[go: up one dir, main page]

JP5697069B2 - Graphene transistor - Google Patents

Graphene transistor Download PDF

Info

Publication number
JP5697069B2
JP5697069B2 JP2009271742A JP2009271742A JP5697069B2 JP 5697069 B2 JP5697069 B2 JP 5697069B2 JP 2009271742 A JP2009271742 A JP 2009271742A JP 2009271742 A JP2009271742 A JP 2009271742A JP 5697069 B2 JP5697069 B2 JP 5697069B2
Authority
JP
Japan
Prior art keywords
graphene
film
substrate
thin film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009271742A
Other languages
Japanese (ja)
Other versions
JP2011114299A (en
Inventor
渡辺 英一郎
英一郎 渡辺
大樹 津谷
大樹 津谷
康夫 小出
康夫 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2009271742A priority Critical patent/JP5697069B2/en
Publication of JP2011114299A publication Critical patent/JP2011114299A/en
Application granted granted Critical
Publication of JP5697069B2 publication Critical patent/JP5697069B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thin Film Transistor (AREA)

Description

本発明は、グラフェンと低抵抗基板との間に絶縁膜を配したグラフェントランジスタに関する。   The present invention relates to a graphene transistor in which an insulating film is provided between graphene and a low resistance substrate.

炭素原子が蜂の巣状に並んだ原子層1層のシート構造を有するグラフェンは、高い移動度を有することからトランジスタのチャネル材料候補として注目されている。
従来のトランジスタはドーパントが高濃度ドープされた低抵抗Siを基板とし、絶縁膜としてSiOを使用している(図1)。このグラフェン/SiO/低抵抗Si基板構造の目的は、基板Si側からSiOを介してグラフェンに電界を印加することによって、グラフェン内の電子または正孔濃度を制御することにある。その原理は、グラフェン内の2次元電子濃度(n)または2次元正孔濃度(p)がSiOの静電容量CSiO2(=εSiO2・ε/d)と印加電圧Vと素電荷の逆数1/qの積に等しいため、ゲート電圧に比例してnまたはpを可変できることにある。ここで、εSiO2はSiOの比誘電率、εは真空誘電率、dはSiO膜厚である。しかしながら、εSiO2の値は3.9程度と小さいため、1桁以上の電子・正孔濃度を制御するためには大きなゲート電圧が必要となる欠点があった。
トランジスタとしてグラフェン内のキャリア濃度を効率良く制御するためには、ゲート容量Cを大きくする必要がある。ゲート容量はC=εSiO2×ε /dSiO2 (εSiO2はSiOの比誘電率、εは真空の誘電率、dSiO2はSiOの膜厚を示す)で与えられるため、SiO膜厚dSiO2は出来るだけ薄くするようにしていたが、比誘電率を大きくすることは不可能であった。
膜厚には、当然限界があることより、より大きなゲート容量を得るには、比誘電率を大きくすることが望まれていた。
Graphene having a sheet structure of one atomic layer in which carbon atoms are arranged in a honeycomb shape has attracted attention as a channel material candidate for a transistor because of its high mobility.
A conventional transistor uses low-resistance Si doped with a high concentration of dopant as a substrate, and uses SiO 2 as an insulating film (FIG. 1). The purpose of this graphene / SiO 2 / low resistance Si substrate structure is to control the electron or hole concentration in the graphene by applying an electric field to the graphene via the SiO 2 from the substrate Si side. The principle is, two-dimensional electron concentration in the graphene (n) or 2-dimensional hole concentration (p) is SiO 2 capacitance C SiO2 (= ε SiO2 · ε 0 / d) and the applied voltage V and the elementary charge Since it is equal to the product of the reciprocal 1 / q, n or p can be varied in proportion to the gate voltage. Here, ε SiO2 is the relative dielectric constant of SiO 2 , ε 0 is the vacuum dielectric constant, and d is the SiO 2 film thickness. However, the value of epsilon SiO2 small as about 3.9, there is a disadvantage that a large gate voltage is required to control the electron-hole concentration of 1 digit or more.
In order to efficiently control the carrier concentration in graphene as a transistor, it is necessary to increase the gate capacitance Cg . Since the gate capacitance C g = ε SiO2 × ε 0 / d SiO2 (ε SiO2 dielectric constant of SiO 2, epsilon 0 is the vacuum dielectric constant, d SiO2 indicates the thickness of SiO 2) is given by, SiO Although the thickness d 2 SiO 2 was made as thin as possible, it was impossible to increase the relative dielectric constant.
Since the film thickness naturally has a limit, it has been desired to increase the relative dielectric constant in order to obtain a larger gate capacitance.

本発明は、このような実情に鑑み、従来には得られなかった大きなゲート容量を持つグラフェントランジスタとその製造方法を提供するものである。   In view of such circumstances, the present invention provides a graphene transistor having a large gate capacity, which has not been obtained in the past, and a method for manufacturing the same.

発明、グラフェンと低抵抗基板との間に積層による絶縁膜が形成されており、前記絶縁膜は、膜厚70nmのHfO 薄膜上に膜厚2nmのAl 薄膜が形成されてなり、前記HfO 薄膜全体が均質な組成で構成され、その比誘電率が4以上であり、前記HfO 薄膜は光学顕微鏡でグラフェンを観察できる可視光領域での最大視感度の波長550nmにおける干渉コントラスト強度が最大となる厚さとされていることを特徴とする。
発明2は、発明1のグラフェントランジスタにおいて、前記絶縁膜の基幹元素と前記基板の基幹元素が異なることを特徴とする。


Invention 1, an insulating film is formed by laminating between the grayed Rafen a low resistance substrate, the insulating film, Al 2 O 3 thin film having a thickness 2nm is formed on the HfO 2 thin film having a thickness of 70nm The entire HfO 2 thin film is composed of a uniform composition and has a relative dielectric constant of 4 or more. The HfO 2 thin film has a maximum visual sensitivity in a visible light region where a graphene can be observed with an optical microscope at a wavelength of 550 nm. The thickness is such that the interference contrast intensity is maximized .
Invention 2 is characterized in that, in the graphene transistor of Invention 1, the basic element of the insulating film is different from the basic element of the substrate.


自然酸化膜と違い、膜質・膜厚が制御可能であるため、再現性の良く絶縁膜を形成することができる利点を有する。また、発明3のようにすることで、素子作製の際、光学顕微鏡でグラフェンを観察することができる等の特徴を持ったトランジスタを提供することができた。   Unlike the natural oxide film, the film quality and film thickness can be controlled, so that the insulating film can be formed with good reproducibility. Further, according to the invention 3, a transistor having characteristics such that graphene can be observed with an optical microscope when an element is manufactured can be provided.

トップコンタクト/ボトムゲート型グラフェントランジスタ構造の概要図。 従来構造は絶縁層としてSiOを使用している。実施例1ではグラフェンと基板間に高誘電体層(比誘電率4以上)を形成した構造を有する。Schematic diagram of a top contact / bottom gate graphene transistor structure. The conventional structure uses SiO 2 as an insulating layer. Example 1 has a structure in which a high dielectric layer (relative dielectric constant of 4 or more) is formed between graphene and a substrate. Al膜厚と波長に対するコントラストの強度分布図。 (a)構造図。nは屈折率。(b)コントラストの強度分布図。黒から白に向かって強度が大きくなっている。Intensity distribution diagram of contrast for the Al 2 O 3 film thickness and the wavelength. (A) Structural drawing. n is a refractive index. (B) Contrast intensity distribution diagram. The intensity increases from black to white. 実施例1の素子作製プロセス概要図。 (a)高濃度にドープしたSi基板。(b)原子層堆積装置で成膜したAl薄膜。(c)グラフェン転写。(d)グラフェンエッチング。(e)ソース・ドレイン電極作製。FIG. 3 is a schematic diagram of an element manufacturing process of Example 1. (A) Highly doped Si substrate. (B) An Al 2 O 3 thin film formed by an atomic layer deposition apparatus. (C) Graphene transfer. (D) Graphene etching. (E) Preparation of source / drain electrodes. 実施例1の原子層堆積装置のガス注入のタイミング図。FIG. 3 is a timing diagram of gas injection in the atomic layer deposition apparatus according to the first embodiment. 実施例1のAl薄膜上に作製したグラフェントランジスタの光学顕微鏡像。 グラフェンはホールバー形状に加工され、Ti/Au電極に接続されている。 2 is an optical microscope image of a graphene transistor produced on the Al 2 O 3 thin film of Example 1. FIG. Graphene is processed into a hole bar shape and connected to a Ti / Au electrode. 実施例1と従来のSiO絶縁層とのゲート電圧変化に対する導電率の変化率。 SiOに比べAlの方が変化率が大きいことを示している。The rate of change in conductivity with respect to the change in gate voltage between Example 1 and the conventional SiO 2 insulating layer. It shows that Al 2 O 3 has a higher rate of change than SiO 2 . HfO膜厚と波長に対するコントラストの強度分布図。 (a)構造図。nは屈折率。(b)コントラストの強度分布図。黒から白に向かって強度が大きくなっている。Intensity distribution diagram of the contrast with respect to the HfO 2 film thickness and wavelength. (A) Structural drawing. n is a refractive index. (B) Contrast intensity distribution diagram. The intensity increases from black to white.

本発明では、SiOの比誘電率に比べて大きな高誘電率を持つ誘電体薄膜(高誘電体薄膜または強誘電体薄膜)を用いることにより、上記の欠点を解決する手法を提供する。即ち、SiOに較べて低いゲート電圧でも広範囲な電子・正孔(キャリア)濃度を制御可能となる。
実施例では、絶縁膜としてAlを利用して誘電率が高い方がグラフェン内のキャリア濃度を大きく制御できることを示した。参考のため、表1、2に各種誘電体についてゲート容量を計算値した結果を示す。
Al以外の高誘電体材料(Si, HfO, SrTiO, BaTiO, PbZrTiO)においてもグラフェン内のキャリア濃度制御に有効であることが類推される。原理的には比誘電率が大きければ大きいほど、グラフェン内の電子または正孔はより高濃度に制御可能であるため、例えばHfOを考えた場合、コントラストは図7のように計算でき、膜厚を70nmに薄膜化できることが分かる。さらに、誘電率はSiOの約6倍(Alの約3倍)なので、C=εS/d(C: キャパシタンスS:面積, d:膜厚)よりゲート電圧により誘起される電荷は約8倍(Alの約3倍)となることが期待される。

The present invention provides a technique for solving the above drawbacks by using a dielectric thin film (high dielectric thin film or ferroelectric thin film) having a high dielectric constant larger than that of SiO 2 . That is, a wide range of electron / hole (carrier) concentrations can be controlled even with a gate voltage lower than that of SiO 2 .
In the example, it was shown that the carrier concentration in the graphene can be largely controlled by using Al 2 O 3 as the insulating film and having a higher dielectric constant. For reference, Tables 1 and 2 show the calculated gate capacitance values for various dielectrics.
It is presumed that high dielectric materials other than Al 2 O 3 (Si 3 N 4 , HfO 2 , SrTiO 3 , BaTiO 3 , PbZrTiO 3 ) are also effective for controlling the carrier concentration in graphene. In principle, the larger the relative dielectric constant, the higher the concentration of electrons or holes in graphene can be controlled. For example, when HfO 2 is considered, the contrast can be calculated as shown in FIG. It can be seen that the thickness can be reduced to 70 nm. In addition, since the dielectric constant is about 6 times that of SiO 2 (about 3 times that of Al 2 O 3 ), the charge induced by the gate voltage from C = εS / d (C: capacitance S: area, d: film thickness) is It is expected to be about 8 times (about 3 times that of Al 2 O 3 ).

実施例では、絶縁膜として1種類の高誘電体材料を使用したが、いくつかの高誘電体材料を積層させて絶縁膜を形成することもできる。
例えば、Al/HfO/Si基板といった具合に、絶縁膜を積層させることも可能であり、その具体例を実施例2に記載した。
In the embodiment, one kind of high dielectric material is used as the insulating film, but it is also possible to form an insulating film by laminating several high dielectric materials.
For example, an insulating film can be stacked such as an Al 2 O 3 / HfO 2 / Si substrate, and a specific example thereof is described in Example 2.

実施例では、グラフェンを取りだす際にキッシュグラファイトを使用したが、ナチュラルグラファイトやHOPG(Highly oriented pyrolytic graphite)のようにグラフェンが多層構造を成している物質であれば同様の方法で取り出すことが出来る。メカニカルへき開法だけでなく、CVD(Chemical Vapor Deposition)等により成長させたグラフェンを使用しても良い。
さらに、実施例では、2原子層グラフェンを使用したが、層数に制限はなく単層から多層、さらにはグラファイトまでチャネル材料として使用できる。
In the examples, quiche graphite was used when taking out graphene, but it can be taken out in the same way as long as the graphene has a multilayer structure such as natural graphite or HOPG (Highly Oriented Pyrolytic Graphite). . In addition to the mechanical cleavage method, graphene grown by CVD (Chemical Vapor Deposition) or the like may be used.
Furthermore, in the examples, diatomic graphene is used, but the number of layers is not limited and can be used as a channel material from a single layer to a multilayer or even graphite.

実施例では、Alの成膜に原子層堆積法を使用しているが、上記のように、真空蒸着法、スパッタ法、CVD法等の従来周知の成膜方法を用いることが可能であり、その用いる材料により適宜選択すればよい。 In the examples, the atomic layer deposition method is used for the film formation of Al 2 O 3. However, as described above, a conventionally known film formation method such as a vacuum evaporation method, a sputtering method, or a CVD method can be used. And may be appropriately selected depending on the material used.

実施例では、グラフェンのエッチングにOによる化学的な反応性エッチングを利用したが、グラフェンは単一原子層なので、Arによる物理的手法でも容易にエッチングできるため、Arによる物理的なエッチングを利用しても良い。また、Arと酸素の混合ガスでもエッチング効果を得ることができる。FIB(Focused Ion Beam)によるエッチングでも良い。 In the examples, chemical reactive etching using O 2 was used for etching graphene. However, since graphene is a single atomic layer, it can be easily etched by a physical method using Ar, and therefore physical etching using Ar is used. You may do it. An etching effect can also be obtained with a mixed gas of Ar and oxygen. Etching by FIB (Focused Ion Beam) may be used.

実施例では、ソース・ドレイン電極材料としてTi/Auを使用しているが、この種トランジスタの電極材料として従来周知のその他の金属(Ni, Cr, Pt, Cu, Al, Ag, Pd, ITOまたは、それら複数積層させた構造)を用いるのに何ら困難性を有していない。
実施例では、アニールガスとしてAr + 3%Hを使用したが、Hの混合比がどのように変化しても、アニールガスとしての機能を損なわないことが、非特許文献3に示された事実より明らか(ArとHの比率が違う混合ガスを用いてエッチングしているので、Arの比率は問題ないと考えられる)なので、H単体でも良い。同様な理由で、不活性ガスとHの混合ガスであれば良いため、例えばNとHの混合ガスでも実施可能である。
In the embodiment, Ti / Au is used as the source / drain electrode material. However, other known metals (Ni, Cr, Pt, Cu, Al, Ag, Pd, ITO or the like) , A structure in which a plurality of such layers are stacked) has no difficulty.
In the example, Ar + 3% H 2 was used as the annealing gas. However, Non-Patent Document 3 shows that the function as the annealing gas is not impaired regardless of how the mixing ratio of H 2 changes. (since the ratio of Ar and H 2 are etched using a mixed gas of different ratio of Ar is considered that there is no problem) clear from facts so, may with H 2 alone. For the same reason, any mixed gas of an inert gas and H 2 may be used. For example, a mixed gas of N 2 and H 2 can be used.

グラフェンまたはグラファイトをチャネルとするトップコンタクト/ボトムゲート型電界効果トランジスタ構造を図1に示す。
本実施例では、SiOの比誘電率3.9に比べて2.2倍大きな絶縁膜としてAlを選定し、グラフェン/Al/低抵抗Si基板構造を用いた素子を作製した。以下にその作製方法を示すとともに、SiO(膜厚90nm)素子との特性を比較して、高誘電体材料を使用した素子の優位性を示す。
基板としてSiを使用し、絶縁膜としてAlを使用する場合、非特許文献1の計算式(式1)を用いると図2(b)のようになり、可視光領域において干渉コントラストが最も強く、Al膜の膜厚が最も薄くなる条件は約80nmであることが分かる。
<式1>

FIG. 1 shows a top contact / bottom gate type field effect transistor structure using graphene or graphite as a channel.
In this example, Al 2 O 3 was selected as an insulating film 2.2 times larger than the relative dielectric constant 3.9 of SiO 2 , and an element using a graphene / Al 2 O 3 / low resistance Si substrate structure was selected. Produced. The manufacturing method is shown below, and the characteristics of the device using the high dielectric material are shown by comparing the characteristics with the SiO 2 (thickness 90 nm) device.
When Si is used as the substrate and Al 2 O 3 is used as the insulating film, the calculation formula (Formula 1) of Non-Patent Document 1 is used as shown in FIG. It can be seen that the strongest and the thinnest condition of the Al 2 O 3 film is about 80 nm.
<Formula 1>

Al薄膜の成膜には原子層堆積装置を使用し、厚さ380μm, 抵抗率0.02Ω・cm以下の低抵抗Si基板上に面内均一性に優れた良質なAl薄膜を80nm成膜した(図3(b))。
原料として、室温に保持された液体のTMA(トリメチルアルミニウム)およびHOを用い、TMAおよびHOはキャリアガスとして窒素ガスをバブリングすることにより成長室チャンバーに供給した。
TMAおよびHOの供給は、それぞれ単独に0.1秒間、交互に待ち時間4秒を含めて間欠(パルス)的に供給された(図4)。1サイクルでAl層が1分子層(約0.1nm)形成される。成膜条件は、以下の通りである。窒素ガス流量:チャンバーライン(300sccm) / TMAライン(150sccm) / HOライン(150sccm)、原料温度:TMA(室温) / HO(室温)、基板温度:300℃、パルスサイクル数:800サイクル(80nm)、基板:低抵抗Si基板である。
An Al 2 O 3 thin film is formed by using an atomic layer deposition apparatus on a low resistance Si substrate having a thickness of 380 μm and a resistivity of 0.02 Ω · cm or less, and good quality Al 2 O 3 with excellent in-plane uniformity. A thin film having a thickness of 80 nm was formed (FIG. 3B).
Liquid TMA (trimethylaluminum) and H 2 O kept at room temperature were used as raw materials, and TMA and H 2 O were supplied to the growth chamber by bubbling nitrogen gas as a carrier gas.
TMA and H 2 O were supplied intermittently (pulsed) each independently for 0.1 second and alternately with a waiting time of 4 seconds (FIG. 4). In one cycle, an Al 2 O 3 layer is formed as a single molecular layer (about 0.1 nm). The film forming conditions are as follows. Nitrogen gas flow rate: chamber line (300 sccm) / TMA line (150 sccm) / H 2 O line (150 sccm), raw material temperature: TMA (room temperature) / H 2 O (room temperature), substrate temperature: 300 ° C., number of pulse cycles: 800 Cycle (80 nm), substrate: low resistance Si substrate.

このようにして得た絶縁膜は、Alのみから構成され、Al単体や他の構成の酸化アルミニウムの存在は認められない。
非特許文献9には、1cycleでAlが1分子層堆積できることが示され、実験的には非特許文献10において、そのAl成膜メカニズムを裏付けるデータを示しており、これら従来公知の技術情報からして、上記のように断定した。
The insulating film thus obtained is composed only of Al 2 O 3 , and the presence of Al alone or aluminum oxide having another structure is not recognized.
Non-patent document 9 shows that 1 molecule of Al 2 O 3 can be deposited in 1 cycle. Experimentally, non-patent document 10 shows data supporting the film formation mechanism of Al 2 O 3. Based on conventionally known technical information, it was determined as described above.

次に、キッシュグラファイトを粘着テープに貼り付けて薄膜化したものを成膜したAl上に転写した(図3(c))。
グラフェンの層数は、光学顕微鏡観察およびラマン散乱分光により決定し、本件ではグラフェンが2層積層した構造を有する2原子層グラフェンであることが分かった。2原子層グラフェンを任意形状に加工するため、電子線リソグラフィを使用してレジストをホールバー形状にパターニングした後、反応性イオンエッチング装置を使用してレジストをマスクにしてグラフェンをエッチングした(図3(d))。
グラフェンのエッチング条件は、装置:反応性イオンエッチング装置、エッチングガス:O、エッチング中圧力:10Pa、マイクロ波パワー:100W、エッチング時間:15secである。更に、レーザーリソグラフィおよび電子線リソグラフィを利用してソースおよびドレイン電極を形成し(図3(e))、トップコンタクト/ボトムゲート型電界効果トランジスタ構造を作製した(図5)。金属電極は、真空蒸着装置を使用して、Ti / Au=10nm / 50nmを成膜した。最後に、レジストなどの残留不純物を除去するためにアニール処理を行った。アニール条件は、ガス:Ar + 3%H、ガス流量:1 L/min、アニール温度:300℃、アニール時間:5minである。
Next, a thin film obtained by attaching quiche graphite to an adhesive tape was transferred onto Al 2 O 3 on which the film was formed (FIG. 3C).
The number of graphene layers was determined by optical microscope observation and Raman scattering spectroscopy, and in this case, it was found that the graphene was a diatomic graphene having a structure in which two layers of graphene were stacked. In order to process diatomic graphene into an arbitrary shape, after patterning the resist into a hole bar shape using electron beam lithography, the reactive ion etching apparatus is used to etch the graphene using the resist as a mask (FIG. 3). (D)).
Etching conditions for graphene are: apparatus: reactive ion etching apparatus, etching gas: O 2 , pressure during etching: 10 Pa, microwave power: 100 W, etching time: 15 sec. Further, source and drain electrodes were formed using laser lithography and electron beam lithography (FIG. 3E), and a top contact / bottom gate type field effect transistor structure was fabricated (FIG. 5). The metal electrode was formed into a film of Ti / Au = 10 nm / 50 nm using a vacuum deposition apparatus. Finally, annealing treatment was performed to remove residual impurities such as resist. The annealing conditions are gas: Ar + 3% H 2 , gas flow rate: 1 L / min, annealing temperature: 300 ° C., and annealing time: 5 min.

図6に、Al膜上の2原子層グラフェン内を流れるドレイン電流から求めた伝導率のゲート電圧依存性を示し、比較のためにSiO膜上に形成された場合の実験値も示してある。
ここで、伝導率の値はゲート電圧V-Vdiracゼロ時の伝導率(ディラックポイントと呼ばれる)で規格化されている。Al膜およびSiO膜上ともに、ゲート電圧の絶対値を増加させるとともに伝導率が増加しており、グラフェンに特徴的な正ゲート電圧時の電子および負ゲート電圧時の正孔による両極性伝導を示している。Al膜上とSiO膜上とを比較すると、SiOよりもAlの方が鋭いピークとなっており、ゲート電圧変化に対する感度が良く効率的にグラフェン内のキャリア濃度を制御出来ていることが分かる。これは前述したように、Al膜の比誘電率がSiO膜比べて大きく、対応して静電容量が大きくなる結果、Al膜上のグラフェン内に発生する電子または正孔が、同じゲート電圧に対してより高濃度になるためである。このように、高誘電体材料ほどグラフェン内のキャリア濃度を大きく制御できることが示された。
FIG. 6 shows the gate voltage dependence of the conductivity obtained from the drain current flowing in the diatomic graphene on the Al 2 O 3 film, and the experimental value when formed on the SiO 2 film is also shown for comparison. It is shown.
Here, the value of the conductivity is normalized by the conductivity at zero time of the gate voltage V g -V dirac (referred to as Dirac point). On both the Al 2 O 3 film and the SiO 2 film, the absolute value of the gate voltage is increased and the conductivity is increased. Bipolarity due to electrons at the positive gate voltage and holes at the negative gate voltage characteristic of graphene It shows sexual conduction. When comparing the Al 2 O 3 film and the SiO 2 film, Al 2 O 3 has a sharper peak than SiO 2 , and the sensitivity to the gate voltage change is good and the carrier concentration in graphene is efficiently increased. You can see that it is controlled. As described above, this is because the relative permittivity of the Al 2 O 3 film is larger than that of the SiO 2 film and the capacitance is correspondingly increased. As a result, electrons generated in the graphene on the Al 2 O 3 film or positive This is because the holes have a higher concentration for the same gate voltage. Thus, it was shown that the higher the dielectric material, the greater the control of the carrier concentration in graphene.

本実施例は、積層による絶縁膜成膜を例示する。
例えば、Al/HfO/Si基板の作製方法を記載する。HfO薄膜の成膜には、Alと同様にして、原子層堆積装置を使用し、厚さ380μm, 抵抗率0.02Ω・cm以下の低抵抗Si基板上に面内均一性に優れた良質なHfO薄膜を70nm成膜した。
原料として、130℃に昇温した固体のTEMAHf(テトラキス[エチルメチルアミノ]ハフニウム)およびHOを用い、TEMAHfおよびHOはキャリアガスとして窒素ガスをバブリングすることにより成長室チャンバーに供給した。
TEMAHfおよびHOの供給は、それぞれ単独に0.1秒間、交互に待ち時間5秒を含めて間欠(パルス)的に供給された。1サイクルでHfO層が1分子層(約0.085nm)形成される。成膜条件は、以下の通りである。窒素ガス流量:チャンバーライン(200sccm) / TEMAHfライン(100sccm) / HOライン(100sccm)、原料温度:TEMAHf(130℃) / HO(室温)、基板温度:300℃、パルスサイクル数:825サイクル(70nm)、基板:低抵抗Si基板である。
続けて、原料として、室温に保持された液体のTMA(トリメチルアルミニウム)およびHOを用い、TMAおよびHOはキャリアガスとして窒素ガスをバブリングすることにより成長室チャンバーに供給した。
TMAおよびHOの供給は、それぞれ単独に0.1秒間、交互に待ち時間4秒を含めて間欠(パルス)的に供給された。1サイクルでAl層が1分子層(約0.1nm)形成される。成膜条件は、以下の通りである。窒素ガス流量:チャンバーライン(300sccm) / TMAライン(150sccm) / HOライン(150sccm)、原料温度:TMA(室温) / HO(室温)、基板温度:300℃、パルスサイクル数:20サイクル(2nm)、基板:HfO/低抵抗Si基板である。
このように、原子層堆積法で成膜できる材料であれば同一チャンバー内で連続して成膜することが可能である。
This example illustrates the formation of an insulating film by stacking.
For example, a method for manufacturing an Al 2 O 3 / HfO 2 / Si substrate is described. In the same way as Al 2 O 3 , an atomic layer deposition apparatus is used to form the HfO 2 thin film, and the in-plane uniformity is obtained on a low resistance Si substrate having a thickness of 380 μm and a resistivity of 0.02 Ω · cm or less. An excellent high-quality HfO 2 thin film was formed to a thickness of 70 nm.
As a raw material, solid TEMAHf (tetrakis [ethylmethylamino] hafnium) heated to 130 ° C. and H 2 O were used, and TEMAHf and H 2 O were supplied to the growth chamber by bubbling nitrogen gas as a carrier gas. .
The supply of TEMAHf and H 2 O were each intermittently (pulsed) including 0.1 seconds each, alternately including a waiting time of 5 seconds. A single molecular layer (about 0.085 nm) of HfO 2 layer is formed in one cycle. The film forming conditions are as follows. Nitrogen gas flow rate: chamber line (200 sccm) / TEMAHf line (100 sccm) / H 2 O line (100 sccm), raw material temperature: TEMAHf (130 ° C.) / H 2 O (room temperature), substrate temperature: 300 ° C., number of pulse cycles: 825 cycles (70 nm), substrate: low resistance Si substrate.
Subsequently, liquid TMA (trimethylaluminum) and H 2 O kept at room temperature were used as raw materials, and TMA and H 2 O were supplied to the growth chamber by bubbling nitrogen gas as a carrier gas.
The supply of TMA and H 2 O was each intermittently (pulsed) including 0.1 seconds each, alternately including a waiting time of 4 seconds. In one cycle, an Al 2 O 3 layer is formed as a single molecular layer (about 0.1 nm). The film forming conditions are as follows. Nitrogen gas flow rate: chamber line (300 sccm) / TMA line (150 sccm) / H 2 O line (150 sccm), raw material temperature: TMA (room temperature) / H 2 O (room temperature), substrate temperature: 300 ° C., number of pulse cycles: 20 Cycle (2 nm), substrate: HfO 2 / low resistance Si substrate.
As described above, any material that can be formed by an atomic layer deposition method can be formed continuously in the same chamber.

特開2007-258223JP2007-258223A 特開2009-111377JP2009-111377A

Applied Physics Letters 91, 063124(2007).Applied Physics Letters 91, 063124 (2007). Applied Physics Express 2, 025003(2009).Applied Physics Express 2, 025003 (2009). Nano Letters 7, 1643 (2007).Nano Letters 7, 1643 (2007). Journal of the Electrochemical Society 127, 2222 (1980).Journal of the Electrochemical Society 127, 2222 (1980). Journal of the Electrochemical Society 119, 945 (1972).Journal of the Electrochemical Society 119, 945 (1972). Applied Physics Letters 92, 222903 (2008).Applied Physics Letters 92, 222903 (2008). Japanese Journal of Applied Physics 32, 4118 (1993).Japan Journal of Applied Physics 32, 4118 (1993). Electrochemical and Solid−State Letters, 2 (10), 504 (1999).Electrochemical and Solid-State Letters, 2 (10), 504 (1999). 参考文献「Surface Science 322, 230 (1995).Reference "Surface Science 322, 230 (1995). The Journal of Physical Chemistry 100, 13121 (1996).The Journal of Physical Chemistry 100, 13121 (1996).

Claims (2)

グラフェンと低抵抗基板との間に積層による絶縁膜が形成されており、前記絶縁膜は、膜厚70nmのHfO 薄膜上に膜厚2nmのAl 薄膜が形成されてなり、前記HfO 薄膜全体が均質な組成で構成され、その比誘電率が4以上であり、前記HfO 薄膜は光学顕微鏡でグラフェンを観察できる可視光領域での最大視感度の波長550nmにおける干渉コントラスト強度が最大となる厚さとされていることを特徴とするグラフェントランジスタ。 A laminated insulating film is formed between the graphene and the low-resistance substrate, and the insulating film is formed by forming an Al 2 O 3 thin film with a thickness of 2 nm on an HfO 2 thin film with a thickness of 70 nm. 2 The entire thin film is composed of a homogeneous composition, the relative dielectric constant is 4 or more, and the HfO 2 thin film has the maximum interference contrast intensity at a wavelength of 550 nm in the visible light region where graphene can be observed with an optical microscope. A graphene transistor characterized by having a thickness of 請求項1に記載のグラフェントランジスタにおいて、前記絶縁膜の基幹元素と前記基板の基幹元素が異なることを特徴とするグラフェントランジスタ。
2. The graphene transistor according to claim 1, wherein a basic element of the insulating film is different from a basic element of the substrate.
JP2009271742A 2009-11-30 2009-11-30 Graphene transistor Expired - Fee Related JP5697069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009271742A JP5697069B2 (en) 2009-11-30 2009-11-30 Graphene transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009271742A JP5697069B2 (en) 2009-11-30 2009-11-30 Graphene transistor

Publications (2)

Publication Number Publication Date
JP2011114299A JP2011114299A (en) 2011-06-09
JP5697069B2 true JP5697069B2 (en) 2015-04-08

Family

ID=44236379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271742A Expired - Fee Related JP5697069B2 (en) 2009-11-30 2009-11-30 Graphene transistor

Country Status (1)

Country Link
JP (1) JP5697069B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101920712B1 (en) * 2011-08-26 2018-11-22 삼성전자주식회사 Graphene switching devece including tunable barrier
KR101878738B1 (en) * 2011-09-16 2018-07-17 삼성전자주식회사 Semiconductor device and operation method for logic device
WO2013121954A1 (en) * 2012-02-16 2013-08-22 国立大学法人東北大学 Graphene field-effect transistor and graphene semiconductor member
JP6064344B2 (en) * 2012-03-16 2017-01-25 富士通株式会社 Magnetic detector
KR101532311B1 (en) 2012-04-27 2015-06-29 삼성전자주식회사 Photo-detector using graphene and method of manufacturing the same
JP5910294B2 (en) 2012-05-10 2016-04-27 富士通株式会社 Electronic device and manufacturing method of laminated structure
KR101946007B1 (en) 2012-06-20 2019-02-08 삼성전자주식회사 Apparatus and Method for analyzing graphene
JP6079166B2 (en) * 2012-11-26 2017-02-15 ソニー株式会社 Manufacturing method of laminated structure
KR102257243B1 (en) 2014-01-28 2021-05-27 삼성전자주식회사 Graphene transistor including tunable barrier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071898A (en) * 2006-09-13 2008-03-27 Osaka Univ Carbon nanotube field effect transistor and manufacturing method thereof
EP2195648B1 (en) * 2007-09-12 2019-05-08 President and Fellows of Harvard College High-resolution molecular graphene sensor comprising an aperture in the graphene layer
JP5109648B2 (en) * 2007-12-27 2012-12-26 富士通株式会社 Method for manufacturing layered carbon structure and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2011114299A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5697069B2 (en) Graphene transistor
US10636652B2 (en) Method of forming a semiconductor device using layered etching and repairing of damaged portions
TWI296817B (en) Method of controlling the film properties of a cvd-deposited silicon nitride film
Medina et al. Metal‐free growth of nanographene on silicon oxides for transparent conducting applications
Singh et al. Molecular n-doping of chemical vapor deposition grown graphene
KR101878750B1 (en) Monolayer graphene comprising alkali metal, and electronic device comprising the same
EP2790227B1 (en) Graphene based field effect transistor
KR101993382B1 (en) Graphene on substrate and process for preparing the same
EP2801551A1 (en) Graphene with very high charge carrier mobility and preparation thereof
KR101919423B1 (en) Graphene semiconductor, and electronic device comprising the same
KR102059129B1 (en) Method of manufacturing graphene and the device comprising graphene
US8043978B2 (en) Electronic device and method for producing electronic device
TWI632679B (en) Electronic device and method of manufacturing same
TW201105814A (en) Method to improve nucleation of materials on graphene and carbon nanotubes
TW201232787A (en) Laminate structure including oxide semiconductor thin film layer, and thin film transistor
KR20140105293A (en) Method for manufacturing graphene laminated structure, graphene laminated structure and electric device including the same
JP6195266B2 (en) Manufacturing method of electronic device
JP2015101499A (en) Graphene film, electronic device, and method of manufacturing electronic device
KR101564038B1 (en) Method for direct growth of patterned graphene
Juvaid et al. Direct growth of wafer-scale, transparent, p-type reduced-graphene-oxide-like thin films by pulsed laser deposition
Takabayashi et al. Relationship between the structure and electrical characteristics of diamond-like carbon films
CN113140449A (en) Semiconductor doping method based on ferroelectric material
KR101878735B1 (en) Process for preparing graphene sheet
Kim et al. Electrical and reliability characteristics of HfO2 gate dielectric treated in N2 and NH3 plasma atmosphere
TW201327841A (en) Thin film transistor and method for manufacturing thin film transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150204

R150 Certificate of patent or registration of utility model

Ref document number: 5697069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees