JP5716234B2 - Harvest quality prediction system and harvest quality prediction method using cross-sectional images of rice to be harvested - Google Patents
Harvest quality prediction system and harvest quality prediction method using cross-sectional images of rice to be harvested Download PDFInfo
- Publication number
- JP5716234B2 JP5716234B2 JP2010291563A JP2010291563A JP5716234B2 JP 5716234 B2 JP5716234 B2 JP 5716234B2 JP 2010291563 A JP2010291563 A JP 2010291563A JP 2010291563 A JP2010291563 A JP 2010291563A JP 5716234 B2 JP5716234 B2 JP 5716234B2
- Authority
- JP
- Japan
- Prior art keywords
- grain
- grains
- white
- predicted
- harvest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003306 harvesting Methods 0.000 title claims description 151
- 235000007164 Oryza sativa Nutrition 0.000 title claims description 97
- 235000009566 rice Nutrition 0.000 title claims description 97
- 238000000034 method Methods 0.000 title claims description 20
- 240000007594 Oryza sativa Species 0.000 title 1
- 235000013339 cereals Nutrition 0.000 claims description 422
- 241000209094 Oryza Species 0.000 claims description 96
- 235000021329 brown rice Nutrition 0.000 claims description 37
- 238000004364 calculation method Methods 0.000 claims description 31
- 238000003384 imaging method Methods 0.000 claims description 27
- 238000012545 processing Methods 0.000 claims description 22
- 238000004458 analytical method Methods 0.000 claims description 17
- 238000010191 image analysis Methods 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 16
- 238000004513 sizing Methods 0.000 claims description 16
- 238000005520 cutting process Methods 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 210000001015 abdomen Anatomy 0.000 claims description 5
- 229920002472 Starch Polymers 0.000 claims description 4
- 235000011837 pasties Nutrition 0.000 claims description 4
- 235000019698 starch Nutrition 0.000 claims description 4
- 239000008107 starch Substances 0.000 claims description 4
- 235000020985 whole grains Nutrition 0.000 claims 2
- 230000035800 maturation Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000012549 training Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 210000005069 ears Anatomy 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000013441 quality evaluation Methods 0.000 description 2
- 230000005070 ripening Effects 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- KEQXNNJHMWSZHK-UHFFFAOYSA-L 1,3,2,4$l^{2}-dioxathiaplumbetane 2,2-dioxide Chemical compound [Pb+2].[O-]S([O-])(=O)=O KEQXNNJHMWSZHK-UHFFFAOYSA-L 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 244000273928 Zingiber officinale Species 0.000 description 1
- 235000006886 Zingiber officinale Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 235000008397 ginger Nutrition 0.000 description 1
- 235000015243 ice cream Nutrition 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001303 quality assessment method Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
本発明は、簡略容易に籾米又は玄米からなる収穫予定米の収穫時品質予測を高精度に実行できる収穫予定米の断面撮像画像を用いた収穫時品質予測システム及び収穫時品質予測方法に関するものである。 The present invention relates to a harvest quality prediction system and a harvest quality prediction method using a cross-sectional captured image of a planned harvest rice that can be easily and accurately executed to predict the harvest quality of the planned harvest rice composed of brown rice or brown rice. is there.
農産物共済制度においては、災害による収量・品質の低下部分に対して共済金を受け取ることができるが、収穫前に農家から被害申告がなされ、共済組合等の調査員が立毛状態で圃場(田圃・たんぼ)調査を行うことにより損害程度を評価する必要がある。 In the Agricultural Products Mutual Aid System, mutual aid money can be received for the decline in yield and quality due to disasters, but damage is declared by the farmers before harvesting, and the investigators such as mutual aid associations are raised in the field (field It is necessary to evaluate the degree of damage by conducting a survey.
病虫害や倒伏による被害では被害を受けたことがわかり易いため、農家による被害申告漏れはほとんど起きないが、日照不足や高温或いは乾燥風による乳白粒の多発のように立毛状態の稲の外観からは被害を予想することが難しい場合には、被害申告が行われず、共済金を受け取れない事態が発生する。 It is easy to understand that damage was caused by pest damage and lodging, so there is almost no omission of damage by farmers, but damage from the appearance of napped rice such as lack of sunshine or frequent occurrence of milky grains due to high temperature or dry wind If it is difficult to predict the situation, damages will not be declared and mutual aid money will not be received.
被害申告後、収穫までの間に損害評価の圃場調査が広範囲の地域で行われることを考えると、収穫前10日前後の時期には被害申告が行われる必要がある。
このため、この時期に圃場の一部の穂を採取して、玄米品質を達観、あるいは穀粒判別器によって調査している例があるが、未熟玄米の外観調査では成熟時の品質を予測することは困難な状況にある。
Considering that field surveys for damage assessment are conducted in a wide area after the damage report and before harvesting, it is necessary to report the damage at around 10 days before harvest.
For this reason, some ears of the field are collected at this time and the quality of brown rice is examined by an objective or grain discriminator, but the appearance survey of immature brown rice predicts the quality at maturity This is a difficult situation.
また、圃場の一部の穂を採取して玄米品質を達観で調査する際に、専門の鑑定員の鑑定に委ねる例もあるが、この場合には、個々の鑑定員の鑑定結果にばらつきが生じ易く、客観性に欠け、更には鑑定員の養成に費用も嵩む。 In addition, there is an example in which, when collecting some ears of the field and investigating the quality of brown rice objectively, it is left to the expert appraisers, but in this case, the appraisal results of individual appraisers vary. It tends to occur, lacks objectivity, and further increases the cost of training appraisers.
従来においても、例えば、収穫前の玄米の外観品質評価から収穫時の乳白粒発生率を予測する手法(「玄米品質の早期判定可能時期」、群馬県農業技術センター,参照)が提案されているが、この手法では出穂後の積算気温が750℃以上(早期水稲の収穫前7日程度に相当)の時期に成熟期の品質はある程度予測が可能とされているものの、乳白粒の予測は難しいとされている。 In the past, for example, a method has been proposed to predict the occurrence rate of milky white grains at harvest from the appearance quality assessment of unpolished rice before harvesting (refer to “Gunma Agricultural Technology Center”). However, with this method, the quality of the mature stage can be predicted to some extent when the accumulated temperature after heading is 750 ° C or higher (corresponding to about 7 days before early rice harvesting), but it is difficult to predict milky white grains. It is said that.
更に、乳白粒発生率を水稲の乾物生産量と蓄積炭水化物量及び出穂後の積算温度から推定する方法(例えば、「水稲白未熟粒発生のモデル化と予測に関する研究」、日本作物学会紀事第77巻,別号1,P148-149,2008年,参照)があるが、必要となるデータの採取が煩雑であり農業現場で使うことは難しい。 Furthermore, the method of estimating the milk white grain incidence from the dry matter production of rice, the amount of accumulated carbohydrates, and the accumulated temperature after heading (for example, “Study on modeling and prediction of rice immature grain development”, Journal of the Crop Science Society of Japan 77 Volume, Annex 1, P148-149, 2008), but the necessary data collection is complicated and difficult to use in the agricultural field.
従来の予測手法のうち、モデル化による方法では、上記のように乾物重や炭水化物などの多くの生育データと気象データが必要となる点、収穫前の玄米を用いる場合には予測精度の低い点が問題となっており、個々の圃場における乳白粒の発生予測の利用には到っていない。 Of the conventional prediction methods, the modeling method requires a lot of growth data such as dry weight and carbohydrates and weather data as described above, and the prediction accuracy is low when using brown rice before harvesting. However, it has not been used to predict the occurrence of milky white grains in individual fields.
従来においては、本発明に係る籾米又は玄米からなる収穫予定米の収穫時品質予測を高精度に実行することができるような収穫予定米の断面撮像画像を用いた収穫時品質予測システム、収穫時品質予測方法は存在しない。
あえて本発明の先行文献を挙げるとすると、本発明に直接関係するものではないが、玄米や籾米等の外観品質ではなく成分分析に係る装置としての特許文献1を挙げることができる。
特許文献1には、玄米や白米、更には籾米をも含めて、これらを損傷、劣化させることなくその成分測定を行うことを目的として、穀物試料が貯留される試料貯留室と、投光口及び受光口を有する測定室と、投光手段及び受光手段が配設される筐体とを備えた穀物の品質判定装置であって、投光手段を、近赤外光を含む照射光を発光する光源と、この光源から発光される照射光を測定用孔に向けて反射させるリフレクタと、一方の開口を光源及びリフレクタに臨ませ他方の開口を測定用孔に臨ませて光源と測定用孔との間に配設される反射筒とを備えて構成した穀物の品質評価装置が提案されている。
Conventionally, a harvest-time quality prediction system using a cross-sectional image image of a planned harvest rice that can accurately perform the harvest-time quality prediction of the planned harvest rice made of glutinous rice or brown rice according to the present invention, There is no quality prediction method.
If the prior literature of the present invention is enumerated, it is not directly related to the present invention, but it is possible to cite Patent Document 1 as an apparatus related to component analysis rather than appearance quality such as brown rice and rice bran.
Patent Document 1 includes a sample storage chamber in which grain samples are stored, and a floodlight for the purpose of measuring the components of brown rice, white rice, and even brown rice, without damaging or degrading them. And a grain quality judging device comprising a measurement chamber having a light receiving port, and a casing in which the light projecting means and the light receiving means are disposed, wherein the light projecting means emits irradiation light including near infrared light. A light source, a reflector that reflects the emitted light emitted from the light source toward the measurement hole, one opening facing the light source and the reflector, and the other opening facing the measurement hole, and the light source and the measurement hole There has been proposed a grain quality evaluation apparatus comprising a reflecting cylinder disposed between the two.
しかし、上述したように、特許文献1のものは外観品質ではなく成分分析に係る装置であり、穀物の品質評価装置の場合、玄米や籾米等の成分分析を主体とするものであり、本発明のような収穫予定米の収穫時品質予測システム、収穫時品質予測方法では勿論ない。 However, as described above, the device of Patent Document 1 is a device related to component analysis rather than appearance quality, and in the case of a grain quality evaluation device, it mainly uses component analysis of brown rice, rice bran, etc. Of course, it is not the harvest quality prediction system and harvest quality prediction method for the planned harvest rice.
本発明が解決しようとする問題点は、鑑定人の目を介することが不要で、当該鑑定人育成のための費用が嵩むことがなく、予測作業を行う作業員が格別の専門的知識を有することも必要とせずに簡略容易に籾米又は玄米からなる収穫予定米の収穫時品質予測を高精度に実行することができるような収穫予定米の断面撮像画像を用いた収穫時品質予測システム、収穫時品質予測方法が存在しない点である。 The problem to be solved by the present invention is that it is not necessary to go through the eyes of the appraiser, the cost for training the appraiser does not increase, and the worker who performs the prediction work may have special technical knowledge. Harvest quality prediction system using harvested rice cross-sectional images that can accurately predict the harvest quality of the planned harvest rice, which is made of glutinous rice or brown rice, without any need. There is no prediction method.
本発明に係る収穫予定米の断面撮像画像を用いた収穫時品質予測システムは、実際の収穫日より前の採取日に圃場から採取され穀粒支持プレートの各孔に一粒ずつ納まった多数の収穫予定米のサンプル粒の胴部を切断する穀粒切断器と、前記穀粒切断器により切断された多数の収穫予定米のサンプル粒の各切断面を表出させた状態に配列する収穫予定米粒配列手段と、前記収穫予定米粒配列手段により配列された多数の収穫予定米のサンプル粒の各切断面を走査して各粒の切断面画像を取得する撮像手段と、前記撮像手段にて取得した各粒の切断面画像における胚乳部の白濁部分を予め指定した分類カテゴリー情報を参照して分析し、予測整粒、予測白未熟粒、未判断粒に分類する画像分析処理手段と、前記予測整粒、予測白未熟粒、未判断粒とされた各粒の切断面画像の胚乳部の白濁部分の分析結果、及び予測整粒、予測白未熟粒、未判断粒の個数情報を基に、前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の発生割合を穀粒支持プレートの各孔の数に相当する穀粒数を分母とし、予測白未熟粒とされた数を分子とする演算により算出する算出手段と、を有するコンピュータ装置と、を有し、前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の前記算出された発生割合によって、収穫日における白未熟粒の発生割合を予測するように構成したことを最も主要な特徴とする。 The harvest-time quality prediction system using the cross-sectional image of the planned harvested rice according to the present invention is a large number of grains that are collected from the field on the collection day before the actual harvest date and stored in each hole of the grain support plate. A grain cutter that cuts the body of the sample grain of the planned grain to be harvested, and a planned harvest that arranges each cut surface of the sample grains of the multiple harvested rice that has been cut by the grain cutter in an exposed state Acquired by the rice grain arranging means, the imaging means for scanning each cut surface of the sample grains of a large number of planned harvested rice grains arranged by the planned harvest rice grain arranging means, and obtaining a cut surface image of each grain, and the imaging means Image analysis processing means for analyzing the cloudiness portion of the endosperm portion in the cut surface image of each grain with reference to classification category information designated in advance, and classifying into predicted sizing, predicted white immature grain, and undecided grain, and said prediction Sized, predicted white immature, undecided Analysis of has been clouded portions of the endosperm portion of the grain of the cut surface image, and the prediction sizing, prediction white immature grains, based on the number information of the undetermined grain, the predicted white immature grains occurrence rate is almost no change The predicted white immature grain generation rate for the collection date in a certain period close to the actual harvest date is calculated using the number of grains corresponding to the number of holes in the grain support plate as the denominator. A computer unit having a calculation means for calculating by a calculation as a numerator, and predicted white immature grains on a collection date in a certain period close to an actual harvest date in which the occurrence ratio of the predicted white immature grains hardly changes. The most important feature is that the generation ratio of white immature grains on the harvest date is predicted based on the calculated generation ratio .
請求項1記載の発明によれば、上記構成の穀粒切断器、収穫予定米粒配列手段、撮像手段、コンピュータ装置及び出力手段を用い、簡略な操作だけでこれまで収穫前の玄米品質別発生率の判定が外観で行われることによって生じていた予測のあいまいさ、及び鑑定人によって行われることによって生じていた費用と時間、当該鑑定人育成のための費用をかけることなく、分析結果の個人差を軽減し、かつ、収穫予定米のサンプル粒の予測整粒、予測白未熟粒、未判断粒についての測定精度の向上、特に予測白未熟粒の発生割合の算出精度の向上を図ることも可能な収穫予定米の断面撮像画像を用いた収穫時品質予測システムを実現し提供することができる。 According to the first aspect of the present invention, by using the grain cutter, the harvested rice grain arranging means, the imaging means, the computer device, and the output means having the above-described configuration, the occurrence rate according to the quality of brown rice before harvesting up to now only by simple operation. The ambiguity of the prediction that was caused by the judgment of the appearance, the cost and time that were caused by the appraiser, and the individual differences in the analysis results without incurring costs for the appraiser In addition, it is possible to improve the measurement accuracy of the predicted grain size, predicted white immature grain, and undecided grain of the rice to be harvested, and in particular to improve the calculation accuracy of the occurrence ratio of predicted white immature grains. It is possible to realize and provide a harvest quality prediction system using cross-sectional images of planned rice.
請求項2記載の発明によれば、上記構成の穀粒切断器、収穫予定米粒配列手段、撮像手段、コンピュータ装置及び出力手段を用い、簡略な操作だけでこれまで収穫前の玄米品質別発生率の判定が外観で行われることによって生じていた予測のあいまいさ、及び鑑定人によって行われることによって生じていた費用と時間、当該鑑定人育成のための費用をかけることなく、分析結果の個人差を軽減し、かつ、収穫予定米の粒のあらかじめ指定した8種の分類カテゴリーに関する予測整粒、予測白未熟粒、未判断粒についての測定精度の向上、特に予測白未熟粒の発生割合の算出精度の向上を図ることも可能な収穫予定米の断面撮像画像を用いた収穫時品質予測システムを実現し提供することができる。 According to the invention described in claim 2, the incidence rate according to the quality of brown rice before harvesting up to now by simple operations using the grain cutter, the harvested rice grain arranging means, the imaging means, the computer device and the output means having the above-described configuration. The ambiguity of the prediction that was caused by the judgment of the appearance, the cost and time that were caused by the appraiser, and the individual differences in the analysis results without incurring costs for the appraiser In addition, it improves the measurement accuracy of predicted grain size, predicted white immature grains, and undecided grains for 8 classification categories of rice grains to be harvested . can be harvested during achieve quality prediction system for providing with a possible harvesting plans rice sectional captured image be improved.
請求項3記載の発明によれば、上記構成の穀粒切断器、収穫予定米粒配列手段、画像スキャナ、コンピュータ装置及びプリンタ又は表示部を用い、簡略な操作だけでこれまで収穫前の玄米品質別発生率の判定が外観で行われることによって生じていた予測のあいまいさ、及び鑑定人によって行われることによって生じていた費用と時間、当該鑑定人育成のための費用をかけることなく、分析結果の個人差を軽減し、かつ、収穫予定米の粒のあらかじめ指定した8種の分類カテゴリーに関する予測整粒、予測白未熟粒、未判断粒についての測定精度の向上、特に予測白未熟粒の発生割合の算出精度の向上を図ることも可能な収穫予定米の断面撮像画像を用いた収穫時品質予測システムを実現し提供することができる。
According to the invention described in
請求項4記載の発明によれば、上記構成の穀粒切断器、収穫予定米粒配列手段、画像スキャナ、コンピュータ装置及びプリンタ又は表示部を用い、上述した一連の工程を実行することによって、これまで収穫前の玄米品質別発生率の判定が外観で行われることによって生じていた予測のあいまいさ、及び鑑定人によって行われることによって生じていた費用と時間、当該鑑定人育成のための費用をかけることなく、分析結果の個人差を軽減し、かつ、収穫予定米の粒のあらかじめ指定した8種の分類カテゴリーに関する予測整粒、予測白未熟粒、未判断粒についての測定精度の向上特に予測白未熟粒の発生割合の算出精度の向上を図ることも可能な収穫予定米の断面撮像画像を用いた収穫時品質予測方法を実現し提供することができる。
According to the invention described in
本発明は、鑑定人の目を介することが不要で、当該鑑定人育成のための費用が嵩むことがなく、予測作業を行う作業員が格別の専門的知識を有することも必要とせずに簡略容易に籾米又は玄米からなる収穫予定米の収穫時品質予測を高精度に実行できる収穫予定米の断面撮像画像を用いた収穫時品質予測システムを提供するという目的を、実際の収穫日より前の採取日に圃場から採取され穀粒支持プレートの各孔に一粒ずつ納まった玄米又は籾米からなる多数の収穫予定米のサンプル粒の胴部を切断する穀粒切断器と、前記穀粒切断器により切断された多数の収穫予定米のサンプル粒の各切断面を表出させた状態に配列する収穫予定米粒配列手段と、前記収穫予定米粒配列手段により配列された多数の収穫予定米のサンプル粒の各切断面を走査して各粒の切断面画像を取得する撮像手段と、前記撮像手段にて取得した各粒の切断面画像における胚乳部の白濁部分を予め指定した8種の分類カテゴリー情報を参照して分析し、予測整粒、予測白未熟粒、未判断粒に分類する画像分析処理手段と、前記予測整粒、予測白未熟粒、未判断粒とされた各粒の切断面画像における胚乳部の白濁部分の分析結果、及び予測整粒、予測白未熟粒、未判断粒の個数情報を基に、前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の発生割合を穀粒支持プレートの各孔の数に相当する穀粒数を分母とし、予測白未熟粒とされた数を分子とする演算により算出する算出手段と、
前記撮像手段、画像分析処理手段、算出手段の処理結果を記憶する記憶手段と、前記算出手段の算出結果を基に予測白未熟粒の発生割合に関するグラフ情報又は表情報を作成する出力情報作成手段と、を有するコンピュータ装置と、前記画像分析処理手段、出力情報作成手段の処理結果を画像、グラフ又は表として出力する出力手段と、を有し、前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の前記算出された発生割合によって、収穫日における白未熟粒の発生割合を予測するように構成した収穫予定米の断面撮像画像を用いた収穫時品質予測システムであって、前記予め指定した8種の分類カテゴリー情報は、成熟前の収穫予定米粒で、切断面が全体的に透明化した粒を予測整粒とし、切断面の中央付近が白く環状になっている粒を乳白粒となる予測白未熟粒とし、切断面の中央付近が核状に白濁し、その周辺部がすでに透明化している粒を乳白粒又は心白粒となる予測白未熟粒とし、切断面の中央部分に帯状の白濁部分がある粒を心白粒となる予測白未熟粒とし、切断面の外周のほかに背側から中心部にかけて白濁している粒を乳白粒又は心白粒となる予測白未熟粒とし、切断面の背側あるいは腹側の外周付近のみが白濁している場合、それぞれ背白粒あるいは腹白粒となる予測白未熟粒とし、切断面が牛乳状のペースト状あるいは全体的に乳白色で不透明化している粒を未判断粒とし、切断面の中心部がデンプンにより透明化し、外周部が白濁している粒を未判断粒とする構成により実現した。
The present invention does not require the eyes of an appraiser, does not increase the cost for training the appraiser, and does not require that the worker who performs the prediction work has special technical knowledge. The purpose of providing a quality prediction system at harvest time using cross-sectional images of the planned harvest rice that can accurately predict the harvest quality of the planned harvest rice, which is made of glutinous rice or brown rice, is the collection date prior to the actual harvest date. A grain cutter that cuts the body of a large number of sample grains of brown rice or brown rice that are collected from the field and stored in each hole of the grain support plate, and cut by the grain cutter A plurality of planned grains to be harvested and arranged in a state where each cut surface of the sample grains to be harvested is exposed, and each of the sample grains of a plurality of planned grains to be harvested arranged by the planned grain to be harvested rice Run through the cutting plane Imaging means for obtaining a cutting surface image of each particle and, and analyzed with reference to the eight classification category information in advance specified clouding portion of the endosperm part of each grain of the cut surface images acquired by the imaging means , Predicted sizing, predicted white immature grain, image analysis processing means for classifying into undetermined grains, and the cloudiness portion of the endosperm portion in the cut surface image of each grain that has been predicted sized, predicted white immature grains, and undetermined grains Based on the analysis results and the number information of predicted sizing, predicted white immature grains, and undecided grains , the prediction of the collection date in a certain period close to the actual harvest date where the occurrence ratio of the predicted white immature grains hardly changes The calculation means for calculating the generation ratio of white immature grains by calculation using the number of grains corresponding to the number of each hole of the grain support plate as a denominator and the number of predicted white immature grains as a numerator,
Storage means for storing the processing results of the imaging means, image analysis processing means, calculation means, and output information creation means for creating graph information or table information relating to the occurrence rate of predicted white immature grains based on the calculation results of the calculation means And an output means for outputting the processing results of the image analysis processing means and the output information creation means as an image, a graph or a table, and the occurrence ratio of the predicted white immature grains hardly changes. A cross-sectional image of the planned harvest rice that is configured to predict the occurrence rate of white immature grains on the harvest date based on the calculated occurrence rate of white immature grains on the harvest date in a certain period close to the actual harvest date. In the harvest quality prediction system used, the eight types of classification category information specified in advance are pre-ripe rice grains that are to be harvested and are pre-ripe grains that have a transparent cut surface. Grain that is sized and is white and circular in the vicinity of the center of the cut surface is the predicted white immature grain that becomes milky white, and that the center of the cut surface is clouded in the form of nuclei and the periphery is already transparent Is a predicted white immature grain that becomes milky white or heart white grain, and a grain that has a band-like cloudy part at the center of the cut surface is regarded as a predicted white immature grain that becomes a heart white grain from the back side in addition to the outer periphery of the cut surface If the grain that is cloudy toward the center is the predicted white immature grain that becomes milky white or heart white, and only the backside or ventral side of the cut surface is cloudy, the backwhite or belly white Predicted white immature grains, and the cut surface is milky pasty or the whole milky white and opaque grains are undetermined grains, the center of the cut surface becomes transparent with starch, and the outer periphery becomes cloudy This is realized by the configuration in which the existing grains are undetermined grains.
以下、本発明の実施例に係る収穫予定米の断面撮像画像を用いた収穫時品質予測システム、収穫時品質予測方法について詳細に説明する。 Hereinafter, the harvest quality prediction system and the harvest quality prediction method using the cross-sectional image of the planned harvest rice according to the embodiment of the present invention will be described in detail.
本実施例に係る収穫予定米の断面撮像画像を用いた収穫時品質予測システムは、図1及び図2に示すように、実際の収穫日より前の採取日に圃場から採取された玄米又は籾米からなる多数の収穫予定米のサンプル粒Mの胴部を切断する穀粒切断器1と、前記穀粒切断器1により切断された多数の収穫予定米のサンプル粒Mの各切断面を表出させた状態に配列する収穫予定米粒配列手段41と、前記収穫予定米粒配列手段41により配列された多数の収穫予定米のサンプル粒Mの各切断面Maを走査して各サンプル粒Mの切断面画像を取得するカラー画像スキャナのような撮像手段51と、前記撮像手段51にて取得した各サンプル粒Mの予め指定した分類カテゴリー情報に基づく分類、前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の発生割合の算出、予測白未熟粒の発生割合に関するグラフ情報又は表情報の作成等を行うコンピュータ装置61と、前記サンプル粒Mの切断面画像、グラフ又は表等の出力を行う出力手段であるプリンタ81と、表示部64を有している。
As shown in FIG. 1 and FIG. 2, the harvest quality prediction system using the cross-sectional captured image of the planned harvest rice according to the present embodiment is brown rice or glutinous rice harvested from the field on the harvest date prior to the actual harvest date. The grain cutter 1 which cuts the trunk | drum of the sample grain M of many harvest planned rice which consists of, and shows each cut surface of the sample grain M of many harvest planned rice cut | disconnected by the said grain cutter 1 The harvested rice
前記穀粒切断器1は、図1に示すように、上部が開口した四角箱型状で、底部に詳細は後述する穀粒支持プレート21を載置するための矩形状の平坦部3を形成するとともに、この平坦部3の各辺から側壁部4を立設した装置本体2と、この装置本体2の一端側の側壁部4から他端側の側壁部4にわたって平行配置に架設した一対のガイド棒5と、一方のガイド棒5の外側の側壁部4に前記ガイド棒5と同方向に設けた直線状のラック6と、前記一端側の側壁部4の近傍位置において前記一対のガイド棒5に対して一端側から他端側にスライド可能に両側部を取り付けた移動体7と、この移動体7における前記ラック6側の位置に、垂直配置に取り付けたピニオン軸8と、このピニオン軸8に嵌着され、前記ラック6に嵌合させた図示しないピニオンと、前記ピニオン軸8の上端に固着した円形の操作ハンドル9と、前記移動体7の上面に対してネジ11を用いて着脱可能に取り付けた例えば透明材からなる安全カバー14と、前記移動体7の下面に取り付けた切断刃ホルダ10と、この切断刃ホルダ10の下面側にネジ13を用いて着脱可能に取り付けた例えば市販のカッター刃からなる切断刃12と、を有している。
As shown in FIG. 1, the grain cutter 1 has a rectangular box shape with an open top, and a rectangular
前記切断刃12は、操作ハンドル9の回転操作に応じて前記ガイド棒5により案内されつつラック6とピニオンとの噛合により図1の矢印a方向に移動する移動体7に連動して穀粒支持プレート21の上面に沿って矢印a方向に移動するように構成している。
The
前記収穫予定米粒配列手段41は、穀粒支持プレート21と、サンプル粒Mの収容前の穀粒支持プレート21上に被せて各サンプル粒Mの整列を補助する整列補助具23と、切断処理後の各サンプル粒Mを収容した状態の穀粒支持プレート21上に被せて、各サンプル粒Mの切断面Maを撮像手段51へ向けて設置するための透明被体(透明シャーレ)31と、を有している。
The harvested rice
前記穀粒支持プレート21は、図1に示すように、ほぼ直方体状に形成されるとともに、その上面部21aには、図示する実施例では例えば、縦方向に10列、横方向に10列の配置で例えば合計100個のサンプル粒M用の孔(凹孔)22を穿設しており、図2に示すように合計100個の孔22から各々サンプル粒Mをほぼ上半部が上方に突出する状態で収容した状態で前記平坦部3上に固定配置されるようになっている。
As shown in FIG. 1, the
前記穀粒支持プレート21の前記平坦部3上への固定は、例えば、平坦部3の上面に前記穀粒支持プレート21の底部形状に対応した形状の凹陥部を設ける等の例を挙げることができる。
Examples of the fixing of the
前記整列補助具23は、前記穀粒支持プレート21の上面部21aの寸法より僅かに大きい寸法を持つ矩形状の平坦部23aに、前記穀粒支持プレート21の各孔22に対応する孔径で、かつ、対応する個数(縦方向に10列、横方向に10列の配置で例えば合計100個)の整列補助孔(貫通孔)24を設けるとともに、平坦部23aの四辺をこの平坦部23aから上下に突出する側壁部25で囲んだ形状に構成している。
そして、前記側壁部25における平坦部23aの位置よりも下側部分を前記穀粒支持プレート21の外周への嵌装用として機能させて、また、前記側壁部25における平坦部23aの位置よりも上側部分で囲まれる空間を、サンプル粒Mの整列補助空間として機能させるように構成している。
The
And let the lower part rather than the position of the
前記透明被体31は、前記穀粒支持プレート21の上面部21aの寸法より僅かに大きい寸法を持つ矩形状で、透明合成樹脂等の透明材からなる平坦部31aと、この平坦部31aの四辺から立設した側壁部32とを有し、前記穀粒支持プレート21の上面部21a上に前記平坦部31aを密接する状態で被せることが可能となるように構成している。
The
前記コンピュータ装置61は、図3に示すように、全体の動作を制御するプログラムを格納したプログラムメモリ62と、前記プログラムに基づきシステム全体の制御を行う制御部63と、液晶ディスプレイからなる出力手段を構成する表示部64と、前記プリンタ81に画像データ等を出力するプリンタインターフェース65と、前記撮像手段51用のインターフェース66と、キーボード67とを有している。
As shown in FIG. 3, the
更に、前記コンピュータ装置61は、予め指定した分類カテゴリー情報を記憶した分類カテゴリー情報記憶手段68と、前記撮像手段51にて取得した各サンプル粒Mの切断面画像における胚乳部の白濁部分を予め指定した前記分類カテゴリー情報を参照して分析し、予測整粒、予測白未熟粒、未判断粒に分類する画像分析処理手段69と、前記予測整粒、予測白未熟粒、未判断粒とされた各サンプル粒の切断面画像における胚乳部の白濁部分の分析結果、及び予測整粒、予測白未熟粒、未判断粒の個数情報を基に、前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の発生割合を算出する算出手段70と、前記撮像手段51、画像分析処理手段69、算出手段70の処理結果を記憶するハードディスク等の記憶手段71と、前記算出手段70の算出結果を基に予測白未熟粒の発生割合に関するグラフ情報又は表情報を作成する出力情報作成手段72と、を有している。
Further, the
次に、図4乃至図12を参照して、前記分類カテゴリー情報記憶手段68に予め記憶している予め指定した分類カテゴリー情報について詳細に説明する。 Next, with reference to FIGS. 4 to 12, the pre-designated classification category information stored in advance in the classification category information storage means 68 will be described in detail.
前記分類カテゴリー情報は、各サンプル粒Mの切断面Maの画像情報を例えば8分類とするものである。 In the classification category information, the image information of the cut surface Ma of each sample grain M is classified into, for example, eight classifications.
すなわち、前記分類カテゴリー情報記憶手段68には、図4に示すような成熟前の収穫予定米粒で、切断面Maが全体的に透明化した粒を予測整粒とし、図5に示すような切断面Maの中央付近が白く環状になっている粒を乳白粒となる予測白未熟粒とし、図6に示すような切断面Maの中央付近が核状に白濁し、その周辺部がすでに透明化している粒を乳白粒又は心白粒となる予測白未熟粒とし、図7に示すような切断面Maの中央部分に帯状の白濁部分がある粒を心白粒となる予測白未熟粒とし、図8に示すような切断面Maの外周のほかに背側から中心部にかけて白濁している粒を乳白粒又は心白粒となる予測白未熟粒とし、図9に示すような背側あるいは腹側の外周付近のみが白濁している場合、それぞれ背白粒あるいは腹白粒となる予測白未熟粒とし、図10に示すような切断面Maが牛乳状のペースト状あるいは全体的に乳白色で不透明かつ登熟初期においては外周付近の種皮が透明化している粒を未判断粒とし、図11に示すような切断面Maの中心部が透明化しており、その外周部が白濁している粒を未判断粒とする分類カテゴリー情報が記憶されている。 That is, in the classification category information storage means 68, a grain to be harvested that has not yet been matured as shown in FIG. A grain that is white and circular in the vicinity of the center of the surface Ma is set as a predicted white immature grain that becomes a milky white grain, and the vicinity of the center of the cut surface Ma as shown in FIG. The predicted white immature grains that become milky white grains or heart white grains, and grains that have a band-like cloudy portion at the center of the cut surface Ma as shown in FIG. In addition to the outer periphery of the cut surface Ma as shown in FIG. 8, the grains that are clouded from the back side to the center are assumed to be milky white grains or predicted white immature grains that become heart white grains, and the dorsal side or belly as shown in FIG. If only the outer periphery of the side is cloudy, it becomes a white background or a white background, respectively. Predicted white immature grains, the cut surface Ma as shown in FIG. 10 is a milk-like paste-like or entirely milky white and opaque, and grains in which the seed coat near the outer periphery is transparent at the initial stage of ripening are undecided grains, As shown in FIG. 11, classification category information is stored in which the center portion of the cut surface Ma is transparent and the outer peripheral portion is clouded is determined as an undetermined particle.
次に、本実施例に係る収穫予定米の断面撮像画像を用いた収穫時品質予測システムによって、実際の収穫日より前の採取日に圃場から採取された玄米又は籾米からなる収穫予定米の収穫時品質予測処理における一連の流れを説明する。 Next, harvest of the planned harvest rice consisting of brown rice or glutinous rice collected from the field on the harvest date prior to the actual harvest date by the quality prediction system at harvest using the cross-sectional image of the planned harvest rice according to the present embodiment A series of flows in the time quality prediction process will be described.
まず、図12に示すように、前記穀粒支持プレート21上に整列補助具23を載せ、平坦部23aを前記穀粒支持プレート21の上面部21aに密接させて、整列補助具23の各整列補助孔24を穀粒支持プレート21の各孔22に合致させる。
First, as shown in FIG. 12, the
次に、整列補助具23の上方から例えば100粒以上の収穫予定米のサンプル粒Mを投入して、整列補助具23及び穀粒支持プレート21を小刻みに揺する。
Next, for example, 100 or more sample grains M of the planned harvest rice are introduced from above the
これにより、個々のサンプル粒Mは、整列補助具23の各整列補助孔24を経て穀粒支持プレート21の各孔22内に縦配置で一粒ずつ没入した状態になり、余分なサンプル粒Mは平坦部23aに残る。
As a result, the individual sample grains M are in a state of being vertically immersed in the
次に、整列補助具23を、余ったサンプル粒Mとともに穀粒支持プレート21から取り外す。これにより、例えば合計100個の孔22から各々サンプル粒Mをほぼ上半部が上方に突出する状態で収容した状態の穀粒支持プレート21を得ることができる。
Next, the
次に、各孔22に例えば100個のサンプル粒Mが納まった状態の穀粒支持プレート21を、前記穀粒切断器1の平坦部3の上面にセットする。
Next, the
次に、前記操作ハンドル9を回転操作し、移動体7を前記ガイド棒5により案内させつつ図1の矢印a方向に移動させることにより、前記切断刃12も前記穀粒支持プレート21の上面に沿って矢印a方向に移動する。
Next, by rotating the
これにより、前記切断刃12が前記穀粒支持プレート21から、ほぼ上半部が上方に突出する各サンプル粒Mの胴部を一挙に切断し、各サンプル粒Mにおける切断面Maが各々表出する状態とする。
As a result, the
次に、前記上面部21aに各粒サンプルの切断面Maが各々表出する状態となった前記穀粒支持プレート21に対して、前記透明被体31を被せ、その平坦部31aを穀粒支持プレート21の上面部21aに密接させた後、前記穀粒支持プレート21、透明被体31を押さえ込みながら上下反転させ、透明被体31の平坦部31aを下側配置とする。
Next, the
次に、前記透明被体31の平坦部31aを下側配置としたままこれらを前記撮像手段51上に設置し、各サンプル粒Mの切断面Maを透明被体31の透明な平坦部31aを介して撮像面52に臨ませる。
Next, with the
そして、前記撮像手段51により各サンプル粒Mの切断面Maを撮像し、その撮像データを前記コンピュータ装置61に送る。
Then, the imaging means 51 images the cut surface Ma of each sample grain M, and sends the imaging data to the
前記コンピュータ装置61の画像分析処理手段69は、前記プログラムよって前記撮像手段51にて取得した各サンプル粒Mの切断面画像における胚乳部の白濁部分を、分類カテゴリー情報記憶手段68に記憶している既述したような8種類の分類カテゴリー情報を参照して各々分析し、各サンプル粒M毎に予測整粒、予測白未熟粒、未判断粒のいずれかに分類する。
The image analysis processing means 69 of the
前記撮像手段51にて取得した100個のサンプル粒Mの切断面画像、画像分析処理手段69の分析結果は、前記記憶手段71に記憶される。
The cut surface images of 100 sample grains M acquired by the
また、前記コンピュータ装置61の算出手段70は、前記予測整粒、予測白未熟粒、未判断粒とされた各サンプル粒の切断面画像の胚乳部の白濁部分の分析結果、及び予測整粒、予測白未熟粒、未判断粒の個数情報を基に、前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の発生割合を穀粒支持プレートの各孔の数に相当する穀粒数を分母とし、予測白未熟粒とされた数を分子とする演算により算出する。予測白未熟粒の発生割合の情報も前記記憶手段71に記憶される。
Further, the calculation means 70 of the
更に、前記出力情報作成手段72は、前記算出手段70の算出結果を基に予測白未熟粒の発生割合に関するグラフ情報又は表情報を例えば図14に示す態様となるように作成する。 Further, the output information creation means 72 creates graph information or table information related to the generation ratio of predicted white immature grains based on the calculation result of the calculation means 70 so as to have the form shown in FIG. 14, for example.
前記出力情報作成手段72により作成された予測白未熟粒の発生割合に関するグラフ情報又は表情報は、前記プリンタ81により又は前記表示部64により、それぞれ可視的に出力される。また、前記各サンプル粒Mの切断面画像も必要に応じて前記プリンタ81により又は前記表示部64により可視的に出力される。
The graph information or the table information relating to the generation ratio of predicted white immature grains created by the output
ここで、図13、図14を参照して、算出手段70により算出する前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の発生割合の具体例について説明する。 Here, with reference to FIG. 13 and FIG. 14, the occurrence of predicted white immature grains on the collection date in a certain period close to the actual harvest date where the occurrence ratio of the predicted white immature grains calculated by the calculation means 70 hardly changes. A specific example of the ratio will be described.
図13は、本実施例に係る収穫予定米の断面撮像画像を用いた収穫時品質予測システムと、本願出願人に係る製作の図示しない穀粒判別器とを使用して求めた採取日(収穫日前14日)から実際の収穫日に至る期間における予測白未熟粒の発生割合を示す折線グラフを示すものである。 FIG. 13 shows a harvest date (harvest date) obtained by using a harvesting quality prediction system using a cross-sectional image of the planned harvested rice according to the present embodiment and a grain discriminator (not shown) manufactured by the applicant of the present application. The line graph which shows the generation | occurrence | production ratio of the predicted white immature grain in the period from the 14th day before) to the actual harvest date is shown.
図13において、●印で示す折線グラフは、本実施例に係る収穫予定米の断面撮像画像を用いた収穫時品質予測システムで予測白未熟粒と判定された玄米の発生割合と収穫前日数との関係を示すもの(対照区;コシヒカリを鹿児島県農業総合開発センター圃場で栽培)である。 In FIG. 13, the line graph indicated by ● indicates the generation ratio of brown rice determined to be predicted white immature grains and the number of days before harvesting by the quality prediction system at harvest using the cross-sectional image of the planned harvested rice according to the present embodiment. a; (cultivation of Koshihikari in Kagoshima Prefectural agricultural development Center field control group) shows the relationship.
また、△印で示す折線グラフは、図示しない穀粒判別器により乳白粒、白死米と判別されたサンプル粒Mに関しての予測白未熟粒の発生割合を示すものである。 Further, the line graph indicated by Δ indicates the occurrence ratio of predicted white immature grains with respect to the sample grains M determined to be milky white grains and white dead rice by a grain discriminator (not shown).
一方、図14は遮光区(出穂後2日〜22日に遮光率50%の黒寒冷紗を被覆したもの:コシヒカリを鹿児島県農業総合開発センター圃場で栽培したもの)における結果を示すものであり、穀粒判別器で乳白粒・白死米と判定された玄米及び予測白未熟粒と判定された玄米の発生割合と収穫前日数との関係を示すもの(遮光区;出穂後2日〜22日に遮光率50%の黒寒冷紗を被覆)である。図13に示す場合と同様にして求めた予測白未熟粒の発生割合を示す折線グラフを示している。 On the other hand, FIG. 14 shows the results in the shading area (2 to 22 days after heading and covered with black chilled cold straw with a shading rate of 50%: Koshihikari cultivated in Kagoshima Agricultural Research Center) The relationship between the percentage of brown rice determined to be milky white and white dead rice and the predicted white immature grain and the number of days before harvesting with a grain discriminator (shaded area; 2 to 22 days after heading) And a black chilled ice cream with a light shielding rate of 50%). The line graph which shows the generation | occurrence | production ratio of the prediction white immature grain calculated | required similarly to the case shown in FIG.
なお、図13、14において、●印、△印の各シンボルに付した上下方向の割合幅を示す線は標準誤差を表すものである。 In FIGS. 13 and 14, the lines indicating the vertical widths of the symbols ● and Δ represent standard errors.
図13、14より、収穫前10日以降では「玄米横断面観察」による白未熟発生割合が殆ど変化しない(図13に示す例では10%前後、図14に示す例では30%前後)ため、籾米、玄米の横断面を観察することによって、穀粒判別器による玄米外観検査よりも正確に収穫時の白未熟粒の発生割合が予測可能であることが分かる。 13 and 14, from 10 days before harvesting, the white immaturity occurrence rate by “brown rice cross-sectional observation” hardly changes (around 10% in the example shown in FIG. 13 and around 30% in the example shown in FIG. 14) . By observing the cross-sections of glutinous rice and brown rice, it can be seen that the generation ratio of white immature grains at the time of harvesting can be predicted more accurately than the brown rice appearance inspection using a grain discriminator.
以上説明した本実施例によれば、上記構成の穀粒切断器1、収穫予定米粒配列手段41、撮像手段51であるカラー画像スキャナ、コンピュータ装置61及びプリンタ81又は表示部64を用い、簡略な操作だけでこれまで収穫前の玄米品質別発生率の判定が外観で行われることによって生じていた予測のあいまいさ、及び鑑定人によって行われることによって生じていた費用と時間、当該鑑定人育成のための費用をかけることなく、分析結果の個人差を軽減し、かつ、収穫予定米の粒のあらかじめ指定した8種の分類カテゴリーに関する予測整粒、予測白未熟粒、未判断粒についての測定精度の向上を図ることも可能な収穫予定米の断面撮像画像を用いた収穫時品質予測システム、収穫時品質予測方法を実現することができる。
According to the embodiment described above, the grain cutter 1 having the above-described configuration, the harvested rice
本発明に係る収穫時品質予測システムは、収穫時における農業共済保障対象となる米類の客観的な確認に広範に適用でき、米類の共同乾燥施設において荷受時の生籾の仕分けに使用することによる産品の付加価値の向上に資することも可能である。 The harvest-time quality prediction system according to the present invention can be widely applied to objective confirmation of rice that is covered by agricultural mutual aid at the time of harvest, and is used to sort ginger at the time of receipt at a rice dry drying facility. It is also possible to contribute to the improvement of the added value of the product.
1 穀粒切断器
2 装置本体
3 平坦部
4 側壁部
5 ガイド棒
6 ラック
7 移動体
8 ピニオン軸
9 操作ハンドル
10 切断刃ホルダ
11 ネジ
12 切断刃
13 ネジ
14 安全カバー
21 穀粒支持プレート
21a 上面部
22 孔
23 整列補助具
23a 平坦部
24 整列補助孔
25 側壁部
31 透明被体
31a 平坦部
32 側壁部
41 収穫予定米粒配列手段
51 撮像手段
52 撮像面
61 コンピュータ装置
62 プログラムメモリ
63 制御部
64 表示部
65 プリンタインターフェース
66 インターフェース
67 キーボード
68 分類カテゴリー情報記憶手段
69 画像分析処理手段
70 算出手段
71 記憶手段
72 出力情報作成手段
81 プリンタ
M サンプル粒
Ma 切断面
DESCRIPTION OF SYMBOLS 1 Grain cutter 2 Apparatus
Claims (4)
前記穀粒切断器により切断された多数の収穫予定米のサンプル粒の各切断面を表出させた状態に配列する収穫予定米粒配列手段と、
前記収穫予定米粒配列手段により配列された多数の収穫予定米のサンプル粒の各切断面を走査して各粒の切断面画像を取得する撮像手段と、
前記撮像手段にて取得した各粒の切断面画像における胚乳部の白濁部分を予め指定した分類カテゴリー情報を参照して分析し、予測整粒、予測白未熟粒、未判断粒に分類する画像分析処理手段と、前記予測整粒、予測白未熟粒、未判断粒とされた各粒の切断面画像の胚乳部の白濁部分の分析結果、及び予測整粒、予測白未熟粒、未判断粒の個数情報を基に、前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の発生割合を穀粒支持プレートの各孔の数に相当する穀粒数を分母とし、予測白未熟粒とされた数を分子とする演算により算出する算出手段と、を有するコンピュータ装置と、
を有し、
前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の前記算出された発生割合によって、収穫日における白未熟粒の発生割合を予測するように構成したことを特徴とする収穫予定米の断面撮像画像を用いた収穫時品質予測システム。 A grain cutter that cuts the body of a large number of rice grains to be harvested that are collected from the field on the date of harvest prior to the actual harvest date and stored one by one in each hole of the grain support plate;
The planned harvesting grain arrangement means for arranging the cut surfaces of the sample grains of a large number of planned harvested rice grains cut by the grain cutter,
Imaging means for scanning each cut surface of a plurality of sample grains of the planned harvest rice arranged by the planned harvest grain array means to obtain a cut surface image of each grain;
Image analysis that analyzes the cloudy part of the endosperm part in the cut surface image of each grain acquired by the imaging means with reference to the classification category information designated in advance, and classifies it into predicted grain size, predicted white immature grain, and undecided grain Processing means, analysis of the cloudy portion of the endosperm portion of the cut surface image of each grain that has been treated, said predicted sizing, predicted white immature grain, undetermined grain, and predicted sizing, predicted white immature grain, undetermined grain Based on the number information, the predicted white immature grain generation rate on the harvesting date in a certain period close to the actual harvest date when the predicted white immature grain generation rate hardly changes corresponds to the number of holes in the grain support plate. Calculating means for calculating the number of grains to be denominator and calculating by using the number of predicted white immature grains as a numerator,
Have
Predicting the occurrence ratio of white immature grains on the harvest date based on the calculated occurrence ratio of predicted white immature grains on a collection period in a certain period close to the actual harvest date where the occurrence ratio of the predicted white immature grains hardly changes The harvest quality prediction system using the cross-sectional image of the planned harvesting rice, which is configured as described above.
前記穀粒切断器により切断された多数の収穫予定米のサンプル粒の各切断面を表出させた状態に配列する収穫予定米粒配列手段と、
前記収穫予定米粒配列手段により配列された多数の収穫予定米のサンプル粒の各切断面を走査して各粒の切断面画像を取得する撮像手段と、
前記撮像手段にて取得した各粒の切断面画像における胚乳部の白濁部分を予め指定した8種の分類カテゴリー情報を参照して分析し、予測整粒、予測白未熟粒、未判断粒に分類する画像分析処理手段と、前記予測整粒、予測白未熟粒、未判断粒とされた各粒の切断面画像における胚乳部の白濁部分の分析結果、及び予測整粒、予測白未熟粒、未判断粒の個数情報を基に、前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の発生割合を穀粒支持プレートの各孔の数に相当する穀粒数を分母とし、予測白未熟粒とされた数を分子とする演算により算出する算出手段と、前記撮像手段、画像分析処理手段、算出手段の処理結果を記憶する記憶手段と、前記算出手段の算出結果を基に予測白未熟粒の発生割合に関するグラフ情報又は表情報を作成する出力情報作成手段と、を有するコンピュータ装置と、
前記画像分析処理手段、出力情報作成手段の処理結果を画像、グラフ又は表として出力する出力手段と、
を有し、
前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の前記算出された発生割合によって、収穫日における白未熟粒の発生割合を予測するように構成した収穫予定米の断面撮像画像を用いた収穫時品質予測システムであって、
前記予め指定した8種の分類カテゴリー情報は、成熟前の収穫予定米粒で、切断面が全体的に透明化した粒を予測整粒とし、切断面の中央付近が白く環状になっている粒を乳白粒となる予測白未熟粒とし、切断面の中央付近が核状に白濁し、その周辺部がすでに透明化している粒を乳白粒又は心白粒となる予測白未熟粒とし、切断面の中央部分に帯状の白濁部分がある粒を心白粒となる予測白未熟粒とし、切断面の外周のほかに背側から中心部にかけて白濁している粒を乳白粒又は心白粒となる予測白未熟粒とし、切断面の背側あるいは腹側の外周付近のみが白濁している場合、それぞれ背白粒あるいは腹白粒となる予測白未熟粒とし、切断面が牛乳状のペースト状あるいは全体的に乳白色で不透明化している粒を未判断粒とし、切断面の中心部がデンプンにより透明化し、外周部が白濁している粒を未判断粒とすること、
を特徴とする収穫予定米の断面撮像画像を用いた収穫時品質予測システム。 A grain cutter that cuts the body of a large number of sample grains of brown rice or brown rice that are collected from the field on the day of harvest prior to the actual harvest date and housed in each hole of the grain support plate. When,
The planned harvesting grain arrangement means for arranging the cut surfaces of the sample grains of a large number of planned harvested rice grains cut by the grain cutter,
Imaging means for scanning each cut surface of a plurality of sample grains of the planned harvest rice arranged by the planned harvest grain array means to obtain a cut surface image of each grain;
Analyzing the cloudy part of the endosperm part in the cut surface image of each grain acquired by the imaging means with reference to eight kinds of classification category information designated in advance , and classifying into predicted sizing, predicted white immature grain, and undetermined grain Image analysis processing means, and the predicted sizing, predicted white immature grain, analysis result of the cloudy part of the endosperm portion in the cut surface image of each grain determined as undetermined grain, and predicted sizing, predicted white immature grain, Based on the information on the number of judged grains, the occurrence ratio of the predicted white immature grains on the collection date in a certain period close to the actual harvest date where the occurrence ratio of the predicted white immature grains hardly changes is calculated for each hole of the grain support plate. The calculation means for calculating the number of grains corresponding to the number as a denominator and the calculation using the number of predicted white immature grains as the numerator, and the storage means for storing the imaging means, the image analysis processing means, and the calculation means Based on the calculation result of the calculation means. Output information generation means for generating a graph information or schedule information on the occurrence rate of white immature grains, a computer device having,
Output means for outputting the processing result of the image analysis processing means and output information creation means as an image, a graph or a table;
Have
Predicting the occurrence ratio of white immature grains on the harvest date based on the calculated occurrence ratio of predicted white immature grains on a collection period in a certain period close to the actual harvest date where the occurrence ratio of the predicted white immature grains hardly changes It is a quality prediction system at harvest time using a cross-sectional image of the planned harvest rice,
The eight types of classification category information designated in advance are pre-matured rice grains to be harvested, grains whose cut surfaces are totally transparent are set as predictive sized particles, and the grains near the center of the cut surfaces are white and circular. Predicted white immature grains that will become milky grains, grains that are clouded in the vicinity of the center of the cut surface, and those that have already become transparent at the periphery, are predicted white immature grains that become milky or heart white grains. Predicted white immature grains that have a band-like cloudy part at the center as a core white grain, and prediction that a cloudy grain from the back side to the center as well as the outer circumference of the cut surface becomes a milky white or heart white grain When the white immature grain is white and only the backside or ventral periphery of the cut surface is cloudy, the white immature grain is expected to be a white or abdomen white grain, and the cut surface is a milky pasty or whole Grain that is milky white and opaque, is considered as undetermined grain, The section is clarified by starch, the grains peripheral portion is clouded with undetermined grain,
Harvest quality prediction system using cross-sectional images of planned harvest rice.
前記穀粒切断器により切断された多数の収穫予定米のサンプル粒の各切断面を表出させた状態に配列する収穫予定米粒配列手段と、
前記収穫予定米粒配列手段により配列された多数の収穫予定米のサンプル粒の各切断面を走査して各粒の切断面画像を取得する画像スキャナと、
前記画像スキャナにて取得した各粒の切断面画像における胚乳部の白濁部分を予め指定した8種の分類カテゴリー情報を参照して分析し、予測整粒、予測白未熟粒、未判断粒に分類する画像分析処理手段と、前記予測整粒、予測白未熟粒、未判断粒とされた各粒の切断面画像の胚乳部の白濁部分の分析結果、及び予測整粒、予測白未熟粒、未判断粒の個数情報を基に、前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の発生割合を穀粒支持プレートの各孔の数に相当する穀粒数を分母とし、予測白未熟粒とされた数を分子とする演算により算出する算出手段と、前記撮像手段、画像分析処理手段、算出手段の処理結果を記憶する記憶手段と、前記算出手段の算出結果を基に予測白未熟粒の発生割合に関するグラフ情報又は表情報を作成する出力情報作成手段と、を有するコンピュータ装置と、
前記画像分析処理手段、出力情報作成手段の処理結果を画像、グラフ又は表として出力するプリンタ又は表示部と、
を有し、
前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の前記算出された発生割合によって、収穫日における白未熟粒の発生割合を予測するように構成した収穫予定米の断面撮像画像を用いた収穫時品質予測システムであって、
前記予め指定した8種の分類カテゴリー情報は、成熟前の収穫予定米粒で、切断面が全体的に透明化した粒を予測整粒とし、切断面の中央付近が白く環状になっている粒を乳白粒となる予測白未熟粒とし、切断面の中央付近が核状に白濁し、その周辺部がすでに透明化している粒を乳白粒又は心白粒となる予測白未熟粒とし、切断面の中央部分に帯状の白濁部分がある粒を心白粒となる予測白未熟粒とし、切断面の外周のほかに背側から中心部にかけて白濁している粒を乳白粒又は心白粒となる予測白未熟粒とし、切断面の背側あるいは腹側の外周付近のみが白濁している場合、それぞれ背白粒あるいは腹白粒となる予測白未熟粒とし、切断面が牛乳状のペースト状あるいは全体的に乳白色で不透明化している粒を未判断粒とし、切断面の中心部がデンプンにより透明化し、外周部が白濁している粒を未判断粒とすること、
を特徴とする収穫予定米の断面撮像画像を用いた収穫時品質予測システム。 A grain cutter that cuts the body of a large number of sample grains of brown rice or brown rice that are collected from the field on the day of harvest prior to the actual harvest date and housed in each hole of the grain support plate. When,
The planned harvesting grain arrangement means for arranging the cut surfaces of the sample grains of a large number of planned harvested rice grains cut by the grain cutter,
An image scanner that scans each cut surface of a plurality of sample grains of the planned harvest rice arranged by the planned harvest grain array means to obtain a cut surface image of each grain;
Analyzing the cloudy part of the endosperm part in the cut surface image of each grain acquired by the image scanner with reference to eight kinds of classification category information designated in advance , and classifying them into predicted grain size, predicted white immature grain, and undecided grain Image analysis processing means, and the predicted sizing, predicted white immature grain, analysis result of the cloudy part of the endosperm portion of the cut surface image of each grain determined as undetermined grain, and predicted sizing, predicted white immature grain, Based on the information on the number of judged grains, the occurrence ratio of the predicted white immature grains on the collection date in a certain period close to the actual harvest date where the occurrence ratio of the predicted white immature grains hardly changes is calculated for each hole of the grain support plate. The calculation means for calculating the number of grains corresponding to the number as a denominator and the calculation using the number of predicted white immature grains as the numerator, and the storage means for storing the imaging means, the image analysis processing means, and the calculation means And prediction based on the calculation result of the calculation means Output information generation means for generating a graph information or schedule information on the occurrence ratio of immature grains, a computer device having,
A printer or a display unit for outputting the processing result of the image analysis processing means and the output information creation means as an image, a graph or a table;
Have
Predicting the occurrence ratio of white immature grains on the harvest date based on the calculated occurrence ratio of predicted white immature grains on a collection period in a certain period close to the actual harvest date where the occurrence ratio of the predicted white immature grains hardly changes It is a quality prediction system at harvest time using a cross-sectional image of the planned harvest rice,
The eight types of classification category information designated in advance are pre-matured rice grains to be harvested, grains whose cut surfaces are totally transparent are set as predictive sized particles, and the grains near the center of the cut surfaces are white and circular. Predicted white immature grains that will become milky grains, grains that are clouded in the vicinity of the center of the cut surface, and those that have already become transparent at the periphery, are predicted white immature grains that become milky or heart white grains. Predicted white immature grains that have a band-like cloudy part at the center as a core white grain, and prediction that a cloudy grain from the back side to the center as well as the outer circumference of the cut surface becomes a milky white or heart white grain When the white immature grain is white and only the backside or ventral periphery of the cut surface is cloudy, the white immature grain is expected to be a white or abdomen white grain, and the cut surface is a milky pasty or whole Grain that is milky white and opaque, is considered as undetermined grain, The section is clarified by starch, the grains peripheral portion is clouded with undetermined grain,
Harvest quality prediction system using cross-sectional images of planned harvest rice.
玄米又は籾米からなる多数の収穫予定米のサンプル粒の胴部を穀粒切断器で切断する工程と、
収穫予定米粒配列手段により前記穀粒切断器により切断された多数の収穫予定米のサンプル粒の各切断面を表出させた状態に配列する工程と、
前記収穫予定米粒配列手段により配列された多数の収穫予定米のサンプル粒の各切断面を画像スキャナにより走査して各粒の切断面画像を取得する工程と、
コンピュータ装置を用いて、前記画像スキャナにて取得した各粒の切断面画像における胚乳部の白濁部分を、成熟前の収穫予定米粒で、切断面が全体的に透明化した粒を予測整粒とし、切断面の中央付近が白く環状になっている粒を乳白粒となる予測白未熟粒とし、切断面の中央付近が核状に白濁し、その周辺部がすでに透明化している粒を乳白粒又は心白粒となる予測白未熟粒とし、切断面の中央部分に帯状の白濁部分がある粒を心白粒となる予測白未熟粒とし、切断面の外周のほかに背側から中心部にかけて白濁している粒を乳白粒又は心白粒となる予測白未熟粒とし、切断面の背側あるいは腹側の外周付近のみが白濁している場合、それぞれ背白粒あるいは腹白粒となる予測白未熟粒とし、切断面が牛乳状のペースト状あるいは全体的に乳白色で不透明化している粒を未判断粒とし、切断面の中心部がデンプンにより透明化し、外周部が白濁している粒を未判断粒とする予め指定した8種の分類カテゴリー情報を参照して分析し、各粒を予測整粒、予測白未熟粒、未判断粒に分類する処理、前記予測整粒、予測白未熟粒、未判断粒とされた各粒の切断面画像の胚乳部の白濁部分の分析結果、及び予測整粒、予測白未熟粒、未判断粒の個数情報を基に、前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の発生割合を穀粒支持プレートの各孔の数に相当する穀粒数を分母とし、予測白未熟粒とされた数を分子とする演算により算出する処理、この算出処理結果をもとに予測白未熟粒の発生割合に関するグラフ情報又は表情報を作成する処理を行う工程と、
各粒の切断面画像、前記グラフ又は表をプリンタ又は表示部に出力する工程と、
を含み、
前記予測白未熟粒の発生割合がほとんど変化しない実際の収穫日に近い一定の期間における採取日の予測白未熟粒の前記算出された発生割合によって、収穫日における白未熟粒の発生割合を予測するように構成したことを特徴とする収穫予定米の断面撮像画像を用いた収穫時品質予測方法。 Obtaining a large number of sample grains of rice to be harvested consisting of brown rice or glutinous rice collected from the field on the date of harvest prior to the actual harvest date and stored one by one in each hole of the grain support plate;
A step of cutting the body of a sample grain of a large number of planned rice grains consisting of brown rice or glutinous rice with a grain cutter;
Arranging each cut surface of the sample grains of a large number of planned harvested rice grains cut by the grain cutter by the planned harvesting grain arranging means in a state of being exposed; and
Scanning each cut surface of a plurality of sample grains of the planned harvest rice grains arranged by the planned harvest grain array means with an image scanner to obtain a cut surface image of each grain;
Using a computer device, the cloudy part of the endosperm part in the cut surface image of each grain obtained by the image scanner is the rice grain to be harvested before maturation, and the grain whose entire cut surface has been made transparent is predicted to be sized , The white circular ring around the center of the cut surface is the predicted white immature grain that becomes milky white grain, and the grain that has become cloudy near the center of the cut surface and has already become transparent is the milky white grain Alternatively, the predicted white immature grain that will be a heart white grain, and the grain that has a band-like cloudiness at the center of the cut surface will be the predicted white immature grain that will be a heart white grain, and from the back side to the center in addition to the outer periphery of the cut surface Predicted white immature grains that become milky white grains or heart white grains when they are cloudy, and are predicted to be white or belly white grains when only the backside or ventral periphery of the cut surface is cloudy White immature grains with a milk-like pasty or whole A particle that is opacified in a milky white and undetermined grain, clarified by the center of the cut surface starch, refers to the eight classification category information specified in advance to undetermined grain grain outer peripheral portion is clouded The process of classifying each grain into predicted sizing, predicted white immature grain, and undecided grain, the predicted sizing, predicted white immature grain, and the endosperm portion of the cut surface image of each grain determined as undetermined grain Based on the analysis result of the cloudy part and the predicted sizing, predicted white immature grains, and information on the number of undecided grains, the collection date in a certain period close to the actual harvest date where the occurrence ratio of the predicted white immature grains hardly changes A process of calculating the generation ratio of predicted white immature grains by calculation using the number of grains corresponding to the number of each hole of the grain support plate as a denominator and the number of predicted white immature grains as a numerator, the result of this calculation process Graph information on the proportion of white immature grains predicted or And performing processing for creating a table information,
Outputting the cut surface image of each grain, the graph or the table to a printer or a display unit;
Including
Predicting the occurrence ratio of white immature grains on the harvest date based on the calculated occurrence ratio of predicted white immature grains on a collection period in a certain period close to the actual harvest date where the occurrence ratio of the predicted white immature grains hardly changes The quality prediction method at the time of harvest using the cross-sectional image of the rice planned to be harvested characterized by being configured as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010291563A JP5716234B2 (en) | 2010-12-28 | 2010-12-28 | Harvest quality prediction system and harvest quality prediction method using cross-sectional images of rice to be harvested |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010291563A JP5716234B2 (en) | 2010-12-28 | 2010-12-28 | Harvest quality prediction system and harvest quality prediction method using cross-sectional images of rice to be harvested |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012137458A JP2012137458A (en) | 2012-07-19 |
JP5716234B2 true JP5716234B2 (en) | 2015-05-13 |
Family
ID=46674977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010291563A Expired - Fee Related JP5716234B2 (en) | 2010-12-28 | 2010-12-28 | Harvest quality prediction system and harvest quality prediction method using cross-sectional images of rice to be harvested |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5716234B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110610183A (en) * | 2018-06-15 | 2019-12-24 | 佛山市顺德区美的电热电器制造有限公司 | Grain evaluation method, grain evaluation device, and storage medium |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3165933B2 (en) * | 1992-12-08 | 2001-05-14 | 静岡製機株式会社 | Rice grain quality judgment device |
JPH11126229A (en) * | 1997-10-22 | 1999-05-11 | Kubota Corp | Grain treating method and grain treating apparatus |
JP2000300077A (en) * | 1998-09-09 | 2000-10-31 | Satake Eng Co Ltd | Method for determining fertilizing quantity for grain crop, method for estimating quality and yield of grain and apparatus for providing production information on grain |
JP4294706B2 (en) * | 2007-06-22 | 2009-07-15 | 財団法人日本穀物検定協会 | Grain grain quality evaluation system and quality evaluation method |
-
2010
- 2010-12-28 JP JP2010291563A patent/JP5716234B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012137458A (en) | 2012-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xia et al. | Recent advances in emerging techniques for non-destructive detection of seed viability: A review | |
US11976973B2 (en) | Blending of agricultural products via hyperspectral imaging and analysis | |
Andujar et al. | Using depth cameras to extract structural parameters to assess the growth state and yield of cauliflower crops | |
Yang et al. | Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies | |
Virlet et al. | Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring | |
Fornal et al. | Detection of granary weevil Sitophilus granarius (L.) eggs and internal stages in wheat grain using soft X-ray and image analysis | |
CN104990888A (en) | Method for detecting insect pests in stored grains by means of terahertz imaging technology | |
Hahn et al. | Carrot volume evaluation using imaging algorithms | |
Saha et al. | Application of near-infrared hyperspectral imaging coupled with chemometrics for rapid and non-destructive prediction of protein content in single chickpea seed | |
Phuphaphud et al. | Non-destructive and rapid measurement of sugar content in growing cane stalks for breeding programmes using visible-near infrared spectroscopy | |
CN114136920A (en) | A method for identification of single-grain hybrid rice seed species based on hyperspectral | |
CN110108649A (en) | The fast non-destructive detection method of oil crops quality based on terahertz light spectral technology | |
Koszela et al. | Computer image analysis in caryopses quality evaluation as exemplified by malting barley | |
WO2011155888A1 (en) | Procedure for hyperspectral image analysis in real time | |
US10712325B2 (en) | Method and apparatus for measuring inflorescence, seed and/or seed yield phenotype | |
JP5716234B2 (en) | Harvest quality prediction system and harvest quality prediction method using cross-sectional images of rice to be harvested | |
Chen et al. | Spectral inversion model of the crushing rate of soybean under mechanized harvesting | |
Aboonajmi et al. | Non-destructive quality assessment of table eggs for online sorting | |
Siebald et al. | Referencing acoustic monitoring of cutting knives sharpness in agricultural harvesting processes using image analysis | |
Fagan | Infrared spectroscopy | |
Ghanghas et al. | Image processing technology, imaging techniques, and their application in the food processing sector | |
Moghimi et al. | Hyperspectral imaging to identify salt-tolerant wheat lines | |
Feng et al. | Comparison between an acoustic firmness sensor and a near-infrared spectrometer in segregation of kiwifruit for storage potential | |
Checa et al. | Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beans | |
Mollazade et al. | Spatial mapping of moisture content in tomato fruits using hyperspectral imaging and artificial neural networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20121205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130815 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5716234 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |