[go: up one dir, main page]

JP5704691B2 - Polymerizable diamond and resin composition containing the same - Google Patents

Polymerizable diamond and resin composition containing the same Download PDF

Info

Publication number
JP5704691B2
JP5704691B2 JP2010258778A JP2010258778A JP5704691B2 JP 5704691 B2 JP5704691 B2 JP 5704691B2 JP 2010258778 A JP2010258778 A JP 2010258778A JP 2010258778 A JP2010258778 A JP 2010258778A JP 5704691 B2 JP5704691 B2 JP 5704691B2
Authority
JP
Japan
Prior art keywords
group
acid
diamond
meth
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010258778A
Other languages
Japanese (ja)
Other versions
JP2011132117A (en
Inventor
幸広 原
幸広 原
秀臣 酒井
秀臣 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2010258778A priority Critical patent/JP5704691B2/en
Publication of JP2011132117A publication Critical patent/JP2011132117A/en
Application granted granted Critical
Publication of JP5704691B2 publication Critical patent/JP5704691B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、重合可能なナノダイヤモンド及びその製造方法に関する。   The present invention relates to a polymerizable nanodiamond and a method for producing the same.

ダイヤモンドは、その硬度が既存物質の中で最高値を有していることから、ダイヤモンド微粒子を研磨材として利用し、物体表面を平滑に研磨する工程に実用化されている。また、ダイヤモンド微粒子からなる薄膜を物体表面に形成して、物体表面の潤滑性、耐磨耗性を向上させることが実用化されている。ダイヤモンドはこのような機械的性質が優れており、さらには電気的性質、熱的性質、及び光学的性質においても優れた物質であり、より広範囲の分野での利用が期待されている材料である。   Since diamond has the highest hardness among existing materials, diamond has been put to practical use in a process of smoothly polishing an object surface using diamond fine particles as an abrasive. Moreover, it has been put into practical use to improve the lubricity and wear resistance of an object surface by forming a thin film made of diamond fine particles on the object surface. Diamond has such excellent mechanical properties, and is also a material with excellent electrical, thermal, and optical properties, and is expected to be used in a wider range of fields. .

特に、ナノ粒子が媒体内で集合・凝集することなく分散状態を保つと、媒体との接触面積が非常に大きくなるため、従来のミクロ粒子混合系と比べて混合効果が強く現れると期待される。(非特許文献1)   In particular, if the nanoparticles are kept in a dispersed state without aggregating and aggregating in the medium, the contact area with the medium becomes very large, and therefore, it is expected that the mixing effect will be stronger than in the conventional microparticle mixing system. . (Non-Patent Document 1)

上記の観点より、ナノダイヤモンドと有機ポリマーのコンポジットは種々研究されており、例えばナノダイヤモンドとポリメチルメタクリレート(PMMA)のコンポジットなどが挙げられる。(特許文献1)   From the above viewpoint, various composites of nanodiamonds and organic polymers have been studied, for example, composites of nanodiamonds and polymethylmethacrylate (PMMA). (Patent Document 1)

しかしながら、ナノダイヤモンドとポリマーの馴染みが不十分であり、ナノダイヤモンドが十分に分散していない為、ナノ粒子の広大な表面積を考慮すると、十分に機能を出せていないのが現状である。   However, the familiarity between nanodiamonds and polymers is insufficient, and nanodiamonds are not sufficiently dispersed. Therefore, in view of the vast surface area of nanoparticles, the present situation is that they do not function sufficiently.

大澤映二、「ナノテクノロジーに必要なサイエンスの視点」現代化学、2005,4月号、No.409,38−42頁Eiji Osawa, “Scientific Perspectives for Nanotechnology,” Contemporary Chemistry, 2005, April, No. 409, pages 38-42

特開2004−51937号公報JP 2004-51937 A

本発明は非常に大きい表面積を有するナノダイヤモンドの表面に、重合可能な官能基を修飾することにより、ポリマーとの馴染みを向上させ、ポリマーと化学結合できる表面修飾ナノダイヤモンドおよびその製造方法を提供することを目的とする。   The present invention provides a surface-modified nanodiamond capable of improving the compatibility with a polymer by modifying a polymerizable functional group on the surface of the nanodiamond having a very large surface area, and a method for producing the same. For the purpose.

本発明者等は前記課題を解決すべく鋭意研究の結果、ナノダイヤモンド表面の極性基と該極性基と反応する官能基及び重合可能な官能基を有する化合物を反応させる事により、重合可能なナノダイヤモンドの製造法を見出し、本発明を完成させるに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have made it possible to react with a polar group on the surface of the nanodiamond, a functional group that reacts with the polar group, and a compound having a polymerizable functional group to react with the polymer. A method for producing diamond has been found and the present invention has been completed.

即ち、本発明は
(1)表面に水酸基、アミノ基又はカルボキシル基から選ばれる1種以上の極性基を有する、平均粒子径100nm以下のダイヤモンド粒子(a)と該極性基と反応する官能基及び重合可能な官能基を有する化合物(b)(以下、単に「表面修飾剤」ということがある。)を反応させ得られた表面修飾ダイヤモンド、
(2)ダイヤモンド粒子(a)の表面極性基と反応する化合物(b)の官能基がイソシアネート基である上記(1)記載のダイヤモンド、
(3)化合物(b)の重合可能な官能基がビニル基、(メタ)アクリレート基、グリシジル基、イソシアネート基、アミン基、カルボキシル基又はシラノール基である上記(1)または上記(2)記載のダイヤモンド、
(4)(1)〜(3)のいずれか1項に記載のダイヤモンドを含有する光および/又は熱硬化性樹脂組成物
(5)(4)記載の硬化性組成物を硬化してなる硬化物
(6)(5)記載の硬化物からなるフィルム
That is, the present invention relates to (1) a functional group that reacts with diamond particles (a) having an average particle size of 100 nm or less having one or more polar groups selected from a hydroxyl group, an amino group, or a carboxyl group on the surface; A surface-modified diamond obtained by reacting a compound (b) having a polymerizable functional group (hereinafter sometimes simply referred to as a “surface modifier”);
(2) The diamond according to the above (1), wherein the functional group of the compound (b) that reacts with the surface polar group of the diamond particle (a) is an isocyanate group,
(3) The above-described (1) or (2), wherein the polymerizable functional group of the compound (b) is a vinyl group, a (meth) acrylate group, a glycidyl group, an isocyanate group, an amine group, a carboxyl group or a silanol group. diamond,
(4) Light and / or thermosetting resin composition containing diamond according to any one of (1) to (3) (5) Curing obtained by curing the curable composition according to (4) (6) A film comprising the cured product described in (5)

本発明の表面修飾ナノダイヤモンドは、ポリマーとの馴染みが向上し、重合可能な官能基を有した化合物と化学結合しているので、従来にない優れた機械的特性、電気的特性、熱的特性、光学的特性等を有するコンポジットが形成可能である。   The surface-modified nanodiamond of the present invention is improved in compatibility with a polymer and chemically bonded to a compound having a polymerizable functional group, so that it has excellent mechanical properties, electrical properties, and thermal properties that have not existed before. A composite having optical characteristics and the like can be formed.

本発明の実施例1に係る2−イソシアナトエチルメタクリレートを表面修飾したナノダイヤモンドのFT−IR図である。It is a FT-IR figure of the nano diamond which surface-modified 2-isocyanatoethyl methacrylate which concerns on Example 1 of this invention. 本発明の実施例1に係る2−イソシアナトエチルメタクリレートを表面修飾したナノダイヤモンドの熱重量測定図である。It is a thermogravimetric measurement figure of the nano diamond which surface-modified 2-isocyanatoethyl methacrylate which concerns on Example 1 of this invention. 本発明の実施例1に係る2−イソシアナトエチルメタクリレートを表面修飾したナノダイヤモンドの熱分解GC−MS図である。It is a pyrolysis GC-MS figure of the nano diamond which surface-modified 2-isocyanatoethyl methacrylate which concerns on Example 1 of this invention. 本発明の実施例2に係るイソホロンジイソシアネートを表面修飾したナノダイヤモンドのFT−IR図である。It is a FT-IR figure of the nano diamond which surface-modified isophorone diisocyanate which concerns on Example 2 of this invention. 本発明の実施例2に係るIPDIを表面修飾したナノダイヤモンドの熱重量測定図である。It is a thermogravimetric measurement figure of the nano diamond which surface-modified IPDI which concerns on Example 2 of this invention. 本発明の実施例1に係るIPDIを表面修飾したナノダイヤモンドの熱分解GC−MS図である。It is a pyrolysis GC-MS figure of the nano diamond which surface-modified IPDI which concerns on Example 1 of this invention.

以下の本発明を詳細に説明する。なお、以下において、粒径や粒子径は、動的光散乱法粒度分布測定により測定された体積平均粒子径を意味し、以下において平均粒子径という場合もある。
本発明で用いられるダイヤモンド粒子は、酸素欠如型爆薬を爆発する爆轟法により得られた回収煤を硝酸や硫酸などによって化学的に精製された一次粒子径が3〜5nmの親水性のダイヤモンド粒子を原料とする。
The present invention is described in detail below. In the following, the particle size and particle size mean the volume average particle size measured by dynamic light scattering particle size distribution measurement, and may be referred to as the average particle size below.
The diamond particles used in the present invention are hydrophilic diamond particles having a primary particle size of 3 to 5 nm obtained by chemically purifying a recovered soot obtained by a detonation method of detonating an oxygen-deficient explosive with nitric acid or sulfuric acid. As a raw material.

爆轟法で得られたダイヤモンド粒子は、75〜90重量%の炭素原子を主体とし、残りは1〜2重量%の水素原子、1〜3重量%の窒素原子、5〜23重量%の酸素原子を含み、一次粒子が強く凝集している。すなわち、水素原子、窒素原子、及び酸素原子がダイヤモンド粒子の表層部に局在しており、これら原子は極めて多種、多数の官能基、例えばメチル基、ニトリル基、水酸基、アミノ基、カルボニル基、カルボキシル基もしくはアルデヒド基等を構成している。本発明で使用可能なダイヤモンド粒子は、これら基のうち、水酸基、アミノ基又はカルボキシル基から選ばれる1種以上の極性基を有する。   Diamond particles obtained by the detonation method are mainly composed of 75 to 90% by weight of carbon atoms, the rest being 1-2% by weight of hydrogen atoms, 1 to 3% by weight of nitrogen atoms, and 5 to 23% by weight of oxygen. Including atoms, primary particles are strongly agglomerated. That is, hydrogen atoms, nitrogen atoms, and oxygen atoms are localized in the surface layer portion of the diamond particle, these atoms are very various, many functional groups such as methyl group, nitrile group, hydroxyl group, amino group, carbonyl group, It constitutes a carboxyl group or an aldehyde group. Among these groups, the diamond particles that can be used in the present invention have one or more polar groups selected from a hydroxyl group, an amino group, and a carboxyl group.

本発明の表面修飾ナノダイヤモンド粒子は、下記する製造法で得られるが、当該製造法で得られた重合可能なナノダイヤモンド粒子に適合するかどうかは下記するFT−IR測定、熱重量測定(TGA)、熱分解GC−MS測定の結果を指標とすることができる。   The surface-modified nanodiamond particles of the present invention can be obtained by the production method described below. Whether the polymer is suitable for the polymerizable nanodiamond particles obtained by the production method is measured by the following FT-IR measurement, thermogravimetry (TGA). ), The result of pyrolysis GC-MS measurement can be used as an index.

本発明の表面修飾ナノダイヤモンド粒子は、爆轟法により得られたナノダイヤモンド粒子を適当な分散媒中に、予め分散させた分散体中において、表面修飾剤と反応させて得られる。   The surface-modified nanodiamond particles of the present invention are obtained by reacting nanodiamond particles obtained by the detonation method with a surface modifier in a dispersion in which the nano-diamond particles are previously dispersed in an appropriate dispersion medium.

本発明において、表面修飾剤としては、ナノダイヤモンドの表面極性基と反応するイソシアネート基を有しており、且つポリマーと重合可能な官能基を有している化合物であれば、特に限定することなく使用される。   In the present invention, the surface modifier is not particularly limited as long as it is a compound having an isocyanate group that reacts with the surface polar group of nanodiamond and having a functional group polymerizable with a polymer. used.

重合可能な官能基としてはビニル基、(メタ)アクリレート基、グリシジル基、イソシアネート基、アミン基、カルボキシル基又はシラノール基より選択される少なくとも1種類が好ましい。
使用できる表面修飾剤の具体例としては、2−イソシアナトメチル(メタ)アクリレート、2−イソシアナトエチル(メタ)アクリレート、2−イソシアナトプロピル(メタ)アクリレート、2−イソシアナトブチル(メタ)アクリレート、2−イソシアナトエトキシエチル(メタ)アクリレート、2−イソシアナトプロポキシプロピル(メタ)アクリレート、2−イソシアナトフェニル(メタ)アクリレート、1,1−ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート、(メタ)アクリル酸2−(0−[1'メチルプロピリデンアミノ]カルボキシアミノ)エチル、3−イソシアネートプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、モノメチルトリイソシアネートシラン、テトライソシアネートシラン、イソホロンジイソシアネート、トリレンジイソシアネート、メチレンビスフェニルジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。
The polymerizable functional group is preferably at least one selected from vinyl group, (meth) acrylate group, glycidyl group, isocyanate group, amine group, carboxyl group or silanol group.
Specific examples of surface modifiers that can be used include 2-isocyanatomethyl (meth) acrylate, 2-isocyanatoethyl (meth) acrylate, 2-isocyanatopropyl (meth) acrylate, and 2-isocyanatobutyl (meth) acrylate. 2-isocyanatoethoxyethyl (meth) acrylate, 2-isocyanatopropoxypropyl (meth) acrylate, 2-isocyanatophenyl (meth) acrylate, 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate, 2- (0- [1′methylpropylideneamino] carboxyamino) ethyl methacrylate, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, monomethyltriisocyanatesilane, tetraisocyanate Nate silane, isophorone diisocyanate, tolylene diisocyanate, methylene bisphenyl diisocyanate, hexamethylene diisocyanate and the like.

ナノダイヤモンド粒子に重合可能な化合物を表面修飾する為の分散媒としては、表面修飾剤を溶解させ、且つイソシアネート基と反応、分解しない分散媒であれば、特に限定されるものではなく、非水系有機溶剤等が使用される。これらの中でも、ナノダイヤモンド粒子に効率良く当該化合物を表面修飾させるために、ナノダイヤモンド粒子が良く分散する非プロトン性極性有機溶剤が好ましい。   The dispersion medium for modifying the surface of the compound capable of being polymerized on the nanodiamond particles is not particularly limited as long as the dispersion medium dissolves the surface modifier and does not react with the isocyanate group and does not decompose. An organic solvent or the like is used. Among these, an aprotic polar organic solvent in which nanodiamond particles are well dispersed is preferable in order to efficiently modify the surface of the compound with nanodiamond particles.

ここでは、代表的な例として分散媒としてN−メチル−2−ピロリドンを使用する場合について述べるが、N−メチル−2−ピロリドン以外の分散媒もこれに準じて同様に実施できる。   Here, a case where N-methyl-2-pyrrolidone is used as a dispersion medium will be described as a typical example, but a dispersion medium other than N-methyl-2-pyrrolidone can be similarly implemented.

まず、N−メチル−2−ピロリドンにナノダイヤモンド粒子を投入し、原料のナノダイヤモンド粒子を十分分散させる。分散方法は超音波浴中で撹拌しながら1〜48時間、好ましくは2〜24時間、より好ましくは5〜20時間程度である。なお、添加したナノダイヤモンド粒子が十分に分散できない場合は、遠心分離によって粗粒を取り除いても良い。
作製したナノダイヤモンド分散体の平均粒子径は、100nm以下、好ましくは3〜100nm、より好ましくは3〜50nm、特に好ましくは3〜40nmである。平均粒子径が100nm以上になると、表面修飾剤のイソシアネート基と反応する該表面極性基が凝集により阻害されることがある。
First, nano diamond particles are put into N-methyl-2-pyrrolidone, and the raw nano diamond particles are sufficiently dispersed. The dispersion method is 1 to 48 hours, preferably 2 to 24 hours, more preferably about 5 to 20 hours with stirring in an ultrasonic bath. If the added nanodiamond particles cannot be sufficiently dispersed, coarse particles may be removed by centrifugation.
The average particle diameter of the produced nanodiamond dispersion is 100 nm or less, preferably 3 to 100 nm, more preferably 3 to 50 nm, and particularly preferably 3 to 40 nm. When the average particle size is 100 nm or more, the surface polar groups that react with the isocyanate groups of the surface modifier may be inhibited by aggregation.

ナノダイヤモンド粒子の濃度は、N−メチル−2−ピロリドン100重量部に対して、0.1〜20重量部、好ましくは0.2〜10重量部、より好ましくは0.5〜5重量部である。   The concentration of the nanodiamond particles is 0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of N-methyl-2-pyrrolidone. is there.

なお、分散体中に存在する水分が表面修飾剤と反応する恐れがある場合は、分散体にモレキュラーシーブス等の乾燥剤を添加し、2〜3日静置した後に使用すると効果的である。   In addition, when there exists a possibility that the water | moisture content which exists in a dispersion may react with a surface modifier, it is effective to use, after adding desiccants, such as molecular sieves, to a dispersion, and leaving still for 2 to 3 days.

次に分散体に表面修飾剤を混合する。表面修飾剤の使用量はナノダイヤモンド粒子1重量部に対して、0.1〜50重量部、好ましくは0.2〜20重量部、より好ましくは0.5〜10重量部である。   Next, a surface modifier is mixed in the dispersion. The amount of the surface modifier used is 0.1 to 50 parts by weight, preferably 0.2 to 20 parts by weight, and more preferably 0.5 to 10 parts by weight with respect to 1 part by weight of the nanodiamond particles.

引き続いて、撹拌しながら反応を開始する。この時反応を促進させる為にジブチルすずジラウラート等の触媒を添加してもよく、ビニル基、(メタ)アクリレート基等の表面修飾剤同士で重合する恐れがある場合は、ヒドロキノン等の重合禁止剤を添加してもよい。   Subsequently, the reaction is started with stirring. In order to accelerate the reaction at this time, a catalyst such as dibutyltin dilaurate may be added. If there is a risk of polymerization between surface modifiers such as vinyl group and (meth) acrylate group, a polymerization inhibitor such as hydroquinone. May be added.

反応温度は、20〜150℃、好ましくは30〜100℃、より好ましくは40〜80℃、反応時間は0.5〜24時間、好ましくは1〜15時間、より好ましくは2〜10時間程度である。   The reaction temperature is 20 to 150 ° C., preferably 30 to 100 ° C., more preferably 40 to 80 ° C., the reaction time is 0.5 to 24 hours, preferably 1 to 15 hours, more preferably about 2 to 10 hours. is there.

反応が終了後、トルエン等の低極性溶剤を分散媒に対して重量基準で2〜5倍量加え、表面修飾ナノダイヤモンド粒子を凝集又は沈殿させた後、ろ過等の手段で固液分離し、さらにN−メチル−2−ピロリドン、メチルエチルケトン等の表面修飾剤が溶解する有機溶剤で洗浄後、減圧乾燥し、目的とする表面修飾ナノダイヤモンド粒子を得る。なお、固液分離の手段として遠心分離機を使用することも可能である。   After completion of the reaction, a low-polar solvent such as toluene is added in an amount of 2 to 5 times based on the weight of the dispersion medium, and the surface-modified nanodiamond particles are aggregated or precipitated, and then solid-liquid separated by means such as filtration, Furthermore, after washing with an organic solvent in which a surface modifier such as N-methyl-2-pyrrolidone or methyl ethyl ketone is dissolved, the product is dried under reduced pressure to obtain the desired surface-modified nanodiamond particles. In addition, it is also possible to use a centrifuge as a means for solid-liquid separation.

本発明で用いる硬化性樹脂組成物は、光照射及び/又は加熱により硬化可能な樹脂組成物であれば特に限定されず、例えば、不飽和二重結合を有する硬化性樹脂組成物、エポキシ基、オキセタニル基等の環状エーテルを有する硬化性樹脂組成物が挙げられる。 The curable resin composition used in the present invention is not particularly limited as long as it is a resin composition that can be cured by light irradiation and / or heating. For example, a curable resin composition having an unsaturated double bond, an epoxy group, Examples thereof include a curable resin composition having a cyclic ether such as an oxetanyl group.

上記不飽和二重結合を有する硬化性樹脂組成物としては特に限定されず、例えば、ビニル基、ビニルエーテル基、アリル基、マレイミド基、(メタ)アクリル基等を有する樹脂が挙げられ、なかでも反応性や汎用性の面より(メタ)アクリル基を有する樹脂が好ましい。なお、本明細書において、(メタ)アクリル基とは、アクリル基又はメタクリル基のことをいう。 The curable resin composition having an unsaturated double bond is not particularly limited, and examples thereof include resins having a vinyl group, a vinyl ether group, an allyl group, a maleimide group, a (meth) acryl group, and the like. A resin having a (meth) acrylic group is preferred from the viewpoint of properties and versatility. In addition, in this specification, a (meth) acryl group means an acryl group or a methacryl group.

(メタ)アクリル基を有する樹脂としては例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、1,4−ブタンジオールモノ(メタ)アクリレート、カルビトール(メタ)アクリレート、アクリロイルモルホリン、水酸基含有(メタ)アクリレートと多カルボン酸化合物の酸無水物の反応物であるハーフエステル,ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、グリセリンポリプロポキシトリ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールのε−カプロラクトン付加物のジ(メタ)アクリレート(例えば日本化薬(株)製、KAYARAD HX−220、HX−620等)、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールとε−カプロラクトンの反応物のポリ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、モノ又はポリグリシジル化合物と(メタ)アクリル酸の反応物であるエポキシ(メタ)アクリレート等を挙げることができる。 Examples of the resin having a (meth) acryl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 1,4-butanediol mono (meth) acrylate, carbitol (meth) acrylate, and acryloyl. Half-ester, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, which is a reaction product of morpholine, hydroxyl group-containing (meth) acrylate and acid anhydride of polycarboxylic acid compound , Di (meth) acrylate of ε-caprolactone adduct of trimethylolpropane polyethoxytri (meth) acrylate, glycerin polypropoxytri (meth) acrylate, and neopentyl glycol hydroxypivalate (For example, KAYARAD HX-220, HX-620, etc., manufactured by Nippon Kayaku Co., Ltd.), pentaerythritol tetra (meth) acrylate, poly (meth) acrylate, dipentaerythritol and ε-caprolactone reaction product, dipenta Examples include erythritol poly (meth) acrylate, epoxy (meth) acrylate that is a reaction product of a mono- or polyglycidyl compound and (meth) acrylic acid, and the like.

モノ又はポリグリシジル化合物と(メタ)アクリル酸の反応物であるエポキシ(メタ)アクリレートに用いられるグリシジル化合物としては、特に制限はなく、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4’ −ビフェニルフェノール、テトラメチルビスフェノールA、ジメチルビスフェノールA、テトラメチルビスフェノールF、ジメチルビスフェノールF、テトラメチルビスフェノールS、ジメチルビスフェノールS、テトラメチル−4,4’ −ビフェノール、ジメチル−4,4’ −ビフェニルフェノール、1−(4−ヒドロキシフェニル)−2−[4−(1,1−ビス−(4−ヒドロキシフェニル)エチル)フェニル]プロパン、2,2’ −メチレン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’ −ブチリデン−ビス(3−メチル−6−tert−ブチルフェノール)、トリスヒドロキシフェニルメタン、レゾルシノール、ハイドロキノン、ピロガロール、ジイソプロピリデン骨格を有するフェノール類、1,1−ジ−4−ヒドロキシフェニルフルオレン等のフルオレン骨格を有するフェノール類、フェノール化ポリブタジエン、ブロム化ビスフェノールA、ブロム化ビスフェノールF、ブロム化ビスフェノールS、ブロム化フェノールノボラック、ブロム化クレゾールノボラック、クロル化ビスフェノールS、クロル化ビスフェノールA等のポリフェノール類のグリシジルエーテル化物が挙げられる。 There is no restriction | limiting in particular as a glycidyl compound used for the epoxy (meth) acrylate which is a reaction material of a mono- or polyglycidyl compound and (meth) acrylic acid, For example, bisphenol A, bisphenol F, bisphenol S, 4,4'- Biphenylphenol, tetramethylbisphenol A, dimethylbisphenol A, tetramethylbisphenol F, dimethylbisphenol F, tetramethylbisphenol S, dimethylbisphenol S, tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenylphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) ethyl) phenyl] propane, 2,2′-methylene-bis (4-methyl-6-tert- Butylphenol ), 4,4′-butylidene-bis (3-methyl-6-tert-butylphenol), trishydroxyphenylmethane, resorcinol, hydroquinone, pyrogallol, phenols having a diisopropylidene skeleton, 1,1-di-4 -Phenols having a fluorene skeleton such as hydroxyphenylfluorene, phenolized polybutadiene, brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol Examples thereof include glycidyl etherified products of polyphenols such as A.

これらモノ又はポリグリシジル化合物と(メタ)アクリル酸の反応物であるエポキシ(メタ)アクリレートは、そのエポキシ基に当量の(メタ)アクリル酸をエステル化反応させる事によって得ることができる。この合成反応は一般的に知られている方法により行うことが出来る。例えば、レゾルシンジグリシジルエーテルにその当量の(メタ)アクリル酸を、触媒(例えば、ベンジルジメチルアミン、トリエチルアミン、ベンジルトリメチルアンモニウムクロライド、トリフェニルホスフィン、トリフェニルスチビン等)及び重合防止剤(例えば、メトキノン、ハイドロキノン、メチルハイドロキノン、フェノチアジン、ジブチルヒドロキシトルエン等)と共に添加して、例えば80〜110℃でエステル化反応を行う。こうして得られた(メタ)アクリル化レゾルシンジグリシジルエーテルは、ラジカル重合性の(メタ)アクリロイル基を有する樹脂である。 The epoxy (meth) acrylate which is a reaction product of these mono- or polyglycidyl compounds and (meth) acrylic acid can be obtained by esterifying an equivalent amount of (meth) acrylic acid to the epoxy group. This synthesis reaction can be performed by a generally known method. For example, resorcin diglycidyl ether with an equivalent amount of (meth) acrylic acid, a catalyst (for example, benzyldimethylamine, triethylamine, benzyltrimethylammonium chloride, triphenylphosphine, triphenylstibine, etc.) and a polymerization inhibitor (for example, methoquinone, Hydroquinone, methylhydroquinone, phenothiazine, dibutylhydroxytoluene and the like) and, for example, an esterification reaction is performed at 80 to 110 ° C. The (meth) acrylated resorcin diglycidyl ether thus obtained is a resin having a radically polymerizable (meth) acryloyl group.

上記環状エーテルを有する硬化性樹脂組成物としては特に限定されず、例えば、エポキシ樹脂、脂環式エポキシ樹脂、オキセタン樹脂、フラン樹脂等が挙げられる。なかでも、反応速度や汎用性の観点からエポキシ樹脂、脂環式エポキシ樹脂、オキセタン樹脂が好適である。上記エポキシ樹脂としては特に限定されず、例えば、フェノールノボラック型、クレゾールノボラック型、ビフェニルノボラック型、トリスフェノールノボラック型、ジシクロペンタジエンノボラック型等のノボラック型;ビスフェノールA型、ビスフェノールF型、2,2’−ジアリルビスフェノールA型、水添ビスフェノール型、ポリオキシプロピレンビスフェノールA型等のビスフェノール型等が挙げられる。また、その他にグリシジルアミン等も挙げられる。 It does not specifically limit as a curable resin composition which has the said cyclic ether, For example, an epoxy resin, an alicyclic epoxy resin, an oxetane resin, a furan resin etc. are mentioned. Of these, epoxy resins, alicyclic epoxy resins, and oxetane resins are preferred from the viewpoint of reaction rate and versatility. The epoxy resin is not particularly limited. For example, a novolak type such as a phenol novolak type, a cresol novolak type, a biphenyl novolak type, a trisphenol novolak type, a dicyclopentadiene novolak type; a bisphenol A type, a bisphenol F type, 2, 2 Examples thereof include bisphenol types such as' -diallyl bisphenol A type, hydrogenated bisphenol type, and polyoxypropylene bisphenol A type. Other examples include glycidylamine.

上記エポキシ樹脂の市販品としては、例えば、フェノールノボラック型エポキシ樹脂としては、エピクロンN−740、N−770、N−775(以上、いずれも大日本インキ化学社製)、エピコート152、エピコート154(以上、いずれもジャパンエポキシレジン社製)等が挙げられる。クレゾールノボラック型としては、例えば、エピクロンN−660、N−665、N−670、N−673、N−680、N−695、N−665−EXP、N−672−EXP(以上、いずれも大日本インキ化学社製);ビフェニルノボラック型としては、例えば、NC−3000P(日本化薬社製);トリスフェノールノボラック型としては、例えば、EP1032S50、EP1032H60(以上、いずれもジャパンエポキシレジン社製);ジシクロペンタジエンノボラック型としては、例えば、XD−1000−L(日本化薬社製)、HP−7200(大日本インキ化学社製);ビスフェノールA型エポキシ樹脂としては、例えば、エピコート828、エピコート834、エピコート1001、エピコート1004(以上、いずれもジャパンエポキシレジン社製)、エピクロン850、エピクロン860、エピクロン4055(以上、いずれも大日本インキ化学工業社製);ビスフェノールF型エポキシ樹脂の市販品としては、例えば、エピコート807(ジャパンエポキシレジン社製)、エピクロン830(大日本インキ化学工業社製);2,2’−ジアリルビスフェノールA型としては、例えば、RE−810NM(日本化薬社製);水添ビスフェノール型としては、例えば、ST−5080(東都化成社製);ポリオキシプロピレンビスフェノールA型としては、例えば、EP−4000、EP−4005(以上、いずれも旭電化工業社製)等が挙げられる。 As a commercially available product of the above epoxy resin, for example, as a phenol novolak type epoxy resin, Epicron N-740, N-770, N-775 (all of which are manufactured by Dainippon Ink and Chemicals), Epicoat 152, Epicoat 154 ( As mentioned above, all are Japan Epoxy Resin Co., Ltd.). Examples of the cresol novolac type include epiclone N-660, N-665, N-670, N-673, N-680, N-695, N-665-EXP, N-672-EXP (all of which are large. As a biphenyl novolak type, for example, NC-3000P (manufactured by Nippon Kayaku Co., Ltd.); As a trisphenol novolak type, for example, EP1032S50, EP1032H60 (all of these are manufactured by Japan Epoxy Resin); Examples of the dicyclopentadiene novolak type include XD-1000-L (manufactured by Nippon Kayaku Co., Ltd.), HP-7200 (manufactured by Dainippon Ink &Chemicals); and bisphenol A type epoxy resin, for example, Epicoat 828 and Epicoat 834. , Epicoat 1001, Epicoat 1004 (above, any Japan Epoxy Resin Co., Ltd.), Epicron 850, Epicron 860, Epicron 4055 (all of which are manufactured by Dainippon Ink & Chemicals, Inc.); ), Epicron 830 (manufactured by Dainippon Ink and Chemicals); 2,2′-diallyl bisphenol A type, for example, RE-810NM (manufactured by Nippon Kayaku Co., Ltd.); Hydrogenated bisphenol type, for example, ST- 5080 (manufactured by Tohto Kasei Co., Ltd.); Examples of the polyoxypropylene bisphenol A type include EP-4000 and EP-4005 (all of which are manufactured by Asahi Denka Kogyo Co., Ltd.).

上記オキセタン樹脂の市販品として、例えば、エタナコールEHO、エタナコールOXBP、エタナコールOXTP、エタナコールOXMA(以上、いずれも宇部興産社製)等が挙げられる。また、上記脂環式エポキシ樹脂としては特に限定されず、例えば、セロキサイド2021、セロキサイド2080、セロキサイド3000(以上、いずれもダイセル・ユーシービー社製)等が挙げられる。これらの環状エーテル基を有する硬化性樹脂組成物は、単独で用いられてもよく、2種以上が併用されてもよい。 Examples of commercially available oxetane resins include etanacol EHO, etanacol OXBP, etanacol OXTP, etanacol OXMA (all of which are manufactured by Ube Industries, Ltd.). Moreover, it does not specifically limit as said alicyclic epoxy resin, For example, Celoxide 2021, Celoxide 2080, Celoxide 3000 (above, all are the Daicel UCB company make) etc. are mentioned. These curable resin compositions having a cyclic ether group may be used alone or in combination of two or more.

本発明に含有される光反応開始剤としては、カチオン重合型とラジカル重合型が挙げられるが、特に制限が無い。ラジカル重合型光反応開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;アセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン、2−ヒドロキシ−2−メチル−フェニルプロパン−1−オン、ジエトキシアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノプロパン−1−オンなどのアセトフェノン類;2−エチルアントラキノン、2−ターシャリーブチルアントラキノン、2−クロロアントラキノン、2−アミルアントラキノンなどのアントラキノン類;2,4−ジエチルチオキサントン、2−イソプロピルチオキサントン、2−クロロチオキサントンなどのチオキサントン類;アセトフエノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノン、4−ベンゾイル−4'−メチルジフェニルサルファイド、4,4'−ビスメチルアミノベンゾフェノンなどのベンゾフェノン類;2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド等のホスフィンオキサイド類等を挙げることができる。好ましくは、2−ヒドロキシ−2−メチル−フェニルプロパン−1−オン、1−ヒドロキシンクロヘキシルフェニルケトンを挙げることができる。 Examples of the photoreaction initiator contained in the present invention include a cationic polymerization type and a radical polymerization type, but there is no particular limitation. Examples of radical polymerization photoinitiators include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy 2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio ) Phenyl] -2-morpholinopropan-1-one and other acetophenones; 2-ethylanthraquinone, 2-tertiarybutylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone, etc. Anthraquinones; thioxanthones such as 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide Benzophenones such as 4,4′-bismethylaminobenzophenone; phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide be able to. Preferable examples include 2-hydroxy-2-methyl-phenylpropan-1-one and 1-hydroxycyclohexyl phenyl ketone.

また、カチオン重合型光反応開始剤としては、ベンゼンジアゾニウムヘキサフルオロアンチモネート、ベンゼンジアゾニウムヘキサフルオロホスフェート、ベンゼンジアゾニウムヘキサフルオロボレート、トリスフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロボレート、4,4’−ビス[ビス(2−ヒドロキシエトキシフェニル)スルフォニオ]フェニルスルフィドビスヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニル−4−チオフェノキシフェニルスルフォニウムヘキサフルオロホスフェート、4−メチルフェニル[4−(1−メチルエチル)フェニル]ヨードニウム テトラキス(ペンタフルオロフェニル)ボレート等を挙げることができる。
なお、本発明においては、光反応開始剤は単独で用いても良いし、複数種を混合して用いても良い。上記光反応開始剤の配合量としては、上記硬化性化合物100重量部に対して0.01〜10重量部であり、好ましくは0.1〜5重量部である。0.01重量部未満であると、光重合を開始する能力が不足して効果が得られないことがあり、10重量部を超えると、急激な光重合反応により、硬化時の内部応力によって、接着強度の低下等を引き起こすことがある。
In addition, as the cationic polymerization type photoinitiator, benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, benzenediazonium hexafluoroborate, trisphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexaphosphate Fluoroborate, 4,4′-bis [bis (2-hydroxyethoxyphenyl) sulfonio] phenyl sulfide bishexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluorophosphate, diphenyl-4-thiophenoxyphenylsulfonium Hexafluorophosphate, 4-methylphenyl [4- (1 -Methylethyl) phenyl] iodonium tetrakis (pentafluorophenyl) borate and the like.
In the present invention, the photoreaction initiator may be used alone or in combination of two or more. As a compounding quantity of the said photoinitiator, it is 0.01-10 weight part with respect to 100 weight part of said curable compounds, Preferably it is 0.1-5 weight part. If it is less than 0.01 part by weight, the ability to initiate photopolymerization may be insufficient and the effect may not be obtained. If it exceeds 10 parts by weight, due to an abrupt photopolymerization reaction, due to internal stress during curing, It may cause a decrease in adhesive strength.

上記熱硬化剤は、加熱により硬化性化合物中の不飽和二重結合やエポキシ基等を反応させ、架橋させるためのものであれば特に制限は無く、例えば酸無水物、アミン類、フェノール類、イミダゾール類、ジヒドラジン類、ルイス酸、ブレンステッド酸塩類、ポリメルカプトン類、イソシアネート類、ブロックイソシアネート類等が挙げられる。 The thermosetting agent is not particularly limited as long as it is for reacting and crosslinking an unsaturated double bond or an epoxy group in the curable compound by heating. For example, acid anhydrides, amines, phenols, Examples include imidazoles, dihydrazines, Lewis acids, Bronsted acid salts, polymercaptons, isocyanates, and blocked isocyanates.

使用できる酸無水物の具体例としては、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、エチレングリコール無水トリメリット酸無水物、ビフェニルテトラカルボン酸無水物等の芳香族カルボン酸無水物、アゼライン酸、セバシン酸、ドデカン二酸等の脂肪族カルボン酸の無水物、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、ナジック酸無水物、ヘット酸無水物、ハイミック酸無水物等の脂環式カルボン酸無水物等が挙げられる。 Specific examples of acid anhydrides that can be used include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol trimellitic anhydride, biphenyltetracarboxylic anhydride Aromatic carboxylic acid anhydrides, such as azelaic acid, sebacic acid, dodecanedioic acid anhydrides, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, nadic acid anhydride, het acid anhydride And alicyclic carboxylic acid anhydrides such as hymic acid anhydrides.

使用できるアミン類の具体例としては、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、ジアミノジフェニルエーテル、p−フェニレンジアミン、m−フェニレンジアミン、o−フェニレンジアミン、1,5−ジアミノナフタレン、m−キシリレンジアミン等の芳香族アミン、エチレンジアミン、ジエチレンジアミン、イソフォロンジアミン、ビス(4−アミノ−3−メチルジシクロヘキシル)メタン、ポリエーテルジアミン等の脂肪族アミン、ジシアンジアミド、1−(o−トリル)ビグアニド等のグアニジン類、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド、イソフタル酸ジヒドラジ、1,3−ビス[ヒドラジノカルボノエチル−5−イソプロピルヒダントイン]等のヒドラジド化合物類等が挙げられる。 Specific examples of amines that can be used include aromatics such as diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 1,5-diaminonaphthalene, m-xylylenediamine, and the like. Aliphatic amines such as aliphatic amines, ethylenediamine, diethylenediamine, isophoronediamine, bis (4-amino-3-methyldicyclohexyl) methane, polyetherdiamine, guanidines such as dicyandiamide, 1- (o-tolyl) biguanide, adipine Hydrazide compounds such as acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, isophthalic acid dihydrazide, 1,3-bis [hydrazinocarbonoethyl-5-isopropylhydantoin] And the like.

使用できるフェノール類の具体例としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4’ −ビフェニルフェノール、テトラメチルビスフェノールA、ジメチルビスフェノールA、テトラメチルビスフェノールF、ジメチルビスフェノールF、テトラメチルビスフェノールS、ジメチルビスフェノールS、テトラメチル−4,4’−ビフェノール、ジメチル−4,4’−ビフェニルフェノール、1−(4−ヒドロキシフェニル)−2−[4−(1,1−ビス−(4−ヒドロキシフェニル)エチル)フェニル]プロパン、2,2’−メチレン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデン−ビス(3−メチル−6−tert−ブチルフェノール)、トリスヒドロキシフェニルメタン、レゾルシノール、ハイドロキノン、ピロガロール、ジイソプロピリデン骨格を有するフェノール類、1,1−ジ−4−ヒドロキシフェニルフルオレン等のフルオレン骨格を有するフェノール類、フェノール化ポリブタジエン、フェノール、クレゾール類、エチルフェノール類、ブチルフェノール類、オクチルフェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ナフトール類等の各種フェノールを原料とするノボラック樹脂、キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、ビフェニル骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂、フラン骨格含有フェノールノボラック樹脂等の各種ノボラック樹脂、ブロム化ビスフェノールA、ブロム化ビスフェノールF、ブロム化ビスフェノールS、ブロム化フェノールノボラック、ブロム化クレゾールノボラック、クロル化ビスフェノールS、クロル化ビスフェノールA等のハロゲン化フェノール類等、下記式1に示される Specific examples of phenols that can be used include bisphenol A, bisphenol F, bisphenol S, 4,4′-biphenylphenol, tetramethylbisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, Dimethylbisphenol S, tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenylphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) ) Ethyl) phenyl] propane, 2,2′-methylene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (3-methyl-6-tert-butylphenol), trishydroxyphenyl Methane, le Zorcinol, hydroquinone, pyrogallol, phenols having a diisopropylidene skeleton, phenols having a fluorene skeleton such as 1,1-di-4-hydroxyphenylfluorene, phenolized polybutadiene, phenol, cresols, ethylphenols, butylphenols , Novolak resins, xylylene skeleton-containing phenol novolak resins, dicyclopentadiene skeleton-containing phenol novolak resins, biphenyl skeleton-containing phenol novolak resins, fluorenes Various novolak resins such as skeleton-containing phenol novolak resins, furan skeleton-containing phenol novolak resins, brominated bisphenols Le A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolak, chlorinated bisphenol S, halogenated phenols such as chlorinated bisphenol A, represented by the following formula 1

Figure 0005704691
Figure 0005704691

(式中、x、y、z、l、m及びnは、それぞれ平均重合度であって、x=3〜7、y=1〜4、z=5〜15、l+m=2〜200の整数をそれぞれ示し、m/(l+m)≧0.04であり、nは特に限定されない。) 式1
で示されるフェノール性水酸基含有ポリアミドーポリブタジエン―アクリロニトリル共重合体や下記式2に示される
(Wherein, x, y, z, l, m and n are average polymerization degrees, and x = 3 to 7, y = 1 to 4, z = 5 to 15, and l + m = 2 to 200 integers. And m / (l + m) ≧ 0.04, and n is not particularly limited.
And a phenolic hydroxyl group-containing polyamide-polybutadiene-acrylonitrile copolymer represented by

Figure 0005704691
Figure 0005704691

(式中、l、m及びnは、それぞれ平均重合度であって、l+m=2〜200の整数をそれぞれ示し、m/(l+m)≧0.04であり、nは特に限定されない。) 式2
で示されるフェノール性水酸基含有ポリアミド等が挙げられる。
(In the formula, l, m, and n are average polymerization degrees, respectively, and each represents an integer of 1 + m = 2 to 200, and m / (l + m) ≧ 0.04, and n is not particularly limited.) 2
And a phenolic hydroxyl group-containing polyamide represented by

上記記載のフェノール性水酸基含有ポリアミド類は、例えば次の方法で合成できる。即ち、フェノール性水酸基を有するジカルボン酸を含有するジカルボン酸成分に対して過剰量のジアミンを加え、これらを例えば、亜リン酸エステルとピリジン誘導体の存在下で縮合剤を使用して、N−メチル−2−ピロリドン等の有機溶媒中で窒素等の不活性雰囲気下にて加熱攪拌、縮合反応を行って、フェノール性水酸基を含有するポリアミドが得られる。また、ポリブタジエンやポリブタジエン−アクリロニトリル等とのブロック共重合体類は、例えば次の方法で合成できる。即ち、上記記載の方法で得られた、フェノール性水酸基を含有するポリアミドオリゴマーを生成させる。この結果、得られた両末端がアミノ基となったフェノール性水酸基含有ポリアミドオリゴマー溶液に、両末端にカルボキシル基をもつポリブタジエンーアクリロニトリル共重合体や、両末端にカルボキシル基をもつポリブタジエンを添加し、重縮合することにより得ることができる。また、ジカルボン酸をジアミンに対して過剰にして、両末端がカルボン酸基となったポリアミドを合成し、これに対して両末端がアミノ基のポリブタジエンーアクリロニトリル共重合体や両末端がアミノ基のポリブタジエンを反応させることもできる。尚、上記ジカルボン酸成分とジアミンは少なくともそのどちらか一方の全部又は一部がフェノール性水酸基を含有していれば良く、この条件を満たす限り、フェノール性水酸基を含有しないジカルボン酸又はジアミンを併用することができる。 The phenolic hydroxyl group-containing polyamides described above can be synthesized, for example, by the following method. That is, an excess amount of diamine is added to a dicarboxylic acid component containing a dicarboxylic acid having a phenolic hydroxyl group, and these are added, for example, by using a condensing agent in the presence of a phosphite ester and a pyridine derivative to form N-methyl. A polyamide containing a phenolic hydroxyl group is obtained by heating and stirring and condensation reaction in an inert solvent such as nitrogen in an organic solvent such as -2-pyrrolidone. Moreover, block copolymers with polybutadiene, polybutadiene-acrylonitrile, etc. can be synthesized, for example, by the following method. That is, a polyamide oligomer containing a phenolic hydroxyl group obtained by the method described above is produced. As a result, a polybutadiene-acrylonitrile copolymer having carboxyl groups at both ends and a polybutadiene having carboxyl groups at both ends were added to the obtained phenolic hydroxyl group-containing polyamide oligomer solution having amino groups at both ends, It can be obtained by polycondensation. Moreover, dicarboxylic acid is made excessive with respect to diamine to synthesize a polyamide having both carboxylic acid groups at both ends, and a polybutadiene-acrylonitrile copolymer having both amino groups at both ends or amino groups at both ends. Polybutadiene can also be reacted. The dicarboxylic acid component and the diamine need only contain at least one or both of them containing a phenolic hydroxyl group. As long as this condition is satisfied, a dicarboxylic acid or diamine not containing a phenolic hydroxyl group is used in combination. be able to.

フェノール性水酸基含有ポリアミド誘導体に使用できるフェノール性水酸基を有するジカルボン酸の具体例としては、5−ヒドロキシイソフタル酸、4−ヒドロキシイソフタル酸、2ーヒドロキシフタル酸、3−ヒドロキシフタル酸、2−ヒドロキシテレフタル酸等が、又、フェノール性水酸基を有しないジカルボン酸の具体例としては、フタル酸、イソフタル酸、テレフタル酸、ジカルボキシルナフタレン、コハク酸、フマル酸、グルタル酸、アジピン酸、1,3−シクロヘキサンジカルボン酸、4,4′−ジフェニルジカルボン酸、3,3′−メチレン二安息香酸等が挙げられる。 Specific examples of the dicarboxylic acid having a phenolic hydroxyl group that can be used for the phenolic hydroxyl group-containing polyamide derivative include 5-hydroxyisophthalic acid, 4-hydroxyisophthalic acid, 2-hydroxyphthalic acid, 3-hydroxyphthalic acid, and 2-hydroxyterephthalate. Specific examples of dicarboxylic acids in which an acid or the like does not have a phenolic hydroxyl group include phthalic acid, isophthalic acid, terephthalic acid, dicarboxyl naphthalene, succinic acid, fumaric acid, glutaric acid, adipic acid, 1,3-cyclohexane Examples include dicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 3,3'-methylene dibenzoic acid and the like.

使用できるフェノール性水酸基を含有するジアミンの具体例としては、3,3′−ジアミン−4,4′−ジヒドロキシフェニルメタン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフロロプロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ジフロロメタン、3,4−ジアミノ−1,5−ベンゼンジオ−ル、3,3′−ジヒドロキシ−4,4′−ジアミノビスフェニル、3,3′−ジアミノ−4,4′−ジヒドロキシビフェニル、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ケトン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)スルフィド、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)エーテル、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)スルホン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−ヒドロキシ−4−アミノフェニル)プロパン、2,2−ビス(3−ヒドロキシ−4−アミノフェニル)メタン等が、又、フェノール性水酸基を含有しないジアミンの具体例としては、3,3′−ジアミノジフェニルエーテル、3,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルエーテル、ジアミノナフタレン、ピペラジン、ヘキサネチレンジアミン、テトラメチレンジアミン、m−キシレンジアミン、4,4′−ジアミノジフェニルメタン、4,4′−ジアミノベンゾフェノン、2,2′−ビス(4−アミノフェニル)プロパン、3,3′−ジアミノジフェニルスルホン、3,3′−ジアミノジフェニル等が挙げられ、3,4′−ジアミノジフェニルエーテルが好ましいが、本発明ではこれらに限定されるものではない。 Specific examples of diamines containing phenolic hydroxyl groups that can be used include 3,3′-diamine-4,4′-dihydroxyphenylmethane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) difluoromethane, 3,4-diamino-1,5-benzenediol, 3,3'-dihydroxy-4,4'-diaminobisphenyl, 3, 3'-diamino-4,4'-dihydroxybiphenyl, 2,2-bis (3-amino-4-hydroxyphenyl) ketone, 2,2-bis (3-amino-4-hydroxyphenyl) sulfide, 2,2 -Bis (3-amino-4-hydroxyphenyl) ether, 2,2-bis (3-amino-4-hydroxyphenyl) sulfone, 2,2-bis 3-amino-4-hydroxyphenyl) propane, 2,2-bis (3-hydroxy-4-aminophenyl) propane, 2,2-bis (3-hydroxy-4-aminophenyl) methane, etc., and phenol Specific examples of diamines that do not contain a functional hydroxyl group include 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, diaminonaphthalene, piperazine, hexanetylenediamine, tetramethylenediamine, m-xylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminobenzophenone, 2,2'-bis (4-aminophenyl) propane, 3,3'-diaminodiphenylsulfone, 3,3'-diamino And diphenyl and the like, and 3,4'-diaminodiphe Ether is preferred, but the invention is not limited to these.

また、両末端に種々の官能基を持つポリブタジエン−アクリロニトリル共重合体は、Goodrich社からHycar
CTBNとして市販されており、これらを前記のフェノール性水酸基含有ポリアミドとブロック化するために使用することができる。
Also, polybutadiene-acrylonitrile copolymer having various functional groups at both ends can be obtained from Goodrich from Hycar.
It is marketed as CTBN and can be used to block these with the phenolic hydroxyl group-containing polyamide.

使用できるイミダゾール類の具体例としては、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2,4−ジアミノ−6(2’−メチルイミダゾール(1’))エチル−s−トリアジン、2,4−ジアミノ−6(2’−ウンデシルイミダゾール(1’))エチル−s−トリアジン、2,4−ジアミノ−6(2’−エチル,4−メチルイミダゾール(1’))エチル−s−トリアジン、2,4−ジアミノ−6(2’−メチルイミダゾール(1’))エチル−s−トリアジン・イソシアヌル酸付加物、2−メチルイミダゾールイソシアヌル酸の2:3付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−3,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−ヒドロキシメチル−5−メチルイミダゾール、1−シアノエチル−2−フェニル−3,5−ジシアノエトキシメチルイミダゾール等の各種イミダゾール類、及びそれらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類等が挙げられる。 Specific examples of imidazoles that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole) (1 ')) Ethyl-s-triazine, 2,4-diamino-6 (2'-undecylimidazole (1')) ethyl-s-triazine, 2,4-diamino-6 (2'-ethyl, 4 -Methylimidazole (1 ')) ethyl-s-triazine, 2,4-dia No-6 (2′-methylimidazole (1 ′)) ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl Various imidazoles such as 3,5-dihydroxymethylimidazole, 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole, and the imidazoles Examples thereof include salts with polyvalent carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, maleic acid and oxalic acid.

これら熱硬化剤の配合量としては、上記硬化性化合物100重量部に対して0.5〜50重量部であり、好ましくは1〜40重量部である。0.5重量部未満であると、硬化不足により、接着性や耐薬品性等の硬化物特性が低下する。また、50重量部を超えると、熱硬化剤成分が過剰にあまり、耐熱性等の低下を招く。なお、上記熱硬化剤は2種以上を混合して用いることもできる。 As a compounding quantity of these thermosetting agents, it is 0.5-50 weight part with respect to 100 weight part of said curable compounds, Preferably it is 1-40 weight part. If it is less than 0.5 part by weight, the cured product properties such as adhesiveness and chemical resistance deteriorate due to insufficient curing. On the other hand, when the amount exceeds 50 parts by weight, the thermosetting agent component is excessively excessive, and the heat resistance and the like are reduced. In addition, the said thermosetting agent can also be used in mixture of 2 or more types.

本発明の樹脂組成物には、必要に応じて硬化促進剤を含有させることもできる。この硬化促進剤としては、例えばトリフェニルホスフィン等のリン系化合物、例えば、トリエチルアミン、テトラエタノールアミン、1,8−ジアザービシクロ〔5.4.0〕−7−ウンデセン(DBU)、N,N−ジメチルベンジルアミン、1,1,3,3−テトラメチルグアニジン又は2−エチル−4−メチルイミダゾール、N−メチルピペラジン等の第3級アミン系化合物、例えば1,8−ジアザービシクロ〔5.4.0〕−7−ウンデセニウムテトラフェニルボレート等のホウ素系化合物が挙げられる。 The resin composition of the present invention may contain a curing accelerator as necessary. Examples of the curing accelerator include phosphorus compounds such as triphenylphosphine, for example, triethylamine, tetraethanolamine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), N, N -Tertiary amine compounds such as dimethylbenzylamine, 1,1,3,3-tetramethylguanidine or 2-ethyl-4-methylimidazole, N-methylpiperazine, such as 1,8-diazabicyclo [5. 4.0] -7-undecenium tetraphenylborate and the like.

本発明の樹脂組成物には、必要に応じて、他の添加物を加えることができる。例えば天然ワックス類、合成ワックス類および長鎖脂肪族酸の金属塩類等の可塑剤、酸アミド類、エステル類、パラフィン類等の離型剤、ニトリルゴム、ブタジエンゴム等の応力緩和剤、三酸化アンチモン、五酸化アンチモン、酸化錫、水酸化錫、酸化モリブデン、硼酸亜鉛、メタ硼酸バリウム、赤燐、水酸化アルミニウム、水酸化マグネシウム、アルミン酸カルシウム等の無機難燃剤、テトラブロモビスフェノールA、テトラブロモ無水フタル酸、ヘキサブロモベンゼン、ブロム化フェノールノボラック等の臭素系難燃剤、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等のカップリング剤、溶融シリカ、結晶性シリカ、低α線シリカ、ガラスフレーク、ガラスビーズ、ガラスバルーン、タルク、アルミナ、ケイ酸カルシウム、水酸化アルミニウム、炭酸カルシウム、硫酸バリウム、マグネシア、窒化ケイ素、窒化ホウ素、フェライト又は希土コバルト、や金、銀、ニッケル、銅、鉛、鉄粉、酸化鉄、砂鉄等の金属粉並びに黒鉛、カーボン、弁柄、黄鉛等の無機質充填剤または導電性粒子、染料や顔料等の着色剤、炭素繊維、ガラス繊維、ボロン繊維、シリコンカーバイト繊維、アルミナ繊維、シリカアルミナ繊維などの無機系繊維、アラミド繊維、ポリエステル繊維、セルロース繊維、炭素繊維などの有機系繊維、酸化安定剤、光安定剤、耐湿性向上剤、チキソトロピー付与剤、希釈剤、消泡剤、他の各種の樹脂、粘着付与剤、帯電防止剤、滑剤、紫外線吸収剤等を配合することができる。 If necessary, other additives can be added to the resin composition of the present invention. For example, natural waxes, synthetic waxes and plasticizers such as metal salts of long chain aliphatic acids, release agents such as acid amides, esters and paraffins, stress relaxation agents such as nitrile rubber and butadiene rubber, trioxide Inorganic flame retardants such as antimony, antimony pentoxide, tin oxide, tin hydroxide, molybdenum oxide, zinc borate, barium metaborate, red phosphorus, aluminum hydroxide, magnesium hydroxide, calcium aluminate, tetrabromobisphenol A, anhydrous tetrabromo Brominated flame retardants such as phthalic acid, hexabromobenzene, brominated phenol novolak, silane coupling agents, titanate coupling agents, coupling agents such as aluminum coupling agents, fused silica, crystalline silica, low α Wire silica, glass flake, glass beads, glass balloon, talc, Lumina, calcium silicate, aluminum hydroxide, calcium carbonate, barium sulfate, magnesia, silicon nitride, boron nitride, ferrite or rare earth cobalt, gold, silver, nickel, copper, lead, iron powder, iron oxide, sand iron, etc. Metal powder and inorganic fillers or conductive particles such as graphite, carbon, petal, chrome lead, colorants such as dyes and pigments, carbon fiber, glass fiber, boron fiber, silicon carbide fiber, alumina fiber, silica alumina fiber Inorganic fibers such as aramid fibers, polyester fibers, cellulose fibers, carbon fibers and other organic fibers, oxidation stabilizers, light stabilizers, moisture resistance improvers, thixotropy imparting agents, diluents, antifoaming agents, and other various types These resins, tackifiers, antistatic agents, lubricants, ultraviolet absorbers and the like can be blended.

本発明の硬化性樹脂組成物は、反応性官能基を有する硬化性化合物、光反応開始剤及び/又は熱硬化剤、表面修飾ナノダイヤモンド、並びに必要に応じ硬化促進剤及びその他の添加剤を溶媒中で均一に混合することにより、導電性能を有する樹脂ワニスを得ることができる。溶媒としては、例えばトルエン、エタノール、n−プロパノール、セロソルブ、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン、N―メチル―2―ピロリドン、ジメチルホルムアミド等の有機溶媒が挙げられるが、特に限定されない。溶媒の使用量は、樹脂組成物の使用目的により、適当な粘度となるように調整することが好ましいが、通常固形分100重量部に対して、50〜2000重量部である。 The curable resin composition of the present invention contains a curable compound having a reactive functional group, a photoreaction initiator and / or a thermosetting agent, a surface-modified nanodiamond, and a curing accelerator and other additives as necessary. The resin varnish which has electroconductivity can be obtained by mixing uniformly in. Examples of the solvent include organic solvents such as toluene, ethanol, n-propanol, cellosolve, cyclopentanone, cyclohexanone, tetrahydrofuran, N-methyl-2-pyrrolidone, and dimethylformamide, but are not particularly limited. The amount of the solvent used is preferably adjusted to have an appropriate viscosity depending on the purpose of use of the resin composition, but is usually 50 to 2000 parts by weight with respect to 100 parts by weight of the solid content.

本発明の硬化性樹脂組成物は可視光透過性フィルムとして好ましく使用できる。基材に塗布された本発明の硬化性樹脂組成物の塗膜は、硬化あるいは乾燥させて、コーティング被膜とされ、この硬化あるいは乾燥の条件又は方法は、用いる樹脂成分の種類等に応じて適宜選択できる。通常、塗膜から溶剤を、室温又は加熱下で蒸発させることにより塗膜が得られる。また、この硬化方法等は、従来から知られた方法により行うことができる。硬化性樹脂組成物の塗布量は、用途に応じて、広い範囲から適宜選択することができるが、一般には、硬化後の膜厚が、0.005〜2mm程度、特に0.01〜1mm程度となる量とするのが好ましい。 The curable resin composition of the present invention can be preferably used as a visible light transmissive film. The coating film of the curable resin composition of the present invention applied to the substrate is cured or dried to form a coating film, and the conditions or methods for this curing or drying are appropriately determined according to the type of resin component used. You can choose. Usually, a coating film is obtained by evaporating a solvent from a coating film at room temperature or under heating. Moreover, this hardening method etc. can be performed by a conventionally known method. The coating amount of the curable resin composition can be appropriately selected from a wide range according to the use, but generally the film thickness after curing is about 0.005 to 2 mm, particularly about 0.01 to 1 mm. It is preferable that the amount is as follows.

基材に用いるベース樹脂としては、熱硬化性樹脂や熱可塑性樹脂などが挙げられ、具体的には、シリコーン樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ウレタン樹脂などが挙げられる。また、ポリイミドフィルム、PET(ポリエチレンテレフタレート)フィルム、ポリエステルフィルム、ポリパラバン酸フィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンスルファイドフィルム、アラミドフィルム、
種々の合成繊維、天然繊維、ガラス繊維、金属繊維等の織布、不織布の中から適宜選択して用いることができる。
Examples of the base resin used for the base material include thermosetting resins and thermoplastic resins, and specifically, silicone resins, acrylic resins, polyimide resins, phenol resins, melamine resins, urea resins, urethane resins, and the like. It is done. Also, polyimide film, PET (polyethylene terephthalate) film, polyester film, polyparabanic acid film, polyether ether ketone film, polyphenylene sulfide film, aramid film,
Various synthetic fibers, natural fibers, glass fibers, metal fibers and other woven fabrics and non-woven fabrics can be appropriately selected and used.

本発明の硬化性樹脂組成物の塗布方法としては、特に制限はなく、例えば、スピンコーター、ディップコーター、スプレーコーター、バーコーター、ロールコーター、コンマコーター等の公知の塗布方法を挙げることができる。 There is no restriction | limiting in particular as a coating method of the curable resin composition of this invention, For example, well-known coating methods, such as a spin coater, a dip coater, a spray coater, a bar coater, a roll coater, a comma coater, can be mentioned.

以下、実施例により本発明を説明する。ただし、これらは単なる実施の態様の一例であり、本発明の技術的範囲がこれらによりなんら限定的に解釈されるものではない。なお、実施例において部は重量部を、%は重量%をそれぞれ意味する。
また、本実施例における実施項目およびその試験方法は以下のとおりである。
Hereinafter, the present invention will be described by way of examples. However, these are merely examples of embodiments, and the technical scope of the present invention is not construed as being limited thereto. In Examples, “part” means “part by weight” and “%” means “% by weight”.
In addition, implementation items and test methods in this example are as follows.

(a)(熱重量測定(TGA))
示差熱熱重量同時測定装置(TG/DTA6200、エスエスアイ・ナノテクノロジー社製)を用い、窒素気流下(流速200ml/min)において温度範囲40〜700℃、昇温速度10℃/minの条件下で測定を行った。
(A) (Thermogravimetry (TGA))
Using a differential thermothermal gravimetric simultaneous measurement device (TG / DTA6200, manufactured by SSI Nanotechnology Co., Ltd.) under conditions of a temperature range of 40 to 700 ° C. and a heating rate of 10 ° C./min under a nitrogen stream (flow rate 200 ml / min). The measurement was performed.

(b)(赤外分光測定(FT−IR測定)
赤外分光光度計(FT/IR−6300V型、日本分光社製)を用い、133Pa下、150℃で測定を行った。
(B) (Infrared spectroscopy measurement (FT-IR measurement)
Measurement was performed at 150 ° C. under 133 Pa using an infrared spectrophotometer (FT / IR-6300V type, manufactured by JASCO Corporation).

(c)(熱分解GC−MS)
熱分解GC−MS測定はキュリーポイントパイロライザー(日本分析工業製)、GC−MS(TRACE GC−TRACE DSQ、THERMO
FISHER SIENTIFIC製)を用い、590℃下にて測定を行った。
(C) (Pyrolysis GC-MS)
Pyrolysis GC-MS is measured by Curie Point Pyrolyzer (manufactured by Nippon Analytical Industries), GC-MS (TRACE GC-TRACE DSQ, THERMO
FISHER SIENTIFIC) was used and the measurement was performed at 590 ° C.

(実施例1)
撹拌装置、加熱装置、還流装置および滴下装置を備えた4つ口の300mlガラス製反応器に、予めN−メチル−2−ピロリドンに分散させておいた0.5%ナノダイヤモンド分散液120mlをはかり取った。なお、0.5%ナノダイヤモンド/N−メチル−2−ピロリドンを動的光散乱法粒度分布測定装置(ナノトラック粒度分析計UPA−EX、日機装(株)製)を用いて粒度分布を測定した結果、平均粒子径は8.5nmであった。
(Example 1)
In a four-necked 300 ml glass reactor equipped with a stirrer, a heating device, a reflux device and a dropping device, 120 ml of 0.5% nanodiamond dispersion previously dispersed in N-methyl-2-pyrrolidone is weighed. I took it. The particle size distribution of 0.5% nanodiamond / N-methyl-2-pyrrolidone was measured using a dynamic light scattering particle size distribution analyzer (Nanotrack particle size analyzer UPA-EX, manufactured by Nikkiso Co., Ltd.). As a result, the average particle size was 8.5 nm.

この中に、撹拌を行いながら表面修飾剤である2−イソシアナトエチルメタクリレート(昭和電工製)を2.74g加え、触媒であるジブチルすずジラウラートを加え、重合禁止剤であるヒドロキノンを2−イソシアナトエチルメタクリレートに対して1000ppm加えた。次に、乾燥空気を反応液に30ml/minの流速で送り込みながら、60℃においてナノダイヤモンド粒子表面に修飾反応を行った。反応時間は5時間であった。   To this, 2.74 g of 2-isocyanatoethyl methacrylate (made by Showa Denko) as a surface modifier is added while stirring, dibutyltin dilaurate as a catalyst is added, and hydroquinone as a polymerization inhibitor is added to 2-isocyanato. 1000 ppm was added with respect to ethyl methacrylate. Next, a modification reaction was performed on the nanodiamond particle surface at 60 ° C. while sending dry air into the reaction solution at a flow rate of 30 ml / min. The reaction time was 5 hours.

当該反応物を500mlのビーカーに取り出し、トルエン350mlを加え、2−イソシアナトエチルメタクリレートで表面修飾したナノダイヤモンド粒子を凝集させた。(a)凝集させたナノダイヤモンド粒子を吸引ろ過にて固液分離し、当該粒子を100mlのビーカーに取り出し、N−メチル−2−ピロリドン/トルエン混合溶液80mlを加えた。(b)その後、超音波浴中で10min洗浄し、再び吸引ろ過にて固液分離を行った。(a)、(b)の操作を3回行った後、洗浄溶剤をメチルエチルケトンに替え、(a)、(b)と同様の操作を4回行った後、12時間減圧乾燥し、目的物(本発明の表面修飾ダイヤモンド)を得た。   The reaction product was taken out into a 500 ml beaker, 350 ml of toluene was added, and nanodiamond particles whose surface was modified with 2-isocyanatoethyl methacrylate were aggregated. (A) The agglomerated nanodiamond particles were subjected to solid-liquid separation by suction filtration, the particles were taken out into a 100 ml beaker, and 80 ml of a N-methyl-2-pyrrolidone / toluene mixed solution was added. (B) Then, it wash | cleaned for 10 minutes in an ultrasonic bath, and solid-liquid separation was again performed by suction filtration. After performing the operations (a) and (b) three times, the washing solvent was changed to methyl ethyl ketone, and the same operations as (a) and (b) were performed four times, followed by drying under reduced pressure for 12 hours. A surface-modified diamond of the present invention was obtained.

図1に、上記の実施例1で得られた、2−イソシアナトエチルメタクリレート修飾によるナノダイヤモンド粒子のFT−IR測定結果を示した。また、図1のコントロールは表面修飾する前のFT−IR測定結果である。図1からコントロールと表面修飾後の結果を比較すると、アミノ基N−Hに由来する3400cm−1付近のピーク、アルキル基、メタクリレート基C−Hに由来する3000cm−1付近のピークが明らかに増加しており、ナノダイヤモンド粒子表面に化学修飾されていることがわかる。 FIG. 1 shows the FT-IR measurement results of nanodiamond particles obtained by modification with 2-isocyanatoethyl methacrylate obtained in Example 1 above. Moreover, the control of FIG. 1 is a FT-IR measurement result before surface modification. Comparing the results after the surface modification with the control from FIG. 1, the peak near 3400 cm −1 derived from the amino group N—H and the peak near 3000 cm −1 derived from the alkyl group and the methacrylate group C—H are clearly increased. It can be seen that the surface of the nanodiamond particles is chemically modified.

図2に熱重量分析の結果を示した。図2からコントロールと比較すると明らかに重量減少率に違いが出ており、2−イソシアナトエチルメタクリレートで表面修飾したナノダイヤモンド粒子の無機成分重量%は71.5%であった。   FIG. 2 shows the results of thermogravimetric analysis. From FIG. 2, the weight reduction rate is clearly different from the control, and the weight percentage of inorganic components of the nanodiamond particles surface-modified with 2-isocyanatoethyl methacrylate was 71.5%.

図3に熱分解GC−MSの結果を示した。図3からコントロールと比較すると、表面修飾剤である2−イソシアナトエチルメタクリレートに由来する分解物が確認された。以上、FT−IR測定、熱重量測定、熱分解GC−MS測定結果より、表面に重合可能な化合物が結合されたナノダイヤモンド粒子を確認できた。   FIG. 3 shows the result of pyrolysis GC-MS. Compared with the control from FIG. 3, a decomposition product derived from 2-isocyanatoethyl methacrylate, which is a surface modifier, was confirmed. As described above, from the results of FT-IR measurement, thermogravimetry, and pyrolysis GC-MS, nanodiamond particles having a polymerizable compound bonded to the surface could be confirmed.

(実施例2)
撹拌装置、加熱装置、還流装置および滴下装置を備えた4つ口の300mlガラス製反応器に、予めN−メチル−2−ピロリドンに分散させておいた0.5%ナノダイヤモンド分散液120mlをはかり取った。この中に、撹拌を行いながら表面修飾剤であるイソホロンジイソシアネート(以下、IPDI)を4.77g加え、窒素ガスを反応液に30ml/minの流速で送り込みながら、150℃においてナノダイヤモンド粒子表面に修飾反応を行った。反応時間は5時間であった。
(Example 2)
In a four-necked 300 ml glass reactor equipped with a stirrer, a heating device, a reflux device and a dropping device, 120 ml of 0.5% nanodiamond dispersion previously dispersed in N-methyl-2-pyrrolidone is weighed. I took it. In this, 4.77 g of surface modification agent isophorone diisocyanate (hereinafter referred to as IPDI) was added while stirring, and the surface was modified on the nanodiamond particle surface at 150 ° C. while feeding nitrogen gas into the reaction solution at a flow rate of 30 ml / min. Reaction was performed. The reaction time was 5 hours.

当該反応物を500mlのビーカーに取り出し、トルエン350mlを加え、IPDIで表面修飾したナノダイヤモンド粒子を凝集させた。(a)凝集させたナノダイヤモンド粒子を吸引ろ過にて固液分離し、当該粒子を100mlのビーカーに取り出し、N−メチル−2−ピロリドン/トルエン混合溶液80mlを加えた。(b)その後、超音波浴中で10min洗浄し、再び吸引ろ過にて固液分離を行った。(a)、(b)の操作を3回行った後、洗浄溶剤をMEKに替え、(a)、(b)と同様の操作を4回行った後、12時間減圧乾燥し、目的物を得た。   The reaction product was taken out into a 500 ml beaker, 350 ml of toluene was added, and the nanodiamond particles surface-modified with IPDI were aggregated. (A) The agglomerated nanodiamond particles were subjected to solid-liquid separation by suction filtration, the particles were taken out into a 100 ml beaker, and 80 ml of a N-methyl-2-pyrrolidone / toluene mixed solution was added. (B) Then, it wash | cleaned for 10 minutes in an ultrasonic bath, and solid-liquid separation was again performed by suction filtration. After performing the operations (a) and (b) three times, the cleaning solvent was changed to MEK, and the same operations as (a) and (b) were performed four times, followed by drying under reduced pressure for 12 hours. Obtained.

図4に、上記の実施例2で得られた、IPDI修飾によるナノダイヤモンド粒子のFT−IR測定結果を示した。図4からコントロールと表面修飾後の結果を比較すると、アミノ基N−Hに由来する3400cm−1付近のピーク、アルキル基、メタクリレート基C−Hに由来する3000cm−1付近のピークが増加しており、イソシアネート基NCOに由来する2300cm−1付近のピークが出現しており、ナノダイヤモンド粒子表面に化学修飾されていることがわかる。 In FIG. 4, the FT-IR measurement result of the nano diamond particle by IPDI modification obtained in said Example 2 was shown. Comparing the results after the surface modification with the control from FIG. 4, the peak near 3400 cm −1 derived from the amino group N—H, the peak near 3000 cm −1 derived from the alkyl group and the methacrylate group C—H increased. In addition, a peak around 2300 cm −1 derived from the isocyanate group NCO appears, and it can be seen that the nanodiamond particle surface is chemically modified.

図5に熱重量分析の結果を示した。図5からコントロールと比較すると明らかに重量減少率に違いが出ており、IPDIで表面修飾したナノダイヤモンド粒子の無機成分重量%は91.3%であった。   FIG. 5 shows the results of thermogravimetric analysis. FIG. 5 clearly shows a difference in the weight reduction rate compared with the control, and the inorganic component weight% of the nanodiamond particles surface-modified with IPDI was 91.3%.

図6に熱分解GC−MSの結果を示した。図6からコントロールと比較すると、表面修飾剤であるIPDIに由来する分解物が確認された。以上、FT−IR測定、熱重量測定、熱分解GC−MS測定結果より、表面に重合可能な化合物が結合されたナノダイヤモンド粒子を確認できた。   FIG. 6 shows the result of pyrolysis GC-MS. Compared with the control from FIG. 6, a decomposition product derived from IPDI as the surface modifier was confirmed. As described above, from the results of FT-IR measurement, thermogravimetry, and pyrolysis GC-MS, nanodiamond particles having a polymerizable compound bonded to the surface could be confirmed.

(実施例3)
実施例1で作製した表面修飾ダイヤモンドを1.6重量部、モノマーとしてKAYARAD OPP−1(日本化薬(株))を74重量部、KAYARAD R−551(日本化薬(株)製)を24重量部をn−プロパノール中で混合し、エバポレータでn−プロパノールを除去後、開始剤としてイルガキア184(チバ・スペシャルティ・ケミカルズ社製)を0.5重量部混合し、コンポジット硬化物を得た。得られた硬化物の光透過性を測定した所、73.8%であり、ポリマーとの馴染みが向上し、透明性を維持していた。
(Example 3)
1.6 parts by weight of the surface-modified diamond prepared in Example 1, 74 parts by weight of KAYARAD OPP-1 (Nippon Kayaku Co., Ltd.) as a monomer, and 24 of KAYARAD R-551 (manufactured by Nippon Kayaku Co., Ltd.) A part by weight was mixed in n-propanol, and after removing n-propanol with an evaporator, 0.5 part by weight of Irgakia 184 (manufactured by Ciba Specialty Chemicals) was mixed as an initiator to obtain a composite cured product. When the light transmittance of the obtained cured product was measured, it was 73.8%, the familiarity with the polymer was improved, and the transparency was maintained.

(比較例)
実施例3で表面修飾ダイヤモンドを修飾前ダイヤモンドに変更した以外は同様の操作を行った。光透過性を測定した所、12.7%であり、ポリマーとの馴染みが十分で無いため、透明性を維持できなかった。
(Comparative example)
The same operation was performed except that the surface-modified diamond was changed to the unmodified diamond in Example 3. When the light transmittance was measured, it was 12.7%, and since the familiarity with the polymer was not sufficient, the transparency could not be maintained.

本発明の表面修飾ダイヤモンドは、従来の方法で混合したポリマーコンポジットとは異なり、ナノダイヤモンドとポリマーの馴染みが向上し、強固に結合することができるため、従来にない優れた機械特性、電気特性、熱特性、光学特性等を持つポリマーコンポジットが作製可能である。   Unlike the polymer composite mixed by the conventional method, the surface-modified diamond of the present invention improves the familiarity of the nanodiamond and the polymer, and can be firmly bonded. Therefore, excellent mechanical properties, electrical properties, Polymer composites with thermal properties, optical properties, etc. can be produced.

Claims (4)

表面に水酸基、アミノ基又はカルボキシル基から選ばれる1種以上の極性基を有する、平均粒子径100nm以下のダイヤモンド粒子(a)と該極性基と反応するイソシアネート基及び重合可能な官能基であるビニル基、(メタ)アクリレート基、グリシジル基、アミノ基、カルボキシル基又はシラノール基の少なくとも1つを有する化合物(b)を反応させ得られた表面修飾ダイヤモンド。 Vinyl which is a polymerizable functional group and an isocyanate group which reacts with diamond particles (a) having an average particle diameter of 100 nm or less having one or more polar groups selected from a hydroxyl group, an amino group or a carboxyl group on the surface and an average particle diameter of 100 nm or less. Surface-modified diamond obtained by reacting a compound (b) having at least one of a group, (meth) acrylate group, glycidyl group, amino group , carboxyl group or silanol group. 請求項1に記載のダイヤモンドを含有し、かつ不飽和二重結合、エポキシ基、環状エーテルを有する樹脂を含む光および/又は熱硬化性樹脂組成物。
A light and / or thermosetting resin composition comprising the diamond according to claim 1 and containing a resin having an unsaturated double bond, an epoxy group, and a cyclic ether .
請求項2記載の硬化性組成物を硬化してなる硬化物。A cured product obtained by curing the curable composition according to claim 2. 請求項3記載の硬化物からなるフィルム。A film comprising the cured product according to claim 3.
JP2010258778A 2009-11-26 2010-11-19 Polymerizable diamond and resin composition containing the same Expired - Fee Related JP5704691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010258778A JP5704691B2 (en) 2009-11-26 2010-11-19 Polymerizable diamond and resin composition containing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009268547 2009-11-26
JP2009268547 2009-11-26
JP2010258778A JP5704691B2 (en) 2009-11-26 2010-11-19 Polymerizable diamond and resin composition containing the same

Publications (2)

Publication Number Publication Date
JP2011132117A JP2011132117A (en) 2011-07-07
JP5704691B2 true JP5704691B2 (en) 2015-04-22

Family

ID=44345284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258778A Expired - Fee Related JP5704691B2 (en) 2009-11-26 2010-11-19 Polymerizable diamond and resin composition containing the same

Country Status (1)

Country Link
JP (1) JP5704691B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174867B2 (en) * 2010-08-09 2013-04-03 ビジョン開発株式会社 Hard coat film containing diamond fine particles
JP5174871B2 (en) * 2010-08-27 2013-04-03 ビジョン開発株式会社 Transparent plastic composite
JP6193541B2 (en) * 2012-02-10 2017-09-06 ビジョン開発株式会社 Transparent light diffuser containing nanodiamond composite and method for producing the same
JP6295184B2 (en) * 2014-11-06 2018-03-14 富士フイルム株式会社 Dispersion, film, and method for producing film
JP2017048294A (en) * 2015-09-01 2017-03-09 株式会社ダイセル Curable resin composition and cured resin body
KR102516477B1 (en) * 2015-09-01 2023-04-03 주식회사 다이셀 resin composition
JP6802967B2 (en) * 2016-01-21 2020-12-23 株式会社ダイセル Surface-modified nanodiamond and nanodiamond dispersion
JP6962907B2 (en) * 2016-03-18 2021-11-05 株式会社ダイセル Curable resin composition and optical member
JP6798128B2 (en) * 2016-03-25 2020-12-09 日本製鉄株式会社 Continuous measurement device for molecular concentration and continuous measurement method for molecular concentration
JP6770469B2 (en) * 2016-04-01 2020-10-14 株式会社ダイセル Surface-modified nanodiamond and its organic solvent dispersion
JP6824086B2 (en) * 2016-04-01 2021-02-03 株式会社ダイセル Manufacturing method of surface-modified nanodiamond
WO2017203763A1 (en) * 2016-05-23 2017-11-30 株式会社ダイセル Nano-diamond organic solvent dispersion production method and nano-diamond organic solvent dispersion
JP6636069B2 (en) 2017-09-08 2020-01-29 株式会社ダイセル Anti-reflection film
WO2019049579A1 (en) * 2017-09-08 2019-03-14 株式会社ダイセル Anti-reflection film
KR102591595B1 (en) * 2018-07-30 2023-10-20 가톨릭대학교 산학협력단 Nano diamond conjugated with alkyl compounds and biodegradable polymer
JP7158756B2 (en) 2020-11-27 2022-10-24 株式会社スーパーナノデザイン Manufacturing method of material with organically modified carbon surface and material thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460594B2 (en) * 1997-10-09 2003-10-27 三菱マテリアル株式会社 Seed diamond powder with excellent adhesion to artificial diamond film formation surface
JP2006225208A (en) * 2005-02-18 2006-08-31 Hiroshi Ishizuka Highly dispersible single crystal diamond fine powder and its producing method
JP2008119802A (en) * 2006-11-15 2008-05-29 Hiroshi Ishizuka Tabular resin material for polishing semiconductor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011132117A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5704691B2 (en) Polymerizable diamond and resin composition containing the same
CN101189275B (en) Hardenable epoxy resin composition
CN110218415B (en) Resin compositions, prepregs, laminates, metal-clad laminates, and printed wiring boards
JP2010138393A (en) Energy ray-curable resin composition for optical lens sheet, and cured product thereof
CN107614563B (en) Epoxy resin composition, precursor of heat conductive material, B-stage sheet, prepreg, heat dissipating material, laminate, metal substrate, and printed wiring board
TW201840532A (en) Composition, cured product and laminate
TWI630457B (en) Photo-curable and heat-curable resin composition and dry film solder resist
CN107686716B (en) Liquid crystal sealing agent and liquid crystal display cell using the same
JP4983262B2 (en) Nanoimprinting composition
WO2017115824A1 (en) Polyimide film layered body
CN111253855A (en) Resin composition
JP5134945B2 (en) Carbon nanotube-containing composition and cured product
JP2007204697A (en) Resin composition, prepreg using the same, and laminated plate
CN114901468A (en) Laminate, method for producing same, and automotive exterior material
JP7115491B2 (en) RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT
JP2011132362A (en) Electroconductive resin composition
JP7163958B2 (en) Polymerizable composition and method for producing three-dimensional shaped article
JP2022147236A (en) Adhesive sheet and cured products, laminates and exterior materials for automobiles using the same
JP7163956B2 (en) RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT
JP2011033875A (en) Energy ray curing type resin composition for optical lens, and optical lens
JP2019056082A (en) Resin composition, method for manufacturing three-dimensional molding using the same, and three-dimensional molding
JP2018158535A (en) Laminated body including polyimide film and hard coat layer
KR20240043114A (en) Resin composition
JP7351201B2 (en) resin composition
CN114621719A (en) Liquid crystal sealant for liquid crystal dropping method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150220

R150 Certificate of patent or registration of utility model

Ref document number: 5704691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees