割壁229によってシュラウド側空間231とハブ側空間233とに分割されている。
スクロール分割壁229の後縁側におけるシュラウド側分割壁面237およびハブ側分割壁面235は、それぞれそれらと略平行に対向して形成されるシュラウド側壁面243およびハブ側壁面239が形成されているので、それぞれの壁面間には、作動流体が略半径方向に流れるシュラウド側流入路245、および翼入口のハブ側の傾斜方向と略同等の方向に流れるハブ側流入路241が形成されている。
このシュラウド側流入路245を通って供給される作動流体は、略半径方向に流れているので、シュラウド側壁面243に平行に、且つ、動翼の入口側端縁に略直交するように流入する。このため、斜流タービン動翼入口のシュラウド側翼前縁にて適切な流れ角にて流れを動翼207の内部に導くことができる。
また、ハブ側流入路241を通って供給される作動流体は、斜流タービン動翼入口のハブ外周面206の傾斜方向と略同等の方向に流れているので、ハブ外周面206に平行に且つ、動翼の翼前縁に略直交するように流入する。このため、斜流タービン動翼入口のハブ側翼前縁にて適切な流れ角にて流れを動翼207の内部に導くことができる。
また、ハブ側流入路241から動翼207に流入する流れはハブ外周面206の傾斜と略同等の角度を持って動翼207に流入するので、シュラウド側流入路245から略半径方向に動翼207に流入し動翼出口に向かって軸方向に転向するシュラウド側流入路245の流れを半径方向から軸方向に滑らかに転向させることができ、その結果、シュラウド部に生じる壁面境界層の増加を防止できるという特長を有する。
また、ハブ側流入路241を通って供給される作動流体は、斜流タービン動翼入口のハブ外周面206の傾斜方向と略同等の方向に流れているので、ハブ外周面206に平行に且つ、動翼の翼前縁に略直交するように流入する。このため、斜流タービン動翼入口のハブ側翼前縁にて適切な流れ角にて流れを動翼207の内部に導くことができる。
また、ハブ側流入路241から動翼207に流入する流れはハブ外周面206の傾斜と略同等の角度を持って動翼207に流入するので、シュラウド側流入路245から略半径方向に動翼207に流入し動翼出口に向かって軸方向に転向するシュラウド側流入路245の流れを半径方向から軸方向に滑らかに転向させることができ、その結果、シュラウド部に生じる壁面境界層の増加を防止できるという特長を有する。
一方、作動流体は、シュラウド側流入路245においては略半径方向に流れ、一方、ハブ側流入路241においては斜流タービン動翼入口のハブ側の傾斜方向と略同等の方向に流れ、両流入路を通過した作動流体は交差する状態で斜流タービン動翼の入口側端縁に流入する。
従って、シュラウド側流入路245およびハブ側流入路241を流れる作動流体は、スクロール分割壁229の後縁で合流することになる。これにより、スクロール分割壁229の後縁に発生するウエイクの発達を抑制することができる。
従って、シュラウド側流入路245およびハブ側流入路241を流れる作動流体は、スクロール分割壁229の後縁で合流することになる。これにより、スクロール分割壁229の後縁に発生するウエイクの発達を抑制することができる。
なお、特許文献1のタービン動翼の前縁が上流側に向かって凸とされている動翼を有する斜流タービンについては特許文献2においても開示されている。
図18に、シュラウド側流入路245、およびハブ側流入路241から流入する動翼207のシュラウド側入口およびハブ側入口の代表半径における速度三角形を示す。
シュラウド側流入路245から流入する流れは、流れ角αがおおよそ20〜30度にて流速Aにて動翼207に流入する。周方向速度Cは動翼207の旋回周速にほぼ一致した速度であり、相対流速Bである半径速度は流量を代表する速度である。
シュラウド側流入路245から流入する流れは、動翼207の内部で半径変化に伴い流れが動翼207に対して仕事をなし、周方向速度が低下し圧力が低下しながら吐出口に向かって流出する。
シュラウド側流入路245から流入する流れは、動翼207の内部で半径変化に伴い流れが動翼207に対して仕事をなし、周方向速度が低下し圧力が低下しながら吐出口に向かって流出する。
一方、ハブ側流入路241から流入する流れは、ハブ側入口P2の半径はシュラウド側入口P1より半径が小さいので、シュラウド側入口からの流れは半径の小さい領域に流れてゆき、圧力が低下した位置に流入するため、シュラウド側入口より大きな流速A'でハブ側入口に流入する。
また、ハブ側入口の半径はシュラウド側入口より半径が小さいので、動翼前縁の旋回速度は半径比に比例して小さくなり、周方向速度C'となるため、ハブ側入口はシュラウド側入口の相対流速Bに比べて大きい相対流速B'で動翼207に流入する。
また、ハブ側入口の半径はシュラウド側入口より半径が小さいので、動翼前縁の旋回速度は半径比に比例して小さくなり、周方向速度C'となるため、ハブ側入口はシュラウド側入口の相対流速Bに比べて大きい相対流速B'で動翼207に流入する。
従って、ハブ側入口から流入する流れは、シュラウド側入口から流入する流れに比べて流速が高く、流れがタービンを通過する際に放出するエネルギーの内、動翼207内部での放出エネルギーの割合を示す値である反動度が、ハブ側の流れの方が小さくなる。
つまり、シュラウド側の流れは反動度が大きく動翼内部の流速が低くでき摩擦損失を低くできるので、高効率の流れとなる所謂反動タービンの特性を有する。
一方、ハブ側の流れは、反動度が小さく高速流れを動翼207で転向させる際の運動量の方向転換による力で動翼207を回転させるので、流れを高速まで加速するため摩擦損失が大きく、反動翼ほど効率が高くできないが、小さな直径の動翼で直径の大きな反動翼と同様の動力を発生できるという、所謂衝動タービンの特性を有する。
一方、ハブ側の流れは、反動度が小さく高速流れを動翼207で転向させる際の運動量の方向転換による力で動翼207を回転させるので、流れを高速まで加速するため摩擦損失が大きく、反動翼ほど効率が高くできないが、小さな直径の動翼で直径の大きな反動翼と同様の動力を発生できるという、所謂衝動タービンの特性を有する。
言い換えると、図17に示すシュラウド側流入路245、およびハブ側流入路241から流入する動翼207のような形態を有した斜流タービンでは、ハブ側の衝動翼とシュラウド側の反動翼とで構成されているといえる。
このように、シュラウド側から流入する流れは、翼間の流速が低いので、摩擦損失が低く、半径変化に伴う角運動量の放出によって回転の動力に変換するので、動翼207の効率が高く、軸方向に転向した動翼出口では、圧力変化と流れの向きの転向により旋回速度を回転の動力に変換する。
一方、ハブ側の衝動翼は高速で動翼207に流入し、速度を高速に維持しながら流れの転向により流れの旋回速度を回転の動力に変換するので、インシデンスが小さいこと、高速の流れを転向できるだけの十分な翼枚数が必要である。
一方、ハブ側の衝動翼は高速で動翼207に流入し、速度を高速に維持しながら流れの転向により流れの旋回速度を回転の動力に変換するので、インシデンスが小さいこと、高速の流れを転向できるだけの十分な翼枚数が必要である。
従って、従来の斜流タービンでは、翼枚数が少なく高速の流れを効率よく転向出来ないという問題を有していた。
本発明はかかる従来の斜流タービンの技術的課題に鑑み、ハブ側の衝動翼部分とシュラウド側の反動翼部分とで構成される斜流タービンのハブ側の衝動翼タービン特性を有する部分に、中間高さの中間翼を設けて、衝動翼タービン特性の改善および動翼全体の慣性モーメントの低減を図って、効率向上および過渡応答性を向上する斜流タービンを提供することを目的とする。
第1の発明はかかる目的を達成するため、作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されたタービン動翼と、該タービン動翼を覆うように形成され、該動翼の前縁に向けて作動流体を供給するスクロール部を備えたタービンハウジングと、前記スクロール部をシュラウド側空間とハブ側空間とに分割するスクロール分割壁と、該スクロール分割壁の内周側におけるシュラウド側分割壁面と該シュラウド側分割壁面に対向する部分との間に形成され、作動流体が略半径方向に前記動翼のシュラウド側入口に流れるシュラウド側流入路と、前記スクロール分割壁の内周側におけるハブ側分割壁面と該ハブ側分割壁面に対向する部分との間に形成され、作動流体がハブの傾斜方向と略同一方向に前記動翼のハブ側入口に流れるハブ側流入路と、を備え、
前記タービン動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成され、
さらに、前記中間翼の前縁は前記主翼の前縁に一致するとともに、前縁の翼高さを前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線の高さとほぼ同等もしくはその中心線より高い位置とし、さらに後縁の翼高さを前記前縁より高い位置に設けたことを特徴とする。
前記タービン動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成され、
さらに、前記中間翼の前縁は前記主翼の前縁に一致するとともに、前縁の翼高さを前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線の高さとほぼ同等もしくはその中心線より高い位置とし、さらに後縁の翼高さを前記前縁より高い位置に設けたことを特徴とする。
かかる発明によれば、図1に示すように、作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線(図1の線m)よりもハブ側とシュラウド側との中間部が上流側に凸状に形成される。
スクロール分割壁によって、シュラウド側流入路とハブ側流入路とを有する斜流タービンは、前述したように、ハブ側の衝動翼部分とシュラウド側の反動翼部分とによって構成されているといえるので、周方向において主翼間に中間翼を配設し、この中間翼を主翼の入口部から中間部にわたって、且つ主翼の高さの中間高さを有するように構成することによって、さらに中間翼の前縁に前記ハブ側流入路からの作動流体を流入することによって、ハブ側の衝動タービン特性部分の翼枚数を、半径の大きい反動翼枚数を増やすことなく多くすることができる。
スクロール分割壁によって、シュラウド側流入路とハブ側流入路とを有する斜流タービンは、前述したように、ハブ側の衝動翼部分とシュラウド側の反動翼部分とによって構成されているといえるので、周方向において主翼間に中間翼を配設し、この中間翼を主翼の入口部から中間部にわたって、且つ主翼の高さの中間高さを有するように構成することによって、さらに中間翼の前縁に前記ハブ側流入路からの作動流体を流入することによって、ハブ側の衝動タービン特性部分の翼枚数を、半径の大きい反動翼枚数を増やすことなく多くすることができる。
従って、従来の斜流タービンでは翼枚数が少ないために高速流を効率よく回転力に変換されていないという問題に対して、本発明では、小さな半径の衝動翼部分で大きな半径の反動翼部分と同等の単位流量あたりの動力を発生させ、所謂衝動タービンの特性を有効に利用することで、タービン動翼の慣性モーメントを増大することなく、斜流タービンの効率向上と過渡応答性の向上を両立できる。
また、それぞれの発明において好ましくは、前記タービン動翼の子午面形状において前記中間翼は、前記ハブ側流入路の流路幅の延長領域と前記シュラウド側流入路の延長領域との重なる領域に少なくとも設けられるとよい。
かかる構成によれば、前記タービン動翼の子午面形状において、前記ハブ側流入路の流路幅の延長領域に中間翼が存在すれば、前記ハブ側流入路からの流れを効率よく受け止めて所謂衝動タービンの特性を発揮できる。しかし、中間翼の後縁端を下流側に長く設置すると、主翼の翼間流路が狭くなり、流速が局所的に増減速を生じ流路損失が増大するため、損失が発生しない範囲に留める必要がある。このため、中間翼39の後縁端をシュラウド側流入路からの流れを受け止めることのできる主翼前縁端から後縁までの全長のほぼ中間までとして、中間翼による流路損失を抑えることができる。
また、それぞれの発明において好ましくは、前記中間翼を前記主翼の間に周方向において複数枚設置するとよい。
このように中間翼を主翼間に複数枚設置することによって、斜流タービンの効率を維持しつつ、主翼の翼枚数を少なくすることができるため、タービン動翼の慣性モーメントをさらに減少できる。
また、複数枚設置する場合は中間翼の後縁端の位置が相互に異なっていてもよい。
このように中間翼を主翼間に複数枚設置することによって、斜流タービンの効率を維持しつつ、主翼の翼枚数を少なくすることができるため、タービン動翼の慣性モーメントをさらに減少できる。
また、複数枚設置する場合は中間翼の後縁端の位置が相互に異なっていてもよい。
また、第1の発明は、前記中間翼の前縁は前記主翼の前縁に一致するとともに、前縁の翼高さを前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線の高さとほぼ同等もしくはその中心線より高い位置とし、さらに後縁の翼高さを前記前縁より高い位置に設けることを特徴とする。
このように、中間翼の前縁を主翼の前縁と一致させるとともに、前縁の翼高さを前記中心線の高さとほぼ同等もしくはその中心線より高い位置とすることによって、ハブ側の衝動翼部の翼前縁の負荷を各翼(主翼および中間翼の各翼)が均等に受けることができる。
また、後縁の翼高さを前縁の翼高さより高い位置に設けることによって、加速時においてハブ側の流量が増加した場合には、中間翼で流量の増加を確実に受け止めて、衝動翼の特性を有効に作用させるので過渡応性を改善できる(図4参照)。
また、ターボチャージャが定常的な作動をしているときには、反動翼の特性を有するシュラウド側の流量が増加するように制御されており、このような場合には、シュラウド側の流れを中間翼の後縁部分において角運動量を受け止めて回転動力に変換できる。従って、高効率の効果を得ることができる(図5参照)。
また、ターボチャージャが定常的な作動をしているときには、反動翼の特性を有するシュラウド側の流量が増加するように制御されており、このような場合には、シュラウド側の流れを中間翼の後縁部分において角運動量を受け止めて回転動力に変換できる。従って、高効率の効果を得ることができる(図5参照)。
従って、シュラウド側とハブ側との流量のバランスが偏り、シュラウド側の流量が増加した場合にも、ハブ側の流量が増加した場合にも、中間翼はシュラウド側の流量が増加した場合には、シュラウド側の流れの角運動量を動力に変換する反動翼としての作用を有し、ハブ側の流量が増加した場合には、衝動翼としての作用を有することで、前者の場合には、高効率のタービンとして作用し、後者の場合には回転加速度の大きいタービンとして作用する。従って、エンジンの過渡応性を改善する効果と、定常運転の場合の高効率作動を両立することができる。
また、第2の発明は、作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されたタービン動翼と、該タービン動翼を覆うように形成され、該動翼の前縁に向けて作動流体を供給するスクロール部を備えたタービンハウジングと、前記スクロール部をシュラウド側空間とハブ側空間とに分割するスクロール分割壁と、該スクロール分割壁の内周側におけるシュラウド側分割壁面と該シュラウド側分割壁面に対向する部分との間に形成され、作動流体が略半径方向に前記動翼のシュラウド側入口に流れるシュラウド側流入路と、前記スクロール分割壁の内周側におけるハブ側分割壁面と該ハブ側分割壁面に対向する部分との間に形成され、作動流体がハブの傾斜方向と略同一方向に前記動翼のハブ側入口に流れるハブ側流入路と、を備え、前記動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成され、さらに、前記中間翼の前縁は前記主翼の前縁半径より小さい位置に設けられるとともに、前記中間翼の上流から下流への全域に渡っての翼高さを、前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線の高さとほぼ同一高さ、もしくはその中心線より高い位置で一定に維持されることを特徴とする。
このように、中間翼の前縁は主翼の前縁半径より小さい位置に設けられ、さらに中間翼の高さを、前記中間翼の上流から下流の全域に渡って、前記中心線の高とほぼ同一高さもしくは中心線より高い位置で一定に維持するので、すなわち、中間翼の前縁の位置、および全域にわたる翼高さを制限することによって、中間翼の半径方向の大きさを小さくすることができ、タービン動翼の慣性モーメントを減少できる。
また、第3の発明は、作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されたタービン動翼と、該タービン動翼を覆うように形成され、該動翼の前縁に向けて作動流体を供給するスクロール部を備えたタービンハウジングと、前記スクロール部をシュラウド側空間とハブ側空間とに分割するスクロール分割壁と、該スクロール分割壁の内周側におけるシュラウド側分割壁面と該シュラウド側分割壁面に対向する部分との間に形成され、作動流体が略半径方向に前記動翼のシュラウド側入口に流れるシュラウド側流入路と、前記スクロール分割壁の内周側におけるハブ側分割壁面と該ハブ側分割壁面に対向する部分との間に形成され、作動流体がハブの傾斜方向と略同一方向に前記動翼のハブ側入口に流れるハブ側流入路と、を備え、前記動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成され、さらに、前記中間翼の前縁は前記主翼の前縁半径より小さい位置に設けられるとともに、前記中間翼の上流から下流への全域に渡っての翼高さを、前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線より高い位置で、且つ後縁の翼高さを前縁より高い位置に設けられることを特徴とする。
このように、中間翼の後縁の翼高さを前記前縁より高い位置に設けるので、前述したように、シュラウド側とハブ側との流量のバランスが偏り、シュラウド側の流量が増加した場合にも、ハブ側の流量が増加した場合にも、中間翼はシュラウド側の流量が増加した場合には、シュラウド側の流れの角運動量を動力に変換する反動翼としての作用を有し、ハブ側の流量が増加した場合には、衝動翼としての作用を有することで、前者の場合には、高効率のタービンとして作用し、後者の場合には回転加速度の大きいタービンとして作用する。従って、エンジンの過渡応性を改善する効果と、定常運転の場合の高効率作動を両立することができる。
しかも、中間翼の前縁は前記主翼の前縁半径より小さい位置に設けられるので、中間翼の半径方向の大きさを小さくすることができ、タービン動翼の慣性モーメントの減少もさらに達成できる。
しかも、中間翼の前縁は前記主翼の前縁半径より小さい位置に設けられるので、中間翼の半径方向の大きさを小さくすることができ、タービン動翼の慣性モーメントの減少もさらに達成できる。
さらに、第2、第3の発明において好ましくは、前記中間翼の前縁の半径を前記中間翼のハブへの取り付け半径とほぼ等しい半径に設定されるとよく、タービン動翼の慣性モーメントをさらに減少できる。
また、中間翼の前縁半径を中間翼のハブへの取り付け半径とほぼ等しい半径にするため、中間翼のハブ外表面への固定が安定化する効果も有している。
また、中間翼の前縁半径を中間翼のハブへの取り付け半径とほぼ等しい半径にするため、中間翼のハブ外表面への固定が安定化する効果も有している。
また、第4の発明は、作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されたタービン動翼と、該タービン動翼を覆うように形成され、該動翼の前縁に向けて作動流体を供給するスクロール部を備えたタービンハウジングと、前記スクロール部をシュラウド側空間とハブ側空間とに分割するスクロール分割壁と、該スクロール分割壁の内周側におけるシュラウド側分割壁面と該シュラウド側分割壁面に対向する部分との間に形成され、作動流体が略半径方向に前記動翼のシュラウド側入口に流れるシュラウド側流入路と、前記スクロール分割壁の内周側におけるハブ側分割壁面と該ハブ側分割壁面に対向する部分との間に形成され、作動流体がハブの傾斜方向と略同一方向に前記動翼のハブ側入口に流れるハブ側流入路と、を備え、前記動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成され、さらに、前記中間翼の前縁を前記主翼の前縁に一致させ、該中間翼の翼高さを後縁に向かうにつれて低くすることを特徴とする。
このように構成することで、ハブ側の衝動翼の作用を、主に中間翼の前縁側で負担させて、中間翼の下流側の部分の流路抵抗を低減するとともに、慣性モーメントの低減に寄与することができる。
このように構成することで、ハブ側の衝動翼の作用を、主に中間翼の前縁側で負担させて、中間翼の下流側の部分の流路抵抗を低減するとともに、慣性モーメントの低減に寄与することができる。
また、それぞれの発明において好ましくは、前記中間翼の翼先端を円弧状の断面に形成するとよい。
図11は、図3のI−I断面図であり、この図11で示すように、主翼に流入する作動流体のシュラウド側の流れの流線Rは、中間翼の翼先端を交差するように流れる。
従って、中間翼の翼先端は、翼前縁としての機能を有する必要があり、中間翼の翼先端を円弧状の断面形状に形成することによって、中間翼の先端を交差する流れが中間翼の負圧面で剥離を生じ損失が増大することを防止できる。
図11は、図3のI−I断面図であり、この図11で示すように、主翼に流入する作動流体のシュラウド側の流れの流線Rは、中間翼の翼先端を交差するように流れる。
従って、中間翼の翼先端は、翼前縁としての機能を有する必要があり、中間翼の翼先端を円弧状の断面形状に形成することによって、中間翼の先端を交差する流れが中間翼の負圧面で剥離を生じ損失が増大することを防止できる。
また、第5の発明は、作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されたタービン動翼と、該タービン動翼を覆うように形成され、該動翼の前縁に向けて作動流体を供給するスクロール部を備えたタービンハウジングと、前記スクロール部をシュラウド側空間とハブ側空間とに分割するスクロール分割壁と、該スクロール分割壁の内周側におけるシュラウド側分割壁面と該シュラウド側分割壁面に対向する部分との間に形成され、作動流体が略半径方向に前記動翼のシュラウド側入口に流れるシュラウド側流入路と、前記スクロール分割壁の内周側におけるハブ側分割壁面と該ハブ側分割壁面に対向する部分との間に形成され、作動流体がハブの傾斜方向と略同一方向に前記動翼のハブ側入口に流れるハブ側流入路と、を備え、前記動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成され、さらに、前記主翼および中間翼の前縁の圧力面と負圧面とによって形成される翼前縁開き角度を、作動流体の圧力変動に伴って変化する前記前縁への作動流体の流入角度の変化に相当する角度に設定するとともに、前記圧力変動が高圧側に上昇したときにおける前記前縁への流入方向が前記負圧面の接線方向に略一致するかもしくは接線方向より圧力面側に向かうように設定することを特徴とする。
図13に示すように、ターボチャージャをエンジンに搭載した場合にはタービン入口に流入する排ガス圧力は、往復動エンジンの気筒数や加速の程度により変動する。この圧力変動が生じている場合には、ハブ側の衝動タービン部分には、この圧力変動の変化と同様の絶対流速の変化が生じ、その結果、動翼への流入角度に変化が生じる場合が多い。
従って、図14に示すように、主翼および中間翼の前縁部分の前縁開き角度を作動流体の圧力変動に伴って変化する前記前縁への作動流体の流入角度の変化に相当する角度に設定することによって、中間翼および主翼の前縁部分において、作動流体の圧力変動に伴う流れ損失の増大を防止でき高効率化できる。
従って、図14に示すように、主翼および中間翼の前縁部分の前縁開き角度を作動流体の圧力変動に伴って変化する前記前縁への作動流体の流入角度の変化に相当する角度に設定することによって、中間翼および主翼の前縁部分において、作動流体の圧力変動に伴う流れ損失の増大を防止でき高効率化できる。
さらに、前記圧力変動が高圧側に上昇したときにおける前記前縁への流入方向が前記負圧面の接線方向に略一致するかもしくは接線方向より圧力面側に向かうように設定するので、負圧面における流れの剥離を防止でき、作動流体の圧力変動に伴う衝動翼部分での流れ損失を防止でき、高効率化を図ることができる。
また、それぞれの発明において好ましくは、前記主翼の回転軸に直角方向の断面形状において、主翼の前縁部分を回転方向に湾曲させて、回転方向とは逆方向に凸形状をなすとよい。
図15に示すように、回転半径に対応して周速Uは低下し、絶対流速Vの周方向成分である旋回流速Vcは、自由渦の関係を満足しながら半径内向きに流れるので、半径が小さくなると旋回流速が大きくなり、その結果、相対流速Wが、主翼の翼前縁近傍において、回転方向から翼にぶつかるように流入するようになる(図15参照)。この翼前縁から内側に入るに従って相対流速Wが回転方向に向きを変えて翼に向かう。このため、翼負荷が増大する。
従って、翼前縁部において、翼前縁の中心線を回転方向に湾曲させて、回転方向とは逆方向に凸形状にさせることにより、翼前縁から内側に入ると相対流速Wが回転方向に向きを変えて翼に向かう流れが翼にぶつかるように流入せずに、翼に沿うようになるため、翼前縁の衝突損失を低減でき翼負荷を低減できる。
これにより、主翼の翼枚数を少なくすることによって生じる、主翼の翼前縁の負荷が増大する課題に対応できる。
これにより、主翼の翼枚数を少なくすることによって生じる、主翼の翼前縁の負荷が増大する課題に対応できる。
また、それぞれの発明において好ましくは、前記ハブ側流入路に中心軸線と平行な翼面からなるノズルと、同ノズルの下流側に後縁が前記動翼の前縁に対向するように配置された案内板とを備えるとよい。
このように構成することによって、ハブ側流入路を流れて中間翼前縁に流入する作動流体の流れが加速または理想的な旋回流となるため、動翼の所謂衝動タービンの特性を有する部分への流入速度を高めて過渡応答性が向上される。
本発明によれば、作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されるとともに、スクロール分割壁によって、シュラウド側流入路とハブ側流入路とを有する斜流タービンであって、タービン動翼のハブ側の衝動翼タービン特性を発揮する部分の主翼間に、中間高さの中間翼を設けて、衝動翼タービン特性の改善を行うとともに、動翼全体としての慣性モーメントの低減を図ることによって、効率向上および過渡応答性を向上できる。
以下、本発明に係る実施形態について図面を用いて詳細に説明する。なお、以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
(第1実施形態)
本発明の第1実施形態について図1、2を参照して説明する。
本発明の斜流タービン1は、車両エンジンの過給機(ターホチャージャ)に用いられる例について説明する。
図1において、斜流タービン1には、タービンハウジング3と、タービンハウジング3内に回転可能に支持されて収納されたタービンホイール5とが備えられている。このタービンホイール5は、回転軸7と、該回転軸7に一体成形または溶接で結合されたハブ9と、ハブ9の外周面に立設されたタービン動翼(動翼)11とを備え、タービンハウジング3内に形成されたカタツムリ状のスクロール室(スクロール部)13によって回転軸7の中心軸線K周りの速度を持った旋回流れが作られて、タービンホイール5の外周側を旋回する。
本発明の第1実施形態について図1、2を参照して説明する。
本発明の斜流タービン1は、車両エンジンの過給機(ターホチャージャ)に用いられる例について説明する。
図1において、斜流タービン1には、タービンハウジング3と、タービンハウジング3内に回転可能に支持されて収納されたタービンホイール5とが備えられている。このタービンホイール5は、回転軸7と、該回転軸7に一体成形または溶接で結合されたハブ9と、ハブ9の外周面に立設されたタービン動翼(動翼)11とを備え、タービンハウジング3内に形成されたカタツムリ状のスクロール室(スクロール部)13によって回転軸7の中心軸線K周りの速度を持った旋回流れが作られて、タービンホイール5の外周側を旋回する。
また、回転軸7は、図示しない軸受けによって軸受けハウジングに支持されるようになっている。回転軸7の一端側には前記タービンホイール5が取り付けられ、他端側にはターボ圧縮機の回転軸が接続され、エンジンからの排ガス(作動流体)によってタービンホイール5を介して回転された回転軸7を介してターボ圧縮機を回転し、吸気を圧縮してエンジンに供給するようになっている。
タービンハウジング3のタービンホイール5の外周側には、動翼11の外径側端縁14を覆うシュラウド部15が形成されている。
また、タービンハウジング3の内側には、外側から内側に向けて半径方向に突出するスクロール分割壁17が設けられている。スクロール室13はスクロール分割壁17によってシュラウド側空間19とハブ側空間21とに分割されている。
また、タービンハウジング3の内側には、外側から内側に向けて半径方向に突出するスクロール分割壁17が設けられている。スクロール室13はスクロール分割壁17によってシュラウド側空間19とハブ側空間21とに分割されている。
スクロール分割壁17の内周側のハブ側は、シュラウド側に向かい先細りとなるように傾斜したハブ側分割壁面23を形成している。スクロール分割壁17の内周側のシュラウド側は、略半径方向に延在するシュラウド側分割壁面25を形成している。
タービンハウジング3のハブ側におけるハブ側分割壁面23に対向するハブ側部材のハブ側壁面27は、ハブ側分割壁面23と略平行となるように形成されており、ハブ側分割壁面23との間にハブ側流入路29を形成している。
ハブ側流入路29は、ハブ9のハブ外周面31の上流端における傾斜方向と略同等の傾斜方向とされている。
タービンハウジング3のハブ側におけるハブ側分割壁面23に対向するハブ側部材のハブ側壁面27は、ハブ側分割壁面23と略平行となるように形成されており、ハブ側分割壁面23との間にハブ側流入路29を形成している。
ハブ側流入路29は、ハブ9のハブ外周面31の上流端における傾斜方向と略同等の傾斜方向とされている。
タービンハウジング3のシュラウド側におけるシュラウド側分割壁面25に対向するシュラウド側壁面33は、シュラウド側分割壁面25と略平行となるように形成されており、シュラウド側分割壁面25との間にシュラウド側流入路35を形成している。
シュラウド側分割壁面25は略半径方向に延在するので、シュラウド側流入路35は略半径方向に沿って延在している。
シュラウド側分割壁面25は略半径方向に延在するので、シュラウド側流入路35は略半径方向に沿って延在している。
動翼11は、板状部材であり、面部が軸線方向に延在するようにハブ外周面31に立設されている。また、図2に示すように、動翼11は、ハブ外周面31上に周方向に複数枚立設されてハブ外周面31とシュラウド部15の内周面との間の全域にわたる高さを有して形成される主翼37と、周方向において隣接する主翼37間に配設されるとともに、主翼37の入口部分から中間部分にわたって、且つ主翼37の高さの中間高さを有して配置される中間翼39とによって構成されている。
主翼37の前縁41と外径側端縁14との交点は、ハブ9と前縁41との交点よりも半径方向において外側に位置している。
また、主翼37には、排ガスの流れ方向上流側に位置する前縁41が備えられている。前縁41は、図1に示されるように上流側に向かってその全領域で凸状に滑らかに膨れている曲線で形成されている。
すなわち、作動流体が流入する前縁41は、ハブ側とシュラウド側とを結ぶ線mよりもハブ側とシュラウド側との中間部が、上流側に凸状に形成された形状をしている。
前縁41のシュラウド側部分は略同一半径位置に沿う、言い換えると、半径方向に略直交するような形状をしている。前縁41のシュラウド側部分でシュラウド側入口43を形成し、ハブ側部分でハブ側入口45を形成している。シュラウド側入口43は中心半径Ra、ハブ側入口45は中心半径Rbを有している。
また、主翼37には、排ガスの流れ方向上流側に位置する前縁41が備えられている。前縁41は、図1に示されるように上流側に向かってその全領域で凸状に滑らかに膨れている曲線で形成されている。
すなわち、作動流体が流入する前縁41は、ハブ側とシュラウド側とを結ぶ線mよりもハブ側とシュラウド側との中間部が、上流側に凸状に形成された形状をしている。
前縁41のシュラウド側部分は略同一半径位置に沿う、言い換えると、半径方向に略直交するような形状をしている。前縁41のシュラウド側部分でシュラウド側入口43を形成し、ハブ側部分でハブ側入口45を形成している。シュラウド側入口43は中心半径Ra、ハブ側入口45は中心半径Rbを有している。
中間翼39は、図1に示すように、子午面形状においてハブ側流入路29の流路幅の延長領域とシュラウド側流入路35の延長領域との重なる領域に少なくとも設けられている。本実施形態においては、重なる領域のほぼ全域に形成されている。
すなわち、中間翼39の前縁は、主翼37の前縁の形状に一致させ、中間翼高さh2は、ハブ側流入路29の流路幅を有しており、主翼37の翼高さh1に比べて中間高さを有している。中間翼39の後縁は、シュラウド側流入路35の延長領域における後縁部分にほぼ一致させて、または少し長く形成されている。
すなわち、中間翼39の前縁は、主翼37の前縁の形状に一致させ、中間翼高さh2は、ハブ側流入路29の流路幅を有しており、主翼37の翼高さh1に比べて中間高さを有している。中間翼39の後縁は、シュラウド側流入路35の延長領域における後縁部分にほぼ一致させて、または少し長く形成されている。
ハブ側流入路29の流路幅の延長領域に中間翼39が存在することで、ハブ側流入路29からの流れを効率よく受け止めて所謂衝動タービンの特性を発揮できる。しかし、中間翼39の後縁端を下流側にあまり長く設置すると、流速が局所的に増減速を生じ主翼37の翼間流路が狭くなり、流路損失が増大するため、損失が発生しない範囲に留める必要がある。このため、中間翼39の後縁をシュラウド側流入路35からの流れを受け止めることのできる主翼前縁端から後縁までの全長のほぼ中間までとして、中間翼39による流路損失を抑えている。
中間翼39の形状を以上のようにすることで、ハブ側の衝動タービン特性部分の翼枚数を、半径の大きい反動翼枚数を増やすことなく多くすることができる。所謂衝動タービン特性を有するハブ側の部分を有効に利用するものである。
従って、従来の斜流タービンでは翼枚数が少ないために高速流を効率よく回転力に変換されていないという問題に対して、主翼の枚数を増加することなく中間翼の増加によって、または主翼の枚数を減らし中間翼の枚数を増やす等によって、タービン動翼の慣性モーメントの増大を抑制して、斜流タービンの効率向上と過渡応答性を向上できる。
従って、従来の斜流タービンでは翼枚数が少ないために高速流を効率よく回転力に変換されていないという問題に対して、主翼の枚数を増加することなく中間翼の増加によって、または主翼の枚数を減らし中間翼の枚数を増やす等によって、タービン動翼の慣性モーメントの増大を抑制して、斜流タービンの効率向上と過渡応答性を向上できる。
ハブ側の衝動タービン特性、およびシュラウド側の反動タービン特性ついては、既に、図17、図18を基に説明しているが、図18の速度三角形を参照して、図1の構成を基に再度説明する。
図1において、シュラウド側流入路35から流入する流れは、図18の流れ角αがおおよそ20〜30度にて流速Aにて動翼11に流入する。周方向速度Cは動翼11の旋回周速にほぼ一致した速度であり、相対流速Bである半径速度は流量を代表する速度である。
シュラウド側流入路35から流入する流れは、動翼11の内部で半径変化に伴い流れが動翼11に対して仕事をなし、周方向速度が低下し圧力が低下しながら吐出口に向かって流出する。
図1において、シュラウド側流入路35から流入する流れは、図18の流れ角αがおおよそ20〜30度にて流速Aにて動翼11に流入する。周方向速度Cは動翼11の旋回周速にほぼ一致した速度であり、相対流速Bである半径速度は流量を代表する速度である。
シュラウド側流入路35から流入する流れは、動翼11の内部で半径変化に伴い流れが動翼11に対して仕事をなし、周方向速度が低下し圧力が低下しながら吐出口に向かって流出する。
一方、ハブ側流入路29から流入する流れは、ハブ側入口45の半径Rbはシュラウド側入口43の半径Raより小さいので、シュラウド側入口からの流れは半径の小さい領域に流れてゆき、圧力が低下した位置に流入するため、シュラウド側入口43より大きな流速A'でハブ側入口45に流入する。
また、ハブ側入口45の半径Rbはシュラウド側入口43の半径Raより小さいので、動翼前縁の旋回速度は半径比に比例して小さくなり、周方向速度C'となるため、ハブ側入口45ではタービン動翼11のシュラウド側入口43の相対流速Bに比べて大きい相対流速B'で流れが動翼11に流入する。
また、ハブ側入口45の半径Rbはシュラウド側入口43の半径Raより小さいので、動翼前縁の旋回速度は半径比に比例して小さくなり、周方向速度C'となるため、ハブ側入口45ではタービン動翼11のシュラウド側入口43の相対流速Bに比べて大きい相対流速B'で流れが動翼11に流入する。
従って、ハブ側入口45から流入する流れは、シュラウド側入口43から流入する流れに比べて流速が高く、流れがタービンを通過する際に放出するエネルギーの内、動翼11内部での放出エネルギーの割合を示す値である反動度が、ハブ側の流れの方が小さくなる。
つまり、シュラウド側の流れは反動度が大きく動翼内部の流速が低くでき摩擦損失を低くできるので、高効率の流れとなる所謂反動タービンの特性を有する。
一方、ハブ側の流れは、反動度が小さく高速流れを動翼11で転向させる際の運動量の方向転換による力で動翼11を回転させるので、流れを高速まで加速するため摩擦損失が大きく、反動翼ほど効率が高くできないが、小さな直径の動翼で大きな反動翼と同様の動力を発生できるという、所謂衝動タービンの特性を有する。
一方、ハブ側の流れは、反動度が小さく高速流れを動翼11で転向させる際の運動量の方向転換による力で動翼11を回転させるので、流れを高速まで加速するため摩擦損失が大きく、反動翼ほど効率が高くできないが、小さな直径の動翼で大きな反動翼と同様の動力を発生できるという、所謂衝動タービンの特性を有する。
なお、図2に示すように中間翼39を、主翼37、37間に1枚設置した例を示しているが、周方向に複数枚並べて設置してもよい。また、複数枚設置する場合は中間翼39の後縁端の位置が相互に異なっていてもよい。このように中間翼39を主翼37、37間に複数枚設置することで、斜流タービンの効率を維持しつつ、さらに、主翼37の翼枚数を少なくすることができ、タービン動翼11の慣性モーメントをさらに減少できる。
(第2実施形態)
次に、図3〜図5を参照して、第2実施形態を説明する。
第2実施形態は、図1の中間翼39の子午面形状の変形例であり、第2実施形態の中間翼47は、後縁部分の高さを前縁部分より高くしたものである。
次に、図3〜図5を参照して、第2実施形態を説明する。
第2実施形態は、図1の中間翼39の子午面形状の変形例であり、第2実施形態の中間翼47は、後縁部分の高さを前縁部分より高くしたものである。
図3のラインNは、シュラウド側流入路35の流路幅とハブ側流入路29の流路幅との比によって主翼37に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線を示す。
また、ラインPは、シュラウド側流路の流れの中心線を示し、ラインQは、ハブ側流路の流れの中心線を示す。
また、ラインPは、シュラウド側流路の流れの中心線を示し、ラインQは、ハブ側流路の流れの中心線を示す。
そして、中間翼47の前縁は前記主翼37の前縁41に一致するとともに、中間翼の前縁の翼高さEを、前記中心線Nの高さN1とほぼ同等、もしくはその中心線Nより僅かに高い位置とし、前記中間翼47の後縁の翼高さFを前縁より高い位置(E<F)に設定されている。
このように、中間翼47の前縁を主翼37の前縁に一致させるとともに、中間翼47の前縁の翼高さEを中心線Nの高さN1とほぼ同等もしくは僅かに高い位置とすることによって、ハブ側の衝動翼特性を発揮する翼前縁部分の負荷を、各翼(主翼37および中間翼47の各翼)によって均等に受けることができる。
また、後縁の翼高さFを、前縁の翼高さEより高い位置(E<F)に設けるため、加速時においてハブ側の流量が増加して、シュラウド側流路の流れの中心線Pと、ハブ側流路の流れの中心線Qが共に、シュラウド側に偏り、それぞれP1、Q1になった場合には、中間翼47でハブ側流路の流れの中心線Q1を確実に受け止めることができるため(図4参照)、中間翼47を衝動翼の特性として有効に作用させことができ、過渡応答性を改善できる。
さらに、ターボチャージャが定常的な作動をしているときには、反動翼の特性を有するシュラウド側の流量が増加するように制御されており、このような場合には、すなわちシュラウド側流路の流れの中心線Pと、ハブ側流路の流れの中心線Qが共に、ハブ側に偏りそれぞれP2、Q2になるが、シュラウド側の流れを中間翼47の後縁部分において受け止めて、角運動量を回転動力に変換できる(図5参照)。従って、中間翼47を反動翼の特性として作用させて高効率の効果を得ることもできる。
すなわち、シュラウド側とハブ側との流量のバランスが偏り、シュラウド側の流量が増加した場合にも、ハブ側の流量が増加した場合にも中間翼47は、シュラウド側の流量が増加した場合には、シュラウド側の流れ角運動量を動力に変換する反動翼としての作用を有し、ハブ側の流量が増加した場合には、衝動翼としての作用を有することで、前者の場合には、高効率のタービンとして作用し、後者の場合には回転加速度の大きいタービンとして作用する。従って、エンジンの過渡応性を改善する効果と、定常運転の場合の高効率作動を両立することができる。
(第3実施形態)
次に、図6を参照して、第3実施形態を説明する。
第3実施形態は、図1の中間翼39の子午面形状の変形例であり、第3実施形態の中間翼49の前縁は主翼37の前縁半径より小さい位置に設けられるとともに、中間翼49の上流から下流への全域に渡っての翼高さG1を、図6のラインNで示す中心線の高さN1とほぼ同一高さ、もしくはその中心線Nより、僅かに高い位置で一定に維持されている。
次に、図6を参照して、第3実施形態を説明する。
第3実施形態は、図1の中間翼39の子午面形状の変形例であり、第3実施形態の中間翼49の前縁は主翼37の前縁半径より小さい位置に設けられるとともに、中間翼49の上流から下流への全域に渡っての翼高さG1を、図6のラインNで示す中心線の高さN1とほぼ同一高さ、もしくはその中心線Nより、僅かに高い位置で一定に維持されている。
また、図6に示すように、中間翼49の前縁は、中間翼49のハブ9への取り付け半径Rcとほぼ等しい半径に設定されており、翼高さG1は、高さN1+dで中心線Nが含まれる高さに設定されている。
中間翼49の後縁は、第1実施形態と同様に、シュラウド側流入路35の延長領域における後縁部分にほぼ一致させて、または少し長く形成されている。
中間翼49の後縁は、第1実施形態と同様に、シュラウド側流入路35の延長領域における後縁部分にほぼ一致させて、または少し長く形成されている。
本実施形態によれば、中間翼49の前縁は主翼37の前縁半径より小さい位置に設けられ、さらに中間翼49の高さG1を、中心線Nの高より若干高い位置で上流から下流にわたって一定に維持するので、すなわち、中間翼49の前縁の位置、および全域にわたる翼高さを制限することによって、中間翼49の半径方向の大きさを第1、第2実施形態の中間翼39、47より小さくすることができ、動翼11の慣性モーメントを減少できる。
また、中間翼49の前縁半径を中間翼49のハブ9への取り付け半径Rcとほぼ等しい半径にするため、中間翼49のハブ外周面31への固定が安定する。
また、中間翼49の前縁半径を中間翼49のハブ9への取り付け半径Rcとほぼ等しい半径にするため、中間翼49のハブ外周面31への固定が安定する。
(第4実施形態)
次に、図7〜9を参照して、第4実施形態を説明する。
第4実施形態の中間翼51は、前記第3実施形態の中間翼49の翼高さを、前縁より後縁を高い位置に設けたものである。
次に、図7〜9を参照して、第4実施形態を説明する。
第4実施形態の中間翼51は、前記第3実施形態の中間翼49の翼高さを、前縁より後縁を高い位置に設けたものである。
図7に示すように、中間翼51の前縁は、中間翼51のハブ9への取り付け半径Rcとほぼ等しい半径に設定されており、翼高さG2は、高さN1+dで中心線Nが含まれる高さに設定されている。
中間翼51の後縁は、第1実施形態と同様に、シュラウド側流入路35の延長領域における後縁部分にほぼ一致させて、または少し長く形成されている。後縁の翼高さG3は、前縁より高く設定されている。
中間翼51の後縁は、第1実施形態と同様に、シュラウド側流入路35の延長領域における後縁部分にほぼ一致させて、または少し長く形成されている。後縁の翼高さG3は、前縁より高く設定されている。
なお、図8、9は、図7の変形例であり、図7の前縁が半径Rcで一定に延びて、後縁と一致した場合を示している。この中間翼53の前縁と後縁との間の中間部分が存在せず、前縁と後縁とが交差する形状を有ており、ほぼ三角形状に形成されている。
図7〜9のように、後縁の翼高さG3は、前縁の翼高さG2より高い位置(G2<G3)に設けるため、加速時においてハブ側の流量が増加して、シュラウド側流路の流れの中心線Pと、ハブ側流路の流れの中心線Qが共に、シュラウド側に偏り、それぞれP1、Q1になった場合でも、中間翼51、53でハブ側流路の流れの中心線Q1を確実に受け止めることができるため(図8参照)、中間翼51、53を衝動翼の特性として有効に作用させことができ、過渡応答性を改善できる。
さらに、ターボチャージャが定常的な作動をしているときには、反動翼の特性を有するシュラウド側の流量が増加するように制御されており、このような場合には、シュラウド側流路の流れの中心線Pと、ハブ側流路の流れの中心線Qが共に、ハブ側に偏りそれぞれP2、Q2になるが、シュラウド側の流れを中間翼51、53の後縁部分において受け止めて、角運動量を回転動力に変換できる(図9参照)。従って、中間翼51、53を反動翼の特性として作用させて高効率の効果を得ることもできる。
すなわち、第2実施形態と同様に、シュラウド側とハブ側との流量バランスの変化へ対応することができるとともに、第2実施形態に比べて、半径が小さいため、中間翼51、53の慣性モーメントを低減でき、動翼11の慣性モーメントをより減少できる。
(第5実施形態)
次に、図10を参照して、第5実施形態を説明する。
第5実施形態の中間翼55は、前縁を主翼37の前縁に一致させて翼高さを後縁に向かうにつれて低くしたものである。
次に、図10を参照して、第5実施形態を説明する。
第5実施形態の中間翼55は、前縁を主翼37の前縁に一致させて翼高さを後縁に向かうにつれて低くしたものである。
図10に示すように、中間翼55の前縁は、主翼37の前縁の形状に一致させ、中間翼55の前縁高さG2は、図10のラインNで示す中心線の高さN1とほぼ同一高さ、もしくはその中心線Nより若干高い位置とし、中間翼55の後縁は、シュラウド側流入路35の延長領域における後縁部分にほぼ一致させて形成され、前縁から後縁にかけて翼高さが低下するように形成されている。
本実施形態によれば、ハブ側の衝動翼の作用を、主に中間翼の前縁側で負担させて、中間翼の下流側の部分の流路抵抗を低減するとともに、慣性モーメントの低減に寄与することができ。
(第6実施形態)
次に、図11を参照して、第6実施形態を説明する。
第6実施形態は、主翼37の前縁および中間翼39(47、49、51、53、55)の翼先端の形状を円弧状の断面形状とするものである。
次に、図11を参照して、第6実施形態を説明する。
第6実施形態は、主翼37の前縁および中間翼39(47、49、51、53、55)の翼先端の形状を円弧状の断面形状とするものである。
図11は、図3のI−I線の断面図を示し、主翼37の前縁、および中間翼39の翼先端が円弧形状に形成されている。
このように、円弧形状に形成されるため、図11で示すように、シュラウド側の流れの流線Sは、中間翼39の翼先端を交差するように流れる。このため、中間翼39の翼先端は、翼前縁としての機能を有する必要があり、中間翼39等の翼先端を円弧状の断面に形成することによって、中間翼39等の先端を交差する流れが中間翼の負圧面で剥離を生じ損失が増大することを防止できる。
このように、円弧形状に形成されるため、図11で示すように、シュラウド側の流れの流線Sは、中間翼39の翼先端を交差するように流れる。このため、中間翼39の翼先端は、翼前縁としての機能を有する必要があり、中間翼39等の翼先端を円弧状の断面に形成することによって、中間翼39等の先端を交差する流れが中間翼の負圧面で剥離を生じ損失が増大することを防止できる。
また、中間翼39等の後縁は、翼先端を意味するほぼ直線状の線と、半径方向を向いた線を曲線で接続した形状を有しており、翼先端と後縁は構造的に明確な区別を持つことはなく、後縁および翼先端の後縁近傍では、下流ほど翼先端の円弧状の半径を小さくするように設定されるとよく、このように設定されると後縁でのウエイクの発生を防止でき、効率低下の防止に寄与できる。
(第7実施形態)
次に、図12〜14を参照して、第7実施形態を説明する。
第7実施形態は、第1実施形態の主翼37および中間翼39の前縁の圧力面と負圧面とによって形成される翼前縁開き角度を設定した翼前縁の断面形状に関するものである。
次に、図12〜14を参照して、第7実施形態を説明する。
第7実施形態は、第1実施形態の主翼37および中間翼39の前縁の圧力面と負圧面とによって形成される翼前縁開き角度を設定した翼前縁の断面形状に関するものである。
図12は、第1実施形態の動翼11の主翼37と中間翼39とを、ハブ外周面31またはハブ側流れの代表流線で切断した断面形状を、代表半径(例えば、動翼11のハブ取付半径Rc)の円筒上に投影した形状の展開図を示す。
図14は、図12の翼前縁部分の拡大図を示し、主翼37の前縁、および中間翼39の前縁の圧力面Z1と負圧面Z2とのなす角度である翼前縁開き角度θは、作動流体の排ガスの圧力変動に伴って変化する前縁への排ガスの流入角度の変化に相当する角度に設定されている。
すなわち、動翼11の入口速度三角形に示すように、作動流体の排ガスの圧力変動に伴って、タービン入口圧力Psが上昇した場合と、低下した場合とにおいて、その時の相対流速の流入角度の変化に相当する角度が、翼前縁開き角度θとして設定されている。
すなわち、動翼11の入口速度三角形に示すように、作動流体の排ガスの圧力変動に伴って、タービン入口圧力Psが上昇した場合と、低下した場合とにおいて、その時の相対流速の流入角度の変化に相当する角度が、翼前縁開き角度θとして設定されている。
図13に示すように、エンジンにターボチャージャを搭載した場合のタービン入口圧力Psは、往復動エンジンの気筒数や加速の程度により変動し、定常時においても圧力変動が生じており、±10〜15%の圧力変動が生じる。
この圧力変動が生じている場合には、ハブ側の衝動タービン特性を有する部分には、この圧力変動の変化同等の絶対流速の変化が生じ、その結果、動翼に流入する相対流れの流入角度βは、おおよそ30°〜40°の変化をする。
この圧力変動が生じている場合には、ハブ側の衝動タービン特性を有する部分には、この圧力変動の変化同等の絶対流速の変化が生じ、その結果、動翼に流入する相対流れの流入角度βは、おおよそ30°〜40°の変化をする。
そこで、タービン入口圧力Psが上昇した場合と、低下した場合との変化における相対流速の流入角度の変動相当角度が、翼前縁開き角度θとして設定される。
また、図14に示すように、主翼37の前縁、および中間翼39の前縁の負圧面Z2と周方向とのなす角度である翼角度ωは、タービン入口圧力Psが上昇した場合の流入角度βと同等、もしくは流入角度βより小さく設定される。
また、図14に示すように、主翼37の前縁、および中間翼39の前縁の負圧面Z2と周方向とのなす角度である翼角度ωは、タービン入口圧力Psが上昇した場合の流入角度βと同等、もしくは流入角度βより小さく設定される。
この翼前縁開き角度θを、相対流速の流入角度の変動相当角度に設定すること、および、負圧面Z2を、圧力が上昇した場合の流れ角に比べてほぼ同等かそれよりも小さく設定することによって、負圧面Z2における剥離を防止でき、圧力の変動に伴う衝動翼部分における流れの損失を低減できる。
従って、衝動翼部分におけるタービン入口圧力の変動による流入方向の変動に伴う損失増大を防止できる。
従って、衝動翼部分におけるタービン入口圧力の変動による流入方向の変動に伴う損失増大を防止できる。
(第8実施形態)
次に、図15を参照して、第8実施形態を説明する。
第8実施形態は、図3の第2実施形態の主翼37の回転軸に直角方向のI−I線断面形状において、主翼37の前縁を回転方向に湾曲させて、回転方向とは逆方向に凸形状をなすものである。
次に、図15を参照して、第8実施形態を説明する。
第8実施形態は、図3の第2実施形態の主翼37の回転軸に直角方向のI−I線断面形状において、主翼37の前縁を回転方向に湾曲させて、回転方向とは逆方向に凸形状をなすものである。
図15に示すように、回転半径に対応して周速Uは低下し、絶対流速Vの周方向成分である旋回流速Vcは、自由渦の関係を満足しながら半径内向きに流れるので、半径が小さくなると旋回流速が大きくなり、その結果、相対流速Wが、主翼の翼前縁近傍において、回転方向から翼にぶつかるように流入するようになる(図15参照)。この翼前縁から内側に入ると相対流速Wが回転方向に向きを変えて翼に向かうため、翼負荷が増大する。
従って、翼前縁において、翼前縁の中心線を回転方向に湾曲させて、回転方向とは逆方向に凸形状にさせる湾曲部61を形成することにより、翼前縁から内側に入ると相対流速Wが回転方向に向きを変えて翼に向かう流れが翼にぶつかるように流入せずに、翼に沿うようになるため、翼前縁の衝突損失を低減でき翼負荷を低減し、翼前縁の負荷が増加することによる損失増加を防止できる。
主翼37の翼面積と、中間翼39との翼面積の和が、主翼37だけの従来の翼面積と同等であることを目安とした場合に、中間翼39が増加した分、主翼37の翼枚数を少なくすることで翼面積負荷を同等にできるように、主翼37の翼枚数を従来に比べて少なくした場合、半径の大きい主翼の枚数が少なくなることで慣性モーメントを小さくすることができる。
しかし、一方で主翼37の翼枚数が少なくなったことで、シュラウド側から流入する流れに対して主翼37の翼前縁の負荷が大きくなり翼前縁の損失が増加する問題があるが、本実施形態では、前述のように、翼前縁の負荷が増加することによる損失増加を防止できる。
しかし、一方で主翼37の翼枚数が少なくなったことで、シュラウド側から流入する流れに対して主翼37の翼前縁の負荷が大きくなり翼前縁の損失が増加する問題があるが、本実施形態では、前述のように、翼前縁の負荷が増加することによる損失増加を防止できる。
従って、第2実施形態の中間翼47の後縁の翼高さが、前縁より高い形状の場合においては、シュラウド側の流れが増加する定常運転状態において、主翼の翼枚数が減少したために生じる翼前縁の衝突損失を低減できる。その結果、定常運転時においても、加速時においても、慣性モーメントの低減と高効率との両立を第2実施形態の場合より一層高効率化できる。
(第9実施形態)
次に、図16A、図16Bを参照して、第9実施形態を説明する。
第9実施形態は、ハブ側流入路29に翼型ノズル63、および案内板65を設置したものである。その他の構成は、第1実施形態と同様である。
次に、図16A、図16Bを参照して、第9実施形態を説明する。
第9実施形態は、ハブ側流入路29に翼型ノズル63、および案内板65を設置したものである。その他の構成は、第1実施形態と同様である。
図16A、図16Bに示すように、ハブ側流入路29には、翼面が中心軸線Kとほぼ平行に形成された複数の翼で構成された翼型ノズル63が設けられている。翼型ノズル63の翼は、図16Bに示すように、円周に対して所定の角度をもつように傾斜して取り付けられている。翼型ノズル63は、ノズル入口63aとノズル出口63bはそれぞれ一定の円周上に位置して配置されている。
さらに、翼型ノズル63の下流側には、案内板65が各翼に対応して取り付けられている。案内板65は、対数らせん状断面形状とされ、翼型ノズル63の略延長部分となるように取り付けられている。案内板65の下流端65aは、主翼37及び中間翼39の前縁近くまで延びている。
ハブ側流入路29に、翼型ノズル63を備えているので、ハブ側流入路29を流れる流れの周方向速度を大きくすることができる。さらに、翼型ノズル63を出た流れは、角運動量保存則に従って流れ、案内板65によって動翼の前縁近傍まで案内される。また案内板65が対数らせん状断面形状とされているので、理想的ならせん流となって動翼11に流入できるため、斜流タービンの効率を向上できる。特に、ハブ側流入路29に設けられるために、中間翼39前縁に流入する排ガスの流れが加速または理想的な旋回流となるため、動翼11の所謂衝動タービンの特性を有する部分への流入速度を高めて過渡応答性を向上できる。
なお、第6実施形態、第7実施形態、第8実施形態、第9実施形態については、各実施形態において説明した主翼および中間翼以外に、他の実施形態の主翼および中間翼に適用してもよいことは勿論である。
本発明によれば、作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されるとともに、スクロール分割壁によって、シュラウド側流入路とハブ側流入路とを有する斜流タービンであって、タービン動翼のハブ側の衝動翼タービン特性を発揮する部分の主翼間に、中間高さの中間翼を設けて、衝動翼タービン特性の改善を行うとともに、動翼全体としての慣性モーメントの低減を図ることによって、効率向上および過渡応答性を向上できるので、小型ガスタービン、過給機、エキスパンダー等に用いられる斜流タービンへの適用技術として有用である。
1 斜流タービン
3 タービンハウジング
5 タービンホイール
7 回転軸
9 ハブ
11 動翼(タービン動翼)
13 スクロール室(スクロール部)
15 シュラウド部
17 スクロール分割壁
19 シュラウド側空間
21 ハブ側空間
23 ハブ側分割壁面
25 シュラウド側分割壁面
29 ハブ側流入路
31 ハブ外周面
35 シュラウド側流入路
37 主翼
39、47、49、51、53、55 中間翼
43 シュラウド側入口
45 ハブ側入口
h1 主翼の翼高さ
h2 中間翼の翼高さ
N シュラウド側流路とハブ側流路を分割する中心線
E、G2 中間翼の前縁の翼高さ
F、G3 中間翼の後縁の翼高さ
K 中心軸線
P シュラウド側流路の流れの中心線
Q ハブ側流路の流れの中心線
G1 中間翼の翼高さ
3 タービンハウジング
5 タービンホイール
7 回転軸
9 ハブ
11 動翼(タービン動翼)
13 スクロール室(スクロール部)
15 シュラウド部
17 スクロール分割壁
19 シュラウド側空間
21 ハブ側空間
23 ハブ側分割壁面
25 シュラウド側分割壁面
29 ハブ側流入路
31 ハブ外周面
35 シュラウド側流入路
37 主翼
39、47、49、51、53、55 中間翼
43 シュラウド側入口
45 ハブ側入口
h1 主翼の翼高さ
h2 中間翼の翼高さ
N シュラウド側流路とハブ側流路を分割する中心線
E、G2 中間翼の前縁の翼高さ
F、G3 中間翼の後縁の翼高さ
K 中心軸線
P シュラウド側流路の流れの中心線
Q ハブ側流路の流れの中心線
G1 中間翼の翼高さ
Claims (11)
- 作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されたタービン動翼と、
該タービン動翼を覆うように形成され、該動翼の前縁に向けて作動流体を供給するスクロール部を備えたタービンハウジングと、
前記スクロール部をシュラウド側空間とハブ側空間とに分割するスクロール分割壁と、
該スクロール分割壁の内周側におけるシュラウド側分割壁面と該シュラウド側分割壁面に対向する部分との間に形成され、作動流体が略半径方向に前記動翼のシュラウド側入口に流れるシュラウド側流入路と、
前記スクロール分割壁の内周側におけるハブ側分割壁面と該ハブ側分割壁面に対向する部分との間に形成され、作動流体がハブの傾斜方向と略同一方向に前記動翼のハブ側入口に流れるハブ側流入路と、を備え、
前記動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、
周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成され、
さらに、前記中間翼の前縁は前記主翼の前縁に一致するとともに、前縁の翼高さを前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線の高さとほぼ同等もしくはその中心線より高い位置とし、さらに後縁の翼高さを前記前縁より高い位置に設けたことを特徴とする斜流タービン。 - 作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されたタービン動翼と、
該タービン動翼を覆うように形成され、該動翼の前縁に向けて作動流体を供給するスクロール部を備えたタービンハウジングと、
前記スクロール部をシュラウド側空間とハブ側空間とに分割するスクロール分割壁と、
該スクロール分割壁の内周側におけるシュラウド側分割壁面と該シュラウド側分割壁面に対向する部分との間に形成され、作動流体が略半径方向に前記動翼のシュラウド側入口に流れるシュラウド側流入路と、
前記スクロール分割壁の内周側におけるハブ側分割壁面と該ハブ側分割壁面に対向する部分との間に形成され、作動流体がハブの傾斜方向と略同一方向に前記動翼のハブ側入口に流れるハブ側流入路と、を備え、
前記動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、
周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成され、
さらに、前記中間翼の前縁は前記主翼の前縁半径より小さい位置に設けられるとともに、前記中間翼の上流から下流への全域に渡っての翼高さを、前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線の高さとほぼ同一高さ、もしくはその中心線より高い位置で一定に維持されることを特徴とする斜流タービン。 - 作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されたタービン動翼と、
該タービン動翼を覆うように形成され、該動翼の前縁に向けて作動流体を供給するスクロール部を備えたタービンハウジングと、
前記スクロール部をシュラウド側空間とハブ側空間とに分割するスクロール分割壁と、
該スクロール分割壁の内周側におけるシュラウド側分割壁面と該シュラウド側分割壁面に対向する部分との間に形成され、作動流体が略半径方向に前記動翼のシュラウド側入口に流れるシュラウド側流入路と、
前記スクロール分割壁の内周側におけるハブ側分割壁面と該ハブ側分割壁面に対向する部分との間に形成され、作動流体がハブの傾斜方向と略同一方向に前記動翼のハブ側入口に流れるハブ側流入路と、を備え、
前記動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、
周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成され、
さらに、前記中間翼の前縁は前記主翼の前縁半径より小さい位置に設けられるとともに、前記中間翼の上流から下流への全域に渡っての翼高さを、前記シュラウド側流入路の流路幅とハブ側流入路の流路幅との比によって主翼に沿う流れをシュラウド側流路の流れとハブ側流路の流れとの流路面積に分割する子午面上での中心線より高い位置で、且つ後縁の翼高さを前縁より高い位置に設けられることを特徴とする斜流タービン。 - 前記中間翼の前縁の半径を前記中間翼のハブへの取り付け半径とほぼ等しい半径に設定されることを特徴とする請求項2または3記載の斜流タービン。
- 作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されたタービン動翼と、
該タービン動翼を覆うように形成され、該動翼の前縁に向けて作動流体を供給するスクロール部を備えたタービンハウジングと、
前記スクロール部をシュラウド側空間とハブ側空間とに分割するスクロール分割壁と、
該スクロール分割壁の内周側におけるシュラウド側分割壁面と該シュラウド側分割壁面に対向する部分との間に形成され、作動流体が略半径方向に前記動翼のシュラウド側入口に流れるシュラウド側流入路と、
前記スクロール分割壁の内周側におけるハブ側分割壁面と該ハブ側分割壁面に対向する部分との間に形成され、作動流体がハブの傾斜方向と略同一方向に前記動翼のハブ側入口に流れるハブ側流入路と、を備え、
前記動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、
周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成され、
さらに、前記中間翼の前縁を前記主翼の前縁に一致させ、該中間翼の翼高さを後縁に向かうにつれて低くしたことを特徴とする斜流タービン。 - 作動流体が流入する前縁がハブ側とシュラウド側とを結ぶ線よりもハブ側とシュラウド側との中間部が上流側に凸状に形成されたタービン動翼と、
該タービン動翼を覆うように形成され、該動翼の前縁に向けて作動流体を供給するスクロール部を備えたタービンハウジングと、
前記スクロール部をシュラウド側空間とハブ側空間とに分割するスクロール分割壁と、
該スクロール分割壁の内周側におけるシュラウド側分割壁面と該シュラウド側分割壁面に対向する部分との間に形成され、作動流体が略半径方向に前記動翼のシュラウド側入口に流れるシュラウド側流入路と、
前記スクロール分割壁の内周側におけるハブ側分割壁面と該ハブ側分割壁面に対向する部分との間に形成され、作動流体がハブの傾斜方向と略同一方向に前記動翼のハブ側入口に流れるハブ側流入路と、を備え、
前記動翼は、ハブ外周面上に周方向に複数枚立設されてハブ外周面とシュラウド部の内周面との間の全域にわたる高さを有して形成される主翼と、
周方向において前記主翼の間に配設されるとともに、前記主翼の入口部から中間部にわたって、且つ前記主翼の高さの中間高さを有して配置される中間翼とによって構成され、前記中間翼の前縁に前記ハブ側流入路からの作動流体が流入するように構成され、
さらに、前記主翼および中間翼の前縁の圧力面と負圧面とによって形成される翼前縁開き角度を、作動流体の圧力変動に伴って変化する前記前縁への作動流体の流入角度の変化に相当する角度に設定するとともに、前記圧力変動が高圧側に上昇したときにおける前記前縁への流入方向が前記負圧面の接線方向に略一致するかもしくは接線方向より圧力面側に向かうように設定することを特徴とする斜流タービン。 - 前記主翼の回転軸に直角方向の断面形状において、主翼の前縁部分を回転方向に湾曲させて、回転方向とは逆方向に凸形状をなすことを特徴とする請求項1、2、3、5、または6のいずれか1項に記載の斜流タービン。
- 前記ハブ側流入路に中心軸線と平行な翼面からなるノズルと、同ノズルの下流側に後縁が前記動翼の前縁に対向するように配置された案内板とを備えたことを特徴とする請求項1、2、3、5、または6のいずれか1項に記載の斜流タービン。
- 前記タービン動翼の子午面形状において前記中間翼は、前記ハブ側流入路の流路幅の延長領域と前記シュラウド側流入路の延長領域との重なる領域に少なくとも設けられることを特徴とする請求項1、2、3、5、または6のいずれか1項に記載の斜流タービン。
- 前記中間翼を前記主翼の間に周方向において複数枚設置したことを特徴とする請求項1、2、3、5、または6のいずれか1項に記載の斜流タービン。
- 前記中間翼の翼先端を円弧状の断面に形成したことを特徴とする請求項1、2、3、5、または6のいずれか1項に記載の斜流タービン。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/072817 WO2014038054A1 (ja) | 2012-09-06 | 2012-09-06 | 斜流タービン |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5762641B2 true JP5762641B2 (ja) | 2015-08-12 |
JPWO2014038054A1 JPWO2014038054A1 (ja) | 2016-08-08 |
Family
ID=50236703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014534117A Expired - Fee Related JP5762641B2 (ja) | 2012-09-06 | 2012-09-06 | 斜流タービン |
Country Status (5)
Country | Link |
---|---|
US (1) | US9657573B2 (ja) |
EP (1) | EP2894296B1 (ja) |
JP (1) | JP5762641B2 (ja) |
CN (1) | CN103906895B (ja) |
WO (1) | WO2014038054A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017168766A1 (ja) * | 2016-03-31 | 2017-10-05 | 三菱重工業株式会社 | 回転機械翼、過給機、および、これらの流れ場の形成方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013210990A1 (de) * | 2013-06-13 | 2014-12-18 | Continental Automotive Gmbh | Abgasturbolader mit einem Radial-Axial-Turbinenrad |
EP3078834B1 (en) * | 2013-12-04 | 2019-05-01 | Mitsubishi Heavy Industries, Ltd. | Metallic plate turbine housing |
CN106460520B (zh) * | 2014-05-20 | 2019-06-07 | 博格华纳公司 | 废气涡轮增压器 |
JP6295009B2 (ja) * | 2015-03-26 | 2018-03-14 | 三菱重工業株式会社 | タービン動翼及び可変容量タービン |
DE102015205998A1 (de) * | 2015-04-02 | 2016-10-06 | Ford Global Technologies, Llc | Aufgeladene Brennkraftmaschine mit zweiflutiger Turbine und gruppierten Zylindern |
DE202015007926U1 (de) | 2015-11-17 | 2017-02-20 | Borgwarner Inc. | Abgasturbolader |
JP6651404B2 (ja) * | 2016-04-19 | 2020-02-19 | 本田技研工業株式会社 | ターボ機械 |
JP2017193985A (ja) * | 2016-04-19 | 2017-10-26 | 本田技研工業株式会社 | タービンインペラ |
US11215057B2 (en) | 2017-01-16 | 2022-01-04 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Turbine wheel, turbine, and turbocharger |
US10912693B2 (en) | 2017-07-12 | 2021-02-09 | Hill-Rom Services, Inc. | Patient immersion and support surface life determination using RADAR and RFID |
DE112020002877B4 (de) | 2019-06-14 | 2024-10-10 | Ihi Corporation | Turbolader mit Mischströmungsturbine |
DE102019211515A1 (de) * | 2019-08-01 | 2021-02-04 | Vitesco Technologies GmbH | Turbinenlaufrad einer Abgasturbine und Abgasturbolader für eine Brennkraftmaschine |
WO2021117077A1 (ja) * | 2019-12-09 | 2021-06-17 | 三菱重工エンジン&ターボチャージャ株式会社 | 遠心圧縮機の羽根車、遠心圧縮機及びターボチャージャ |
DE112020006345T5 (de) * | 2020-03-24 | 2022-10-20 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Laufrad eines zentrifugalverdichters, wobei der zentrifugalverdichter das laufrad beinhaltet, und verfahren zum herstellen des laufrads |
CN111535872B (zh) * | 2020-04-07 | 2022-01-11 | 东方电气集团东方汽轮机有限公司 | 一种无叶过渡混流透平结构 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1549373A (en) * | 1975-04-28 | 1979-08-08 | Garrett Corp | Turbo machines |
JPS6392001U (ja) * | 1986-12-05 | 1988-06-14 | ||
US4904158A (en) * | 1988-08-18 | 1990-02-27 | Union Carbide Corporation | Method and apparatus for cryogenic liquid expansion |
DE3908285C1 (en) * | 1989-03-14 | 1990-06-07 | Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De | Turbine wheel of an exhaust turbocharger for an internal combustion engine with radial and/or mixed-flow gas feed |
JP2004510094A (ja) * | 2000-09-29 | 2004-04-02 | ダイムラークライスラー・アクチェンゲゼルシャフト | 排気ガスターボチャージャ、スーパーチャージ型内燃機関およびこれらの動作方法 |
WO2006117072A1 (de) * | 2005-04-29 | 2006-11-09 | Daimlerchrysler Ag | Turbine mit einem turbinenrad für einen abgasturbolader einer brennkraftmaschine und abgasturbolader für eine brennkraftmaschine |
US20070231141A1 (en) * | 2006-03-31 | 2007-10-04 | Honeywell International, Inc. | Radial turbine wheel with locally curved trailing edge tip |
JP2008503685A (ja) * | 2004-06-25 | 2008-02-07 | ダイムラー・アクチェンゲゼルシャフト | 内燃機関用の排気ガスターボチャージャ及びそれを備えた内燃機関 |
JP2009281197A (ja) * | 2008-05-20 | 2009-12-03 | Mitsubishi Heavy Ind Ltd | 斜流タービン |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2628148B2 (ja) | 1994-10-12 | 1997-07-09 | メルセデス−ベンツ・アクチエンゲゼルシヤフト | 内燃機関用排気ガスタービン過給機 |
DE10152804B4 (de) | 2001-10-25 | 2016-05-12 | Daimler Ag | Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung |
DE10228003A1 (de) | 2002-06-22 | 2004-01-15 | Daimlerchrysler Ag | Turbine für einen Abgasturbolader |
JP4288051B2 (ja) | 2002-08-30 | 2009-07-01 | 三菱重工業株式会社 | 斜流タービン、及び、斜流タービン動翼 |
WO2005054681A1 (ja) * | 2003-12-03 | 2005-06-16 | Mitsubishi Heavy Industries, Ltd. | 圧縮機のインペラ |
JP2008132403A (ja) | 2006-11-27 | 2008-06-12 | Calsonic Kansei Corp | フィルタ装置 |
JP5427900B2 (ja) | 2012-01-23 | 2014-02-26 | 三菱重工業株式会社 | 斜流タービン |
-
2012
- 2012-09-06 CN CN201280053347.1A patent/CN103906895B/zh not_active Expired - Fee Related
- 2012-09-06 JP JP2014534117A patent/JP5762641B2/ja not_active Expired - Fee Related
- 2012-09-06 EP EP12884285.3A patent/EP2894296B1/en active Active
- 2012-09-06 US US14/359,140 patent/US9657573B2/en not_active Expired - Fee Related
- 2012-09-06 WO PCT/JP2012/072817 patent/WO2014038054A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1549373A (en) * | 1975-04-28 | 1979-08-08 | Garrett Corp | Turbo machines |
JPS6392001U (ja) * | 1986-12-05 | 1988-06-14 | ||
US4904158A (en) * | 1988-08-18 | 1990-02-27 | Union Carbide Corporation | Method and apparatus for cryogenic liquid expansion |
DE3908285C1 (en) * | 1989-03-14 | 1990-06-07 | Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De | Turbine wheel of an exhaust turbocharger for an internal combustion engine with radial and/or mixed-flow gas feed |
JP2004510094A (ja) * | 2000-09-29 | 2004-04-02 | ダイムラークライスラー・アクチェンゲゼルシャフト | 排気ガスターボチャージャ、スーパーチャージ型内燃機関およびこれらの動作方法 |
JP2008503685A (ja) * | 2004-06-25 | 2008-02-07 | ダイムラー・アクチェンゲゼルシャフト | 内燃機関用の排気ガスターボチャージャ及びそれを備えた内燃機関 |
WO2006117072A1 (de) * | 2005-04-29 | 2006-11-09 | Daimlerchrysler Ag | Turbine mit einem turbinenrad für einen abgasturbolader einer brennkraftmaschine und abgasturbolader für eine brennkraftmaschine |
US20070231141A1 (en) * | 2006-03-31 | 2007-10-04 | Honeywell International, Inc. | Radial turbine wheel with locally curved trailing edge tip |
JP2009281197A (ja) * | 2008-05-20 | 2009-12-03 | Mitsubishi Heavy Ind Ltd | 斜流タービン |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017168766A1 (ja) * | 2016-03-31 | 2017-10-05 | 三菱重工業株式会社 | 回転機械翼、過給機、および、これらの流れ場の形成方法 |
JPWO2017168766A1 (ja) * | 2016-03-31 | 2018-12-27 | 三菱重工エンジン&ターボチャージャ株式会社 | 回転機械翼、過給機、および、これらの流れ場の形成方法 |
US11041505B2 (en) | 2016-03-31 | 2021-06-22 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Rotary machine blade, supercharger, and method for forming flow field of same |
Also Published As
Publication number | Publication date |
---|---|
US20150218949A1 (en) | 2015-08-06 |
US9657573B2 (en) | 2017-05-23 |
EP2894296A4 (en) | 2016-07-27 |
WO2014038054A1 (ja) | 2014-03-13 |
EP2894296A1 (en) | 2015-07-15 |
EP2894296B1 (en) | 2020-04-22 |
JPWO2014038054A1 (ja) | 2016-08-08 |
CN103906895B (zh) | 2015-11-25 |
CN103906895A (zh) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5762641B2 (ja) | 斜流タービン | |
JP6109197B2 (ja) | ラジアルタービン動翼 | |
JP4288051B2 (ja) | 斜流タービン、及び、斜流タービン動翼 | |
JP4691002B2 (ja) | 斜流タービンまたはラジアルタービン | |
EP2994647B1 (en) | Centrifugal compressor with inlet duct having swirl generators | |
US9745859B2 (en) | Radial-inflow type axial flow turbine and turbocharger | |
JP2017193985A (ja) | タービンインペラ | |
JP6801009B2 (ja) | タービンホイール、タービン及びターボチャージャ | |
JP5398515B2 (ja) | ラジアルタービンの動翼 | |
JP2013015035A (ja) | ラジアルタービンおよびラジアルタービンを備えたターボチャージャ | |
JP5427900B2 (ja) | 斜流タービン | |
WO2022054561A1 (ja) | タービンホイール、タービン及びターボチャージャ | |
JP2020186649A (ja) | 遠心圧縮機のインペラ、遠心圧縮機及びターボチャージャ | |
JP2014015873A (ja) | ターボ過給機 | |
WO2021210164A1 (ja) | スクロールケーシングおよび遠心圧縮機 | |
JP4402503B2 (ja) | 風力機械のディフューザおよびディフューザ | |
JP2012219756A (ja) | コンプレッサ | |
JP4981857B2 (ja) | 斜流圧縮機のディフューザ | |
US11965431B2 (en) | Turbine and turbocharger | |
JP4974006B2 (ja) | ターボファンエンジン | |
WO2021234884A1 (ja) | スクロールケーシングおよび遠心圧縮機 | |
US20220145772A1 (en) | Nozzle vane | |
JPH09100701A (ja) | ラジアルタービンの動翼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150515 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150609 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5762641 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |