JP5683077B2 - Aluminum alloy member with excellent low contamination - Google Patents
Aluminum alloy member with excellent low contamination Download PDFInfo
- Publication number
- JP5683077B2 JP5683077B2 JP2009053390A JP2009053390A JP5683077B2 JP 5683077 B2 JP5683077 B2 JP 5683077B2 JP 2009053390 A JP2009053390 A JP 2009053390A JP 2009053390 A JP2009053390 A JP 2009053390A JP 5683077 B2 JP5683077 B2 JP 5683077B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- pores
- thickness
- anodized film
- porous layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 60
- 238000011109 contamination Methods 0.000 title claims description 29
- 239000011148 porous material Substances 0.000 claims description 59
- 230000004888 barrier function Effects 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 31
- 239000000758 substrate Substances 0.000 claims description 30
- 238000012360 testing method Methods 0.000 description 22
- 238000012545 processing Methods 0.000 description 18
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 16
- 239000010407 anodic oxide Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- 239000000243 solution Substances 0.000 description 11
- 238000007743 anodising Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000002048 anodisation reaction Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000000624 total reflection X-ray fluorescence spectroscopy Methods 0.000 description 3
- 229910001094 6061 aluminium alloy Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Description
本発明は、ドライエッチング装置、CVD装置、イオン注入装置、スパッタリング装置などの半導体や液晶の製造設備などの真空チャンバ、或いはその真空チャンバの内部に設けられる部材の材料として好適に用いられる低汚染性に優れたアルミニウム合金部材に関するものである。 The present invention is a low-contamination property that is suitably used as a material for vacuum chambers of semiconductor and liquid crystal manufacturing equipment such as dry etching equipment, CVD equipment, ion implantation equipment, and sputtering equipment, or members provided inside the vacuum chamber. The present invention relates to an aluminum alloy member having excellent resistance.
アルミニウム合金を基材とし、その表面に陽極酸化皮膜を形成して、アルミニウム合金基材に耐腐食性(耐高温ガス腐食性)や耐摩耗性などを付与させる陽極酸化処理は、従来から広く採用されてきた。 Anodization treatment that uses an aluminum alloy as a base material and forms an anodic oxide film on the surface to impart corrosion resistance (high-temperature gas corrosion resistance) and wear resistance to the aluminum alloy base material has been widely used. It has been.
例えば、半導体製造設備のプラズマ処理装置に用いられる真空チャンバ、並びにその真空チャンバの内部に設けられる電極等の各種部材は、アルミニウム合金を用いて形成されることが通常である。しかしながら、そのアルミニウム合金を無垢のままで使用すれば、耐腐食性や耐摩耗性などを維持することができなくなるので、アルミニウム合金によって形成された基材の表面に陽極酸化処理を施して陽極酸化皮膜を形成することで、耐腐食性や耐摩耗性などを付与していた。 For example, various members such as a vacuum chamber used in a plasma processing apparatus of a semiconductor manufacturing facility and electrodes provided in the vacuum chamber are usually formed using an aluminum alloy. However, if the aluminum alloy is used as it is, corrosion resistance and wear resistance cannot be maintained. Therefore, the surface of the substrate formed of the aluminum alloy is subjected to anodizing treatment and anodized. By forming a film, corrosion resistance, wear resistance, and the like were imparted.
このアルミニウム合金基材の表面に陽極酸化皮膜を形成する理由は、真空チャンバの内部では、シリコン・ウエハなどの被処理物に半導体製造の前処理工程や製造工程において、室温から200℃以上の高温環境下で様々な種類の腐食性ガスやプラズマによって所定の加工が行われるため、真空チャンバの内面や、真空チャンバの内部に設けられる電極等の各種部品も前記した雰囲気に曝されることになり、無垢のアルミニウム合金のままでは、耐腐食性や耐摩耗性などを維持することができないためである。 The reason for forming the anodic oxide film on the surface of the aluminum alloy substrate is that, in the vacuum chamber, the object to be processed such as a silicon wafer is heated to a high temperature of room temperature to 200 ° C. or higher in the pre-processing step or manufacturing step of semiconductor manufacturing Since predetermined processing is performed with various types of corrosive gas and plasma in the environment, various parts such as the inner surface of the vacuum chamber and electrodes provided in the vacuum chamber are also exposed to the above atmosphere. This is because the solid aluminum alloy cannot maintain the corrosion resistance and wear resistance.
近年、このような、表面に陽極酸化皮膜を形成したアルミニウム合金部材に関する種々の提案がなされている。被処理物の低汚染化、すなわち、Fe、Cr、Cuの低減という観点から、陽極酸化処理を施す基材の材料として、高純度のアルミニウム中に、Mg、Siを添加し、不純物の含有量を極力制限したアルミニウム合金基材が、特許文献1〜7として提案されている。これら特許文献1〜7記載のアルミニウム合金を基材とした場合、被処理物の低汚染化に対しては効果が期待できるもの、必ずしも十分な耐久性を得ることができない。 In recent years, various proposals regarding such aluminum alloy members having an anodic oxide film formed on the surface have been made. From the viewpoint of reducing contamination of the workpiece, that is, reducing Fe, Cr, and Cu, Mg and Si are added to high-purity aluminum as a base material to be anodized, and the content of impurities The aluminum alloy base material which limited as much as possible is proposed as patent documents 1-7. When these aluminum alloys described in Patent Documents 1 to 7 are used as a base material, an effect can be expected for reducing the contamination of an object to be processed, and sufficient durability cannot always be obtained.
この十分な耐久性を得るための対策として、本発明者らが提案した陽極酸化用アルミニウム合金が、特許文献8記載の高耐久性と低汚染性と高生産性を兼備した陽極酸化用アルミニウム合金である。この陽極酸化用アルミニウム合金は、近年のデバイスの高集積化に伴う金属汚染低減ニーズに対応した合金である。半導体製造設備を構成する部材の中でも、特に下部電極部材は、その上に直接ウエハを載置するため、ウエハに対する汚染源となる可能性が高い部材である。そのため、この特許文献8記載の高耐久性と低汚染性を兼ね備えた陽極酸化用アルミニウム合金を下部電極部材に採用することが、金属汚染の低減を図ることで有効であった。 As a measure for obtaining this sufficient durability, the anodizing aluminum alloy proposed by the present inventors is an anodizing aluminum alloy having both high durability, low contamination and high productivity described in Patent Document 8. It is. This aluminum alloy for anodic oxidation is an alloy that meets the needs for reducing metal contamination accompanying the recent high integration of devices. Among the members constituting the semiconductor manufacturing facility, the lower electrode member is a member that has a high possibility of becoming a contamination source for the wafer because the wafer is directly mounted thereon. For this reason, it is effective to reduce the metal contamination by adopting the anodizing aluminum alloy having both high durability and low contamination described in Patent Document 8 as the lower electrode member.
しかしながら、この特許文献8記載の陽極酸化用アルミニウム合金をはじめとして、特許文献1〜8記載のアルミニウム合金は、その何れもが、不純物元素の低減を極力図った特殊な成分組成のアルミニウム合金であるため、市販のアルミニウム合金と比較して調達が困難であり、また、製造する場合は、その製造ために余計なコストがかかってしまうという問題があった。 However, the aluminum alloys described in Patent Documents 1 to 8, including the anodizing aluminum alloy described in Patent Document 8, are all aluminum alloys having a special component composition in which the reduction of impurity elements is as much as possible. For this reason, it is difficult to procure as compared with a commercially available aluminum alloy, and in the case of manufacturing, there is a problem that extra cost is required for the manufacturing.
また、実際に半導体製造設備のプラズマ処理装置等に採用されている陽極酸化用アルミニウム合金は、未だに市販のアルミニウム合金がその大半を占めており、製造に手間を要する特殊な組成のアルミニウム合金を採用することなく、市販のアルミニウム合金を用いても、近年高まっている低汚染ニーズに対応することができる技術が開発されることが待ち望まれていた。 In addition, aluminum alloys for anodization that are actually used in plasma processing equipment for semiconductor manufacturing equipment are still mostly commercial aluminum alloys, and aluminum alloys with special compositions that require labor are required. Therefore, there is a long-awaited development of a technology that can respond to the recently increasing needs for low contamination even when a commercially available aluminum alloy is used.
本発明は、上記従来の問題を解決せんとしてなされたもので、半導体製造設備のプラズマ処理装置に用いられる真空チャンバ、並びにその真空チャンバの内部に設けられる電極等の各種部材等に用いられる陽極酸化用アルミニウム合金の基材として、製造に手間を要する特殊な成分組成のアルミニウム合金を採用することはなくても、また、基材に用いるアルミニウム合金の成分組成に関係なく、近年高まっている低汚染ニーズに対応することができる低汚染性に優れたアルミニウム合金部材を提供することを課題とするものである。 The present invention has been made in order to solve the above-described conventional problems, and is an anodic oxidation used for various members such as a vacuum chamber used in a plasma processing apparatus of a semiconductor manufacturing facility and an electrode provided in the vacuum chamber. Low contamination that has been increasing in recent years regardless of the composition of the aluminum alloy used for the base material, even if it does not employ an aluminum alloy with a special component composition that requires labor to manufacture as the base material for the aluminum alloy An object of the present invention is to provide an aluminum alloy member excellent in low contamination that can meet the needs.
請求項1記載の発明は、アルミニウム合金で成る基材の表面に陽極酸化皮膜を形成したアルミニウム合金部材であって、前記陽極酸化皮膜は、ポア間の障壁厚さが30nm以下であり表面側を構成する表面側ポーラス層と、ポア間の障壁厚さが30nm超であり基材側を構成する基材側ポーラス層とを備え、前記表面側ポーラス層の層厚が1μm以上、前記基材側ポーラス層の基材界面からの層厚が5μm以上であることを特徴とする低汚染性に優れたアルミニウム合金部材である。 The invention according to claim 1 is an aluminum alloy member in which an anodized film is formed on a surface of a base material made of an aluminum alloy, and the anodized film has a barrier thickness between pores of 30 nm or less and has a surface side. A surface-side porous layer, and a substrate-side porous layer having a barrier thickness between pores of more than 30 nm and constituting the substrate side, wherein the surface-side porous layer has a layer thickness of 1 μm or more, the substrate side An aluminum alloy member excellent in low contamination, characterized in that the thickness of the porous layer from the substrate interface is 5 μm or more .
本発明の請求項1記載の低汚染性に優れたアルミニウム合金部材によると、半導体製造設備のプラズマ処理装置に用いられる真空チャンバ、並びにその真空チャンバの内部に設けられる電極等の各種部材等に用いられる陽極酸化用アルミニウム合金の基材として、製造に手間を要する特殊な組成のアルミニウム合金を採用することはなくても、また、基材に用いるアルミニウム合金の成分組成に関係なく、近年高まっている低汚染ニーズに対応することができる。 According to the aluminum alloy member excellent in low contamination according to claim 1 of the present invention, it is used for various members such as a vacuum chamber used in a plasma processing apparatus of a semiconductor manufacturing facility and an electrode provided in the vacuum chamber. As a base material for the anodizing aluminum alloy to be produced, it has been increasing in recent years regardless of the composition of the aluminum alloy used for the base material, without employing an aluminum alloy having a special composition that requires labor for manufacturing. Can meet low pollution needs.
また、優れた低汚染性に加えて、耐傷付き性にも優れたアルミニウム合金部材とすることができる。 Moreover, it can be set as the aluminum alloy member excellent in the scratch resistance in addition to the outstanding low pollution property.
ドライエッチング装置、CVD装置、イオン注入装置、スパッタリング装置などの半導体や液晶の製造設備などの真空チャンバ、或いはその真空チャンバの内部に設けられる部材の材料として、耐腐食性や耐摩耗性などを維持するために、表面に陽極酸化皮膜を形成したアルミニウム合金部材が採用されているが、近年高まっているニーズの低汚染化に対応するという観点で、不純物の含有量を極力制限したアルミニウム合金が、その基材に使用されはじめている。 Maintains corrosion resistance, wear resistance, etc. as materials for vacuum chambers of semiconductor and liquid crystal manufacturing equipment such as dry etching equipment, CVD equipment, ion implantation equipment, sputtering equipment, etc., or members provided inside the vacuum chamber In order to do so, an aluminum alloy member having an anodized film formed on the surface is adopted, but from the viewpoint of responding to the low contamination of needs that have been increasing in recent years, an aluminum alloy in which the content of impurities is limited as much as possible, It is starting to be used for the base material.
しかしながら、不純物の含有量を極力制限した特殊な成分組成のアルミニウム合金を製造することは困難であり、また、新たな製造設備を導入する必要やコストが上昇すること等もあって、市販のアルミニウム合金を用いても、低汚染性に優れたアルミニウム合金部材を実現することができる新たな技術を見出すことを目的として、本発明者らは、鋭意、実験、検討を行った。 However, it is difficult to produce an aluminum alloy with a special component composition in which the content of impurities is limited as much as possible, and there is a need to introduce a new production facility and the cost increases. The present inventors diligently conducted experiments and studies for the purpose of finding a new technique capable of realizing an aluminum alloy member excellent in low contamination even when an alloy is used.
その結果、アルミニウム合金でなる基材の表面に形成する陽極酸化皮膜の少なくとも表面側から1μm以上を、ポア(空隙)間の障壁厚さが30nm以下の表面側ポーラス層とすることで、基材に市販のアルミニウム合金を用いても優れた低汚染性を確保できることが分かり、本発明の完成に至った。 As a result, by forming at least 1 μm or more from the surface side of the anodized film formed on the surface of the base material made of aluminum alloy as a surface-side porous layer having a barrier thickness between pores (voids) of 30 nm or less, It was found that even if a commercially available aluminum alloy was used, excellent low contamination could be secured, and the present invention was completed.
また、その陽極酸化皮膜のポーラス層を除く基材側の部位を、ポア間の障壁厚さが30nm超で、且つその層厚が5μm以上の基材側ポーラス層とすることで、前記した低汚染性に加え、耐傷付き性にも優れたアルミニウム合金部材を実現できることも確認した。 Further, a portion of the substrate side except for the porous layer of the anodized film, the barrier thickness between pores at 30nm greater, and that its thickness is to 5μm or more base material side porous layer, the low and the It was also confirmed that an aluminum alloy member excellent in scratch resistance in addition to contamination could be realized.
尚、本発明で定義するポア間の障壁厚さとは、陽極酸化皮膜の表面等をSEM(走査電子顕微鏡)で観察したときの、近接する10個以上のポアについて、夫々最近接したポア間の最短距離(固体部分の最小厚さ)を測定し、ポアとポアがつながっている場合はそのポア間の障壁厚さは0とし、その測定した平均値を求めることで、ポア間の障壁厚さとした。尚、陽極酸化皮膜の表面以外に、陽極酸化皮膜の表面側から1μmの位置と、基材界面付近、また、基材界面から表面側5μmの位置についても、FIB(Focused Ion Beam)加工にて切り出してSEMで観察した。本発明では、このポア間の障壁厚さが30nm以下の表面側ポーラス層を表面に形成することを要件とした。 In addition, the barrier thickness between pores defined in the present invention is the distance between the pores closest to each other with respect to 10 or more adjacent pores when the surface of the anodized film is observed with a scanning electron microscope (SEM). Measure the shortest distance (minimum thickness of the solid part), and if the pore and the pore are connected, the barrier thickness between the pores is set to 0, and by calculating the measured average value, did. In addition to the surface of the anodized film, FIB (Focused Ion Beam) processing is also used for the position 1 μm from the surface side of the anodized film and the vicinity of the substrate interface and the position 5 μm from the substrate interface to the surface side. It cut out and observed with SEM. In the present invention, it is a requirement to form a surface-side porous layer having a barrier thickness between pores of 30 nm or less on the surface .
以下、本発明を実施形態に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments.
本発明のアルミニウム合金部材は、アルミニウム合金でなる基材と、その基材の表面に形成される陽極酸化皮膜より構成される。 The aluminum alloy member of the present invention comprises a base material made of an aluminum alloy and an anodized film formed on the surface of the base material.
アルミニウム合金でなる基材としては、特殊な成分組成のアルミニウム合金を用いる必要はなく、市販のアルミニウム合金、例えば、JISに規定される6061アルミニウム合金を用いて基材とすることができる。 As a base material made of an aluminum alloy, it is not necessary to use an aluminum alloy having a special component composition, and a commercially available aluminum alloy, for example, a 6061 aluminum alloy defined in JIS can be used as the base material.
また、その基材の表面に形成される陽極酸化皮膜は、その表面側(最表面)から1μm以上が、ポア間の障壁厚さが30nm以下の表面側ポーラス層である。陽極酸化皮膜の全てがこのポーラス層であっても構わないが、表面側ポーラス層を除く基材側の部位を、ポア間の障壁厚さが30nm超で、層厚が5μm以上の基材側ポーラス層とすることが好ましい。 Further, the anodized film formed on the surface of the substrate is a surface-side porous layer having a thickness of 1 μm or more from the surface side (outermost surface) and a barrier thickness between pores of 30 nm or less. Although all of the anodic oxide film may be a the porous layer, the portion of the substrate side except for the surface side porous layer, the barrier thickness between pores at 30nm greater than the layer thickness is 5μm or more substrates side It is preferable to use a porous layer.
尚、本発明では、ポア間の障壁厚さが30nm以下の表面側ポーラス層を形成することを要件としたが、ポア間の障壁厚さの下限は特に規定しない。しかしながら、後述の方法で、ポア間の障壁厚さを5nm未満に制御することは工業的に難しく、その下限は5nmとすることが好ましい。 In the present invention, the barrier thickness between the pores has a requirement to form the following surface-side port Rasu layer 30 nm, the lower limit of the barrier thickness between the pores is not particularly specified. However, it is industrially difficult to control the barrier thickness between pores to less than 5 nm by the method described later, and the lower limit is preferably 5 nm.
また、ポア間の障壁厚さが30nm以下の表面側ポーラス層の層厚の下限は1μmと規定したが、その上限は特に規定しない。しかしながら、後述する耐傷付き性の観点で、1μm以上のできるだけ薄い層厚とすることが好ましい。 Moreover, although the lower limit of the layer thickness of the surface-side porous layer having a barrier thickness between pores of 30 nm or less is defined as 1 μm, the upper limit is not particularly defined. However, from the viewpoint of scratch resistance, which will be described later, it is preferable to make the layer thickness as thin as 1 μm or more.
更には、本発明では、ポア間の障壁厚さが30nm超の基材側ポーラス層を形成することも推奨したが、ポア間の障壁厚さの上限は特に規定しない。しかしながら、ポア間の障壁厚さが100nmを超える基材側ポーラス層を形成することは、現実的ではないため、その上限は100nmとすることが好ましい。 Furthermore, in the present invention, it was also recommended to form a substrate-side porous layer having a barrier thickness between pores exceeding 30 nm, but the upper limit of the barrier thickness between pores is not particularly defined. However, since it is not realistic to form the substrate-side porous layer having a barrier thickness between pores exceeding 100 nm, the upper limit is preferably set to 100 nm.
また、ポア間の障壁厚さが30nm超の基材側ポーラス層の層厚の下限は5μmと規定したが、その上限は特に規定しない。しかしながら、耐傷付き性の観点で、ポア間の障壁厚さが30nm以下の表面側ポーラス層の層厚が1μm以上となる範囲で、ポア間の障壁厚さが30nm超の基材側ポーラス層の層厚は、できるだけ厚くすることが好ましい。 Moreover, although the minimum of the layer thickness of the base material side porous layer whose barrier thickness between pores exceeds 30 nm was prescribed | regulated as 5 micrometers, the upper limit in particular is not prescribed | regulated. However, from the viewpoint of scratch resistance, the thickness of the surface-side porous layer having a pore thickness of 30 nm or less between pores is 1 μm or more, and the thickness of the substrate-side porous layer having a barrier thickness between pores of more than 30 nm is The layer thickness is preferably as large as possible.
陽極酸化皮膜は、一般に、硫酸溶液、シュウ酸溶液、クロム酸溶液、リン酸溶液等の処理溶液、およびそれらの混合溶液に、アルミニウム合金でなる基材を浸漬して陽極とし、電解処理を行うことで、陽極であるアルミニウム合金でなる基材の表面に形成される。しかし、クロム酸溶液は、陽極酸化皮膜中にクロムが取り込まれて汚染原因となるため、避けるべきである。 In general, the anodized film is subjected to electrolytic treatment by immersing a base material made of an aluminum alloy in a treatment solution such as a sulfuric acid solution, an oxalic acid solution, a chromic acid solution, a phosphoric acid solution, or a mixed solution thereof to form an anode. Thus, it is formed on the surface of the base material made of an aluminum alloy as an anode. However, chromic acid solutions should be avoided because chromium is incorporated into the anodized film and causes contamination.
陽極酸化皮膜のポア間の障壁厚さは、ポアの大きさとポアの数密度によって決まる。これらポアの大きさとポア数密度は、処理液の温度と処理電圧によって変化し、高温の処理液を用いるとポアの大きさは大きくなり、低電圧にて処理するとポア数密度が増加する。従って、ポア間の障壁厚さを薄くするためには、高温の処理液で、低電圧の処理を行えば良いと考えられる。 The barrier thickness between the pores of the anodized film is determined by the size of the pores and the number density of the pores. The size of the pores and the pore number density vary depending on the temperature and processing voltage of the processing liquid. When a high-temperature processing liquid is used, the size of the pores increases, and when the processing is performed at a low voltage, the pore number density increases. Therefore, in order to reduce the thickness of the barrier between the pores, it is considered that low-voltage processing may be performed with a high-temperature processing liquid.
しかしながら、通常、高温の処理液を用いた低電圧の処理は、実施されていないのが実態である。それは、処理液を高温にするためにはヒータ等を準備することが必要になり、また、処理液の蒸発防止策も必要となり、更には、低電圧処理では流れる電流が小さくなって陽極酸化皮膜の形成速度が遅くなってしまい、生産性に劣るという、様々な不利な点があるからである。 However, the actual situation is that low-voltage processing using a high-temperature processing solution is not usually performed. It is necessary to prepare a heater or the like in order to increase the temperature of the processing liquid, and also to take measures to prevent the processing liquid from evaporating. This is because there are various disadvantages in that the formation rate of is slow and the productivity is poor.
そこで、通常の陽極酸化処理条件にて作製した陽極酸化皮膜を、酸などに浸漬して化学溶解させ、ポア径を拡大する方法を採用することが考えられる。例えば、フッ酸水溶液や緩衝フッ酸溶液(HFとNH4Fの混合水溶液)などのフッ素を含む水溶液中に陽極酸化皮膜を浸漬し、その陽極酸化皮膜の表面付近を溶解させることにより、ポア間の障壁厚さが30nm以下の表面側ポーラス層とすることが可能である。 Therefore, it is conceivable to employ a method in which an anodized film produced under normal anodizing treatment conditions is immersed in an acid or the like to be chemically dissolved and the pore diameter is expanded. For example, by immersing the anodized film in an aqueous solution containing fluorine such as hydrofluoric acid aqueous solution or buffered hydrofluoric acid solution (mixed aqueous solution of HF and NH 4 F) and dissolving the vicinity of the surface of the anodized film, It is possible to form a surface side porous layer having a barrier thickness of 30 nm or less.
尚、フッ素を含む水溶液としては、そのフッ素濃度が高く、また、温度がより高温である方が、処理溶液による陽極酸化皮膜表面の化学溶解を起こしやすく、短時間でポア間の障壁厚さが30nm以下の表面側ポーラス層を形成するには有効である。しかしながら、一方で化学溶解が大きすぎると膜厚が薄くなるために、適宜条件を設定する必要があり、陽極酸化皮膜の種類にもよるが、例えば、室温(約25℃)で、0.5〜1.0mol/Lのフッ酸水溶液に、1〜2分浸漬すると良い。 As an aqueous solution containing fluorine, the higher the fluorine concentration and the higher the temperature, the easier the chemical dissolution of the surface of the anodized film by the treatment solution occurs, and the barrier thickness between the pores can be increased in a short time. This is effective for forming a surface-side porous layer of 30 nm or less. However, on the other hand, if the chemical dissolution is too large, the film thickness becomes thin. Therefore, it is necessary to appropriately set the conditions, and depending on the type of the anodized film, for example, at room temperature (about 25 ° C.), 0.5 It is good to immerse in a ~ 1.0 mol / L hydrofluoric acid aqueous solution for 1-2 minutes.
また、陽極酸化皮膜は、湿式耐食性を付与するために、熱水中に浸漬したり、蒸気加圧に曝したりする、いわゆる封孔処理が施される場合もあるが、この封孔処理は、ポア径を小さくする方向でポア間の障壁厚さが厚くなるため、施さない方が好ましい。 In addition, in order to impart wet corrosion resistance, the anodized film may be soaked in hot water or exposed to steam pressurization, so-called sealing treatment may be performed. Since the barrier thickness between the pores increases in the direction of decreasing the pore diameter, it is preferable not to apply them.
この陽極酸化皮膜の表面上にはウエハ等が直接載置されることになるが、直接ウエハ等と接触する陽極酸化皮膜の表面側を、ポア間の障壁厚さが30nm以下の表面側ポーラス層とし、且つその表面側ポーラス層の厚みを1μm以上とすることで、アルミニウム合金に含有されるFe、Cr、Cu等の金属汚染原因となる元素が、陽極酸化皮膜を介してウエハ等へ拡散して汚染原因となることを抑制することができると考えられる。 A wafer or the like is directly placed on the surface of the anodic oxide film. The surface side of the anodic oxide film that is in direct contact with the wafer or the like is a surface-side porous layer having a barrier thickness between pores of 30 nm or less. In addition, when the thickness of the surface-side porous layer is 1 μm or more, elements that cause metal contamination such as Fe, Cr, and Cu contained in the aluminum alloy diffuse to the wafer and the like through the anodized film. Therefore, it is thought that it can suppress the cause of contamination.
以上説明したように、陽極酸化皮膜の表面側から1μm以上を、ポア間の障壁厚さが30nm以下の表面側ポーラス層とすることで、低汚染性に優れたアルミニウム合金部材とすることができるが、それだけでは、耐傷付き性に劣るアルミニウム合金部材となってしまう。そこで、本発明では、陽極酸化皮膜の表面側ポーラス層を除く基材側の部位を、ポア間の障壁厚さが30nm超で、層厚が5μm以上の基材側ポーラス層とした。 As described above, an aluminum alloy member excellent in low contamination can be obtained by using 1 μm or more from the surface side of the anodized film as a surface side porous layer having a barrier thickness between pores of 30 nm or less. However, it will be an aluminum alloy member with poor scratch resistance. Therefore, in the present invention, a portion of the substrate side except for the surface side porous layer of the anodized film, the barrier thickness between pores at 30nm greater than the layer thickness is set to 5μm or more base material side porous layer.
すなわち、陽極酸化皮膜のうち、その基材側を層厚が5μm以上の基材側ポーラス層とすることで、耐傷付き性に優れたアルミニウム合金部材とすることができる。 That is, by making the base material side of the anodized film a base material side porous layer having a layer thickness of 5 μm or more, an aluminum alloy member having excellent scratch resistance can be obtained.
ポア間の障壁厚さが30nm以下の表面側ポーラス層が形成された陽極酸化皮膜に、このバリアー層を形成させるためには、陽極酸化処理の後期の段階での処理電圧を、前期の段階の処理電圧より上昇させることで形成させることができ、この方法が特に有効であるが、陽極酸化処理の処理時間を長くする(成膜速度を遅くする)ことでも形成することが可能である。 In order to form this barrier layer on the anodized film on which the surface-side porous layer having a barrier thickness between pores of 30 nm or less is formed, the treatment voltage at the later stage of the anodizing treatment is set to This method is particularly effective, but it can also be formed by increasing the treatment time of the anodizing treatment (decreasing the film formation rate).
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.
まず、JISに規定される6061アルミニウム合金を溶製してアルミニウム合金鋳塊(サイズ:220mmW×250mmL×t100mm、冷却速度:15〜10℃)とし、その鋳塊を切断して面削(サイズ:220mmW×150mmL×t60mm)した後、均熱処理(540℃×4h)を施した。均熱処理後、60mm厚の素材を熱間圧延により6mm厚の板材に圧延し、切断(サイズ:220mmW×400mmL×t6mm)した後、溶体化処理(510〜520℃×30min)を施した。溶体化処理後、水焼入れし、時効処理(160〜180℃×8h)を施して供試合金板を得た。 First, 6061 aluminum alloy specified in JIS is melted to form an aluminum alloy ingot (size: 220 mmW × 250 mmL × t100 mm, cooling rate: 15 to 10 ° C.), and the ingot is cut and faced (size: 220 mmW × 150 mmL × t60 mm), and then subjected to soaking (540 ° C. × 4 h). After soaking, the 60 mm thick material was rolled into a 6 mm thick plate by hot rolling, cut (size: 220 mmW × 400 mmL × t6 mm), and then subjected to a solution treatment (510-520 ° C. × 30 min). After the solution treatment, water quenching was performed, and an aging treatment (160 to 180 ° C. × 8 h) was performed to obtain a match metal plate.
その供試合金板より、25mm×35mm(圧延方向)×t3mmの試験片を切り出し、その表面を面削加工した。次いで、60℃−10%NaOH水溶液中に2分浸漬した後に水洗し、更に、30℃−20%HNO3水溶液中に2分浸漬した後に水洗して表面を清浄化した後に、表1に示す各処理条件で陽極酸化処理を施して試験片の表面に陽極酸化皮膜を形成した。ここでは、40μmの膜厚の陽極酸化皮膜を形成することとしたが、実際に形成された陽極酸化皮膜の膜厚は、39〜41μmであった。次いで、No.1以外では、表1に示す条件で、陽極酸化皮膜をフッ酸に浸漬する後処理を行った。 A test piece of 25 mm × 35 mm (rolling direction) × t 3 mm was cut out from the game metal plate and the surface thereof was chamfered. Next, after immersing in a 60 ° C.-10% NaOH aqueous solution for 2 minutes and then washing with water, and further immersing in a 30 ° C.-20% HNO 3 aqueous solution for 2 minutes and then washing with water to clean the surface, Table 1 shows Anodization treatment was performed under each treatment condition to form an anodized film on the surface of the test piece. Here, an anodic oxide film having a thickness of 40 μm was formed, but the actually formed anodic oxide film had a thickness of 39 to 41 μm. Then, No. Except 1, the post-treatment of immersing the anodized film in hydrofluoric acid was performed under the conditions shown in Table 1.
表1のNo.1〜7に示す条件で、夫々3枚ずつの試験片を作製し、陽極酸化皮膜のポア間の障壁厚さ、低汚染性、および、耐傷付き性を調査した。 No. in Table 1 Under the conditions shown in 1 to 7, three test pieces were prepared, and the barrier thickness between pores of the anodized film, low contamination, and scratch resistance were investigated.
試験片の表面に形成された陽極酸化皮膜のポア間の障壁厚さとは、前述したように、陽極酸化皮膜の表面等をSEM(走査電子顕微鏡)で観察し、近接する10個以上のポアについて、夫々最近接したポア間の最短距離(固体部分の最小厚さ)を測定し、ポアとポアがつながっている場合はそのポア間の障壁厚さは0とし、その測定値を平均した値のことである。尚、陽極酸化皮膜の表面以外に、陽極酸化皮膜の表面側から1μmの位置と、基材界面付近、また、基材界面から表面側5μmの位置についても、FIB(Focused Ion Beam)加工にて切り出してSEMで観察した。その測定結果を表2に示す。 As described above, the barrier thickness between pores of the anodized film formed on the surface of the test piece is obtained by observing the surface of the anodized film with a scanning electron microscope (SEM), and about 10 or more adjacent pores. , Measure the shortest distance (minimum thickness of the solid part) between the nearest pores, and if the pore and the pore are connected, the barrier thickness between the pores is 0, and the average value of the measured values That is. In addition to the surface of the anodized film, FIB (Focused Ion Beam) processing is also used for the position 1 μm from the surface side of the anodized film and the vicinity of the substrate interface and the position 5 μm from the substrate interface to the surface side. It cut out and observed with SEM. The measurement results are shown in Table 2.
低汚染性の評価試験は、表1に示す各条件で陽極酸化処理を施した各試験片の上に、夫々Si基板を載せて、下部電極の使用環境を模擬した400℃、1.5×10−3Torr(2Pa)の減圧下で、真空熱処理を2時間実施した。その後、Si基板の試験片と接触した下面を、全反射蛍光X線分析法(TXRF)を用いて分析した。 The low contamination evaluation test was carried out by placing an Si substrate on each test piece that had been anodized under the conditions shown in Table 1, and simulating the usage environment of the lower electrode at 400 ° C., 1.5 × A vacuum heat treatment was performed for 2 hours under a reduced pressure of 10 −3 Torr (2 Pa). Thereafter, the lower surface of the Si substrate in contact with the test piece was analyzed using total reflection X-ray fluorescence analysis (TXRF).
実機の半導体製造装置等において要求される低汚染性は、各プロセス、使用環境等によって、夫々異なるため、定量的に低汚染性の基準値を設定することは困難である。そこで、この評価試験では、全反射蛍光X線分析法(TXRF)を用いて測定したSi基板表面の単位面積当たりのFe原子数が、60×1010atoms/cm2以下であった場合の、試験片の陽極酸化皮膜を低汚染性に優れると判断した。その試験結果を表3に示す。 Since the low contamination required in an actual semiconductor manufacturing apparatus or the like differs depending on each process, use environment, etc., it is difficult to quantitatively set a reference value for low contamination. Therefore, in this evaluation test, the number of Fe atoms per unit area of the Si substrate surface measured using total reflection X-ray fluorescence analysis (TXRF) was 60 × 10 10 atoms / cm 2 or less. The anodized film of the test piece was judged to be excellent in low contamination. The test results are shown in Table 3.
また、耐傷付き性の評価試験は、シート状コットン(旭化成製ベンコットン)に蒸留水を染み込ませて、試験片の陽極酸化皮膜表面上を100回拭き取る方法で実施した。拭き取り後の陽極酸化皮膜表面の膜厚を測定し、試験片の基材が露出しなかったものを、試験片の陽極酸化皮膜が耐傷付き性に優れるものであると判断した。その試験結果を表3に示す。 In addition, the scratch resistance evaluation test was carried out by a method in which distilled water was soaked into a sheet-like cotton (Asahi Kasei Bencotton) and the surface of the anodized film of the test piece was wiped 100 times. The film thickness of the surface of the anodized film after wiping was measured, and when the base material of the test piece was not exposed, it was judged that the anodized film of the test piece was excellent in scratch resistance. The test results are shown in Table 3.
No.1の陽極酸化皮膜は、フッ酸に浸漬する後処理を行っていない従来から一般的な陽極酸化皮膜であり、陽極酸化皮膜の表面側のポア間の障壁厚さは30μmを超えている。その結果、全反射蛍光X線分析法(TXRF)を用いて測定したSi基板表面の単位面積当たりのFe原子数が、60×1010atoms/cm2以を超え、Si基板は汚染されていることが確認できた。 No. The anodic oxide film 1 is a conventional anodic oxide film that has not been subjected to post-treatment immersed in hydrofluoric acid, and the barrier thickness between pores on the surface side of the anodized film exceeds 30 μm. As a result, the number of Fe atoms per unit area of the Si substrate surface measured using total reflection X-ray fluorescence (TXRF) exceeds 60 × 10 10 atoms / cm 2 and the Si substrate is contaminated. I was able to confirm.
また、No.2の陽極酸化皮膜は、フッ酸に浸漬する後処理を行って形成した陽極酸化皮膜であるが、陽極酸化皮膜の表面側のポア間の障壁厚さは30μmを超えている。その結果、Si基板表面の単位面積当たりのFe原子数が、60×1010atoms/cm2以を超え、Si基板は汚染されていることが確認できた。No.3の陽極酸化皮膜も、フッ酸に浸漬する後処理を行って形成した陽極酸化皮膜であり、陽極酸化皮膜の表面のポア間の障壁厚さは30μm以下であったが、表面から1μmの位置でポア間の障壁厚さ30μmを超えていた。その結果、Si基板表面の単位面積当たりのFe原子数が、60×1010atoms/cm2以を超え、Si基板は汚染されていることが確認できた。No.2とNo.3では、フッ酸に浸漬する時間が短かすぎたため、このような結果が得られたと想定できる。 No. The anodic oxide film 2 is an anodic oxide film formed by post-treatment immersed in hydrofluoric acid, but the barrier thickness between pores on the surface side of the anodic oxide film exceeds 30 μm. As a result, the number of Fe atoms per unit area on the Si substrate surface exceeded 60 × 10 10 atoms / cm 2 or more, and it was confirmed that the Si substrate was contaminated. No. 3 is also an anodic oxide film formed by performing post-treatment immersed in hydrofluoric acid, and the barrier thickness between pores on the surface of the anodic oxide film was 30 μm or less, but the position was 1 μm from the surface. The barrier thickness between pores exceeded 30 μm. As a result, the number of Fe atoms per unit area on the Si substrate surface exceeded 60 × 10 10 atoms / cm 2 or more, and it was confirmed that the Si substrate was contaminated. No. 2 and No. In No. 3, since it was too short to immerse in hydrofluoric acid, it can be assumed that such a result was obtained.
これに対し、No.4〜7では、陽極酸化皮膜を形成するための処理条件が適切であったため、形成された陽極酸化皮膜の表面側から1μm以上が、ポア間の障壁厚さが30nm以下の表面側ポーラス層となった。その結果、全反射蛍光X線分析法(TXRF)を用いて測定したSi基板表面の単位面積当たりのFe原子数が、60×1010atoms/cm2以下であり、試験片の陽極酸化皮膜は、低汚染性に優れると判断することができる。 In contrast, no. In Nos. 4 to 7, since the processing conditions for forming the anodized film were appropriate, 1 μm or more from the surface side of the formed anodized film had a surface-side porous layer having a pore thickness of 30 nm or less between the pores. became. As a result, the number of Fe atoms per unit area of the Si substrate surface measured using total reflection X-ray fluorescence analysis (TXRF) is 60 × 10 10 atoms / cm 2 or less, and the anodized film of the test piece is Therefore, it can be judged that it is excellent in low pollution.
この試験結果により、陽極酸化皮膜の表面側から1μm以上を、ポア間の障壁厚さが30nm以下の表面側ポーラス層とすることで、低汚染性に優れたアルミニウム合金部材とすることができることが確認できた。 From this test result, an aluminum alloy member having excellent low contamination can be obtained by using a surface side porous layer having a barrier thickness between pores of 30 nm or less from the surface side of the anodized film to 1 μm or more. It could be confirmed.
また、低汚染性に優れると判断することができたNo.4〜7のうち、No.4〜6は、基材界面から表面側5μmの位置と、基材界面付近では、ポア間の障壁厚さが30nmを超えている。その結果、耐傷付き性の評価試験で、試験片の基材が露出せず、耐傷付き性に優れていた。 Moreover, it was judged that it was excellent in low pollution property No. 4-7, no. In Nos. 4 to 6, the barrier thickness between pores exceeds 30 nm at a position of 5 μm on the surface side from the substrate interface and in the vicinity of the substrate interface. As a result, in the scratch resistance evaluation test, the base material of the test piece was not exposed, and the scratch resistance was excellent.
これに対し、No.7では、基材界面から表面側5μmの位置でポア間の障壁厚さが30nm以下であった。その結果、No.7では、耐傷付き性の評価試験で、試験片の基材が露出してしまい、耐傷付き性に優れていなかった。 In contrast, no. In No. 7, the barrier thickness between pores was 30 nm or less at a position of 5 μm on the surface side from the substrate interface. As a result, no. In No. 7, the base material of the test piece was exposed in the scratch resistance evaluation test, and the scratch resistance was not excellent.
この試験結果により、陽極酸化皮膜のうち、表面側ポーラス層を除く基材側の部位を、ポア間の障壁厚さが30nm超で、層厚が5μm以上の基材側ポーラス層とすることで、耐傷付き性に優れたアルミニウム合金部材とすることができることが確認できた。 The test results of the anodized film, a portion of the substrate side except for the surface side porous layer, the barrier thickness between pores at 30nm greater than that thickness is to 5μm or more base material side porous layer It was confirmed that an aluminum alloy member excellent in scratch resistance could be obtained.
Claims (1)
前記陽極酸化皮膜は、ポア間の障壁厚さが30nm以下であり表面側を構成する表面側ポーラス層と、ポア間の障壁厚さが30nm超であり基材側を構成する基材側ポーラス層とを備え、
前記表面側ポーラス層の層厚が1μm以上、前記基材側ポーラス層の基材界面からの層厚が5μm以上であることを特徴とする低汚染性に優れたアルミニウム合金部材。 An aluminum alloy member in which an anodized film is formed on the surface of a base material made of an aluminum alloy,
The anodized film has a surface-side porous layer having a barrier thickness between pores of 30 nm or less and constituting the surface side, and a substrate-side porous layer having a barrier thickness between pores exceeding 30 nm and constituting the substrate side And
An aluminum alloy member excellent in low contamination, wherein the surface-side porous layer has a layer thickness of 1 μm or more and the substrate-side porous layer has a layer thickness of 5 μm or more from the substrate interface .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009053390A JP5683077B2 (en) | 2009-03-06 | 2009-03-06 | Aluminum alloy member with excellent low contamination |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009053390A JP5683077B2 (en) | 2009-03-06 | 2009-03-06 | Aluminum alloy member with excellent low contamination |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010209367A JP2010209367A (en) | 2010-09-24 |
JP5683077B2 true JP5683077B2 (en) | 2015-03-11 |
Family
ID=42969838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009053390A Expired - Fee Related JP5683077B2 (en) | 2009-03-06 | 2009-03-06 | Aluminum alloy member with excellent low contamination |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5683077B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08132749A (en) * | 1994-11-02 | 1996-05-28 | Mitsubishi Chem Corp | Photosensitive lithographic printing plate |
JPH08144089A (en) * | 1994-11-16 | 1996-06-04 | Kobe Steel Ltd | Vacuum chamber member made of aluminum or aluminum alloy |
JP2002004087A (en) * | 2000-06-22 | 2002-01-09 | Canon Inc | Method for manufacturing nanostructure and nanostructure |
JP2006510229A (en) * | 2002-08-28 | 2006-03-23 | ユニバーシティー オブ ピッツバーグ | Self-organized nanopore arrays with controlled symmetry and order |
JP4608331B2 (en) * | 2005-02-07 | 2011-01-12 | 財団法人神奈川科学技術アカデミー | Anodized porous alumina and method for producing the same |
-
2009
- 2009-03-06 JP JP2009053390A patent/JP5683077B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010209367A (en) | 2010-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI503419B (en) | Anodic oxidation treatment of aluminum alloy and anodized aluminum alloy components | |
JP5094172B2 (en) | Aluminum base material for etching and aluminum electrode material for electrolytic capacitor using the same | |
WO2006123736A1 (en) | Corrosion resistance treatment method for aluminum or aluminum alloy | |
JP3919996B2 (en) | Aluminum alloy for plasma processing apparatus, aluminum alloy member for plasma processing apparatus and plasma processing apparatus | |
JP5369083B2 (en) | Surface-treated aluminum member having high withstand voltage and method for producing the same | |
JP5683077B2 (en) | Aluminum alloy member with excellent low contamination | |
JP5416436B2 (en) | Aluminum alloy member excellent in crack resistance and corrosion resistance, method for confirming crack resistance and corrosion resistance of porous anodic oxide film, and conditions for forming porous anodic oxide film excellent in crack resistance and corrosion resistance Setting method | |
JP5416437B2 (en) | Aluminum alloy members used as materials for vacuum chambers in semiconductor and liquid crystal manufacturing equipment or parts provided in the vacuum chamber | |
JP2008150644A (en) | Aluminum alloy for semiconductor or liquid crystal production device, and method for producing the same | |
JP5352204B2 (en) | Surface-treated aluminum material for vacuum equipment | |
JP5937937B2 (en) | Aluminum anodized film | |
JP6767147B2 (en) | Metallic material for thin film plating | |
JP2009228132A (en) | Surface treatment member for semiconductor-producing equipment, and method for production thereof | |
JP5438485B2 (en) | Surface treatment member | |
JP6562500B2 (en) | Surface-treated aluminum material and manufacturing method thereof | |
CN101805916B (en) | Method of manufacturing surface treated member for semiconductor liquid crystal manufacturing apparatus | |
JP5397884B2 (en) | Method for producing surface-treated aluminum material for vacuum equipment | |
JP5370984B2 (en) | Aluminum alloy material for vacuum equipment and manufacturing method thereof | |
WO2023033120A1 (en) | Aluminum member for semiconductor manufacturing devices and method for producing said aluminum member | |
KR101709602B1 (en) | Method of Aluminium Coating Layer with Anti-oxidation Using Micro arc Electrolytic Oxidation | |
JP5419066B2 (en) | Method for producing surface-treated aluminum material for vacuum equipment | |
JP4308556B2 (en) | Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor | |
JP5334125B2 (en) | Method for producing surface-treated aluminum material for vacuum equipment | |
JP2010236038A (en) | Copper alloy sheet excellent in thermal peeling resistance of tin plating | |
WO2024214430A1 (en) | Surface-treated aluminum material, production method for same, and member for semiconductor processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110413 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110413 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130917 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5683077 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |