JP5717067B2 - Composite cathode material for solid oxide fuel cell operating at medium and low temperature, composite cathode for solid oxide fuel cell, and method for producing electrolyte-composite cathode structure for solid oxide fuel cell - Google Patents
Composite cathode material for solid oxide fuel cell operating at medium and low temperature, composite cathode for solid oxide fuel cell, and method for producing electrolyte-composite cathode structure for solid oxide fuel cell Download PDFInfo
- Publication number
- JP5717067B2 JP5717067B2 JP2011095576A JP2011095576A JP5717067B2 JP 5717067 B2 JP5717067 B2 JP 5717067B2 JP 2011095576 A JP2011095576 A JP 2011095576A JP 2011095576 A JP2011095576 A JP 2011095576A JP 5717067 B2 JP5717067 B2 JP 5717067B2
- Authority
- JP
- Japan
- Prior art keywords
- solid oxide
- composite cathode
- fuel cell
- oxide fuel
- lscf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims description 62
- 239000007787 solid Substances 0.000 title claims description 40
- 239000010406 cathode material Substances 0.000 title claims description 30
- 239000000446 fuel Substances 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000843 powder Substances 0.000 claims description 36
- 239000002245 particle Substances 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000005049 combustion synthesis Methods 0.000 claims description 6
- 206010021143 Hypoxia Diseases 0.000 claims description 5
- 239000007784 solid electrolyte Substances 0.000 claims description 5
- 238000010304 firing Methods 0.000 claims 1
- 239000004020 conductor Substances 0.000 description 30
- 229910002132 La0.6Sr0.4Co0.2Fe0.8O3-δ Inorganic materials 0.000 description 23
- 229910002131 La0.6Sr0.4Co0.2Fe0.8O3–δ Inorganic materials 0.000 description 23
- 229910002130 La0.6Sr0.4Co0.2Fe0.8O3−δ Inorganic materials 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 4
- -1 oxygen ion Chemical class 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229910002554 Fe(NO3)3·9H2O Inorganic materials 0.000 description 1
- 229910017135 Fe—O Inorganic materials 0.000 description 1
- 229910002422 La(NO3)3·6H2O Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910002810 Sm0.5Sr0.5CoO3−δ Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000010349 cathodic reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
本発明は固体酸化物燃料電池(以下、SOFCと称する)用複合カソード材料に関し、より詳細には、2種の伝導性粉末を複合した材料であって、400℃〜700℃、好ましくは450℃〜600℃の範囲の中低温(以下では単に中低温と称する)で良好な伝導特性を示すSOFC燃料電池用複合カソード材料及びその製造方法に関する。 The present invention relates to a composite cathode material for a solid oxide fuel cell (hereinafter referred to as SOFC). More specifically, the present invention relates to a composite material of two kinds of conductive powder, which is 400 ° C to 700 ° C, preferably 450 ° C. The present invention relates to a composite cathode material for SOFC fuel cells and a method for producing the same, which exhibits good conduction characteristics at medium to low temperatures in the range of ˜600 ° C. (hereinafter simply referred to as “medium temperature”).
電気エネルギー需要の継続的増加に対して、新しい発電手段の燃料電池が有望視されてきた。その中でもSOFCの開発は急であり、800〜1000℃で作動させ、一部に実用化に至っている。これらは高温環境を容易に実現できる定置型発電機に利用されているが、自動車等の可動型発電機への利用はまだ実現していない。中低温領域を作動温度とすることができれば、可動型を含め、広範囲に利用できる発電機ができ、その経済的、地球環境的、さらに政治的インパクトは大きく、巨大な市場が開かれることが期待される。 New power generation fuel cells have been viewed as promising for a continuous increase in electrical energy demand. Among them, the development of SOFC is rapid, and it is operated at 800 to 1000 ° C., and part of it has been put into practical use. These are used for stationary generators that can easily realize high-temperature environments, but have not yet been realized for use in movable generators such as automobiles. If the operating temperature can be set in the mid-low temperature range, generators that can be used in a wide range including movable types will be produced, and the economic, global environmental and political impacts will be great, and a huge market is expected to be opened. Is done.
SOFCに用いる電解質にはプロトンを利用するタイプ、イオンを利用するタイプ及び電子伝導を利用するタイプがある。中低温で作動する電池には活性化エネルギーが低く、より低温で活性化されるプロトン伝導を利用する必要があり、プロトン伝導SOFCの開発が急がれている。プロトン伝導SOFCではプロトンがカソードで空気と反応するので、カソード材料はプロトン伝導を持ち、電気伝導に優れたものが好ましい。またカソードでは反応生成物の水分を蒸発させる必要があるので、表面積の大きい方がよい。従って、中低温動作SOFC用カソード材料としては、多孔質でプロトン伝導をもつ高電気伝導性の金属酸化物固体(セラミックス)が求められている。従来の電子伝導性SOFCはアノードで反応がおこり、生成物の水が燃料を薄めるという欠点があるが、プロトン伝導SOFCではカソード反応なのでその欠点も克服できる。 There are two types of electrolytes used for SOFC: protons, ions, and electron conduction. Batteries that operate at medium and low temperatures have low activation energy and need to use proton conduction activated at lower temperatures, and development of proton conduction SOFCs is urgently needed. In proton-conducting SOFC, protons react with air at the cathode, and therefore the cathode material preferably has proton conductivity and excellent electrical conductivity. Moreover, since it is necessary to evaporate the water of the reaction product at the cathode, a larger surface area is better. Accordingly, a highly electrically conductive metal oxide solid (ceramics) that is porous and has proton conductivity is required as a cathode material for medium-low temperature operation SOFCs. Conventional electron-conducting SOFCs have the disadvantage that the reaction takes place at the anode and the product water dilutes the fuel, but the proton-conducting SOFC is a cathodic reaction that can overcome the disadvantages.
酸化物の伝導材料としては、酸化ジルコニウム(ジルコニア、ZrO2)があり、高温で電気伝導を示す。これに酸化イットリウム(イットリア、Y2O3)を固溶したイットリア安定化ジルコニア(YSZ)も電子伝導体としてよく知られている。これに他の元素を固溶させたBaZr1−x−yPrxYyO3−δ(0.1≦x≦0.4、0<y≦0.2、δは酸素欠損、以下BZPYと称する)はプロトン伝導体であり、さらに、組成XとYを調整するとプロトン伝導性と電子伝導性の両方(以下、プロトン−電子両伝導性)を持ち、電気伝導に寄与することが判っている。一方、La−Sr−Co−Fe−O系化合物のLa1−xSrxCoyFe1−yO3−δ(0.2≦x≦0.6、0≦y≦0.4、δは酸素欠損)(以下、LSCFと称する)は酸素イオン伝導性と電子伝導性の両方(以下、酸素イオン−電子両伝導性と称する)を有する伝導体であり、優れた電気伝導性を示し、SOFC用材料として利用であり、カソードにも利用される。更に、複数の固体電気伝導材料を組み合わせると優れたSOFC用カソード材料が得られ、SOFCの効率を向上することができることも知られている。 An oxide conductive material is zirconium oxide (zirconia, ZrO 2 ), which exhibits electrical conduction at high temperatures. Yttria-stabilized zirconia (YSZ) in which yttrium oxide (yttria, Y 2 O 3 ) is dissolved is also well known as an electron conductor. BaZr 1-xy Pr x Y y O 3-δ in which other elements are dissolved in this (0.1 ≦ x ≦ 0.4, 0 <y ≦ 0.2, δ is oxygen deficiency, hereinafter BZPY Is a proton conductor, and it has been found that adjusting the compositions X and Y has both proton conductivity and electron conductivity (hereinafter referred to as proton-electron conductivity) and contributes to electrical conduction. Yes. On the other hand, La 1-x Sr x Co y Fe 1-y O 3-δ of the La—Sr—Co—Fe—O-based compound (0.2 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.4, δ Is oxygen deficiency) (hereinafter referred to as LSCF) is a conductor having both oxygen ion conductivity and electron conductivity (hereinafter referred to as oxygen ion-electron both conductivity), and exhibits excellent electrical conductivity, It is used as a material for SOFC and also used as a cathode. Furthermore, it is also known that when a plurality of solid electrically conductive materials are combined, an excellent cathode material for SOFC can be obtained and the efficiency of SOFC can be improved.
本発明者は、複数の固体電気伝導材料の組合せに当たって、どのような酸化物を組み合わせが電気伝導率の改良に有益かを検討し、本発明に至った。本発明の課題は、中低温で作動して優れた電気伝導率をもつSOFC用複合カソード材料を提供することである。 The present inventor studied what kind of oxide is useful for improving the electrical conductivity in the combination of a plurality of solid electrically conductive materials, and reached the present invention. It is an object of the present invention to provide a composite cathode material for SOFC that operates at medium and low temperatures and has excellent electrical conductivity.
本発明の一側面によれば、プロトン伝導性またはプロトン−電子両伝導性を有する第1の固体酸化物と酸素イオン−電子伝導性を有する第2の固体酸化物とを含む固体酸化物燃料電池用複合カソード材料が与えられる。
ここにおいて、前記第1の固体酸化物の組成がBaZr1−x−yPrxYyO3−δ(0.1≦x≦0.4、0<y≦0.2)であり、前記第2の固体酸化物の組成がLa1−xSrxCoyFe1−yO3−δ(0.2≦x≦0.6、0≦y≦0.4、δは酸素欠損による変動であり、0≦δ≦0.3の範囲)であってよい。ある、請求項1に記載の固体酸化物燃料電池用複合カソード材料。
また、前記第1の酸化物と前記第2の酸化物の少なくとも一方が、燃焼合成法により得られた粉末であってよい。
また、前記第1の酸化物はプロトン−電子両伝導性を有してよい。
前記第1の酸化物がBaZr0.5Pr0.3Y0.2O3−δの組成を有してよい。
本発明の他の側面によれば、上記の何れかの固体酸化物燃料電池用複合カソード材料の焼結体である、固体酸化物燃料電池用複合カソードが与えられる。
ここにおいて、固体酸化物燃料電池用複合カソードの粒径が50nm〜1μmであり、気孔率が0.3〜0.7であってよい。
本発明の更に他の側面によれば、プロトン伝導性の固体電解質と上記の何れかの固体酸化物燃料電池用複合カソード材料とを同時焼成する、固体酸化物燃料電池用電解質−複合カソード構造体の製造方法が与えられる。
According to one aspect of the present invention, a solid oxide fuel cell comprising a first solid oxide having proton conductivity or proton-electron conductivity and a second solid oxide having oxygen ion-electron conductivity. A composite cathode material is provided.
Here, the composition of the first solid oxide is BaZr 1-xy Pr x Y y O 3-δ (0.1 ≦ x ≦ 0.4, 0 <y ≦ 0.2), The composition of the second solid oxide is La 1-x Sr x Co y Fe 1-y O 3-δ (0.2 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.4, where δ is a variation due to oxygen deficiency. And 0 ≦ δ ≦ 0.3). The composite cathode material for a solid oxide fuel cell according to claim 1.
Further, at least one of the first oxide and the second oxide may be a powder obtained by a combustion synthesis method.
The first oxide may have both proton-electron conductivity.
The first oxide may have a composition of BaZr 0.5 Pr 0.3 Y 0.2 O 3-δ .
According to another aspect of the present invention, there is provided a composite cathode for a solid oxide fuel cell, which is a sintered body of any one of the above composite cathode materials for a solid oxide fuel cell.
Here, the particle diameter of the composite cathode for a solid oxide fuel cell may be 50 nm to 1 μm, and the porosity may be 0.3 to 0.7.
According to still another aspect of the present invention, an electrolyte-composite cathode structure for a solid oxide fuel cell, which co-fires a proton conductive solid electrolyte and any one of the above composite cathode materials for a solid oxide fuel cell. The manufacturing method is given.
本発明のSOFC用複合カソード材料は、中低温度で気伝導が高く、SOFCの電解質−複合カソード構造体に適するものである。更に、本発明の製造方法によれば、微粉からなり適当な気孔率がある優れた電解質−複合カソード構造体が得られる。 The composite cathode material for SOFC of the present invention has high air conduction at medium and low temperatures, and is suitable for an SOFC electrolyte-composite cathode structure. Furthermore, according to the production method of the present invention, an excellent electrolyte-composite cathode structure made of fine powder and having an appropriate porosity can be obtained.
SOFCにおいて、プロトン伝導体あるいはプロトンと電子の両方の伝導体(以下、プロトン−電子両伝導体と称する)であるBZPYと、酸素イオンと電子の両方の伝導体(以下、酸素イオン−電子両伝導体と称する)であるLSCFを複合してカソードを形成すると、カソード反応を加速して、電気伝導度の高いカソード材料が得られる。 In SOFC, BZPY, which is a proton conductor or both proton and electron conductors (hereinafter referred to as proton-electron both conductors), and both oxygen ion and electron conductors (hereinafter referred to as both oxygen ion-electron conduction). When the cathode is formed by combining LSCF, which is called a body, the cathode reaction is accelerated and a cathode material with high electrical conductivity is obtained.
固体電解質で発生したプロトンH+はカソードに進み、カソード中のBZPYなどのプロトン伝導体あるいはプロトン−電子両伝導体内を素早く移動し、以下で詳述するようにLSCFなどの酸素イオン−電子両伝導体表面(プロトン−電子両伝導体を使用した場合にはその表面でも)で電子や酸素イオンO−2と還元反応を起こして水を生成する。このため、BZPYとLSCFの組合せのような上記2種類の伝導体から形成した複合カソード材料を使用して形成されたカソードでは電子抵抗が下がる。更に、カソードは微粉末からなっていて適当な気孔率があり、反応を促進することが好ましい。以下に説明する本発明の方法によれば、このような構造のカソード材料が実現できる。 Proton H + generated in the solid electrolyte travels to the cathode, quickly moves in the proton conductor such as BZPY or the proton-electron conductor in the cathode, and both oxygen ion-electron conduction such as LSCF as described in detail below. Water is generated by causing a reduction reaction with electrons and oxygen ions O- 2 on the surface of the body (even when the proton-electron both conductors are used). For this reason, the electron resistance is lowered in the cathode formed using the composite cathode material formed from the two kinds of conductors such as the combination of BZPY and LSCF. Furthermore, the cathode is preferably made of fine powder, has an appropriate porosity, and promotes the reaction. According to the method of the present invention described below, a cathode material having such a structure can be realized.
SOFC用複合カソード材料は伝導体あるいはプロトン−電子両伝導体である固体酸化物微粉末と酸素イオン−電子両伝導体である固体酸化物の微粉末の2種の微粉末から合成する。両微粉末は粒子が微細であるほど好ましい。これらの微粉末の合成は、もちろんこれに限定する意図はないが、例えば各金属の化合物に有機物及び溶媒を加えてキレート化した溶液を固化し、燃焼合成法を用いて合成するのが好ましい。これらの微粉末を混合し複合化して酸化物固体電解質複合カソード材料とする。 The composite cathode material for SOFC is synthesized from two kinds of fine powders, a solid oxide fine powder which is a conductor or a proton-electron both conductor and a solid oxide fine powder which is an oxygen ion-electron both conductor. Both fine powders are preferred as the particles are finer. Of course, the synthesis of these fine powders is not intended to be limited to this. However, for example, it is preferable to synthesize a chelated solution by adding an organic substance and a solvent to each metal compound and synthesize it using a combustion synthesis method. These fine powders are mixed and compounded to obtain an oxide solid electrolyte composite cathode material.
プロトン伝導体あるいはプロトン−電子両伝導体であるBZPYは、BaZr1−x−yPrxYyO3−δ(0.1≦x≦0.4、0<y≦0.2)で表され、ここでδの範囲は0≦δ≦0.3である。BZPYがプロトン伝導性を示すか電子伝導性を示すかは組成x、yに依存する。x=0.1の場合(BZPY10)、加湿した空気中でほとんど純粋なプロトン伝導体となる。xの値をこれより大きく(例えば0.3;BZPY30)するとプロトン−電子両伝導体となる。 BZPY which is a proton conductor or a proton-electron both conductor is represented by BaZr 1-xy Pr x Y y O 3-δ (0.1 ≦ x ≦ 0.4, 0 <y ≦ 0.2). Here, the range of δ is 0 ≦ δ ≦ 0.3. Whether BZPY exhibits proton conductivity or electron conductivity depends on the compositions x and y. When x = 0.1 (BZPY10), the proton conductor is almost pure in humidified air. When the value of x is larger than this (for example, 0.3; BZPY30), a proton-electron conductor is obtained.
酸素イオン−電子両伝導体であるLSCFはLa1−xSr0xCoyFe1−yO3−δ(0.2≦x≦0.6、0≦y≦0.4、δは酸素欠損)で表され、ここでδの範囲は0≦δ≦0.3である。両者の粉末を組み合わせた複合材料でカソードを作ると、優れたSOFCのカソードが得られる。 LSCF which is an oxygen ion-electron both conductor is La 1-x Sr 0x Co y Fe 1-y O 3-δ (0.2 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.4, δ is oxygen deficiency Here, the range of δ is 0 ≦ δ ≦ 0.3. An excellent SOFC cathode can be obtained when a cathode is made of a composite material obtained by combining both powders.
ここで、本発明の例えばBZPYなどのプロトン−電子両伝導体(またはプロトン伝導体)とLSCFなどの酸素イオン−電子両伝導体との複合カソードで起こる化学反応系を図1に示す。図1(a)はプロトン伝導体(例えばBZPY10)を使用した場合に、また図1(b)はプロトン−電子両伝導体(例えばBZPY30)を使用した場合に起こり得る反応経路を示す。図1から判るように、プロトン−電子両伝導性を有する粒子を複合カソードの一方の材料として使用すると、電子とプロトンの両方が当該粒子を通って流れることができるため、当該粒子表面で酸素の還元とその後のプロトンとの反応が直接生起し得る(図1(b)の右側粒子の右上の活性領域を参照)。これは純プロトン伝導体を使用した場合(図1(a))には得られない特徴である。これによって、図1(b)の場合には、水の生成は図1(a)における電解質−カソード界面とプロトン−電子両伝導体の接点に加えて、プロトン−電子両伝導体表面でも起こり得るので、カソード反応が起こり得る面積はより大きくなる。 Here, FIG. 1 shows a chemical reaction system that occurs at a composite cathode of a proton-electron conductor (or proton conductor) such as BZPY and an oxygen ion-electron conductor such as LSCF of the present invention. FIG. 1A shows a reaction path that can occur when a proton conductor (for example, BZPY10) is used, and FIG. 1B shows a reaction path that can occur when both a proton-electron conductor (for example, BZPY30) is used. As can be seen from FIG. 1, when a particle having proton-electron conductivity is used as one material of the composite cathode, both electrons and protons can flow through the particle. Reduction and subsequent reaction with protons can occur directly (see the active region in the upper right of the right particle in FIG. 1 (b)). This is a characteristic that cannot be obtained when a pure proton conductor is used (FIG. 1A). Thus, in the case of FIG. 1 (b), water generation can occur at the surface of the proton-electron conductor in addition to the electrolyte-cathode interface and the proton-electron conductor contact in FIG. 1 (a). Therefore, the area where the cathode reaction can occur is larger.
[実施例の説明]
本発明のSOFC用複合カソード材料として以下ではBaZr1−x−yPrxYyO2−δ(0.1≦x≦0.4、0<y≦0.2)とLa0.6Sr0.4Co0.2Fe0.8O3−δの2つの材料の複合体を実施例に取上げて説明する。各々の組成の均一な粉末は、各元素の金属酸化物の粉末を仮焼して合成する。均一な微粉末を作るには、これに限定するわけではないが燃焼合成方法が最も有効である。
[Description of Examples]
As the composite cathode material for SOFC of the present invention, BaZr 1-xy Pr x Y y O 2-δ (0.1 ≦ x ≦ 0.4, 0 <y ≦ 0.2) and La 0.6 Sr are described below. A composite of two materials of 0.4 Co 0.2 Fe 0.8 O 3-δ will be described as an example. The uniform powder of each composition is synthesized by calcining a metal oxide powder of each element. Although not limited to this, the combustion synthesis method is most effective for producing a uniform fine powder.
燃焼合成では、各構成金属元素の化合物、例えば、酸化物、硝酸化合物など、を溶媒および有機成分とキレート化し、pH調整や加温等の処理でゲルや固体にする。それを火炎で燃焼して均一な微粉末とし、さらに高温で仮焼して合成する。 In combustion synthesis, a compound of each constituent metal element, for example, an oxide or a nitric acid compound is chelated with a solvent and an organic component, and is converted into a gel or a solid by a treatment such as pH adjustment or heating. It is burned with a flame to form a uniform fine powder, and further calcined at a high temperature for synthesis.
BZPYとLSCFの粉末を通常行う方法で適当な液体に分散させ、乳鉢や機械的混合機で十分に混合して混合粉体とし、成形する。このようにして、約1μmから50nmで2種類の粒子からなる成形物が得られた。 The BZPY and LSCF powders are dispersed in an appropriate liquid by a conventional method, and mixed thoroughly with a mortar or mechanical mixer to form a mixed powder, which is then molded. In this way, a molded product composed of two kinds of particles at about 1 μm to 50 nm was obtained.
SOFC用複合カソード材料の出発原料として、BZPY用には、Ba(NO3)2、Zr(NO3)2・2H2O、Pr6O11とY(NO3)3・6H2O粉末を用いた。LSCF用にはLa(NO3)3・6H2O、Sr(NO3)2、Co(NO3)2・6H2OとFe(NO3)3・9H2O粉末を用いた。これらを硝酸水溶液に溶かし、クエン酸で、総金属元素に対して2:1でキレート化し、溶液にした。アンモニア水でpHを、LSCFでは6〜8に、BZPYでは3〜4に調整し、80℃で撹拌すると、ゲル化した。ゲルを火炎で燃焼して粉末にし、その後、BZPYでは1100℃で6時間、LSCFでは1000℃で3時間仮焼した。原料の混合比を調整して、組成がBaZr0.7Pr01Y0.2O3−δ(BZPY10と記す)、BaZr0.5Pr0.3Y0.2O3−δ(BZPY30と記す)、およびLSCF(La0.6Sr0.4Co0.2Fe0.8O3−δ)の微粉末を合成した。BZPY10は複合カソード材料の評価を行う際に使う電解質である。 As a starting material for composite cathode materials for SOFC, Ba (NO 3 ) 2 , Zr (NO 3 ) 2 .2H 2 O, Pr 6 O 11 and Y (NO 3 ) 3 · 6H 2 O powder are used for BZPY. Using. For LSCF, La (NO 3 ) 3 · 6H 2 O, Sr (NO 3 ) 2 , Co (NO 3 ) 2 · 6H 2 O and Fe (NO 3 ) 3 · 9H 2 O powder were used. These were dissolved in an aqueous nitric acid solution, and chelated with citric acid at a ratio of 2: 1 to the total metal elements to form a solution. When the pH was adjusted to 6 to 8 for LSCF and 3 to 4 for BZPY with ammonia water and stirred at 80 ° C., gelation occurred. The gel was burned with a flame to form a powder and then calcined at 1100 ° C. for 6 hours for BZPY and at 1000 ° C. for 3 hours for LSCF. By adjusting the mixing ratio of the raw materials, the composition is BaZr 0.7 Pr 01 Y 0.2 O 3-δ (denoted as BZPY10), BaZr 0.5 Pr 0.3 Y 0.2 O 3-δ (with BZPY30) And a fine powder of LSCF (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ ). BZPY10 is an electrolyte used when evaluating the composite cathode material.
更に、BZPY10粉末とLSCF粉末を重量比で1:1に混合したもの、及びBZPY30粉末とLSCF粉末を同じく重量比で1:1に混合したものを1000℃で3時間焼成することにより、夫々焼成物LSCF−BZPY10及びLSCF−BZPY30を得た。 Further, BZPY10 powder and LSCF powder mixed at a weight ratio of 1: 1 and BZPY30 powder and LSCF powder mixed at a weight ratio of 1: 1 were fired at 1000 ° C. for 3 hours, respectively. The products LSCF-BZPY10 and LSCF-BZPY30 were obtained.
以上のようにして得られたLSCF、BZPY10、BZPY30、LSCF−BZPY10及びLSCF−BZPY30のXRDパターン、並びにLSCF、BZPY10及びBZPY30のSEM写真を図2に示す。図2(a)の回折パターンにおいて、LSCF−BZPY10及びLSCF−BZPY30のXRDパターン中にはBZPY10/PZPY30、LSCFに関連する回折線しか観測されないことから、これらの複合カソードを構成する2種類の酸化物間には化学反応が起こっていないことが示唆された。 FIG. 2 shows XRD patterns of LSCF, BZPY10, BZPY30, LSCF-BZPY10 and LSCF-BZPY30 and SEM photographs of LSCF, BZPY10 and BZPY30 obtained as described above. In the diffraction pattern of FIG. 2A, since only diffraction lines related to BZPY10 / PZPY30 and LSCF are observed in the XRD patterns of LSCF-BZPY10 and LSCF-BZPY30, two types of oxidation constituting these composite cathodes are observed. It was suggested that no chemical reaction occurred between the objects.
合成したBZPY30とLSCF粉末を1:1に秤量した粉末を乳鉢で混合し、テレピネオールやエチルセル−ロースを10重量%加え、更に機械的に混合し、成形した。 Powders obtained by weighing 1: 1 the synthesized BZPY30 and LSCF powder were mixed in a mortar, 10% by weight of terpineol or ethyl cellulose was added, and mechanically mixed to form.
以上による複合材料の評価のために、複合材料を薄片状にし、焼結したBZPY10電解質ペレットの両側にLSCF−BZPY30複合カソードを空気中で1600℃、8時間同時焼成することで、LSCF−BZPY30複合カソード−BZPY10電解質−LSCF−BZPY30複合カソードの順に積層している電解質−複合カソード構造体を作製した。このようにして作成された構造対中の複合カソードは、SEMの組織写真から計測すると平均粒径が約100nmの粒子の集合体となっており、その気孔率は50%であった。また、BZPY30の代わりにBZPY10を使用して同じ構造の積層物を準備し、同じ条件で同時焼成することにより、BZPY10を使用した以外は同じ構造の電解質−複合カソード構造体も作成した。このようにして作成された2つの電解質−複合カソード構造体の断面SEM写真を図3に示す。これらの電解質−複合カソード構造体は何れも細かな微細構造を有し、平均的に比較的小さな粒子を含んでいる。これにより、大きな表面積と電解質との良好な接着性が得られた。なお、平均粒径及び気孔率は、本発明では一般には夫々50nm〜1μm及び0.3〜0.7の範囲の値となる。 In order to evaluate the composite material as described above, the LSCF-BZPY30 composite cathode was baked at 1600 ° C. for 8 hours in the air on both sides of the sintered BZPY10 electrolyte pellets, and the LSCF-BZPY30 composite was obtained. An electrolyte-composite cathode structure in which a cathode-BZPY10 electrolyte-LSCF-BZPY30 composite cathode was laminated in this order was produced. The composite cathode in the structure pair thus prepared was an aggregate of particles having an average particle diameter of about 100 nm as measured from an SEM structural photograph, and its porosity was 50%. In addition, by using BZPY10 instead of BZPY30, a laminate having the same structure was prepared and co-fired under the same conditions, whereby an electrolyte-composite cathode structure having the same structure except that BZPY10 was used was also prepared. FIG. 3 shows cross-sectional SEM photographs of the two electrolyte-composite cathode structures thus prepared. All of these electrolyte-composite cathode structures have a fine microstructure and contain relatively small particles on average. Thereby, good adhesion between the large surface area and the electrolyte was obtained. In the present invention, the average particle diameter and the porosity generally have values in the range of 50 nm to 1 μm and 0.3 to 0.7, respectively.
これらの電解質−複合カソード構造体の両端に電極を1000℃3時間で焼き付け、マルチチャンネルポテンシオメーターと電気化学インピーダンス測定器(Electrochemical impedance spectrometer)を用いてその評価のための測定を行った。評価は単位面積電気伝導度(ASR(cathode area specific resistance)、ここでASR=RxA/2、R:電気抵抗、A:面積)により行った。 Electrodes were baked at both ends of these electrolyte-composite cathode structures at 1000 ° C. for 3 hours, and measurements for evaluation were performed using a multi-channel potentiometer and an electrochemical impedance meter. The evaluation was performed by unit area electrical conductivity (ASR (cathode area specific resistance), where ASR = RxA / 2, R: electrical resistance, A: area).
図4に、加湿した酸素雰囲気中でのASRと温度の逆数との関係を示す。2つの試料はいずれも良好な結果を与えたが、特にBZPY30を使用した資料のASR値は今までに合成された同種の複合系の電極−電解質材料より4〜6倍高い電気伝導(低い電気抵抗)を示した。 FIG. 4 shows the relationship between the ASR in the humidified oxygen atmosphere and the reciprocal of the temperature. Both samples gave good results, but in particular the ASR value of the material using BZPY30 is 4-6 times higher than the similar composite electrode-electrolyte material synthesized so far (low electrical conductivity). Resistance).
[比較例との対比]
図5は、本発明の実施例のうちのLSCF−BZPY30の湿った空気中でのASR対温度の逆数の関係を示すグラフに、比較例として、今までに合成されたという報告のあった複合系のカソード電極材料のASRについて当該文献に記載されている値を実線1〜3として追加したグラフである。LSCF−BZPY30のASRは500℃で1Ωcm2、600℃で0.15Ωcm2であった。実線1は非特許文献16で報告されたPrBaCo2O5+δ−BaZr0.1Ce0.7Y0.2O3−δ複合系の測定結果であり、ASRは600℃で1.669Ωcm2であった。実線2は非特許文献15で報告されたLSCF−BaCe0.9Yb0.1O3−δ(BCYb)複合系の測定結果であり、本発明より600℃で6倍ほど電気抵抗が高い。実線3は非特許文献17で報告されたSm0.5Sr0.5CoO3−δ−BaCe0.8Sm0.2O3−δ複合系の測定結果であり、ASRは600℃で本発明の実施例であるLSCF−BZPY30より4倍ほど電気抵抗が高い。
[Comparison with comparative example]
FIG. 5 is a graph showing the relationship between the reciprocal of ASR vs. temperature in humid air of LSCF-BZPY30 among the examples of the present invention, and a composite that has been reported so far as a comparative example. It is the graph which added the value described in the said literature about the ASR of the cathode electrode material of the system as solid lines 1-3. ASR of LSCF-BZPY30 was 0.15Omucm 2 in 1 .OMEGA.cm 2, 600 ° C. at 500 ° C.. The solid line 1 is the measurement result of the PrBaCo 2 O 5 + δ -BaZr 0.1 Ce 0.7 Y 0.2 O 3-δ composite system reported in Non-Patent Document 16, and the ASR is 1.669 Ωcm 2 at 600 ° C. there were. The solid line 2 is the measurement result of the LSCF-BaCe 0.9 Yb 0.1 O 3-δ (BCYb) composite system reported in Non-Patent Document 15, and the electric resistance is about 6 times higher at 600 ° C. than the present invention. The solid line 3 is the measurement result of the Sm 0.5 Sr 0.5 CoO 3-δ -BaCe 0.8 Sm 0.2 O 3-δ composite system reported in Non-Patent Document 17, and the ASR is 600 ° C. The electric resistance is about 4 times higher than that of LSCF-BZPY30 which is an embodiment of the invention.
以上の実施例と比較例から判るように、本発明のLSCF−BZPY系固体電解質酸化物複合カソード材料を用いると、低い電気抵抗率を実現することできる。 As can be seen from the above examples and comparative examples, when the LSCF-BZPY-based solid electrolyte oxide composite cathode material of the present invention is used, a low electrical resistivity can be realized.
LSCF−BZPY系複合材料は優れたSOFC用複合カソード材料であり、金属粉末から、特殊な方法を施すことがなく、合成できる。原料粉末は燃焼合成方法で合成するのが、微粉末が得られ好ましく、工業的応用が可能な工程である。中低温で作動する燃料電池はこの材料を用いることによって性能が格段に向上し、可搬型燃料電池も可能になる。従って、本発明の工業的利用の可能性は大きい。 The LSCF-BZPY composite material is an excellent composite cathode material for SOFC, and can be synthesized from metal powder without applying a special method. The raw material powder is synthesized by a combustion synthesis method because a fine powder can be obtained and is a process that can be industrially applied. By using this material, the performance of a fuel cell operating at a low temperature is greatly improved, and a portable fuel cell is also possible. Therefore, the industrial application potential of the present invention is great.
Claims (7)
前記第1の固体酸化物の組成がBaZr1−x−yPrxYyO3−δ(0.1≦x≦0.4、0<y≦0.2)であり、前記第2の固体酸化物の組成がLa1−xSrxCoyFe1−yO3−δ(0.2≦x≦0.6、0≦y≦0.4、δは酸素欠損による変動であり、0≦δ≦0.3の範囲)である、固体酸化物燃料電池用複合カソード材料。 In a composite cathode material for a solid oxide fuel cell comprising a first solid oxide having proton conductivity or proton-electron conductivity and a second solid oxide having oxygen ion-electron conductivity,
The composition of the first solid oxide is BaZr 1-xy Pr x Y y O 3-δ (0.1 ≦ x ≦ 0.4, 0 <y ≦ 0.2), and the second solid oxide The composition of the solid oxide is La 1-x Sr x Co y Fe 1-y O 3-δ (0.2 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.4, δ is a variation due to oxygen deficiency, 0 range of ≦ δ ≦ 0.3), solid bodies oxide fuel cell composite cathode material.
A method for producing an electrolyte-composite cathode structure for a solid oxide fuel cell, comprising simultaneously firing a proton conductive solid electrolyte and the composite cathode material for a solid oxide fuel cell according to any one of claims 1 to 4. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011095576A JP5717067B2 (en) | 2011-04-22 | 2011-04-22 | Composite cathode material for solid oxide fuel cell operating at medium and low temperature, composite cathode for solid oxide fuel cell, and method for producing electrolyte-composite cathode structure for solid oxide fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011095576A JP5717067B2 (en) | 2011-04-22 | 2011-04-22 | Composite cathode material for solid oxide fuel cell operating at medium and low temperature, composite cathode for solid oxide fuel cell, and method for producing electrolyte-composite cathode structure for solid oxide fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012227070A JP2012227070A (en) | 2012-11-15 |
JP5717067B2 true JP5717067B2 (en) | 2015-05-13 |
Family
ID=47276998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011095576A Active JP5717067B2 (en) | 2011-04-22 | 2011-04-22 | Composite cathode material for solid oxide fuel cell operating at medium and low temperature, composite cathode for solid oxide fuel cell, and method for producing electrolyte-composite cathode structure for solid oxide fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5717067B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5652602B2 (en) * | 2010-09-24 | 2015-01-14 | 独立行政法人物質・材料研究機構 | Electrolyte material for solid fuel cell and method for producing the same |
JP6071999B2 (en) * | 2012-03-09 | 2017-02-01 | Agcセイミケミカル株式会社 | Air electrode material powder for solid oxide fuel cell and method for producing the same |
CN103208634B (en) * | 2013-03-25 | 2016-04-27 | 北京科技大学 | For the composite cathode material of middle low-temperature protonic transmission Solid Oxide Fuel Cell |
JP2015213050A (en) * | 2014-04-14 | 2015-11-26 | パナソニックIpマネジメント株式会社 | Solid oxide fuel battery and electrolysis device |
CN104916850B (en) * | 2015-04-27 | 2017-06-06 | 上海邦民新能源科技有限公司 | Cathode of solid oxide fuel cell material and have its composite cathode material and preparation method thereof and battery composite cathode preparation method |
CN113260737B (en) * | 2019-04-26 | 2024-12-06 | 松下知识产权经营株式会社 | Membrane electrode assembly, electrochemical device, and electrochemical system |
JP7381015B2 (en) * | 2019-12-11 | 2023-11-15 | 日産自動車株式会社 | Precursor aqueous solution for producing composite oxide nanoparticles and method for producing composite oxide nanoparticles |
CN112018345A (en) * | 2020-07-14 | 2020-12-01 | 桑顿新能源科技(长沙)有限公司 | High-nickel composite positive electrode material and preparation method and application thereof |
CN113809343A (en) * | 2021-09-17 | 2021-12-17 | 中国科学技术大学 | Carbon dioxide resistant solid oxide fuel cell cathode material and preparation method thereof |
CN115810777A (en) * | 2022-09-13 | 2023-03-17 | 湖北大学 | LSCF-WO for low-temperature solid oxide fuel cell 3 Composite electrolyte |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05170444A (en) * | 1991-12-24 | 1993-07-09 | Central Res Inst Of Electric Power Ind | Stabilized zirconia-alumina powder for solid electrolyte fuel cell |
GB0217794D0 (en) * | 2002-08-01 | 2002-09-11 | Univ St Andrews | Fuel cell electrodes |
JP4876373B2 (en) * | 2004-04-23 | 2012-02-15 | トヨタ自動車株式会社 | Cathode for fuel cell and method for producing the same |
US8178258B2 (en) * | 2004-05-31 | 2012-05-15 | Pirelli & C. S.P.A. | Electrochemical device with a LSGM-electrolyte |
JP5528132B2 (en) * | 2010-01-26 | 2014-06-25 | 国立大学法人東京工業大学 | Method for producing electrode for solid oxide fuel cell and solid oxide fuel cell produced by the method |
-
2011
- 2011-04-22 JP JP2011095576A patent/JP5717067B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012227070A (en) | 2012-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5717067B2 (en) | Composite cathode material for solid oxide fuel cell operating at medium and low temperature, composite cathode for solid oxide fuel cell, and method for producing electrolyte-composite cathode structure for solid oxide fuel cell | |
Shang et al. | A promising cathode for intermediate temperature protonic ceramic fuel cells: BaCo 0.4 Fe 0.4 Zr 0.2 O 3− δ | |
Fabbri et al. | High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes | |
US8124037B2 (en) | Perovskite materials for solid oxide fuel cell cathodes | |
Zhang et al. | A novel cobalt-free cathode material for proton-conducting solid oxide fuel cells | |
Lu et al. | Preparation and characterization of new cobalt-free cathode Pr0. 5Sr0. 5Fe0. 8Cu0. 2O3− δ for IT-SOFC | |
WO2016157566A1 (en) | Proton conductor, fuel-cell solid-electrolyte layer, cell structure, and fuel cell provided with same | |
CN103208634B (en) | For the composite cathode material of middle low-temperature protonic transmission Solid Oxide Fuel Cell | |
KR101892909B1 (en) | A method for manufacturing protonic ceramic fuel cells | |
JP5465240B2 (en) | Sol-gel derived high performance catalytic thin films for sensors, oxygen separators, and solid oxide fuel cells | |
Xu et al. | Oxide composite of La0. 3Sr0. 7Ti0. 3Fe0. 7O3-δ and CeO2 as an active fuel electrode for reversible solid oxide cells | |
Wang et al. | Electrochemical comparison of cobalt-free La0. 5Sr0. 5Fe0. 9Mo0. 1O3− δ based cathode materials for intermediate-temperature solid oxide fuel cells | |
JP2009037874A (en) | Manufacturing method of air electrode-supported single cell of medium temperature operation solid oxide fuel cell | |
JP2009037872A (en) | Ceramic powder, laminated member of air electrode and electrolyte layer of medium temperature operating solid oxide fuel cell using the powder, and method for producing the same | |
JP2013143187A (en) | Solid oxide fuel battery, and material for forming cathode of solid oxide fuel battery | |
Kwon et al. | Development of a PrBaMn2O5+ δ-La0. 8Sr0. 2Ga0. 85Mg0. 15O3-δ composite electrode by scaffold infiltration for reversible solid oxide fuel cell applications | |
JP5674035B2 (en) | Medium / low temperature high efficiency electrochemical cell and electrochemical reaction system composed of them | |
JP5219370B2 (en) | Ionic conductor | |
Zhao et al. | Demonstration of high-performance and stable metal-supporting semiconductor-ionic fuel cells | |
Shin et al. | Catalysts for composite cathodes of protonic ceramic fuel cells | |
Kim et al. | Revolutionizing hydrogen production with LSGM-based solid oxide electrolysis cells: An innovative approach by sonic spray | |
JP5118827B2 (en) | Proton conduction fuel cell and method for producing the same, hydrogen sensor and method for producing the same | |
JP6664132B2 (en) | Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same | |
Fang et al. | Boosting the performance of reversible solid oxide electrochemical cells with a novel hybrid oxygen electrode, Pr 1.39 Ba 0.14 Sr 0.53 Co 1.48 Fe 0.76 O 6− δ-Ba 0.66 Sr 0.34 CoO 3− δ | |
JP5483013B2 (en) | Flat tube electrochemical cell and electrochemical reaction system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141021 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150309 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5717067 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |