[go: up one dir, main page]

JP5759920B2 - 無線送信機および包絡線追跡電源制御方法 - Google Patents

無線送信機および包絡線追跡電源制御方法 Download PDF

Info

Publication number
JP5759920B2
JP5759920B2 JP2012050185A JP2012050185A JP5759920B2 JP 5759920 B2 JP5759920 B2 JP 5759920B2 JP 2012050185 A JP2012050185 A JP 2012050185A JP 2012050185 A JP2012050185 A JP 2012050185A JP 5759920 B2 JP5759920 B2 JP 5759920B2
Authority
JP
Japan
Prior art keywords
power supply
signal
high frequency
voltage
envelope tracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012050185A
Other languages
English (en)
Other versions
JP2013187674A (ja
JP2013187674A5 (ja
Inventor
宙 南部
宙 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012050185A priority Critical patent/JP5759920B2/ja
Priority to US13/477,108 priority patent/US8600321B2/en
Publication of JP2013187674A publication Critical patent/JP2013187674A/ja
Publication of JP2013187674A5 publication Critical patent/JP2013187674A5/ja
Application granted granted Critical
Publication of JP5759920B2 publication Critical patent/JP5759920B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Transmitters (AREA)

Description

本発明は、包絡線追跡技術を用いた無線送信機および包絡線追跡電源制御方法に関し、特に電源を制御することによって高効率化する無線送信機および包絡線追跡電源制御方法に関する。
移動体通信基地局などで使われる高周波増幅器において、運用コストの削減を目的にその高効率化が課題となっており、近年注目されている高効率化技術の一つとして包絡線追跡技術(以下ET:Envelope Tracking)がある。
ETについて説明する前にまず一般的な高周波増幅器に用いられるトランジスタの特性を説明する。図1を参照して、トランジスタの入力電力に対する出力電力および効率の特性を説明する。図1において、横軸はトランジスタの入力電力、縦軸は出力電力および効率である。入力電力が高くなっていくと出力電力は、飽和する。この飽和電力付近における効率が最も高い。
図2を参照して、トランジスタ電源電圧Vddを50V〜10Vまで5Vずつ可変させた場合の出力特性および効率特性を説明する。図2Aにおいて、電源電圧に応じてトランジスタの飽和電力は異なる。図2Bにおいて、効率は、各電源電圧でそれぞれ最大効率となる入力電力値が異なる。
次にETについて説明する。ETとは、高周波増幅器内にあるトランジスタの電源電圧を、入力信号の包絡線に合わせて可変させることで高効率化を実現する技術である。図3を参照して、ETの原理を説明する。図3において、ETに必要な構成は、包絡線検出手段、包絡線追跡電源(ET電源)、高周波増幅器である。
包絡線検出手段で検出された入力信号の包絡線情報は、ET電源へ送られる。ET電源は、この包絡線情報に沿う形の電圧を出力する。こうすることで高周波増幅器(トランジスタ)は、入力電力に対して常に飽和電力付近の最も効率の高い状態で動作するように電源電圧を可変させる。これによって、ETは、高効率化を実現している。図3は、送信RF信号から包絡線を検出し、ET動作させる例を示している。しかし、他にもデジタル演算で求めた信号振幅を用いて離散電圧値で制御してもよい。
図4を参照して、トランジスタの電源電圧を固定した場合、ET動作させた場合の効率を比較する。図4において、横軸は入力電圧、縦軸は効率である。電源電圧を固定した場合の効率は、ET動作させた場合の効率に比べて低い。ETは、トランジスタの特性を利用しており、入力電力に対してトランジスタが常に飽和電力付近の最も効率の高い状態で動作するように電源電圧を可変させているため広い入力電力範囲において電源電圧を固定した場合に比べて、高い効率である。
特に、近年の移動体通信で使われているCDMA(Code Division Multiple Access)、WCDMA(Wideband Code Division Multiple Access:登録商標)、FDM(Frequency Division Multiplexing)などを用いたデジタル変調波のように、平均電力に対してピーク電力が高い信号に対しては、広い入力電力範囲において高効率であるというETの特長を生かすことができる。
一方、平均電力に対してピーク電力が高い信号に対してETを適用する場合、広いダイナミックレンジを持ち且つ任意の電圧を正確に出力できるET電源が必要になる。
ET電源の公知例として、特許文献1、特許文献2がある。図5を参照して、背景技術を説明する。特許文献1、特許文献2では、共通して複数の電圧源を用いてET電源を構成する方法が開示されている。図5Aにおいて、ET電源1300は、高周波増幅器の定格電源電圧Vddを等分割した複数の定電圧源を設け、包絡線検出手段からの包絡線信号に合わせて電圧を出力する。このように複数の電圧源をもつ構成とした場合の出力電圧は、図5Bで破線で示すように階段状となる。
特許文献3は、信号に含まれるピーク電力を抑えることで信号の平均電力とピーク電力の差を少なくするピークファクター低減(Peak Factor Reduction:以下PFR)技術を開示する。高電力入力自体を制限するPFRは、電源に要求される出力ダイナミックレンジを狭くし、より発生確率の高い入力範囲に対して細かく電源電圧を可変させ高効率化を実現する。PFRは、固定電圧で動作する高周波増幅器に対し、信号に含まれるピーク電力を抑えることで信号の平均電力とピーク電力の差を少なくし、高周波増幅器が効率の高い状態で動作することを可能とする技術で、現在も移動体通信用送信機の多くで採用されている。
特許文献4は、ETと歪補償とを組み合わせた高周波増幅器を開示する。また、特許文献5は、高出力電力時に電源電圧を変化させ、低出力電力時に一定電源電圧とする高周波増幅器を開示する。
特表2008−511065号公報 特開昭62−277806号公報 特開平10−136309号公報 特開平03−198513号公報 特開2004−336626号公報
複数の電圧源を用意し、その中から高周波増幅器が入力信号に対して最大効率動作になるような電圧を選択し、出力する場合、いかに細かく電源電圧の選択が可能であるかが高効率化において重要な要素となる。これは、図2を参照して説明したように、高周波増幅器が最大効率で動作する電源電圧が、入力電力によって異なるためである。常に入力電力が変化するデジタル変調波を扱う場合において、入力信号の包絡線に対して滑らかに追従することが最大効率を得るための理想である。よって、複数の電圧源による離散的な電圧を出力するET電源において、入力信号の包絡線に対してより高精度に追従する、つまり選択可能な電圧が多いほどより高周波増幅器の最大効率となる電源電圧に近づき高効率化する。
CDMA、WCDMA、FDMなどのデジタル変調波は、平均電力とピーク電力の差が大きいことは前述した通りである。しかし、電力差だけでなく出現確率にも大きな差がある。具体的には、出現確率は、図6に示すレイリー分布となる。図6から読み取れる通り、これらデジタル変調波において、平均電力付近の出現確率が最も高く、それ以外の出現確率が低い。
本願発明は、ET電源に信号電力分布に応じた電圧を出力させるよう制御することで、より高効率なET動作をさせることができる無線送信機を提供する。
上述した課題は、高周波増幅器に電力を供給する包絡線追跡電源と、アナログ高周波信号を増幅する高周波増幅器と、包絡線追跡電源を制御する電源制御部とを含む無線送信機において、包絡線追跡電源は、複数の可変電圧源を含み、電源制御部は、受信した送信ベースバンド信号の電圧分布に基づいて、頻度の高い領域で細かく電源電圧を分割するように複数の可変電圧源を制御する無線送信機により、達成できる。。
また、高周波増幅器に電力を供給する包絡線追跡電源と、アナログ高周波信号を増幅する高周波増幅器と、包絡線追跡電源を制御する電源制御部とを含む無線送信機において、包絡線追跡電源は、複数の可変電圧源を含み、電源制御部は、内部メモリに高周波増幅器の効率特性と、変調方式毎の信号電力分布情報とを保持し、送信RF信号の変調方式に関する情報を受け取り、それに基づいて内部メモリから該当する変調方式の信号電力分布情報と高周波増幅器の効率特性を読み出し、送信信号中発生確率の低い電力範囲においては電圧の固定や電圧の選択幅を広くし、代わりに出現確率の高い電力範囲の選択可能電圧数を増やす制御関数を生成し、包絡線追跡電源を制御する無線送信機により、達成できる。
さらに、高周波増幅器に電力を供給する包絡線追跡電源と、アナログ高周波信号を増幅する高周波増幅器と、包絡線追跡電源を制御する電源制御部とを含む無線送信機における包絡線追跡電源制御方法において、階級のデータ区間を決定するステップと、
データ区間を第1のメモリに記憶するステップと、送信ベースバンド信号の振幅を計算して、データ区間のいずれに該当したか第2のメモリに記憶するステップと、第2のメモリに記憶するステップを規定回数実行したあと、第2のメモリの隣り合う区間を比較して、比較結果に基づいて、第1のメモリに記録されたデータ区間を変更するステップと、を含む包絡線追跡電源制御方法により、達成できる。
ET電源に信号電力分布に応じた電圧を出力させるよう制御することで、より高効率なET動作をさせることができる。
トランジスタの入出力および効率特性を説明するグラフである。 電源電圧を変化させた時のトランジスタの入出特性を説明するグラフである。 電源電圧を変化させた時のトランジスタの効率特性を説明するグラフである。 ETの原理を説明するブロック図である。 ETと固定電圧の効率比較を説明するグラフである。 ETを説明するブロック図である。 ETの出力電圧を説明するグラフである。 デジタル変調波信号の電力分布を説明する図である。 送信機の構成を説明するブロック図である。 ET電源の構成を説明する回路図である。 制御関数を説明する図である。 従来技術のETの出力電圧を説明するグラフである。 実施例1のETの出力電圧を説明するグラフである。 実施例1と従来技術のET電源出力の差を説明するグラフである。 実施例2のデジタル変調波信号の電力分布を説明する図である。 実施例2のETの出力電圧を説明するグラフである。 無線送信機の構成を説明するブロック図である。 無線送信機の処理フローチャートである。 トレーニングフローチャートである。 閾値メモリの保持内容の変遷を説明する図である。 頻度メモリの保持内容の変遷を説明する図である。 入力信号レベル分布と電圧分割パターンを説明する図である。
以下、本発明の実施の形態について、実施例を用い図面を参照しながら詳細に説明する。なお、実質同一部位には同じ参照番号を振り、説明は繰り返さない。
図7を参照して、無線送信機の構成を説明する。なお、ET電源の動作原理については既に説明した通りであるので省略する。図7において、無線送信機110は、送信信号処理部100と、電源制御部101と、ET電源103と、高周波増幅器104と、包絡線検出手段109とで構成される。送信信号処理部100は、デジタル部105と、アナログ部106とを備える。また電源制御部101は、メモリ108および関数生成部107を備える。
デジタル部105は、上位装置から送られてくる送信BB(ベースバンド)信号を受信する。デジタル部105は、送信電力、送信周波数、送信キャリア数などを設定し、アナログ部106へ送る。アナログ部106は、デジタル部105から受け取ったBB信号をアナログ高周波信号へと変換し、高周波増幅器104へ出力する。
メモリ108は、CDMA、WCDMA、FDMなどの各種変調方式別の電力分布情報を予め記憶しておく。メモリ108は、加えて高周波増幅器104の効率特性を記憶しておく。具体的には、デジタル変調波の電力分布情報とは図6に示すようなレイリー分布である。この確率密度関数をメモリ108に記憶しておく。また高周波増幅器104の効率特性とは、図2Bに示すような電源電圧の違いによる入出力対効率特性のデータである。
関数生成部107は、上位装置より送信信号の変調方式などの情報を受け取る。関数生成部107は、その後、メモリ108内の情報を基に各入力電圧における最大効率点を通り且つ出現確率の高い入力範囲において細かく電源電圧が可変可能となる制御を行なう。
電源制御部101の具体的な動作について説明する。関数生成部107は、メモリ108から必要な情報を読み出す。関数生成部107は、まず高周波増幅器104の効率特性において高周波増幅器104が増幅器として動作する最低電圧を決定する。この電圧は、ET電源103の下限電圧となる。最低電圧をV0とする。最低電圧は、電源電圧が低すぎて高周波増幅器104が利得を持たず増幅器としての動作をしなくなってしまうことを防ぐ。次に、関数生成部107は、高周波増幅器104の効率特性から、各入力信号電圧において最大効率となる電源電圧を抽出する。関数生成部107は、これら全ての点を通る関数を生成する。
図8を参照して、ET電源の構成を説明する。なお、基本的な動作原理は、従来技術と同様のため詳細説明を省略する。従来技術と異なるのは、各電圧源は、固定電圧源ではなく、電源制御部101からの制御信号によって出力電圧を変える可変電圧源である点である。図8において、初段の可変電圧源の出力電圧は、V0である。可変電圧源の段数は、(n+1)段である。また、V0+V1+V2+…+Vn=Vddである。
図9を参照して、関数生成部が生成する関数を説明する。図9において、下段は、入力電圧に対する確率密度である。また、上段は入力電圧に対するET電源の出力電圧である。図9の下段は、図6と同一である。
図9において、初段の可変電圧源の出力は固定値V0であり、入力電圧も固定値である。関数生成部107は、入力電圧分布のピーク値Vpと初段の入力電圧との差をn分割する。ここで、分割された入力電圧の縦線と、確率密度の分布と、y=0とで囲まれた面積がすべて等しくなるように、n分割する。
このように分割した入力電圧と、ET電源の出力電圧との関係が、図9上段の折れた直線である。関数を生成した後、関数生成部107は、確率密度が最も高い点をVcとし、Vcを中心に図9に示す初段を除く各電圧源の電圧V1〜Vnを決定し、ET電源103の制御を行なう。
図10を参照して、高周波増幅器104への入力信号と、ET電源103からの出力電圧を説明する。図10の縦軸は電圧、横軸は時間である。また、実線は入力信号、離散的な破線は出力電圧である。縦軸の目盛から明らかなように、図10Aは、従来技術による固定電圧源のET電源の出力である。一方、図10Bは、本実施例の可変電圧源のET電源の出力である。なお、図10において、入力信号は、信号電圧の出現確率を図6の確率密度分布に従うように描いている。図10Aと比べると、図10Bは、出現確率の高い電圧範囲においてより精度の高い追従が行なえていることがわかる。
図11を参照して、図10での対比をわかり易く説明する。図11は、図10A、図10Bの出力電圧を重ね書きした図である。図11において、ハッチング部が本実施例が従来技術に比べて追従精度が高くなっている個所である。追従精度が高くなることによって高周波増幅器104の効率が高くなるため、本実施例は、ET電源103を従来技術より高い効率で制御することができる。
実施例2では、PFRを組み合わせることでET電源に要求される出力ダイナミックレンジをより狭くし高効率化を図る。なお、実施例2においても図7および図8に示す構成を用いる。ただし、図示しないPFR処理部を送信信号処理部100内のデジタル部105に実装する。その他の動作については実施例1と同様である。
図12を参照して、PFR処理を行なったときの確率密度分布を説明する。図12において、縦軸は確率密度、横軸は信号電力である。PFR処理の結果、信号電力の上限があらわれ、上限付近の確率密度が上昇している。PFR処理を行なうことによって高周波増幅器104入力される信号の最大値が低下する。図9を用いて説明すると、入力信号電圧の最大値であるVpがPFR処理により下がる。よって、ET電源103が出力すべき最大電力値が低下するため、より多くの電圧源を発生確率の高い電力範囲へ使うことが可能となる。この結果、より精度の高い追従を行なうことができる。
図13を参照して、高周波増幅器104への入力信号と、ET電源103からの出力電圧を説明する。図13の縦軸は電圧、横軸は時間である。また、実線は入力信号、離散的な破線は出力電圧である。図13によれば、縦軸の目盛から明らかなように、図10Bに対比して、ピーク電圧が下がっている。
実施例2によれば、PFRを適用しない場合よりも高周波増幅器104の効率を高くすることができた。
図14ないし図19を参照して、実施例3の無線送信機を説明する。実施例1および実施例2の無線送信機は、送信出力の分布として、レイリー分布を前提としている。一方、実施例3の無線送信機は、送信出力の分布を測定して、ET電源を制御する。
図14を参照して、無線送信機の構成を説明する。図14において、無線送信機110Aは、送信信号処理部100と、高周波増幅器104と、ET電源103と、包絡線検出手段109と、電源制御部101Aとから構成されている。送信信号処理部100は、デジタル部105と、アナログ部106とを含む。電源制御部101Aは、処理部110と、メモリ108とを含む。さらに、メモリ108は、頻度メモリ108aと、閾値メモリ108bとを含む。
閾値メモリ108bは、電源電圧である閾値を複数記憶する。なお、閾値の数は、電源段数と等しい。頻度メモリ108aは、閾値と他の閾値とで挟まれた区間の電圧ついて、送信BB信号の出現頻度を複数記憶する。
デジタル部105は、上位装置から送られてくる送信BB(ベースバンド)信号を受信する。デジタル部105は、送信電力、送信周波数、送信キャリア数などを設定し、アナログ部106へ送る。アナログ部106は、デジタル部105から受け取ったBB信号をアナログ高周波信号へと変換し、高周波増幅器104へ出力する。
包絡線検出手段(包絡線検出部)109は、アナログ信号から包絡線を検出する。包絡線検出部109は、デジタル信号から包絡線を検出することもできる。ただし、その場合、包絡線検出部はデジタル部105に含まれることとなる。したがって、包絡線検出部の位置は、図14に限定されない。
送信ベースバンド信号(送信BB信号)は、電源制御部101Aと、送信信号処理部110とに供給される。高周波増幅器104は、送信信号を増幅し、図示しない送信アンテナから送出する。
図15を参照して、電源制御部101Aの処理フローを説明する。なお、この処理フローは、電源投入とともに開始される。図15において、電源制御部101Aは、階級のデータ区間を決定する(S210)。電源制御部101Aは、閾値情報を閾値メモリに格納する(S221)。電源制御部101Aは、頻度メモリに割り当てる(S222)。電源制御部101Aは、同時にET電源の制御信号を生成し、出力する(S223)。ステップ222あと、電源制御部101Aは、送信BB信号の振幅(√(I^2+Q^2)を計算する(S224)。電源制御部101Aは、計算結果を複数の閾値と比較し、該当する頻度メモリへ格納する(S226)。電源制御部101Aは、規定回数終了したか判定する(S227)。YESのとき、電源制御部101Aは、頻度メモリ内において、自区間の頻度が隣区間の頻度と等しいか判定する(S228)。YESのとき、電源制御部101Aは、ステップ224に遷移する。ステップ228でNOのとき、電源制御部101Aは、頻度の高い方へ頻度を移動して(S229)、ステップ221に遷移する。ステップ227でNOのとき、電源制御部101Aは、ステップ224に遷移する。
なお、図示の簡便のためステップ228とステップ229は、一つ記載したが、実際には(電源段数−1)だけ実施する。また、ステップ224に遷移するのは、すべての区間の頻度が等しいときである。
図16を参照して、トレーニングのフローを説明する。図16において、電源制御部101Aは、送信BB信号の振幅(√(I^2+Q^2)を計算する(S211)。電源制御部101Aは、振幅が最大または最小か判定する(S212)。YESのとき、電源制御部101Aは、最大値/最小値情報をメモリへ格納して(S213)、ステップ211に遷移する。ステップ212でNOのとき、電源制御部101Aは、規定回数終了したか判定する(S214)。YESのとき、電源制御部101Aは、データ区間Xとして、(最大値−最小値)/電源段数nとする(S216)。電源制御部101Aは、階級An=nXとして(S217)、リターンする。ステップ214でNOのとき、電源制御部101Aは、ステップ211に遷移する。
図17を参照して、閾値メモリの保持する値の遷移を説明する。図17において、ET電源の段数nを10として説明する。(a)は、初期値である。閾値メモリ108bは、10区画に分離され、いずれも0を保持する。(b)は、トレーニング中の閾値メモリ108bである。左端の区画(区画1と呼ぶ)には電源出力の最小値である5を保持し、区間2には電源出力の最大値である33を保持し、区画3〜区画10は0のままである。
(c)は、トレーニング終了後の閾値メモリ108bである。区画1には電源出力の最小値である0を保持し、区間2には電源出力の最大値である40を保持している。(d)は、閾値計算終了後の閾値メモリ108bである。
(最大値−最小値)/電源段数n=(40−0)/10
=4
なので、区間幅は4となり、区間1は4、区間2は8、以下同様に区間10は40を保持する。(e)および(f)は、学習過程での閾値メモリ108bの値である。閾値メモリ108bは、頻度メモリ108aが保持する区間の頻度が平均化されるように閾値の値を1だけ変化させてゆく。ただし、最大値40は固定である。図17(f)の状態では、区間1から区間10までの閾値の区間幅は、順に8、4、3、3、3、3、3、2、3、8となっている。なお、閾値の値の変化量は、差分が大きいとき大きく変化させてもよい。
図18を参照して、頻度メモリ108aの保持する値の遷移を説明する。図18において、図17と同様にET電源の段数nを10として説明する。(a)は、初期値である。閾値メモリ108aは、10区画に分離され、いずれも0を保持する。(b)は、閾値の幅が等幅のときの一定回数終了時点の頻度データである。(c)および(d)は、学習過程での頻度メモリ108aの値である。図18(b)(c)(d)は、それぞれ図17(d)(e)(f)の閾値状態での一定回数終了時点の頻度データである。図18(b)(c)(d)の順に頻度データが平均化されているのが、理解できる。
なお、頻度の下に記載した区間は、0を含む区間のみ0を含み、それ例外の区間は下限を含まない。換言すると、0〜4は0以上4以下、4〜8は4を超え8以下である。
図19を参照して、入力信号レベル分布と、ET電源電圧分割パターンの関係を説明する。ここで、横軸は電圧、縦軸は発生頻度である。また、(a)は初期状態の電源電圧分割パターン、(b)は学習後の電源電圧分割パターンである。(a)と(b)の比較から、発生頻度の高い領域で細かく電源電圧を分割していることが、理解できる。
実施例3によれば、入力信号の分布がいかなる分布であっても、その分布に追随して、発生頻度の高い領域で細かく電源電圧を分割することができる。
100…送信信号処理部、101…電源制御部、103…ET電源、104…高周波増幅器、105…デジタル部、106…アナログ部、107…関数生成部、108…メモリ、109…包絡線検出手段、110…無線送信機、1300…ET電源。

Claims (4)

  1. 高周波増幅器に電力を供給する包絡線追跡電源と、アナログ高周波信号を増幅する前記高周波増幅器と、前記包絡線追跡電源を制御する電源制御部とを含む無線送信機において、
    前記包絡線追跡電源は、複数の可変電圧源を含み、
    前記電源制御部は、受信した送信ベースバンド信号の電圧分布に基づいて、頻度の高い領域で細かく電源電圧を分割するように前記複数の可変電圧源を制御することを特徴とする無線送信機。
  2. 高周波増幅器に電力を供給する包絡線追跡電源と、アナログ高周波信号を増幅する前記高周波増幅器と、前記包絡線追跡電源を制御する電源制御部とを含む無線送信機において、
    前記包絡線追跡電源は、複数の可変電圧源を含み、
    前記電源制御部は、内部メモリに前記高周波増幅器の効率特性と、変調方式毎の信号電力分布情報とを保持し、送信RF信号の変調方式に関する情報を受け取り、それに基づいて内部メモリから該当する変調方式の信号電力分布情報と高周波増幅器の効率特性を読み出し、送信信号中発生確率の低い電力範囲においては電圧の固定や電圧の選択幅を広くし、代わりに出現確率の高い電力範囲の選択可能電圧数を増やす制御関数を生成し、前記包絡線追跡電源を制御することを特徴とする無線送信機。
  3. 請求項2に記載の無線送信器であって、
    さらに送信信号処理部を備え、
    前記送信信号処理部は、前記高周波増幅回路への送信信号にピークファクター低減処理を実施することを特徴とする無線送信機。
  4. 高周波増幅器に電力を供給する包絡線追跡電源と、アナログ高周波信号を増幅する前記高周波増幅器と、前記包絡線追跡電源を制御する電源制御部とを含む無線送信機における包絡線追跡電源制御方法において、
    階級のデータ区間を決定するステップと、
    前記データ区間を第1のメモリに記憶するステップと、
    送信ベースバンド信号の振幅を計算して、前記データ区間のいずれに該当したか第2のメモリに記憶するステップと、
    前記第2のメモリに記憶するステップを規定回数実行したあと、前記第2のメモリの隣り合う区間を比較して、比較結果に基づいて、前記第1のメモリに記録された前記データ区間を変更するステップと、を含む包絡線追跡電源制御方法。
JP2012050185A 2011-06-03 2012-03-07 無線送信機および包絡線追跡電源制御方法 Expired - Fee Related JP5759920B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012050185A JP5759920B2 (ja) 2012-03-07 2012-03-07 無線送信機および包絡線追跡電源制御方法
US13/477,108 US8600321B2 (en) 2011-06-03 2012-05-22 Radio transmitter and envelope tracking power supply control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050185A JP5759920B2 (ja) 2012-03-07 2012-03-07 無線送信機および包絡線追跡電源制御方法

Publications (3)

Publication Number Publication Date
JP2013187674A JP2013187674A (ja) 2013-09-19
JP2013187674A5 JP2013187674A5 (ja) 2014-09-11
JP5759920B2 true JP5759920B2 (ja) 2015-08-05

Family

ID=49388767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050185A Expired - Fee Related JP5759920B2 (ja) 2011-06-03 2012-03-07 無線送信機および包絡線追跡電源制御方法

Country Status (1)

Country Link
JP (1) JP5759920B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101936664B1 (ko) * 2014-08-11 2019-01-09 후아웨이 테크놀러지 컴퍼니 리미티드 전력 증폭기, 무선 원격 유닛 및 기지국
CN114649938A (zh) * 2022-03-04 2022-06-21 南京邮电大学 射频功放包络线跟踪电源不定步长基准生成方法和装置
WO2024219087A1 (ja) * 2023-04-21 2024-10-24 株式会社村田製作所 送信システム、トラッカ回路及び増幅方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100001793A1 (en) * 2006-12-12 2010-01-07 Koninklijke Philips Electronics N.V. High efficiency modulating rf amplifier
JP5532968B2 (ja) * 2010-01-29 2014-06-25 住友電気工業株式会社 信号処理回路とこの回路を有する通信装置
JP2012004882A (ja) * 2010-06-17 2012-01-05 Panasonic Corp 変調電源回路
WO2012066659A1 (ja) * 2010-11-17 2012-05-24 株式会社日立製作所 高周波増幅器及びそれを用いた高周波モジュール並びに無線機

Also Published As

Publication number Publication date
JP2013187674A (ja) 2013-09-19

Similar Documents

Publication Publication Date Title
US20120309333A1 (en) Radio transmitter and envelope tracking power supply control method
US9595981B2 (en) Reduced bandwidth envelope tracking
KR101755202B1 (ko) 엔벨로프 추적 증폭기의 전력 증폭기 효율을 증가시키기 위해 형상 테이블에 적용된 파고율 감소
CN104539246B (zh) 基于包络跟踪的数字预畸变系统、射频系统和方法
US9065394B2 (en) Apparatus and method for expanding operation region of power amplifier
US8461928B2 (en) Constant-gain power amplifier
US10050587B2 (en) Power amplifier circuit and semiconductor integrated circuit
JP6138158B2 (ja) 包絡線追跡増幅器のための包絡線パス内の整形テーブルと併用するrfパス内の歪補償
US8489037B2 (en) Power amplifying apparatus with bandwidth limitation processing on variable power supply
CN110995166A (zh) 具有动态升压功能的开环数字pwm包络跟踪系统
US8254857B2 (en) Radio communication device and radio communication method
JP5759920B2 (ja) 無線送信機および包絡線追跡電源制御方法
US20180287572A1 (en) Power source circuit
JP2012222624A (ja) 電力増幅器および増幅制御方法
US20140240040A1 (en) Multi-Mode Amplifier System
WO2013134025A1 (en) Noise optimized envelope tracking system for power amplifiers
US9438189B2 (en) Low voltage multi-stage amplifier
JPWO2010073889A1 (ja) 歪補償回路、送信装置、および歪補償方法
CA2792458C (en) Methods and apparatus for power control
JP5439434B2 (ja) 無線送信機
WO2019233023A1 (en) Valley detection for supply voltage modulation in power amplifier circuits
CN102625433B (zh) 载波承载方法、装置和射频拉远单元
CN1965472B (zh) 用于doherty放大器偏置的方法与装置
JP2017505008A (ja) 包絡線追跡変調器を制御し、静的電圧を適合した電力増幅器装置
US7554395B1 (en) Automatic low battery compensation scaling across multiple power amplifier stages

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140724

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5759920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees