[go: up one dir, main page]

JP5741922B2 - Fuel cell drying control method - Google Patents

Fuel cell drying control method Download PDF

Info

Publication number
JP5741922B2
JP5741922B2 JP2011089391A JP2011089391A JP5741922B2 JP 5741922 B2 JP5741922 B2 JP 5741922B2 JP 2011089391 A JP2011089391 A JP 2011089391A JP 2011089391 A JP2011089391 A JP 2011089391A JP 5741922 B2 JP5741922 B2 JP 5741922B2
Authority
JP
Japan
Prior art keywords
fuel cell
drying
voltage
cell voltage
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011089391A
Other languages
Japanese (ja)
Other versions
JP2012221890A (en
Inventor
雅宏 奥吉
雅宏 奥吉
政史 戸井田
政史 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011089391A priority Critical patent/JP5741922B2/en
Publication of JP2012221890A publication Critical patent/JP2012221890A/en
Application granted granted Critical
Publication of JP5741922B2 publication Critical patent/JP5741922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池の乾燥抑制方法に関する。   The present invention relates to a method for suppressing drying of a fuel cell.

燃料電池の高温運転時は、空気入口の乾燥によりドライアップによる負電圧で性能が低下し、または出力の低下によるドライバビリティ(いわゆるドラビリ)の悪化が生じる。   During high-temperature operation of the fuel cell, the performance deteriorates due to the negative voltage due to dry-up due to the air inlet drying, or the drivability (so-called drivability) deteriorates due to the decrease in output.

このように乾燥してしまうことを抑制する手法の一つとして、水分不足の場合には燃料電池の運転電流を増加させて生成水を増加させ、電解質膜の含水量を増加させるというものがある(例えば特許文献1参照)。   As one of the techniques for suppressing such drying, there is a method of increasing the water content of the electrolyte membrane by increasing the generated water by increasing the operating current of the fuel cell in the case of water shortage. (For example, refer to Patent Document 1).

また、セル内の乾燥しやすい部位の局所電流が所定範囲になるよう、温度や加湿量や圧力を制御するという手法もある(例えば特許文献2参照)。   In addition, there is a method of controlling the temperature, the humidification amount, and the pressure so that the local current in the portion that is easily dried in the cell falls within a predetermined range (see, for example, Patent Document 2).

さらに、温度が所定以上ならエア圧力を上げて膜含水量を制御するという手法もある(例えば特許文献3参照)。   Further, there is a method of controlling the water content of the membrane by increasing the air pressure if the temperature is equal to or higher than a predetermined value (for example, see Patent Document 3).

特開2004−265862号公報JP 2004-265862 A 特開2005−190997号公報JP 2005-190997 A 特開2008−130471号公報JP 2008-130471 A

しかしながら、特許文献1の場合、燃料電池車の走行に必要なパワーを供給するための電流以上の電流で発電することになるため、燃費が悪化する。また、電流を増加させることで余剰パワーを2次電池に充電せざるを得ず、2次電池のSOC(State of Charge:バッテリー蓄電状態)が高い時には実施することができない(電流を増加させることができない)。   However, in the case of Patent Document 1, since power generation is performed with a current that is equal to or greater than the current for supplying the power necessary for running the fuel cell vehicle, the fuel consumption deteriorates. In addition, by increasing the current, the secondary battery must be charged to the secondary battery, and cannot be performed when the secondary battery has a high SOC (State of Charge) (increasing the current). Can not).

また、特許文献2の場合、外気温が高くラジエータの冷却能力が不足している場合に温度を制御できない。さらに、加湿量を増やすには加湿するための部品が別途必要でありコスト高となる。また、圧力を増やすとエアコンプレッサの消費電力が増加して燃費が悪化する。   In the case of Patent Document 2, the temperature cannot be controlled when the outside air temperature is high and the cooling capacity of the radiator is insufficient. Furthermore, in order to increase the humidification amount, a separate component for humidification is required, resulting in high costs. Further, when the pressure is increased, the power consumption of the air compressor is increased and the fuel consumption is deteriorated.

さらに、特許文献3の場合、圧力を増やすとエアコンプレッサの消費電力が増加して燃費が悪化する。   Further, in the case of Patent Document 3, when the pressure is increased, the power consumption of the air compressor is increased and the fuel consumption is deteriorated.

本発明は、総電流を増やすことなく乾燥部分の生成水量を増やすことができる燃料電池の乾燥抑制方法を提供することを目的とする。   An object of the present invention is to provide a method for suppressing the drying of a fuel cell that can increase the amount of water produced in a dry portion without increasing the total current.

かかる課題を解決するべく、本発明者は種々の検討を行った。上述の特許文献1の場合、乾燥していない部分の電流は増加させる必要がないのに、総電流を増加させる手段をとっているため、乾燥していない部分の電流も増加させてしまっていることが上記課題の理由となっている。また、特許文献2の場合、冷却能力に頼った制御をしていること、外部からの加湿に頼った制御をしていること、乾燥抑制手段として、生成水増加でなく蒸気持ち去り量の低減をしていること等が上記課題の理由となっている。さらに、特許文献3の場合、乾燥抑制手段として、生成水増加でなく蒸気持ち去り量の低減をしていることが上記課題の理由となっている。これらに着目した本発明者は、課題の解決に結び付く知見を得るに至った。   In order to solve this problem, the present inventor has made various studies. In the case of the above-mentioned Patent Document 1, it is not necessary to increase the current in the portion that is not dried, but since the means for increasing the total current is taken, the current in the portion that is not dried is also increased. This is the reason for the above problem. In addition, in the case of Patent Document 2, the control depends on the cooling capacity, the control depends on the humidification from the outside, and the amount of steam carried away is not increased as the drying suppression means, but the generated water is not increased. This is the reason for the above problems. Furthermore, in the case of Patent Document 3, the reason for the above problem is that the amount of steam carried away is reduced as the drying suppression means, not the increase in generated water. The present inventor who has focused on these has come to obtain knowledge that leads to the solution of the problem.

本発明はかかる知見に基づくもので、燃料電池の乾燥を抑制する方法であって、当該燃料電池におけるエアストイキ比を絞るか、または燃料電池電圧を下げることにより、当該燃料電池において乾燥が生じやすい空気入口に発電を偏らせ、当該乾燥部分を発電させた際の生成水で乾燥を抑制し、さらに、燃料電池電圧を下げた場合には、当該燃料電池電圧を下げることによる耐久性や発熱量増加を考慮し、乾燥度に応じて燃料電池電圧の下げ幅を制御する、というものである。   The present invention is based on such knowledge, and is a method for suppressing the drying of a fuel cell, in which the air that tends to dry in the fuel cell is reduced by reducing the air stoichiometric ratio or reducing the fuel cell voltage in the fuel cell. When power generation is biased at the inlet, drying is suppressed with the water generated when the dry part is generated, and when the fuel cell voltage is lowered, the durability and heat generation increase by lowering the fuel cell voltage In consideration of this, the amount of decrease in the fuel cell voltage is controlled according to the dryness.

本発明によれば、総電流を増やすことなく乾燥部分の生成水量を増やすことができる。   According to the present invention, it is possible to increase the amount of water produced in the dried portion without increasing the total current.

本発明の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of this invention. 燃料電池における電流密度とセル電圧の関係を示すグラフである。It is a graph which shows the relationship between the current density and cell voltage in a fuel cell. 燃料電池における容量成分と電圧との関係を示すグラフである。It is a graph which shows the relationship between the capacity | capacitance component and voltage in a fuel cell. 本発明の他の実施形態を示すフローチャートである。It is a flowchart which shows other embodiment of this invention.

以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。以下では、一例として、燃料電池車に搭載されることが予定された燃料電池(またはこれを含む燃料電池システム)に本発明を適用した場合を例示して説明するが、適用範囲がこのような例に限られることはない。   Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings. Hereinafter, as an example, a case where the present invention is applied to a fuel cell (or a fuel cell system including the fuel cell) scheduled to be mounted on a fuel cell vehicle will be described as an example. It is not limited to examples.

ここで、本発明が適用される燃料電池システムは、燃料電池のほか、エアストイキ比を制御する手段、燃料電池(FC)電圧を制御する手段、乾燥度を推定する手段(燃料電池の容量成分を測定、またはFC温度を測定する手段)等を備えている。   Here, the fuel cell system to which the present invention is applied includes a fuel cell, means for controlling the air stoichiometric ratio, means for controlling the fuel cell (FC) voltage, means for estimating the dryness (the capacity component of the fuel cell). Measurement or means for measuring the FC temperature).

本実施形態では、制御装置により、燃料電池の乾燥を抑制する。以下、乾燥抑制方法を例示する(図1参照)。   In this embodiment, drying of the fuel cell is suppressed by the control device. Hereinafter, the drying suppression method is exemplified (see FIG. 1).

本実施形態では、乾燥抑制制御処理の開始後(ステップSP1)、まず、燃料電池車のIG(イグニッション)がON(オン)かどうかを確認する(ステップSP2)。NOであれば一連の乾燥抑制制御を終了する(ステップSP8)。YESならばステップSP3に移行する。   In the present embodiment, after the start of the drying suppression control process (step SP1), first, it is confirmed whether or not the IG (ignition) of the fuel cell vehicle is ON (step SP2). If NO, the series of drying suppression control is terminated (step SP8). If YES, the process proceeds to step SP3.

ステップSP3では、図2に示すように電圧降下した場合の燃料電池の容量成分を計算する。なお、燃料電池の容量成分が小さいほどセルが乾燥している。尚かつ、燃料電池のエア入口ほど乾燥しやすい。図2は、燃料電池におけるエア入口の乾燥度を表している。   In step SP3, the capacity component of the fuel cell when the voltage drops as shown in FIG. 2 is calculated. Note that the smaller the capacity component of the fuel cell, the more dry the cell. In addition, the air inlet of the fuel cell tends to dry. FIG. 2 shows the dryness of the air inlet in the fuel cell.

次に、計算して求められた容量成分が所定値以下かどうかを判断する(ステップSP4)。これにより、乾燥度が一定以上かどうかを判断することができる。NOであれば通常発電を行う(ステップSP7)が、YESならばステップSP5にて乾燥抑制処理をする。   Next, it is determined whether the calculated capacitance component is equal to or less than a predetermined value (step SP4). Thereby, it can be judged whether dryness is more than fixed. If NO, normal power generation is performed (step SP7). If YES, drying suppression processing is performed in step SP5.

ステップSP5では、燃料電池が乾燥しているため乾燥抑制が必要であると判断し、容量成分に応じて、エアストイキ比を絞る、またはFC(燃料電池)電圧を下げるといった処理を実施する(ステップSP5)。容量成分が小さければエア入口の乾燥度が大きいため、エア入口の生成水量をより増やす(=エア入口に発電を偏らせる)ために、エアストイキ比を絞り、FC電圧を下げる。また、白金溶出防止のため電圧の変動を少なくしたいので、乾燥度が小さいほどFC電圧の下げ幅を小さくすることが好ましい(図3参照)。なお、エアストイキ比が1ならエア出口は発電せず、エア入口または中央で発電されていることがわかる。ここで、さらにFC電圧を下げると、エア入口側に発電が偏る。   In step SP5, it is determined that drying suppression is necessary because the fuel cell is dry, and processing such as reducing the air stoichiometric ratio or reducing the FC (fuel cell) voltage is performed according to the capacity component (step SP5). ). If the capacity component is small, the air inlet has a high degree of dryness. Therefore, in order to increase the amount of water generated at the air inlet (= biasing power generation toward the air inlet), the air stoichiometric ratio is reduced and the FC voltage is lowered. Moreover, since it is desired to reduce the fluctuation of the voltage in order to prevent platinum elution, it is preferable to decrease the FC voltage decrease width as the dryness is smaller (see FIG. 3). If the air stoichiometric ratio is 1, it can be seen that the air outlet does not generate power, and that power is generated at the air inlet or the center. Here, when the FC voltage is further lowered, power generation is biased toward the air inlet side.

次に、上記処理(ステップSP5)後、所定時間が経過したかどうか、または、再計測した容量成分が所定値以上になっているかどうかを判断する(ステップSP6)。要は、ここでは乾燥抑制ができたかどうかを判断する。   Next, after the above process (step SP5), it is determined whether or not a predetermined time has elapsed, or whether or not the remeasured capacity component is equal to or greater than a predetermined value (step SP6). In short, it is judged here whether or not drying can be suppressed.

ステップSP6にてNOであればステップSP5を繰り返す。ステップSP6にてYESであれば通常発電をし(ステップSP7)、ステップSP2に戻る。   If NO in step SP6, step SP5 is repeated. If YES in step SP6, normal power generation is performed (step SP7), and the process returns to step SP2.

ここまで説明した本実施形態の乾燥抑制方法によれば、セル内の乾燥していない部分の電流密度を減らし、乾燥した部分の電流密度を増やすことで、総電流を増やすことなく、乾燥部分の生成水量を増やすことができる。   According to the drying suppression method of the present embodiment described so far, the current density of the non-dried portion in the cell is reduced, and the current density of the dried portion is increased, thereby increasing the total current without increasing the total current. The amount of water produced can be increased.

また、本実施形態の乾燥抑制方法は、冷却能力には頼らない方法なので、外気温が高く冷却能力が不足する場合でも実施することができる。   Moreover, since the drying suppression method of this embodiment is a method which does not depend on cooling capacity, it can be implemented even when the outside air temperature is high and the cooling capacity is insufficient.

また、本実施形態の乾燥抑制方法は、外部加湿装置を必要としないため、コスト増を招かない。   Moreover, since the drying suppression method of this embodiment does not require an external humidifier, it does not cause an increase in cost.

さらに、本実施形態の乾燥抑制方法は、圧力を増やす必要がないため、エアコンプレッサ消費電力の増加を招かない。   Furthermore, since the drying suppression method of this embodiment does not require an increase in pressure, it does not cause an increase in power consumption of the air compressor.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。以下では、FC温度をパラメータとした乾燥抑制処理の一例を示す(図4参照)。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. Below, an example of the drying suppression process which used FC temperature as a parameter is shown (refer FIG. 4).

乾燥抑制制御処理の開始後(ステップSP11)、まず、燃料電池車のIG(イグニッション)がON(オン)かどうかを確認する(ステップSP12)。NOであれば一連の乾燥抑制制御を終了する(ステップSP18)。YESならばステップSP13に移行する。   After the start of the drying suppression control process (step SP11), first, it is confirmed whether or not the IG (ignition) of the fuel cell vehicle is ON (step SP12). If NO, the series of drying suppression control is terminated (step SP18). If YES, the process proceeds to step SP13.

ステップSP13では、FC温度が所定値以上かどうかを判断する(ステップSP13)。これにより、乾燥度が一定以上かどうかを判断することができる。NOであればステップSP12に戻るが、YESなら(FC温度が所定値以上なら)乾燥していると判断してステップSP14に進む。   In step SP13, it is determined whether the FC temperature is equal to or higher than a predetermined value (step SP13). Thereby, it can be judged whether dryness is more than fixed. If NO, the process returns to step SP12, but if YES (if the FC temperature is equal to or higher than a predetermined value), it is determined that it is dry and the process proceeds to step SP14.

ステップSP14では、前回実施した乾燥抑制制御から所定時間が経過しているかどうかを判断する。NOであればステップSP12に戻るが、YESなら(一定時間が経っていたら)再び乾燥していると判断してステップSP15に進む。   In step SP14, it is determined whether or not a predetermined time has elapsed since the last drying suppression control. If NO, the process returns to step SP12, but if YES (after a certain period of time has elapsed), it is determined that it has been dried again, and the process proceeds to step SP15.

ステップSP15では、FC温度に応じて乾燥抑制処理を実施する。具体的には、エアストイキを絞るか、またはFC電圧を下げる。ここでは、FC温度が高いほどエア入口が乾燥していると判断し、FC温度が高い場合ほどエア入口に発電を偏らせてエア入口の生成水量を増やすようにする。   In step SP15, a drying suppression process is performed according to the FC temperature. Specifically, the air stoichiometry is reduced or the FC voltage is lowered. Here, the higher the FC temperature, the more the air inlet is determined to be dry, and the higher the FC temperature is, the more power is biased toward the air inlet to increase the amount of generated water at the air inlet.

次に、上記処理(ステップSP15)後、所定時間が経過したかどうかを判断する(ステップSP16)。所定時間が経っていなければステップSP15に戻る。所定時間が経っていたら乾燥を抑制することができたと判断し(ステップSP16でYES)、通常発電に戻し(ステップSP17)、その後ステップSP12に戻る。   Next, after the above process (step SP15), it is determined whether a predetermined time has elapsed (step SP16). If the predetermined time has not passed, the process returns to step SP15. If the predetermined time has passed, it is determined that drying could be suppressed (YES in step SP16), the normal power generation is restored (step SP17), and then the process returns to step SP12.

本発明は、燃料電池車等の燃料電池に適用して好適である。   The present invention is suitable for application to a fuel cell such as a fuel cell vehicle.

Claims (1)

燃料電池の乾燥を抑制する方法であって、
前記燃料電池の電圧降下が生じた場合に当該燃料電池の容量成分を計算し、
該計算した容量成分が所定値以下の場合、当該燃料電池におけるエアストイキ比を絞ることにより、当該燃料電池において乾燥が生じやすい空気入口に発電を偏らせ、当該乾燥部分を発電させた際の生成水で乾燥を抑制し、
さらに、燃料電池電圧を下げた場合には、当該燃料電池電圧を下げることによる耐久性や発熱量増加を考慮し、乾燥度に応じて燃料電池電圧の下げ幅を制御する、燃料電池の乾燥抑制方法。
A method of suppressing drying of a fuel cell,
When the fuel cell voltage drop occurs, calculate the capacity component of the fuel cell,
If the calculated capacity component is below a predetermined value, by a Turkey down the air stoichiometric ratio in the fuel cell, to bias the power generation tends to occur air inlet drying in the fuel cell, when was generated the dryer section Suppresses drying with generated water,
In addition, when the fuel cell voltage is reduced, the fuel cell voltage is controlled to decrease in accordance with the degree of dryness, taking into account the durability and heat generation increase caused by reducing the fuel cell voltage. Method.
JP2011089391A 2011-04-13 2011-04-13 Fuel cell drying control method Active JP5741922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089391A JP5741922B2 (en) 2011-04-13 2011-04-13 Fuel cell drying control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089391A JP5741922B2 (en) 2011-04-13 2011-04-13 Fuel cell drying control method

Publications (2)

Publication Number Publication Date
JP2012221890A JP2012221890A (en) 2012-11-12
JP5741922B2 true JP5741922B2 (en) 2015-07-01

Family

ID=47273145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089391A Active JP5741922B2 (en) 2011-04-13 2011-04-13 Fuel cell drying control method

Country Status (1)

Country Link
JP (1) JP5741922B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601443B1 (en) * 2014-07-02 2016-03-22 현대자동차주식회사 Driving control method of fuel cell system
US10714776B2 (en) 2014-08-08 2020-07-14 Nissan Motor Co., Ltd. Fuel cell system and control method for fuel cell system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193521B2 (en) * 2002-03-20 2008-12-10 ソニー株式会社 FUEL CELL DEVICE AND FUEL CELL CONTROL METHOD
JP4608892B2 (en) * 2003-02-14 2011-01-12 株式会社デンソー Fuel cell system
JP2005032587A (en) * 2003-07-07 2005-02-03 Denso Corp Fuel cell system
JP2005149880A (en) * 2003-11-14 2005-06-09 Nissan Motor Co Ltd Fuel cell system
JP4678132B2 (en) * 2004-02-06 2011-04-27 トヨタ自動車株式会社 Fuel cell system
JP2007257956A (en) * 2006-03-22 2007-10-04 Nissan Motor Co Ltd Fuel cell system
JP2008047368A (en) * 2006-08-11 2008-02-28 Nissan Motor Co Ltd Fuel cell system
JP4543337B2 (en) * 2007-10-16 2010-09-15 トヨタ自動車株式会社 Fuel cell system
JP4479787B2 (en) * 2007-11-08 2010-06-09 トヨタ自動車株式会社 Fuel cell system
JP4968113B2 (en) * 2008-03-03 2012-07-04 株式会社デンソー Fuel cell system
JP2009259758A (en) * 2008-03-26 2009-11-05 Toyota Motor Corp Fuel cell system and operating method of fuel cell

Also Published As

Publication number Publication date
JP2012221890A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
CN105742673B (en) The method of the operating of fuel cell system and control fuel cell
US10090544B2 (en) Fuel cell system and control method for fuel cell system
JP6179560B2 (en) Fuel cell system
JP5176590B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
US8790836B2 (en) Fuel cell system and operating method therefor
CN104953142A (en) System and method of controlling fuel cell system
US20170301935A1 (en) Apparatus and method for controlling fuel cell stack
JP5477141B2 (en) Fuel cell system and control method
US20160133967A1 (en) Operation control method of fuel cell and operation control apparatus of fuel cell
JP2013114992A (en) Fuel cell system
JP5812118B2 (en) Fuel cell system
JP6153496B2 (en) Fuel cell system
JP2009037762A (en) Control device for fuel cell system
JP5741922B2 (en) Fuel cell drying control method
JP2009117066A (en) Fuel cell system and control method of fuel cell system
JP5239201B2 (en) Fuel cell system and impurity discharge method in fuel cell system
US10505209B2 (en) Method and apparatus for controlling fuel cell cooling
JP6972920B2 (en) Fuel cell system
JP2004119052A (en) Fuel cell system
KR101734760B1 (en) Apparatus for controlling fuel cell stack and method threreof
JP2007027047A (en) Fuel cell system
JP2007234311A (en) Fuel cell system
JP3991047B2 (en) Humidifier for fuel cell
JP2014082082A (en) Fuel cell system
JP2006120340A (en) Reaction gas supplying device for fuel cell and reaction gas supplying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150415

R151 Written notification of patent or utility model registration

Ref document number: 5741922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151