JP5699680B2 - High-strength galvannealed hot-rolled steel sheet and method for producing the same - Google Patents
High-strength galvannealed hot-rolled steel sheet and method for producing the same Download PDFInfo
- Publication number
- JP5699680B2 JP5699680B2 JP2011037938A JP2011037938A JP5699680B2 JP 5699680 B2 JP5699680 B2 JP 5699680B2 JP 2011037938 A JP2011037938 A JP 2011037938A JP 2011037938 A JP2011037938 A JP 2011037938A JP 5699680 B2 JP5699680 B2 JP 5699680B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- vcs
- hot
- steel sheet
- ferrite phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 53
- 239000010959 steel Substances 0.000 title claims description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000007747 plating Methods 0.000 claims description 31
- 229910000859 α-Fe Inorganic materials 0.000 claims description 30
- 239000011159 matrix material Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 238000005098 hot rolling Methods 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 8
- 238000005554 pickling Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 238000012935 Averaging Methods 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 150000001247 metal acetylides Chemical class 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 238000005452 bending Methods 0.000 description 26
- 238000010438 heat treatment Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 238000005275 alloying Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- 230000009466 transformation Effects 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 238000005246 galvanizing Methods 0.000 description 8
- 229910000734 martensite Inorganic materials 0.000 description 8
- 229910001563 bainite Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229910001562 pearlite Inorganic materials 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 230000003111 delayed effect Effects 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- YLRAQZINGDSCCK-UHFFFAOYSA-M methanol;tetramethylazanium;chloride Chemical compound [Cl-].OC.C[N+](C)(C)C YLRAQZINGDSCCK-UHFFFAOYSA-M 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Description
本発明は、自動車や建設機械の分野などで用いられる構造部材に適した高強度合金化溶融亜鉛めっき熱延鋼板、特に、曲げ加工性およびめっき性に優れ、1470MPa以上の引張強度TSを有する板厚6mm以下の高強度合金化溶融亜鉛めっき熱延鋼板およびその製造方法に関する。 The present invention is a high-strength alloyed hot-dip galvanized hot-rolled steel sheet suitable for structural members used in the fields of automobiles and construction machinery, in particular, a plate having excellent bending workability and plating property and having a tensile strength TS of 1470 MPa or more. The present invention relates to a high-strength galvannealed hot-rolled steel sheet having a thickness of 6 mm or less and a manufacturing method thereof.
自動車の軽量化では、高強度鋼板の使用量増加やさらなる高強度化を図った鋼板の適用が検討されている。一般的には、鋼板の高強度化は鋼板の延性の低下、すなわち加工性の低下を招くことから、高強度と高加工性を併せ持ち、さらに耐食性にも優れた合金化溶融亜鉛めっき鋼板が要求されている。なかでも、構造部材には、低コストの観点から、高強度合金化溶融亜鉛めっき熱延鋼板が望まれる。 In reducing the weight of automobiles, the use of high-strength steel sheets and the use of steel sheets with higher strength are being studied. Generally, increasing the strength of a steel sheet causes a decrease in the ductility of the steel sheet, that is, a decrease in workability. Therefore, an alloyed hot-dip galvanized steel sheet that has both high strength and high workability and excellent corrosion resistance is required. Has been. Among them, a high strength alloyed hot-dip galvanized hot-rolled steel sheet is desired for the structural member from the viewpoint of low cost.
こうした高強度合金化溶融亜鉛めっき熱延鋼板として、これまで、フェライト相に分散させたマルテンサイト相などの硬化相により高強度化を図る組織強化型の鋼板が検討されている。例えば、特許文献1には、重量比にて、C:0.005〜0.15%、Mn:0.3〜2.0%、Cr:0.03〜0.8%を含有する薄鋼板を連続亜鉛めっきラインによって合金化溶融亜鉛めっきする合金化亜鉛めっき高張力鋼板の製造方法において、前記鋼板をAc1変態点とAc3変態点間の温度に加熱する工程と、前記加熱温度よりの冷却途中450〜550℃の温度範囲で溶融亜鉛めっきを施し更に500℃とAc1変態点間の温度範囲に加熱し合金化処理を行う工程と、前記合金化処理後引続き300℃以下まで冷却する工程と、を有して成り、前記Ac1〜Ac3間の加熱温度より溶融亜鉛めっきを施すまで、および合金化処理後300℃以下まで冷却する冷却工程における冷却速度を、logCR=-3.11Cr-1.93Mn+4.61で与えられる臨界冷却速度CR(℃/sec)以上とすることを特徴とする加工性の良好な合金化亜鉛めっき高張力鋼板の製造方法が提案されている。また、特許文献2には、重量%で、C:0.04〜0.1%、Si:0.4〜2.0%、Mn:1.5〜3.0%、B:0.0005〜0.005%、P:≦0.1%、Ti>4NかつTi≦0.05%、Nb:≦0.1%含有し、残部がFeおよび不可避的不純物からなる鋼板表層に合金化亜鉛めっき層を有し、合金化溶融亜鉛めっき層中のFe%が5〜25%であることを特徴とする、引張強度800MPa以上の成型性およびめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板が提案されている。 As such a high-strength galvannealed hot-rolled steel sheet, a structure-strengthened steel sheet that has been strengthened by a hardened phase such as a martensite phase dispersed in a ferrite phase has been studied. For example, in Patent Document 1, thin steel sheets containing C: 0.005 to 0.15%, Mn: 0.3 to 2.0%, Cr: 0.03 to 0.8% by weight ratio are alloyed by hot dip galvanization using a continuous galvanizing line. In the method for producing a galvannealed high-strength steel sheet, a step of heating the steel sheet to a temperature between the Ac 1 transformation point and the Ac 3 transformation point, and a molten zinc in a temperature range of 450 to 550 ° C. during the cooling from the heating temperature a step of plating was further heated to a temperature range between 500 ° C. and Ac 1 transformation point subjected to perform alloying process comprises a, a step of cooling to below the subsequently 300 ° C. after the alloying treatment, the Ac 1 until subjected to hot-dip galvanizing than the heating temperature of between to Ac 3, and the cooling rate in the cooling step of cooling to 300 ° C. or less after the alloying treatment, logCR = -3.11Cr-1.93Mn + 4.61 is given at the critical cooling rate CR (° C / sec) or higher of alloyed galvanized high-tensile steel sheet with good workability Manufacturing methods have been proposed. Patent Document 2 includes, by weight, C: 0.04 to 0.1%, Si: 0.4 to 2.0%, Mn: 1.5 to 3.0%, B: 0.0005 to 0.005%, P: ≦ 0.1%, Ti> 4N and Ti ≤0.05%, Nb: ≤0.1% contained, the balance is Fe and unavoidable impurities steel plate surface layer with alloyed galvanized layer, Fe% in alloyed hot dip galvanized layer is 5-25% There has been proposed a high-strength galvannealed steel sheet excellent in formability and plating adhesion with a tensile strength of 800 MPa or more.
しかしながら、特許文献1に記載の方法で製造された合金化亜鉛めっき高張力熱延鋼板では、高々520MPaのTSしか、また、特許文献2の高強度合金化溶融亜鉛めっき熱延鋼板では、高々920MPaのTSしか得られず、いずれも曲げ加工性に劣るという問題がある。さらに、特許文献2の高強度合金化溶融亜鉛めっき鋼板では、めっき性に劣るという問題もある。 However, in the galvannealed high-tensile hot-rolled steel sheet manufactured by the method described in Patent Document 1, only 520 MPa TS is used, and in the high-strength galvannealed hot-rolled steel sheet disclosed in Patent Document 2, 920 MPa is used at most. However, there is a problem that the bending workability is inferior. Furthermore, the high-strength galvannealed steel sheet of Patent Document 2 has a problem that it is inferior in plateability.
本発明は、曲げ加工性およびめっき性に優れ、1470MPa以上のTSを有する高強度合金化溶融亜鉛めっき熱延鋼板およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a high-strength galvannealed hot-rolled steel sheet having a bending workability and a plating property and having a TS of 1470 MPa or more and a method for producing the same.
本発明者等は、上記の目的を達成すべく鋭意検討したところ、Si量を低下し、CとV量を適切に制御してフェライト相に大きさが10nm以下のVの炭化物(VC)を均一に析出させたミクロ組織にすることが効果的であることを見出した。ここで、VCの大きさとは、透過電子顕微鏡(TEM)によりマトリックスであるフェライト相の[001]方位から観察される正方板状のVCにおいて、21/2×L(L:正方板の1辺の長さ)で表せるVCの大きさを複数個のVCに対して求め、算術平均した値のことである。なお、VCの大きさをこのように決定できるのは、NaCl型の結晶構造を有するVCがマトリックスとの間に特定の方位関係(Baker-Nutting)を有するためである。 The present inventors diligently studied to achieve the above object, and as a result, the Si content was reduced, and the C and V contents were appropriately controlled to form V carbide (VC) having a size of 10 nm or less in the ferrite phase. It has been found that it is effective to obtain a uniformly precipitated microstructure. Here, the size of the VC is 2 1/2 × L (L: 1 of the square plate) in a square plate-like VC observed from the [001] orientation of the ferrite phase as a matrix by a transmission electron microscope (TEM). This is a value obtained by calculating the VC size that can be expressed by (length of side) for a plurality of VCs and arithmetically averaging them. The reason why the size of VC can be determined in this way is that a VC having a NaCl-type crystal structure has a specific orientation (Baker-Nutting) with the matrix.
本発明は、このような知見に基づきなされたもので、質量%で、C:0.26〜0.35%、Si:0.4%以下、Mn:1.0%以下、P:0.03%以下、S:0.01%以下、Al:0.07%以下、N:0.01%以下、Ti:0.05%以下、V:1.2〜1.8%を含み、残部がFeおよび不可避的不純物からなる組成を有し、マトリックス全体に占めるフェライト相の面積率が90%以上であり、前記フェライト相にはVの炭化物(VC)が析出しているミクロ組織を有し、かつ前記VCの全個数のうち大きさが10nm未満のVCの個数の割合が85%以上であり、鋼中の固溶V量が0.30質量%以下であることを特徴とする高強度合金化溶融亜鉛めっき熱延鋼板を提供する。 The present invention has been made based on such knowledge, in mass%, C: 0.26-0.35%, Si: 0.4% or less, Mn: 1.0% or less, P: 0.03% or less, S: 0.01% or less, Al: 0.07% or less, N: 0.01% or less, Ti: 0.05% or less, V: 1.2-1.8%, the balance is composed of Fe and inevitable impurities, and the area ratio of the ferrite phase in the entire matrix Is 90% or more, and the ferrite phase has a microstructure in which V carbides (VC) are precipitated, and the ratio of the number of VCs having a size of less than 10 nm out of the total number of VCs is 85. The present invention provides a high-strength galvannealed hot-rolled steel sheet characterized by having a solid solution V content of 0.30% by mass or less.
本発明の高強度合金化溶融亜鉛めっき熱延鋼板では、さらに、質量%で、Cr:1%以下、B:0.0030%以下、Mo:0.5%以下、W:1%以下のうちから選ばれた少なくとも一種の元素を含む組成を有することが好ましい。 In the high-strength galvannealed hot-rolled steel sheet of the present invention, the mass% was further selected from Cr: 1% or less, B: 0.0030% or less, Mo: 0.5% or less, W: 1% or less. It is preferable to have a composition containing at least one element.
本発明の高強度合金化溶融亜鉛めっき熱延鋼板は、上記組成を有する鋼を、900℃以上の仕上温度で熱間圧延後、580〜680℃の巻取温度で巻取り、酸洗後、還元雰囲気中で600〜700℃に10〜90秒加熱し、亜鉛めっき浴に浸漬してめっき処理を施し、460〜550℃でめっき層の合金化処理を行う方法により製造できる。 The high-strength galvannealed hot-rolled steel sheet of the present invention is a steel having the above composition, after hot rolling at a finishing temperature of 900 ° C. or more, winding at a winding temperature of 580 to 680 ° C., pickling, It can be manufactured by a method of heating to 600 to 700 ° C. in a reducing atmosphere for 10 to 90 seconds, immersing in a galvanizing bath, performing a plating treatment, and alloying the plating layer at 460 to 550 ° C.
本発明により、曲げ加工性およびめっき性に優れ、1470MPa以上のTSを有する高強度合金化溶融亜鉛めっき熱延鋼板を製造できるようになった。本発明の高強度合金化溶融亜鉛めっき熱延鋼板は、自動車や建設機械の構造部材などに好適である。 According to the present invention, a high-strength galvannealed hot-rolled steel sheet having excellent bending workability and plating property and having a TS of 1470 MPa or more can be produced. The high-strength galvannealed hot-rolled steel sheet of the present invention is suitable for structural members of automobiles and construction machines.
本発明者等は、特許文献1、2に記載の高強度合金化溶融亜鉛めっき鋼板が曲げ加工性に劣る原因や特許文献2に記載の高強度合金化溶融亜鉛めっき鋼板がめっき性に劣る原因を究明したところ、前者の場合は高強度化のためにフェライト相に分散させた硬質なマルテンサイト相と軟質なフェライト相の界面に応力集中が起きやすいことが主因であり、後者の場合はSi量が高いことが主因であることが明らかになった。そこで、本発明では、曲げ加工性の改善のために、マトリックスをフェライト単相とし、フェライト相に大きさが10nm以下の微細なVCを均一に析出させて、応力集中の発生を防ぐとともに、析出強化により高強度化を図っている。特に、VCは、NaClと同様な構造のMC型炭化物であり、700℃以下の熱処理により粗大化しにくく、合金化溶融亜鉛めっき処理後にも微細な状態を維持できるので、高強度合金化溶融亜鉛めっき熱延鋼板を製造する上で効果的な析出物といえる。また、めっき性の改善のために、Si量を0.4質量%以下としている。 The inventors of the present invention are the reasons why the high-strength galvannealed steel sheets described in Patent Documents 1 and 2 are inferior in bending workability and the reasons why the high-strength galvannealed steel sheets described in Patent Document 2 are inferior in plateability In the former case, stress concentration is likely to occur at the interface between the hard martensite phase and the soft ferrite phase dispersed in the ferrite phase to increase the strength. It became clear that the main reason was the high amount. Therefore, in the present invention, in order to improve the bending workability, the matrix is a ferrite single phase, and fine VC having a size of 10 nm or less is uniformly deposited on the ferrite phase to prevent the occurrence of stress concentration and The strength is increased by strengthening. In particular, VC is an MC type carbide with the same structure as NaCl, and it is difficult to coarsen by heat treatment at 700 ° C or less, and it can maintain a fine state after alloying hot dip galvanizing treatment, so high strength alloyed hot dip galvanizing It can be said that this is an effective precipitate for producing a hot-rolled steel sheet. Further, in order to improve the plating property, the Si amount is set to 0.4% by mass or less.
以下に、本発明の詳細について説明する。なお、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。 Details of the present invention will be described below. Note that “%” representing the content of each component element means “% by mass” unless otherwise specified.
1) 成分組成
C:0.26〜0.35%
CはVCとして鋼中に析出し、高強度化に寄与する重要な元素である。C量が0.26%を下回ると1470MPa以上のTSが得られず、0.35%を超えると延性が低下する。したがって、C量は0.26〜0.35%とする。
1) Component composition
C: 0.26-0.35%
C precipitates in steel as VC and is an important element contributing to high strength. When the C content is less than 0.26%, a TS of 1470 MPa or more cannot be obtained, and when it exceeds 0.35%, the ductility decreases. Therefore, the C content is 0.26 to 0.35%.
Si:0.4%以下
Siは固溶強化元素として強度調整に有効な元素であるが、その量が0.4%を超えるとめっき性が劣化する。したがって、Si量は0.4%以下とする。
Si: 0.4% or less
Si is an element effective for adjusting the strength as a solid solution strengthening element, but if its amount exceeds 0.4%, the plating property deteriorates. Therefore, the Si content is 0.4% or less.
Mn:1.0%以下
Mn量が1.0%を超えるとフェライト変態を遅滞させてベイナイト相やマルテンサイト相のような硬質相が形成されたり、その偏析によりバンド状組織が形成され、曲げ加工性が劣化する。したがって、Mn量は1.0%以下、好ましくは0.8%以下、さらに好ましくは0.5%以下とする。
Mn: 1.0% or less
If the amount of Mn exceeds 1.0%, the ferrite transformation is delayed and a hard phase such as a bainite phase or a martensite phase is formed, or a band-like structure is formed due to the segregation, resulting in deterioration of bending workability. Therefore, the Mn content is 1.0% or less, preferably 0.8% or less, and more preferably 0.5% or less.
P:0.03%以下
P量が0.03%を超えると粒界偏析が顕著になって曲げ加工性が劣化する。したがって、P量は0.03%以下とする。
P: 0.03% or less
When the P content exceeds 0.03%, grain boundary segregation becomes prominent and bending workability deteriorates. Therefore, the P content is 0.03% or less.
S:0.01%以下
S量が0.01%を超えるとMnSの析出が顕著になって曲げ加工性が劣化する。それゆえ、S量は0.01%以下とする。
S: 0.01% or less
When the amount of S exceeds 0.01%, precipitation of MnS becomes remarkable and bending workability deteriorates. Therefore, the S content is 0.01% or less.
Al:0.07%以下
Al量が0.07%を超えると熱間圧延プロセス中に表面窒化を促進し、曲げ加工性を劣化させるおそれがある。したがって、Al量は0.07%以下とする。
Al: 0.07% or less
If the Al content exceeds 0.07%, surface nitriding is promoted during the hot rolling process, and bending workability may be deteriorated. Therefore, the Al content is 0.07% or less.
N:0.01%以下
N量が0.01%を超えると粗大なTiNが形成され、曲げ加工性が劣化する。したがって、N量は0.01%以下とする。
N: 0.01% or less
If the N content exceeds 0.01%, coarse TiN is formed, and bending workability deteriorates. Therefore, the N content is 0.01% or less.
Ti:0.05%以下
Ti量が0.05%を超えると1μm程度の粗大なTiNが形成され、曲げ加工性が劣化する。また、TiCが形成され、本発明に必要なVCの形成を阻害する。したがって、Ti量は0.05%以下、好ましくは0.015%以下とする。
Ti: 0.05% or less
When the Ti content exceeds 0.05%, coarse TiN of about 1 μm is formed, and bending workability is deteriorated. Moreover, TiC is formed and inhibits the formation of VC necessary for the present invention. Therefore, the Ti content is 0.05% or less, preferably 0.015% or less.
V:1.2〜1.8%
Vは微細なVCを形成して、曲げ加工性を劣化させることなく高強度化に寄与する重要な元素である。V量が1.2%を下回ると十分な量のVCが析出しないため、1470MPa以上のTSが得られなくなるとともに、セメンタイトやパーライトが生成して曲げ加工性が劣化する。一方、V量が1.8%を超えると延性が低下する。したがって、V量は1.2〜1.8%とする。
V: 1.2-1.8%
V is an important element that contributes to high strength by forming fine VC without degrading bending workability. When the amount of V is less than 1.2%, a sufficient amount of VC does not precipitate, so that TS of 1470 MPa or more cannot be obtained, and cementite and pearlite are generated and bending workability is deteriorated. On the other hand, if the amount of V exceeds 1.8%, the ductility decreases. Therefore, the V amount is set to 1.2 to 1.8%.
残部はFeおよび不可避的不純物であるが、以下の理由により、さらに、Cr:1%以下、B:0.0030%以下、Mo:0.5%以下、W:1%以下のうちから選ばれた少なくとも一種の元素が含有されることが好ましい。 The balance is Fe and inevitable impurities, but for the following reasons, it is further at least one selected from Cr: 1% or less, B: 0.0030% or less, Mo: 0.5% or less, W: 1% or less It is preferable that an element is contained.
Cr:1%以下
Crは厚さ5μmを超えるようなスケール生成を抑制する効果がある。しかし、Cr量が1%を超えるとフェライト変態を遅滞させてベイナイト相やマルテンサイト相のような硬質相が形成されるため、曲げ加工性が劣化する。また、Cr系炭化物形成によりVC形成が抑制されることから、Cr量は1%以下とする。
Cr: 1% or less
Cr has the effect of suppressing scale formation exceeding 5 μm in thickness. However, if the Cr content exceeds 1%, the ferrite transformation is delayed and a hard phase such as a bainite phase or a martensite phase is formed, so that bending workability deteriorates. In addition, since the formation of VC is suppressed by the formation of Cr-based carbide, the Cr content is 1% or less.
B:0.0030%以下
Bはフェライト粒界に偏析することでフェライト粒界を強化し、曲げ加工性をさらに向上させる。しかし、B量が0.0030%を超えるとフェライト変態を遅滞させてベイナイト相やマルテンサイト相のような硬質相が形成されるため、曲げ加工性が劣化する。したがって、B量は0.0030%以下とする。
B: 0.0030% or less
B segregates at the ferrite grain boundary to strengthen the ferrite grain boundary and further improve the bending workability. However, if the B content exceeds 0.0030%, the ferrite transformation is delayed and a hard phase such as a bainite phase or a martensite phase is formed, so that the bending workability deteriorates. Therefore, the B content is 0.0030% or less.
Mo:0.5%以下
Moはパーライトの生成を抑制する効果を有する。しかし、Mo量が0.5%を超えるとフェライト変態を遅滞させてベイナイト相やマルテンサイト相のような硬質相が形成されるため、曲げ加工性が劣化する。したがって、Mo量は0.5%以下とする。
Mo: 0.5% or less
Mo has the effect of suppressing the formation of pearlite. However, if the Mo content exceeds 0.5%, the ferrite transformation is delayed and a hard phase such as a bainite phase or a martensite phase is formed, so that the bending workability deteriorates. Therefore, the Mo content is 0.5% or less.
W:1%以下
Wも、Moと同様、パーライトの生成を抑制する効果を有する。しかし、W量が1%を超えるとフェライト変態を遅滞させてベイナイト相やマルテンサイト相のような硬質相が形成されるため、曲げ加工性が劣化する。したがって、W量は1%以下とする。
W: 1% or less
W, like Mo, has the effect of suppressing the formation of pearlite. However, if the W content exceeds 1%, the ferrite transformation is delayed and a hard phase such as a bainite phase or a martensite phase is formed, so that the bending workability deteriorates. Therefore, the W amount is 1% or less.
2) ミクロ組織
良好な曲げ加工性を確保するには、ベイナイト相、マルテンサイト相、センメンタイト、パーライトなどの粗大な硬質相の生成を極力回避するため、マトリックス全体に占めるフェライト相の面積率を90%以上、好ましくは95%以上とする必要がある。
2) Microstructure To ensure good bendability, the area ratio of the ferrite phase in the entire matrix should be 90% to avoid the generation of coarse hard phases such as bainite phase, martensite phase, cementite and pearlite as much as possible. % Or more, preferably 95% or more.
しかし、フェライト相主体のミクロ組織にしただけでは、1470MPa以上のTSが得られない。そこで、本発明では、曲げ加工性に大きな影響を与えることのない微細なVCをフェライト相に析出させて高強度化を図っている。すなわち、VCの全個数のうち大きさが10nm未満のVCの個数の割合を85%以上にするとともに、鋼中の固溶V量を鋼組成全体を100質量%とした場合に対し0.30質量%以下として、微細なVCを十分な個数析出させて優れた曲げ加工性と1470MPa以上のTSを確保している。鋼中の固溶V量が0.30質量%を超えたり、大きさが10nm未満のVCの個数の割合が85%未満だと、1470MPa以上のTSが得られない。なお、本発明においては、VCに極微量のTiが含まれる場合もある。 However, a TS of 1470 MPa or more cannot be obtained simply by using a microstructure mainly composed of a ferrite phase. Therefore, in the present invention, high strength is achieved by precipitating fine VC that does not greatly affect the bending workability in the ferrite phase. That is, the ratio of the number of VCs having a size of less than 10 nm out of the total number of VCs is 85% or more, and the amount of solute V in the steel is 0.30% by mass relative to the total steel composition being 100% by mass. Below, a sufficient number of fine VCs are deposited to ensure excellent bending workability and TS of 1470 MPa or more. If the amount of solute V in steel exceeds 0.30% by mass or the ratio of the number of VCs having a size of less than 10 nm is less than 85%, a TS of 1470 MPa or more cannot be obtained. In the present invention, the VC may contain a very small amount of Ti.
ここで、フェライト相の面積率は、下地熱延鋼板の圧延方向板厚断面の板厚1/4部分を電解研磨により仕上げ、走査電子顕微鏡(SEM)により加速電圧10kV、2000倍で反射電子像を観測し、反射電子像中に認められるマトリックスとは明らかに異なる組織(パーライトや硬質相は表面凹凸で判断可能)領域を抽出し、残部をフェライト相と判断して、観察視野中に占める面積率を求め、5視野で算術平均した値である。また、VCの大きさは、上記の方法で求めた。さらに、鋼中の固溶V量は、特許文献3に記載の方法にしたがって求めた。すなわち、対象析出物が非常に微細であるため、抽出した析出物を全添加量から差し引く一般的な固溶量の求め方では精度が出ないので、ここでは試料を非水溶媒系電解液中で所定量だけ電解した後、電解液を分析溶液とし、ICP質量分析法を用いてVおよび比較元素としてFeの液中濃度を測定した。得られた濃度を基に、Feに対するVの濃度比を算出し、さらに、試料中のFe量(質量%)を乗じることで、固溶V量(質量%)を求めた。試料中のFe量(質量%)は、Fe以外の組成値の合計を100質量%から減算することで求めることができる。 Here, the area ratio of the ferrite phase is that the 1/4 thickness portion of the cross section in the rolling direction of the base hot-rolled steel sheet is finished by electrolytic polishing, and the reflected electron image is obtained at an acceleration voltage of 10 kV and 2000 times by a scanning electron microscope (SEM). The area occupied by the observation field is extracted by extracting a region that is clearly different from the matrix observed in the backscattered electron image (the pearlite and hard phases can be determined by surface irregularities), and the remainder is determined as the ferrite phase. It is the value obtained by calculating the rate and arithmetically averaging over 5 fields of view. Further, the size of VC was obtained by the above method. Furthermore, the amount of solute V in the steel was determined according to the method described in Patent Document 3. That is, since the target precipitate is very fine, accuracy is not obtained in the general method for obtaining the solid solution amount by subtracting the extracted precipitate from the total addition amount, so here the sample is placed in a non-aqueous solvent electrolyte. Then, the electrolytic solution was used as an analysis solution, and the concentrations of V and Fe as a comparative element were measured using ICP mass spectrometry. Based on the obtained concentration, the concentration ratio of V to Fe was calculated, and further, the amount of solid solution V (% by mass) was obtained by multiplying by the amount of Fe (% by mass) in the sample. The amount of Fe (% by mass) in the sample can be obtained by subtracting the total of composition values other than Fe from 100% by mass.
なお、測定した析出物がVCであるかどうかは、TEMで電子回折を行って確認した。 Whether or not the measured precipitate was VC was confirmed by electron diffraction using TEM.
3) 製造条件
本発明の高強度合金化溶融亜鉛めっき熱延鋼板は、上記組成を有する鋼を、900℃以上の仕上温度で熱間圧延後、580〜700℃の巻取温度で巻取り、酸洗後、還元雰囲気中で600〜700℃に加熱し、亜鉛めっき浴に浸漬してめっき処理を施し、460〜550℃でめっき層の合金化処理を行う方法により製造できる。
3) Production conditions The high-strength galvannealed hot-rolled steel sheet of the present invention is a steel having the above composition, after hot rolling at a finishing temperature of 900 ° C or higher, and then winding at a winding temperature of 580 to 700 ° C. After pickling, it can be manufactured by a method of heating to 600 to 700 ° C. in a reducing atmosphere, dipping in a galvanizing bath to perform plating, and alloying the plating layer at 460 to 550 ° C.
熱間圧延の仕上温度:900℃以上
仕上温度が900℃未満だと大きなフェライト粒と小さなフェライト粒がバンド状に層構造を形成するため、曲げ加工性が劣化する。そのため、仕上温度は900℃以上とする。
Hot rolling finishing temperature: 900 ° C. or more When the finishing temperature is less than 900 ° C., large ferrite grains and small ferrite grains form a layer structure in a band shape, so that bending workability deteriorates. Therefore, the finishing temperature is 900 ° C. or higher.
なお、仕上温度を900℃以上にするには、熱間圧延前に鋼をオーステナイト単相域まで加熱する必要があるが、そのときスラブ中のVCはオーステナイト相中に容易に溶解される。溶解をより確実にするには1150℃以上の加熱が好ましい。なお、同じ炭化物でもTiCやNbCの場合は、1470MPa以上のTSを得ようとすると1300℃以上、もしくは鋼が溶解するまで加熱する必要があり、実現不可能である。 In order to set the finishing temperature to 900 ° C. or higher, it is necessary to heat the steel to the austenite single phase region before hot rolling. At that time, VC in the slab is easily dissolved in the austenite phase. Heating at 1150 ° C. or higher is preferable to ensure dissolution. In the case of TiC and NbC, even if the same carbide is used, it is impossible to obtain a TS of 1470 MPa or more because it is necessary to heat it to 1300 ° C or more or until the steel is melted.
また、本発明では、連続鋳造後の鋼をそのまま熱間圧延する直送圧延の技術も適用することができる。このとき、900℃以上の仕上温度を確保するために、熱間圧延前に補助的な加熱を行うこともできる。 Further, in the present invention, direct feed rolling technology in which the steel after continuous casting is hot-rolled as it is can also be applied. At this time, in order to ensure a finishing temperature of 900 ° C. or higher, auxiliary heating can be performed before hot rolling.
巻取温度:580〜680℃
巻取温度が580℃未満では大きさが10nm未満の微細なVCの析出が困難になるとともに、パーライト変態が生じるので、また、680℃を超えるとVCが粗大化するので、高強度化が阻害される。そのため、巻取温度は580〜680℃とする。なお、巻取り後は、めっき処理のために酸洗してスケールを除去する必要がある。
Winding temperature: 580 ~ 680 ℃
If the coiling temperature is less than 580 ° C, it will be difficult to deposit fine VC with a size of less than 10nm, and pearlite transformation will occur, and if it exceeds 680 ° C, the VC will become coarse, which hinders high strength. Is done. Therefore, the coiling temperature is 580 to 680 ° C. In addition, after winding, it is necessary to remove the scale by pickling for plating treatment.
めっき処理前の還元雰囲気中での加熱条件:600〜700℃で10〜90秒加熱
亜鉛めっき浴に浸漬してめっき処理を施す前には、例えば水素20vol.%+窒素80vol.%の還元雰囲気中での600℃以上に10秒以上加熱して鋼板表面を浄化する必要があるが、VCの粗大化を防止して高強度化を達成するために、加熱温度、時間の上限はそれぞれ700℃、90秒とする。
Heating conditions in a reducing atmosphere before plating treatment: Heating at 600 to 700 ° C. for 10 to 90 seconds Before dipping in a galvanizing bath and performing plating treatment, for example, reducing atmosphere of 20 vol.% Hydrogen + 80 vol.% Nitrogen It is necessary to purify the steel sheet surface by heating to 600 ° C or higher for 10 seconds or more, but in order to prevent VC from becoming coarse and to achieve high strength, the upper limit of heating temperature and time is 700 ° C respectively. 90 seconds.
めっき処理:通常の条件、すなわちAlを含有する480℃前後の亜鉛めっき浴に浸漬してめっき処理を行えばよい。 Plating treatment: The plating treatment may be performed by immersing in a normal condition, that is, in a zinc plating bath containing Al at around 480 ° C.
めっき層の合金化処理:めっき処理後は、通常の条件、すなわち460〜550℃でめっき層の合金化処理を行えばよい。合金化処理時間は、通常の60秒以下で十分である。 Alloying treatment of plating layer: After the plating treatment, the plating layer may be alloyed under normal conditions, that is, 460 to 550 ° C. The alloying treatment time is usually 60 seconds or less.
なお、処理温度が700℃以下のめっき処理やめっき層の合金化処理では、VCの粗大化は起こることはない。 In addition, the coarsening of VC does not occur in the plating process where the processing temperature is 700 ° C. or less or the alloying process of the plating layer.
表1に示す成分組成の鋼A〜Iを溶製後、表2に示す熱延条件で板厚2.5mmの熱延鋼板を作製した。この熱延鋼板を、酸洗によりスケールを除去後、水素20vol.%+窒素80vol.%の還元雰囲気中で600℃で60秒加熱し、次いで500℃まで冷却し、480℃に保持したAl:0.1質量%を含有した亜鉛めっき浴に浸漬してめっき処理を施した後、550℃で30秒の合金化処理を行い、平均冷却速度10℃/秒で冷却して合金化溶融亜鉛めっき鋼板のサンプル1〜15を作製した。このときのZnの目付量は40g/m2である。 After melting the steels A to I having the composition shown in Table 1, hot rolled steel sheets having a thickness of 2.5 mm were produced under the hot rolling conditions shown in Table 2. After removing the scale by pickling, this hot-rolled steel sheet was heated at 600 ° C for 60 seconds in a reducing atmosphere of hydrogen 20vol.% + Nitrogen 80vol.%, Then cooled to 500 ° C and maintained at 480 ° C: After immersing in a galvanizing bath containing 0.1% by mass and performing plating treatment, alloying treatment is performed at 550 ° C for 30 seconds, and cooling is performed at an average cooling rate of 10 ° C / second. Samples 1 to 15 were produced. The basis weight of Zn at this time is 40 g / m 2 .
そして、各サンプルに対して次のような調査を行った。
ミクロ組織:
a) フェライト相の面積率:各サンプルから、上記方法でフェライト相の面積率を求めた。
b) 全VC個数に対する大きさ10nm未満のVC個数の割合:上記サンプルから機械的研削および湿式研摩により1/4t領域よりそれぞれ試料を採取し、電解研摩法によりTEM用薄膜試料を作成し、上記方法で全VC個数に対する大きさ10nm未満のVC個数の割合を求めた。
c) 鋼中の固溶V量:上記サンプルを適当な大きさに切断後、機械的研削により表裏面の溶融亜鉛めっき層を除去した。このめっき層を除去した鋼板を、10%AA系電解液(10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム-メタノール)中で、約0.2gを電流密度20mA/cm2で定電流電解した。電解後の10%AA系電解液から上記方法にて鋼中の固溶V量を求めた。
強度および伸び:JIS 5号引張試験片を圧延方向に平行に採取し、JIS Z 2241に準拠して、クロスヘッド速度10mm/minで引張試験を行い、TSおよび伸びElを求めた。
曲げ加工性:幅50mm長さ100mmの試験片を圧延方向に平行に採取し、90°曲げ加工した際の稜線部分を目視し、割れの箇所が5箇所未満の場合を曲げ加工性に優れる(○)、割れの箇所が5箇所以上である場合を曲げ加工性が不良(×)とした。
めっき性:目視により不めっきの有無を調査し、不めっき無(○)、不めっき有(×)でめっき性を評価した。
Then, the following investigation was performed on each sample.
Microstructure:
a) Area ratio of ferrite phase: From each sample, the area ratio of the ferrite phase was determined by the above method.
b) Ratio of VC number less than 10nm in size to the total number of VC: Samples were taken from the 1 / 4t region by mechanical grinding and wet polishing from the above samples, respectively, and thin film samples for TEM were prepared by electrolytic polishing method. The ratio of the number of VCs having a size of less than 10 nm to the total number of VCs was determined by the method.
c) Solid solution V amount in steel: After the sample was cut to an appropriate size, the hot dip galvanized layers on the front and back surfaces were removed by mechanical grinding. The steel plate from which the plating layer had been removed was subjected to constant current electrolysis at about 0.2 g at a current density of 20 mA / cm 2 in a 10% AA electrolyte (10 vol% acetylacetone-1 mass% tetramethylammonium chloride-methanol). The amount of solute V in the steel was determined from the 10% AA electrolyte solution after electrolysis by the above method.
Strength and elongation: JIS No. 5 tensile test specimens were collected parallel to the rolling direction, and subjected to a tensile test at a crosshead speed of 10 mm / min in accordance with JIS Z 2241 to obtain TS and elongation El.
Bending workability: Specimens with a width of 50 mm and a length of 100 mm are taken in parallel with the rolling direction, and the ridgeline part is visually observed when bent 90 °, and the bending workability is excellent when the number of cracks is less than 5 ( ○) When the number of cracks was 5 or more, bending workability was judged as poor (x).
Plating property: The presence or absence of unplating was examined visually, and the plating property was evaluated with no plating (◯) and with no plating (×).
結果を表2に示す。本発明例では、1480〜1610MPaすなわち1470MPa以上のTS、10%以上のElが得られ、曲げ加工性およびめっき性にも優れていることがわかる。 The results are shown in Table 2. In the examples of the present invention, TS of 1480 to 1610 MPa, that is, 1470 MPa or more, El of 10% or more is obtained, and it can be seen that the bending workability and the plating property are also excellent.
Claims (3)
ここで、VCの大きさとは、透過電子顕微鏡によりマトリックスであるフェライト相の[001]方位から観察される正方板状のVCにおいて、2 1/2 ×L(L:正方板の1辺の長さ)で表せるVCの大きさを複数個のVCに対して求め、算術平均した値のことである。 The steel having the composition according to claim 1 or 2, after hot rolling at a finishing temperature of 900 ° C. or higher, winding at a winding temperature of 580 to 680 ° C., pickling, and 600 to 700 ° C. in a reducing atmosphere. The area ratio of the ferrite phase occupying the entire matrix is 90 , characterized in that it is heated for 10 to 90 seconds, immersed in a zinc plating bath, plated, and alloyed with a plating layer at 460 to 550 ° C. The ferrite phase has a microstructure in which V carbides (VC) are precipitated, and the ratio of the number of VCs having a size of less than 10 nm out of the total number of VCs is 85% or more. A method for producing a high-strength galvannealed hot-rolled steel sheet in which the amount of solute V in steel is 0.30% by mass or less .
Here, the size of VC is 2 1/2 × L (L: the length of one side of the square plate) in a square plate-like VC observed from the [001] orientation of the ferrite phase as a matrix by a transmission electron microscope. This is a value obtained by arithmetically averaging the VCs that can be expressed by a plurality of VCs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011037938A JP5699680B2 (en) | 2011-02-24 | 2011-02-24 | High-strength galvannealed hot-rolled steel sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011037938A JP5699680B2 (en) | 2011-02-24 | 2011-02-24 | High-strength galvannealed hot-rolled steel sheet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012172239A JP2012172239A (en) | 2012-09-10 |
JP5699680B2 true JP5699680B2 (en) | 2015-04-15 |
Family
ID=46975434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011037938A Active JP5699680B2 (en) | 2011-02-24 | 2011-02-24 | High-strength galvannealed hot-rolled steel sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5699680B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7127999B2 (en) * | 2017-03-27 | 2022-08-30 | 株式会社神戸製鋼所 | Steel for forgings, forged steel crank throws and forged journals for assembled crankshafts |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5047649B2 (en) * | 2006-04-11 | 2012-10-10 | 新日本製鐵株式会社 | High-strength hot-rolled steel sheet and galvanized steel sheet excellent in stretch flangeability and their production method |
JP5326403B2 (en) * | 2007-07-31 | 2013-10-30 | Jfeスチール株式会社 | High strength steel plate |
JP5402007B2 (en) * | 2008-02-08 | 2014-01-29 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
-
2011
- 2011-02-24 JP JP2011037938A patent/JP5699680B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012172239A (en) | 2012-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2762590B1 (en) | Galvanized steel sheet and method of manufacturing same | |
KR101528080B1 (en) | High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof | |
US9109275B2 (en) | High-strength galvanized steel sheet and method of manufacturing the same | |
JP5418168B2 (en) | High-strength cold-rolled steel sheet excellent in formability, high-strength hot-dip galvanized steel sheet, and production method thereof | |
JP7196997B2 (en) | steel plate | |
US11220722B2 (en) | Steel sheet and method for manufacturing the same | |
CN108884533B (en) | Thin steel sheet, plated steel sheet, method for producing same, hot-rolled steel sheet, cold-rolled all-hard steel sheet, and method for producing heat-treated sheet | |
JP6274360B2 (en) | High-strength galvanized steel sheet, high-strength member, and method for producing high-strength galvanized steel sheet | |
JP5884476B2 (en) | High-tensile hot-rolled steel sheet excellent in bending workability and manufacturing method thereof | |
JP5892147B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP6384623B2 (en) | High strength steel plate and manufacturing method thereof | |
KR20180120715A (en) | Thin steel plate and coated steel sheet, method of manufacturing hot-rolled steel sheet, manufacturing method of cold-rolled full-hard steel sheet, manufacturing method of thin steel sheet and manufacturing method of coated steel sheet | |
JP6131872B2 (en) | High strength thin steel sheet and method for producing the same | |
JP6610788B2 (en) | High strength hot rolled galvanized steel sheet | |
CN114761596B (en) | Steel plate and manufacturing method thereof | |
JP5504677B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability | |
JP5903883B2 (en) | High-strength hot-rolled steel sheet for plating with excellent corrosion resistance and its manufacturing method | |
JP5699680B2 (en) | High-strength galvannealed hot-rolled steel sheet and method for producing the same | |
JP5332547B2 (en) | Cold rolled steel sheet | |
JP5678716B2 (en) | High-strength galvannealed hot-rolled steel sheet and method for producing the same | |
JP5874333B2 (en) | High-strength hot-dip galvanized hot-rolled steel sheet and method for producing the same | |
JP2013047381A (en) | High strength hot-dip galvanized steel sheet superior in stretch flange formability and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140811 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5699680 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |