[go: up one dir, main page]

JP5740708B2 - Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery, and battery module - Google Patents

Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery, and battery module Download PDF

Info

Publication number
JP5740708B2
JP5740708B2 JP2010282433A JP2010282433A JP5740708B2 JP 5740708 B2 JP5740708 B2 JP 5740708B2 JP 2010282433 A JP2010282433 A JP 2010282433A JP 2010282433 A JP2010282433 A JP 2010282433A JP 5740708 B2 JP5740708 B2 JP 5740708B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
olivine
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010282433A
Other languages
Japanese (ja)
Other versions
JP2012133894A (en
Inventor
富太郎 原
富太郎 原
福永 孝夫
福永  孝夫
隆康 井口
隆康 井口
高郎 北川
高郎 北川
良貴 山本
良貴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Eliiy Power Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Eliiy Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Eliiy Power Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2010282433A priority Critical patent/JP5740708B2/en
Priority to CN2011800594381A priority patent/CN103250280A/en
Priority to EP11848054.0A priority patent/EP2654108B1/en
Priority to KR1020137015146A priority patent/KR101929792B1/en
Priority to PCT/JP2011/078915 priority patent/WO2012081621A1/en
Priority to US13/993,901 priority patent/US9960416B2/en
Publication of JP2012133894A publication Critical patent/JP2012133894A/en
Application granted granted Critical
Publication of JP5740708B2 publication Critical patent/JP5740708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解液二次電池用正極及び非水電解液二次電池並びに電池モジュールに関するものである。   The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a battery module.

近年、小型化、軽量化、高容量化が期待される電池として、オリビン型リチウム複合化合物粒子を正極活物質として含む非水電解液二次電池が提案され、実用に供されている(例えば、特許文献1、2参照)。
この非水電解液二次電池は、オリビン構造を有するリチウム含有リン酸化合物を用いた正極と、炭素系材料等のリチウムイオンを可逆的に脱挿入可能な性質を有するリチウム含有金属酸化物を用いた負極と、非水系の電解質とにより構成されている。
この正極は、表面が炭素質被膜により被覆された鉄リン酸リチウム(LiFePO)粒子等のオリビン型リチウム複合化合物粒子及びバインダー等を含む電極材料合剤を、集電体と称される金属箔の表面に塗布することにより形成されている。
In recent years, non-aqueous electrolyte secondary batteries containing olivine-type lithium composite compound particles as positive electrode active materials have been proposed and put into practical use as batteries expected to be reduced in size, weight, and capacity (for example, (See Patent Documents 1 and 2).
This non-aqueous electrolyte secondary battery uses a positive electrode using a lithium-containing phosphate compound having an olivine structure, and a lithium-containing metal oxide having a property capable of reversibly removing and inserting lithium ions such as carbon-based materials. And a non-aqueous electrolyte.
In this positive electrode, a metal foil referred to as a current collector is an electrode material mixture containing olivine type lithium composite compound particles such as lithium iron phosphate (LiFePO 4 ) particles whose surfaces are coated with a carbonaceous film, and a binder. It is formed by applying to the surface.

このような非水電解液二次電池は、従来の鉛電池、ニッケルカドミウム電池、ニッケル水素電池等の二次電池と比べて、軽量かつ小型であるとともに、高エネルギーを有しているので、携帯用電話機、ノート型パーソナルコンピューター等の携帯用電子機器の電源として用いられている。また、近年、非水電解液二次電池は、電気自動車、ハイブリッド自動車、電動工具等の高出力電源としても検討されており、これらの高出力電源として用いられる電池には、高速の充放電特性が求められている。   Such non-aqueous electrolyte secondary batteries are lighter and smaller than conventional secondary batteries such as lead batteries, nickel cadmium batteries, and nickel metal hydride batteries, and have high energy. It is used as a power source for portable electronic devices such as telephones and notebook personal computers. In recent years, non-aqueous electrolyte secondary batteries have also been studied as high-output power sources for electric vehicles, hybrid vehicles, electric tools, etc., and batteries used as these high-output power sources have high-speed charge / discharge characteristics. Is required.

特開2009−48958号公報JP 2009-48958 A 特開2009−206085号公報JP 2009-206085 A

ところで、従来の非水電解液二次電池の正極材料においては、オリビン型リチウム複合化合物粒子の表面が炭素質被膜により十分に被覆されていないので、オリビン型リチウム複合化合物におけるリチウムイオンの取り入れ・放出速度が遅い、すなわち、電荷移動抵抗が高いために、正極の過電圧が高くなってしまうという問題点があった。
正極の過電圧が高くなってしまった場合、充放電時における電極抵抗も高くなってしまい、その結果、二次電池の充放電速度が遅くなってしまい、充放電特性が低下するという問題点が生じることとなる。
By the way, in the positive electrode material of the conventional non-aqueous electrolyte secondary battery, the surface of the olivine-type lithium composite compound particles is not sufficiently covered with the carbonaceous film, so that lithium ions are taken in and released from the olivine-type lithium composite compound. Since the speed is low, that is, the charge transfer resistance is high, there is a problem that the overvoltage of the positive electrode becomes high.
When the overvoltage of the positive electrode becomes high, the electrode resistance at the time of charging / discharging also becomes high. As a result, the charge / discharge speed of the secondary battery becomes slow, resulting in a problem that the charge / discharge characteristics deteriorate. It will be.

本発明は、上記の課題を解決するためになされたものであって、オリビン型リチウム複合化合物粒子におけるリチウムイオンの取り入れ・放出速度を高めることにより、正極の充放電速度を高め、よって、二次電池の充放電速度を高めた非水電解液二次電池用正極、及び、この非水電解液二次電池用正極を備えた非水電解液二次電池、並びに、この非水電解液二次電池を備えた電池モジュールを提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and by increasing the lithium ion intake / release rate in the olivine-type lithium composite compound particles, the charge / discharge rate of the positive electrode is increased, and thus the secondary Positive electrode for non-aqueous electrolyte secondary battery with increased charge / discharge rate of battery, non-aqueous electrolyte secondary battery provided with positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery It aims at providing the battery module provided with the battery.

本発明者等は、上記課題を解決するために鋭意研究を行なった結果、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子を正極活物質として含有してなる非水電解液二次電池用正極において、このオリビン型リチウム複合化合物粒子の表面積に対する炭素質被膜の被覆率を95%以上とすれば、オリビン型リチウム複合化合物におけるリチウムイオンの取り入れ・放出速度を高めることができ、よって、正極の充放電速度を高めることができ、その結果、二次電池の充放電速度を高めることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a non-aqueous electrolyte secondary solution containing olivine-type lithium composite compound particles having a carbonaceous film formed on the surface as a positive electrode active material In the positive electrode for a battery, if the coverage of the carbonaceous film with respect to the surface area of the olivine-type lithium composite compound particles is 95% or more, the lithium ion intake / release rate in the olivine-type lithium composite compound can be increased. It has been found that the charge / discharge rate of the positive electrode can be increased, and as a result, the charge / discharge rate of the secondary battery can be increased, and the present invention has been completed.

すなわち、本発明の非水電解液二次電池用正極は、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子を正極活物質として含有してなる非水電解液二次電池用正極において、前記オリビン型リチウム複合化合物粒子の表面積に対する前記炭素質被膜の被覆率は95%以上であり、前記非水電解液二次電池用正極における前記オリビン型リチウム複合化合物粒子の充填密度は、0.90g/cm 以上かつ1.09g/cm 以下であることを特徴とする。 That is, the positive electrode for a non-aqueous electrolyte secondary battery according to the present invention is a positive electrode for a non-aqueous electrolyte secondary battery comprising olivine-type lithium composite compound particles having a carbonaceous film formed on the surface as a positive electrode active material. the olivine-type lithium composite compound coverage of the carbonaceous coating to the surface area of the particles Ri der least 95%, packing density of the olivine-type lithium composite compound particles in the non-aqueous electrolyte secondary battery positive electrode, 0 characterized in that .90g / cm 3 or more and is 1.09 g / cm 3 or less.

本発明の非水電解液二次電池は、本発明の非水電解液二次電池用正極を備えたことを特徴とする。
本発明の電池モジュールは、本発明の非水電解液二次電池を備えたことを特徴とする。
The nonaqueous electrolyte secondary battery of the present invention includes the positive electrode for a nonaqueous electrolyte secondary battery of the present invention.
The battery module of the present invention includes the nonaqueous electrolyte secondary battery of the present invention.

本発明の非水電解液二次電池用正極によれば、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子の、その表面積に対する炭素質被膜の被覆率を95%以上としたので、オリビン型リチウム複合化合物におけるリチウムイオンの取り入れ・放出速度を高めることができ、正極の充放電速度を高めることができる。その結果、この非水電解液二次電池用正極を用いた二次電池の充放電速度を高めることができる。   According to the positive electrode for a non-aqueous electrolyte secondary battery of the present invention, since the coverage of the carbonaceous film with respect to the surface area of the olivine-type lithium composite compound particles having a carbonaceous film formed on the surface is 95% or more, The lithium ion intake / release rate in the olivine-type lithium composite compound can be increased, and the charge / discharge rate of the positive electrode can be increased. As a result, the charge / discharge rate of a secondary battery using the positive electrode for a non-aqueous electrolyte secondary battery can be increased.

本発明の非水電解液二次電池によれば、本発明の非水電解液二次電池用正極を備えたので、正極の充放電速度を向上させることができる。したがって、二次電池の充放電特性を向上させることができる。   According to the non-aqueous electrolyte secondary battery of the present invention, since the positive electrode for the non-aqueous electrolyte secondary battery of the present invention is provided, the charge / discharge rate of the positive electrode can be improved. Therefore, the charge / discharge characteristics of the secondary battery can be improved.

本発明の電池モジュールによれば、本発明の非水電解液二次電池を備えたので、電池モジュールの充放電特性を向上させることができる。   According to the battery module of the present invention, since the non-aqueous electrolyte secondary battery of the present invention is provided, the charge / discharge characteristics of the battery module can be improved.

本発明の一実施形態の非水電解液二次電池の構成を示す縦方向の概略断面図である。It is a schematic sectional drawing of the vertical direction which shows the structure of the nonaqueous electrolyte secondary battery of one Embodiment of this invention. 本発明の一実施形態の非水電解液二次電池の構成を示す横方向の概略断面図である。It is a schematic sectional drawing of the horizontal direction which shows the structure of the nonaqueous electrolyte secondary battery of one Embodiment of this invention. 本発明の一実施形態の非水電解液二次電池の発電要素を示す斜視図であり、(a)は正極を、(b)は負極を、(c)は正極、負極及びセパレータを配置した状態を、それぞれ示す。It is a perspective view which shows the electric power generation element of the nonaqueous electrolyte secondary battery of one Embodiment of this invention, (a) is a positive electrode, (b) is a negative electrode, (c) has arrange | positioned the positive electrode, the negative electrode, and the separator. Each state is shown. 本発明の実施例1、2及び比較例の充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic of Example 1, 2 of this invention, and a comparative example.

本発明の非水電解液二次電池用正極及び非水電解液二次電池並びに電池モジュールを実施するための形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The form for implementing the positive electrode for nonaqueous electrolyte secondary batteries of this invention, a nonaqueous electrolyte secondary battery, and a battery module is demonstrated.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

図1は、本発明の一実施形態の非水電解液二次電池用正極を備えた非水電解液二次電池(以下、単に「二次電池」とも称する)の構成を示す縦方向の概略断面図、図2は、同二次電池の構成を示す横方向の概略断面図である。
本実施形態の二次電池1は、リチウムイオン二次電池と称されるもので、ステンレス鋼等の有底筒状のケース2の上部開口に蓋部材3が接合されて密閉構造とされ、このケース2内にスタック構造の発電要素4、正極接続端子5、負極接続端子6及び非水電解液7が収納され、これら正極接続端子5及び負極接続端子6は、蓋部材3に絶縁体(図示略)を介して固定され、正極接続端子5は正極外部接続端子8に、負極接続端子6は負極外部接続端子9に、それぞれ接続されている。
FIG. 1 is a schematic view in a vertical direction showing a configuration of a nonaqueous electrolyte secondary battery (hereinafter also simply referred to as “secondary battery”) including a positive electrode for a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. Sectional drawing and FIG. 2 are schematic sectional drawings of the horizontal direction which shows the structure of the secondary battery.
The secondary battery 1 of the present embodiment is called a lithium ion secondary battery, and a lid member 3 is joined to an upper opening of a bottomed cylindrical case 2 made of stainless steel or the like to form a sealed structure. A power generation element 4 having a stack structure, a positive electrode connection terminal 5, a negative electrode connection terminal 6, and a nonaqueous electrolyte solution 7 are accommodated in the case 2, and the positive electrode connection terminal 5 and the negative electrode connection terminal 6 are provided with an insulator (not shown) on the lid member 3. The positive connection terminal 5 is connected to the positive external connection terminal 8, and the negative connection terminal 6 is connected to the negative external connection terminal 9.

発電要素4は、図3に示すように、シート状の正極11及びシート状の負極12がセパレータ13を介して交互に配置されている。
正極11は、正極集電体21と、正極集電体21上に形成された正極活物質層22とを備えている。正極活物質層22は、正極集電体21の一方の面のみに形成されていてもよく、正極集電体21の両面に形成されていてもよい。これら正極集電体21は、正極活物質層22が形成されていない端部が束ねられて正極接続端子5に接続されている。
In the power generation element 4, as shown in FIG. 3, sheet-like positive electrodes 11 and sheet-like negative electrodes 12 are alternately arranged with separators 13 interposed therebetween.
The positive electrode 11 includes a positive electrode current collector 21 and a positive electrode active material layer 22 formed on the positive electrode current collector 21. The positive electrode active material layer 22 may be formed only on one surface of the positive electrode current collector 21 or may be formed on both surfaces of the positive electrode current collector 21. These positive electrode current collectors 21 are connected to the positive electrode connection terminal 5 by bundling ends where the positive electrode active material layer 22 is not formed.

正極集電体21は、電気伝導性を有し、表面に正極活物質層22を形成することができるものであればよく、特に限定されないが、例えば、金属箔が好ましく、この金属箔としては、アルミニウム箔が好ましい。
正極活物質層22は、正極活物質に、アセチレンブラック等の導電剤、ポリフッ化ビニリデン(PVdF)等の結着剤、N−メチル−2−ピロリジノン(NMP)等の有機溶媒等を添加し、撹拌・混練した正極活物質層用スラリーを正極集電体21上に塗布し、加熱乾燥して得られたもので、正極活物質としては、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子が好適に用いられる。
The positive electrode current collector 21 is not particularly limited as long as it has electrical conductivity and can form the positive electrode active material layer 22 on the surface. For example, a metal foil is preferable. Aluminum foil is preferred.
The positive electrode active material layer 22 adds a conductive agent such as acetylene black, a binder such as polyvinylidene fluoride (PVdF), an organic solvent such as N-methyl-2-pyrrolidinone (NMP) to the positive electrode active material, The positive electrode active material layer slurry obtained by applying the agitated and kneaded slurry for the positive electrode current collector 21 on the positive electrode current collector 21 and heating and drying is used. As the positive electrode active material, an olivine type lithium composite having a carbonaceous film formed on the surface is used. Compound particles are preferably used.

この表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子としては、(1)オリビン型リチウム複合化合物粒子の表面がほぼ100%の表面被覆率にて炭素質被膜が形成されているもの、(2)オリビン型リチウム複合化合物の一次粒子の表面がほぼ100%の表面被覆率にて炭素質被膜が形成され、炭素質被膜を介して一次粒子同士が結合して2次粒子を形成しているオリビン型リチウム複合化合物粒子の凝集体、のいずれか一方、あるいは双方を用いることができる。   As the olivine type lithium composite compound particles having a carbonaceous film formed on the surface, (1) the surface of the olivine type lithium composite compound particles has a carbonaceous film formed at a surface coverage of almost 100%; (2) The surface of the primary particles of the olivine type lithium composite compound is formed with a carbonaceous film having a surface coverage of almost 100%, and the primary particles are bonded to each other through the carbonaceous film to form secondary particles. Any one or both of the aggregates of the olivine-type lithium composite compound particles can be used.

オリビン型リチウム複合化合物粒子としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、チタン酸リチウム及びLiPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択される1種または2種以上、DはMg、Ca、S、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素の群から選択される1種または2種以上、0<x<2、0<y<1.5、0≦z<1.5)の群から選択される1種を主成分とする粒子が好ましい。 The olivine-type lithium composite compound particles, lithium cobaltate, lithium nickelate, lithium manganate, lithium titanate and Li x A y D z PO 4 ( where, A is Co, Mn, Ni, Fe, Cu, and Cr One or more selected from the group, D is selected from the group of Mg, Ca, S, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, rare earth elements One or two or more selected from the group of 0 <x <2, 0 <y <1.5, and 0 ≦ z <1.5) are preferred.

ここで、Aについては、Co、Mn、Ni、Feが、Dについては、Mg、Ca、Sr、Ba、Ti、Zn、Alが、高い放電電位、豊富な資源量、安全性などの点から好ましい。
ここで、希土類元素とは、ランタン系列であるLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの15元素のことである。
このリチウム複合化合物の中でも、LiFePOが好ましい。
Here, for A, Co, Mn, Ni, and Fe are for D, and for D, Mg, Ca, Sr, Ba, Ti, Zn, and Al are in terms of high discharge potential, abundant resources, safety, etc. preferable.
Here, the rare earth elements are 15 elements of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu which are lanthanum series.
Among these lithium composite compounds, LiFePO 4 is preferable.

このオリビン型リチウム複合化合物粒子の表面に形成された炭素質被膜は、ピッチ等の炭素前駆体が1000℃以下、不活性雰囲気下にて焼成することにより得られたもので、非晶質炭素(アモルファスカーボン)により構成されている。
このオリビン型リチウム複合化合物粒子の表面積に対する炭素質被膜の被覆率は、95%以上であることが好ましい。
ここで、炭素質被膜の被覆率が95%を下回ると、オリビン型リチウム複合化合物粒子の内部抵抗が高くなり、その結果、オリビン型リチウム複合化合物粒子におけるリチウムイオンの取り入れ・放出速度が低下し、正極の充放電速度が低下するので、好ましくない。
The carbonaceous film formed on the surface of the olivine-type lithium composite compound particles is obtained by firing a carbon precursor such as pitch at 1000 ° C. or less in an inert atmosphere. Amorphous carbon).
The coverage of the carbonaceous film with respect to the surface area of the olivine-type lithium composite compound particles is preferably 95% or more.
Here, when the coverage of the carbonaceous film is less than 95%, the internal resistance of the olivine-type lithium composite compound particles is increased, and as a result, the lithium ion intake / release rate in the olivine-type lithium composite compound particles is reduced, This is not preferable because the charge / discharge rate of the positive electrode decreases.

この正極活物質層22中の表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子の充填密度は、0.90g/cm以上かつ1.09g/cm以下であることが好ましい。
ここで、充填密度が0.90g/cmを下回ると、導電抵抗が高くなるので好ましくない。なお、充填密度の上限値である1.09g/cmは、オリビン型リチウム複合化合物粒子が正極に詰められる限界であり、充填密度をこの値以上に上げることは難しい。充填密度が1.09g/cmの場合、正極活物質層25の導電抵抗は非晶質炭素(アモルファスカーボン)の抵抗に近似したものとなる。
The packing density of the olivine-type lithium composite compound particles having a carbonaceous film formed on the surface in the positive electrode active material layer 22 is preferably 0.90 g / cm 3 or more and 1.09 g / cm 3 or less.
Here, when the packing density is less than 0.90 g / cm 3 , the conductive resistance increases, which is not preferable. The upper limit value of 1.09 g / cm 3 for the packing density is a limit at which the olivine-type lithium composite compound particles are packed in the positive electrode, and it is difficult to increase the packing density beyond this value. When the packing density is 1.09 g / cm 3 , the conductive resistance of the positive electrode active material layer 25 approximates the resistance of amorphous carbon.

ここで、炭素質被膜の被覆率を95%以上とした理由についてさらに詳細に説明する。
従来の表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子では、リチウム複合化合物におけるリチウムイオンの取り入れ・放出速度は、要求を充分に満足することができる程速いとはいえなかった。特に、充放電の末期においては、正極の導電抵抗が上昇する傾向があり、充放電速度が低下するという欠点があった。
Here, the reason why the coverage of the carbonaceous film is 95% or more will be described in more detail.
In conventional olivine-type lithium composite compound particles having a carbonaceous film formed on the surface, the lithium ion incorporation / release rate in the lithium composite compound cannot be said to be fast enough to satisfy the requirements. In particular, at the end of charging / discharging, the conductive resistance of the positive electrode tends to increase, and the charge / discharge rate decreases.

その理由としては、オリビン型リチウム複合化合物粒子の表面に炭素質被膜が存在しない部分が多く存在しているために、オリビン型リチウム複合化合物粒子のLiイオンの反応サイトに隣接するオリビン骨格における電子の授受サイトに炭素質被膜で被覆されていない部分ができてしまい、その部分のLiイオンの取り入れ・放出ができにくくなっていると考えられる。
粒子表面に炭素質被膜が存在しない部分が多く存在している理由としては、そもそもオリビン型リチウム複合化合物粒子の表面の炭素質被膜の被覆率が低いものがあると考えられ、さらに、この表面被覆オリビン型リチウム複合化合物粒子を用いて正極活物質層用スラリーを作製する際の撹拌・混練により、粒子に過度の応力がかかり、炭素質被膜が剥離してしまう等が考えられる。
The reason for this is that since there are many portions on the surface of the olivine-type lithium composite compound particles where no carbonaceous film exists, the electrons in the olivine skeleton adjacent to the Li ion reaction site of the olivine-type lithium composite compound particles It is considered that a part that is not covered with the carbonaceous film is formed at the receiving and receiving site, and it is difficult to take in and release Li ions in that part.
The reason why there are many parts where no carbonaceous film exists on the particle surface is considered to be that the coverage of the carbonaceous film on the surface of the olivine type lithium composite compound particle is low in the first place. It is conceivable that excessive stress is applied to the particles due to stirring and kneading when the slurry for the positive electrode active material layer is produced using the olivine type lithium composite compound particles, and the carbonaceous film is peeled off.

一方、本願発明の表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子では、炭素質被膜の被覆率を95%以上としたので、オリビン型リチウム複合化合物粒子のLiイオンの反応サイトに隣接するオリビン骨格における電子の授受サイトに炭素質被膜で被覆されていない部分が少なくなり、Liイオンの取り入れ・放出が阻害される領域が減少するからと考えられる。
特に、炭素質被膜の被覆率が100%の場合には、オリビン型リチウム複合化合物粒子のLiイオンの反応サイトに隣接するオリビン骨格における電子の授受サイトの殆どが炭素質被膜で被覆されることとなり、Liイオンの取り入れ・放出が阻害される虞が無くなるからと考えられる。
On the other hand, in the olivine type lithium composite compound particles having the carbonaceous film formed on the surface of the present invention, the coverage of the carbonaceous film is 95% or more, and therefore adjacent to the Li ion reaction site of the olivine type lithium composite compound particles. This is probably because the portion of the olivine skeleton that is not covered with the carbonaceous film at the electron transfer site is reduced, and the region where the incorporation and release of Li ions is inhibited is reduced.
In particular, when the coverage of the carbonaceous film is 100%, most of the electron transfer sites in the olivine skeleton adjacent to the Li ion reaction site of the olivine-type lithium composite compound particles are covered with the carbonaceous film. This is considered to be because there is no possibility that the intake and release of Li ions will be hindered.

負極12は、負極集電体31と、負極集電体31上に形成された負極活物質層32とを備えている。
負極集電体31は、電気伝導性を有し、表面に負極活物質層32を形成することができるものであればよく、特に限定されないが、例えば、金属箔が好ましく、この金属箔としては、銅箔が好ましい。
負極活物質層32は、負極活物質に、アセチレンブラック等の導電剤、ポリフッ化ビニリデン(PVdF)等の結着剤、N−メチル−2−ピロリジノン(NMP)等の有機溶媒等を添加し、撹拌・混練した負極活物質層用スラリーを負極集電体31上に塗布し、加熱乾燥して得られたもので、負極活物質としては、例えば、黒鉛(グラファイト)、リチウム金属、スズ、チタン酸リチウム等が好適に用いられる。
The negative electrode 12 includes a negative electrode current collector 31 and a negative electrode active material layer 32 formed on the negative electrode current collector 31.
The negative electrode current collector 31 is not particularly limited as long as it has electrical conductivity and can form the negative electrode active material layer 32 on the surface. For example, a metal foil is preferable. Copper foil is preferred.
The negative electrode active material layer 32 is obtained by adding a conductive agent such as acetylene black, a binder such as polyvinylidene fluoride (PVdF), an organic solvent such as N-methyl-2-pyrrolidinone (NMP) to the negative electrode active material, The negative electrode active material layer slurry obtained by applying the agitated and kneaded slurry for the negative electrode current collector 31 to heat drying is used. Examples of the negative electrode active material include graphite (graphite), lithium metal, tin, and titanium. Lithium acid or the like is preferably used.

セパレータ13は、正極11と負極12との間に配置されて、正極11と負極12との間の漏れ電流を防止することができればよく、特に限定されないが、例えば、ポリオレフィンの微多孔性フィルムが好適に用いられる。
非水電解液7は、二次電池1の電池反応に関与する電解質を含んだ溶液であればよく、特に限定されないが、例えば、リチウムイオン二次電池の場合、リチウム塩を有機溶媒に溶解した電解質溶液が好適に用いられる。
The separator 13 is not particularly limited as long as the separator 13 is disposed between the positive electrode 11 and the negative electrode 12 and can prevent a leakage current between the positive electrode 11 and the negative electrode 12. For example, a polyolefin microporous film is used. Preferably used.
The nonaqueous electrolytic solution 7 may be a solution containing an electrolyte involved in the battery reaction of the secondary battery 1 and is not particularly limited. For example, in the case of a lithium ion secondary battery, a lithium salt is dissolved in an organic solvent. An electrolyte solution is preferably used.

次に、本実施形態の正極の製造方法について説明する。
まず、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子と、アセチレンブラック等の導電剤と、ポリフッ化ビニリデン(PVdF)等の結着剤と、N−メチル−2−ピロリジノン(NMP)等の有機溶媒等を撹拌・混練し、正極活物質層用スラリーを作製する。
Next, the manufacturing method of the positive electrode of this embodiment is demonstrated.
First, olivine type lithium composite compound particles having a carbonaceous film formed on the surface, a conductive agent such as acetylene black, a binder such as polyvinylidene fluoride (PVdF), and N-methyl-2-pyrrolidinone (NMP) A positive electrode active material layer slurry is prepared by stirring and kneading an organic solvent or the like.

この撹拌・混練の時間を制御することにより、オリビン型リチウム複合化合物粒子の表面における炭素質被膜の被覆率を95%以上に保持することができる。
また、次のような効果を奏することもできる。
(1)オリビン型リチウム複合化合物粒子の表面がほぼ100%の表面被覆率にて炭素質被膜が形成されているものの場合、撹拌・混練の時間を制御することにより、一次粒子状態の炭素質被膜が損傷を抑制できる。
(2)オリビン型リチウム複合化合物の一次粒子の表面がほぼ100%の表面被覆率にて所定の厚みの炭素質被膜が形成され、炭素質被膜を介して一次粒子同士が結合して2次粒子を形成しているオリビン型リチウム複合化合物粒子の凝集体の場合、撹拌・混練の時間を制御することにより、2次粒子表面にある1次粒子の炭素質被膜が損傷し、プレス後の2次粒子が崩れてバラバラの1次粒子状になった際に、凝集体の外側の1次粒子の炭素質被膜のコート率が減ることを抑制できる。
By controlling the stirring / kneading time, the coverage of the carbonaceous film on the surface of the olivine-type lithium composite compound particles can be maintained at 95% or more.
In addition, the following effects can be achieved.
(1) In the case where the surface of the olivine type lithium composite compound particles has a carbonaceous film formed with a surface coverage of almost 100%, the carbonaceous film in the primary particle state is controlled by controlling the stirring and kneading time. Can suppress damage.
(2) The surface of the primary particles of the olivine type lithium composite compound is formed with a carbonaceous film having a predetermined thickness at a surface coverage of almost 100%, and the primary particles are bonded to each other through the carbonaceous film. In the case of aggregates of olivine-type lithium composite compound particles that form slabs, the carbonaceous film of the primary particles on the surface of the secondary particles is damaged by controlling the stirring and kneading time, and the secondary after pressing It is possible to suppress a decrease in the coating rate of the carbonaceous film of the primary particles outside the aggregate when the particles are collapsed to be in the form of discrete primary particles.

次いで、この正極活物質層用スラリーを、正極集電体上にロールコーター等を用いて均一な厚みに塗布し、加熱乾燥する。これにより、正極集電体上に正極活物質層が形成される。この正極活物質層は、正極集電体の片方の面のみに形成しても良く、両面に形成してもよい。
次いで、正極活物質層が形成された正極集電体を、ロールプレス機等を用いて加圧し、正極活物質層の厚みを適切な厚みとすることで、正極が完成する。
このロールプレス機による加圧の際に、乾燥後の正極活物質層はプレスされることで非水二次電池用の電極として良好な充填密度、空隙率を得ることができる。特に、上記(2)の凝集体は、2次粒子が崩れてバラバラの1次粒子状になり、充填密度が高い正極活物質層が形成されることとなる。
Next, this positive electrode active material layer slurry is applied to a uniform thickness on a positive electrode current collector using a roll coater or the like, and dried by heating. Thereby, a positive electrode active material layer is formed on the positive electrode current collector. This positive electrode active material layer may be formed only on one side of the positive electrode current collector or on both sides.
Next, the positive electrode current collector on which the positive electrode active material layer is formed is pressurized using a roll press or the like, and the thickness of the positive electrode active material layer is set to an appropriate thickness, whereby the positive electrode is completed.
When pressurizing with this roll press, the positive electrode active material layer after drying can be pressed to obtain good packing density and porosity as an electrode for a non-aqueous secondary battery. In particular, in the aggregate (2), the secondary particles are collapsed into discrete primary particles, and a positive electrode active material layer having a high packing density is formed.

本実施形態の二次電池1は、正極11及び負極12をセパレータ13を介して交互に配置して発電要素4を組み立て、この発電要素4及び非水電解液7をケース2内に収納し、正極11に正極接続端子5及び正極外部接続端子8を、負極12に負極接続端子6及び負極外部接続端子9を、それぞれ接続し、正極外部接続端子8及び負極外部接続端子9を蓋部材3に固定することにより、完成する。
本実施形態の電池モジュールは、本実施形態の二次電池1を複数個、直列接続あるいは並列接続することにより、完成する。
In the secondary battery 1 of this embodiment, the positive electrode 11 and the negative electrode 12 are alternately arranged via the separator 13 to assemble the power generation element 4, and the power generation element 4 and the nonaqueous electrolyte solution 7 are stored in the case 2. The positive electrode connection terminal 5 and the positive electrode external connection terminal 8 are connected to the positive electrode 11, the negative electrode connection terminal 6 and the negative electrode external connection terminal 9 are connected to the negative electrode 12, and the positive electrode external connection terminal 8 and the negative electrode external connection terminal 9 are connected to the lid member 3. Complete by fixing.
The battery module of the present embodiment is completed by connecting a plurality of the secondary batteries 1 of the present embodiment in series or in parallel.

本実施形態の二次電池用正極によれば、表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子の、その表面積に対する炭素質被膜の被覆率を95%以上としたので、オリビン型リチウム複合化合物におけるリチウムイオンの取り入れ・放出速度を高めることができ、正極の充放電速度を高めることができる。その結果、この二次電池用正極を用いた二次電池の充放電速度を高めることができる。   According to the positive electrode for a secondary battery of this embodiment, since the coverage of the carbonaceous film with respect to the surface area of the olivine-type lithium composite compound particles having a carbonaceous film formed on the surface is 95% or more, the olivine-type lithium The lithium ion intake / release rate in the composite compound can be increased, and the charge / discharge rate of the positive electrode can be increased. As a result, the charge / discharge rate of a secondary battery using the positive electrode for a secondary battery can be increased.

本実施形態の二次電池によれば、本実施形態の正極を備えたので、正極の充放電速度を向上させることができる。したがって、二次電池の充放電特性を向上させることができる。   According to the secondary battery of this embodiment, since the positive electrode of this embodiment is provided, the charge / discharge rate of the positive electrode can be improved. Therefore, the charge / discharge characteristics of the secondary battery can be improved.

本実施形態の電池モジュールによれば、本実施形態の二次電池を備えたので、電池モジュールの充放電特性を向上させることができる。   According to the battery module of this embodiment, since the secondary battery of this embodiment is provided, the charge / discharge characteristics of the battery module can be improved.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these Examples.

「実施例1」
正極活物質として炭素質被膜の被覆率が100%である一次粒子の粒子径が0.1〜2μmのLiFePO粒子の凝集体(住友大阪セメント製)を、導電剤としてアセチレンブラックを、結着剤としてポリフッ化ビニリデン(PVdF)を、100:5:7(質量部)となるように秤量し、アセチレンブラック及びポリフッ化ビニリデン(PVdF)を混練機中のN−メチル−2−ピロリジノン(NMP)に投入し、撹拌・混練を行った。次いで、得られた混合物に上記のLiFePO粒子を投入し、混練機の回転速度を100rpmとして90分間混練を行い、スラリーを作製した。
"Example 1"
Agglomerates of LiFePO 4 particles (manufactured by Sumitomo Osaka Cement Co., Ltd.) with a primary particle size of 100% as the positive electrode active material and a primary particle size of 0.1 to 2 μm, and acetylene black as a conductive agent are bound. Polyvinylidene fluoride (PVdF) as an agent is weighed so as to be 100: 5: 7 (parts by mass), and acetylene black and polyvinylidene fluoride (PVdF) are N-methyl-2-pyrrolidinone (NMP) in a kneader. The mixture was stirred and kneaded. Then, the resulting mixture above LiFePO 4 particles were charged into, for 90 minutes kneading the rotational speed of the kneading machine as 100 rpm, to prepare a slurry.

次いで、このスラリーを、コーターを用いてアルミニウム箔上に塗布し、乾燥し、その後、プレスを用いて加圧し、厚みが100μmの正極活物質層をアルミニウム箔上に形成し、実施例1の正極とした。
次いで、黒鉛を負極活物質として負極を作製し、この負極と上記の正極とを複数枚、セパレータを介して交互に配置して発電要素を組み立て、この発電要素及び非水電解液をケース内に収納し、電気配線を行い、実施例1の二次電池を作製した。
Next, this slurry was applied on an aluminum foil using a coater, dried, and then pressed using a press to form a positive electrode active material layer having a thickness of 100 μm on the aluminum foil. It was.
Next, a negative electrode is produced using graphite as a negative electrode active material, and a plurality of negative electrodes and the above positive electrodes are alternately arranged via separators to assemble a power generation element. The power generation element and the non-aqueous electrolyte are placed in the case. The secondary battery of Example 1 was fabricated by storing and performing electrical wiring.

「実施例2」
混練機の回転速度を100rpmとして150分間混練を行った他は、実施例1に準じて、実施例2の正極及び二次電池を作製した。
"Example 2"
A positive electrode and a secondary battery of Example 2 were produced in the same manner as in Example 1 except that the kneading machine was rotated at 100 rpm for 150 minutes.

「比較例」
混練機の回転速度を100rpmとして200分間混練を行った他は、実施例1に準じて、比較例の正極及び二次電池を作製した。
"Comparative example"
A positive electrode and a secondary battery of a comparative example were prepared in the same manner as in Example 1 except that the kneading machine was rotated at 100 rpm for 200 minutes.

「評価」
(1)炭素質被膜の被覆率
実施例1〜3及び比較例の正極中の粒子の炭素質被膜の被覆率を求め、評価した。
ここでは、正極の一部を有機溶媒に浸漬して結着剤を溶解させるか、正極の一部を崩落させることにより、表面に炭素質被膜が形成されたLiFePO粒子 を取り出し、この粒子を走査型電子顕微鏡(SEM)を用いて観察し、表面における炭素質被膜の状態を確認した。
また、この粒子の表面を、エネルギー分散型X線分光装置(EDX)を用いて面分析し、表面における炭素質被膜の状態を確認した。
"Evaluation"
(1) Coverage of carbonaceous film The coverage of the carbonaceous film of the particles in the positive electrodes of Examples 1 to 3 and Comparative Example was determined and evaluated.
Here, a part of the positive electrode is immersed in an organic solvent to dissolve the binder, or a part of the positive electrode is collapsed to take out LiFePO 4 particles having a carbonaceous film formed on the surface. It observed using the scanning electron microscope (SEM), and the state of the carbonaceous film in the surface was confirmed.
Further, the surface of the particles was subjected to surface analysis using an energy dispersive X-ray spectrometer (EDX), and the state of the carbonaceous film on the surface was confirmed.

その結果、炭素質被膜の被覆率は、実施例1では98〜100%、実施例2では95〜98%、比較例では80〜90%となっており、混練時間が短い方が正極中の粒子の炭素質被膜の被覆率が高くなることが分かった。   As a result, the coverage of the carbonaceous film was 98 to 100% in Example 1, 95 to 98% in Example 2, and 80 to 90% in Comparative Example, and the shorter kneading time was in the positive electrode. It was found that the coverage of the carbonaceous coating on the particles was high.

(2)充放電特性
実施例1〜3及び比較例の二次電池の充放電試験を、室温(25℃)にて、カットオフ電圧2−4.5V、充放電レート1Cの定電流(1時間充電の後、1時間放電)下にて実施した。実施例1、2及び比較例の充放電特性を図4に示す。
その結果、正極中の粒子の炭素質被膜の被覆率が高い程、容量(%)が大きいことが分かった。
(2) Charge / Discharge Characteristics The charge / discharge tests of the secondary batteries of Examples 1 to 3 and the comparative example were performed at room temperature (25 ° C.) at a constant current (1) with a cutoff voltage of 2-4.5 V and a charge / discharge rate of 1 C. 1 hour after discharge). The charge / discharge characteristics of Examples 1 and 2 and Comparative Example are shown in FIG.
As a result, it was found that the higher the coverage of the carbonaceous film of the particles in the positive electrode, the larger the capacity (%).

このように、正極の容量が大きくなった理由は、炭素質被膜の被覆率が高い、すなわち、正極のリチウムイオンの取り入れ・放出速度が速くなったことにより、正極の充放電反応時の過電圧が低下し、その結果、電極抵抗が低下したことによるものと考えられる。
また、隣接する正極活物質粒子間の炭素質被膜によるネットワークが切れることなく、網目状に繋がることにより、正極内の導電パスが確実に形成され、正極活物質粒子間の接続に伴う抵抗がより低下したものと考えられる。
以上により、正極の充電速度が向上し、さらに、電解液の分解反応等のような本来の電池反応とは無関係の副反応を防止することができ、したがって、正極の過充電試験等における安全性及び寿命特性を向上させることができた。
Thus, the capacity of the positive electrode is increased because of the high coverage of the carbonaceous film, i.e., the rate of lithium ion intake / release of the positive electrode is increased, and the overvoltage during the charge / discharge reaction of the positive electrode is increased. This is considered to be due to the decrease in electrode resistance.
In addition, the network formed by the carbonaceous film between the adjacent positive electrode active material particles is connected to a network without being cut off, so that a conductive path in the positive electrode is reliably formed, and resistance due to the connection between the positive electrode active material particles is further increased. It is thought that it decreased.
As a result, the charging speed of the positive electrode is improved, and further, side reactions unrelated to the original battery reaction such as the decomposition reaction of the electrolytic solution can be prevented. Therefore, the safety in the overcharge test etc. of the positive electrode can be prevented. And the life characteristics could be improved.

1 二次電池
2 ケース
3 蓋部材
4 発電要素
5 正極接続端子
6 負極接続端子
7 非水電解液
8 正極外部接続端子
9 負極外部接続端子
11 正極
12 負極
13 セパレータ
21 正極集電体
22 正極活物質層
31 負極集電体
32 負極活物質層
DESCRIPTION OF SYMBOLS 1 Secondary battery 2 Case 3 Lid member 4 Power generation element 5 Positive electrode connection terminal 6 Negative electrode connection terminal 7 Nonaqueous electrolyte 8 Positive electrode external connection terminal 9 Negative electrode external connection terminal 11 Positive electrode 12 Negative electrode 13 Separator 21 Positive electrode collector 22 Positive electrode active material Layer 31 Negative electrode current collector 32 Negative electrode active material layer

Claims (3)

表面に炭素質被膜が形成されたオリビン型リチウム複合化合物粒子を正極活物質として含有してなる非水電解液二次電池用正極において、
前記オリビン型リチウム複合化合物粒子の表面積に対する前記炭素質被膜の被覆率は95%以上であり、
前記非水電解液二次電池用正極における前記オリビン型リチウム複合化合物粒子の充填密度は、0.90g/cm 以上かつ1.09g/cm 以下であることを特徴とする非水電解液二次電池用正極。
In the positive electrode for a non-aqueous electrolyte secondary battery comprising olivine-type lithium composite compound particles having a carbonaceous film formed on the surface as a positive electrode active material,
Coverage of the carbonaceous coating to the surface area of the olivine-type lithium composite compound particles Ri der 95% or more,
The packing density of the olivine-type lithium composite compound particles in the positive electrode for a non-aqueous electrolyte secondary battery is 0.90 g / cm 3 or more and 1.09 g / cm 3 or less. Positive electrode for secondary battery.
請求項1記載の非水電解液二次電池用正極を備えたことを特徴とする非水電解液二次電池。 Non-aqueous electrolyte secondary battery comprising the nonaqueous electrolyte positive electrode for secondary battery according to claim 1. 請求項2に記載の非水電解液二次電池を備えたことを特徴とする電池モジュール。 A battery module comprising the nonaqueous electrolyte secondary battery according to claim 2 .
JP2010282433A 2010-12-17 2010-12-17 Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery, and battery module Active JP5740708B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010282433A JP5740708B2 (en) 2010-12-17 2010-12-17 Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery, and battery module
CN2011800594381A CN103250280A (en) 2010-12-17 2011-12-14 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
EP11848054.0A EP2654108B1 (en) 2010-12-17 2011-12-14 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
KR1020137015146A KR101929792B1 (en) 2010-12-17 2011-12-14 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
PCT/JP2011/078915 WO2012081621A1 (en) 2010-12-17 2011-12-14 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
US13/993,901 US9960416B2 (en) 2010-12-17 2011-12-14 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010282433A JP5740708B2 (en) 2010-12-17 2010-12-17 Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery, and battery module

Publications (2)

Publication Number Publication Date
JP2012133894A JP2012133894A (en) 2012-07-12
JP5740708B2 true JP5740708B2 (en) 2015-06-24

Family

ID=46649299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010282433A Active JP5740708B2 (en) 2010-12-17 2010-12-17 Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery, and battery module

Country Status (1)

Country Link
JP (1) JP5740708B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073281A (en) * 2015-10-07 2017-04-13 日産自動車株式会社 Positive electrode material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery using the same, and nonaqueous electrolyte secondary battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187524B2 (en) * 2002-01-31 2008-11-26 日本化学工業株式会社 Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2003308845A (en) * 2002-04-17 2003-10-31 Mikuni Color Ltd Electrode for lithium secondary battery and lithium secondary battery using it
JP2007173134A (en) * 2005-12-26 2007-07-05 Sumitomo Osaka Cement Co Ltd Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
JP5317390B2 (en) * 2006-02-09 2013-10-16 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5224650B2 (en) * 2006-03-30 2013-07-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5164477B2 (en) * 2007-08-23 2013-03-21 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2009295566A (en) * 2007-11-12 2009-12-17 Gs Yuasa Corporation Manufacturing device for electrode material, manufacturing method for electrode material, and manufacturing method for lithium secondary battery
JP5383217B2 (en) * 2008-01-28 2014-01-08 住友化学株式会社 Positive electrode active material, sodium secondary battery, and olivine-type phosphate production method
JP5436896B2 (en) * 2009-03-17 2014-03-05 日本化学工業株式会社 Lithium phosphorus composite oxide carbon composite, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP5131246B2 (en) * 2009-05-26 2013-01-30 Tdk株式会社 Composite particles for electrodes and electrochemical devices
JP2012059532A (en) * 2010-09-08 2012-03-22 Toyota Motor Corp Method for manufacturing secondary battery

Also Published As

Publication number Publication date
JP2012133894A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
US11349119B2 (en) Method for making silicon-containing composite electrodes for lithium-based batteries
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
US9413003B2 (en) Electrode material for lithium secondary battery and lithium secondary battery
US9960416B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
US20070026316A1 (en) Non-aqueous electrolyte battery
US11735709B2 (en) Positive electrode for lithium secondary battery, preparation method thereof, and lithium secondary battery including same
US20210050157A1 (en) Hybrid electrode materials for bipolar capacitor-assisted solid-state batteries
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
CN102714310B (en) Comprise the lithium-based electrochemical electric organ of the different electrochemical cells of two types
US20240088378A1 (en) Lithium Secondary Battery
JP2013098070A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery including the negative electrode
JP2012134114A (en) Nonaqueous electrolyte secondary battery and battery module
JP5740708B2 (en) Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery, and battery module
JP7074203B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US20250105445A1 (en) Prelithiated thermally stable separator
KR20140145916A (en) Secondary battery and electrode for secondary battery
JP2013254585A (en) Nonaqueous electrolyte secondary battery
US20240243249A1 (en) High-performance lithium-ion battery cell designs with lithiated silicon oxide (lso) anodes
US20230065750A1 (en) Battery and method for producing same
US20230187649A1 (en) Lithium Ion Battery and Method for Manufacturing Such a Lithium Ion Battery
US11217794B2 (en) Cathode of accumulator, associated accumulator and battery
KR20250040260A (en) Cathode active material comprising 2 types of particles having different sizes and secondary battery comprising thereof
CN118235265A (en) Pre-lithiated lithium metal oxide lithium ion battery with silicon-containing anode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150408

R150 Certificate of patent or registration of utility model

Ref document number: 5740708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250