[go: up one dir, main page]

JP5673953B2 - Cathode active material - Google Patents

Cathode active material Download PDF

Info

Publication number
JP5673953B2
JP5673953B2 JP2011192457A JP2011192457A JP5673953B2 JP 5673953 B2 JP5673953 B2 JP 5673953B2 JP 2011192457 A JP2011192457 A JP 2011192457A JP 2011192457 A JP2011192457 A JP 2011192457A JP 5673953 B2 JP5673953 B2 JP 5673953B2
Authority
JP
Japan
Prior art keywords
compound
lithium
added
iron phosphate
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011192457A
Other languages
Japanese (ja)
Other versions
JP2013053045A (en
Inventor
晶子 花田
晶子 花田
大神 剛章
剛章 大神
鈴木 務
務 鈴木
聖志 金村
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Tokyo Metropolitan University
Original Assignee
Taiheiyo Cement Corp
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Tokyo Metropolitan University filed Critical Taiheiyo Cement Corp
Priority to JP2011192457A priority Critical patent/JP5673953B2/en
Publication of JP2013053045A publication Critical patent/JP2013053045A/en
Application granted granted Critical
Publication of JP5673953B2 publication Critical patent/JP5673953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池の正極材料として有用なリン酸鉄リチウム系正極活物質の製造法に関する。   The present invention relates to a method for producing a lithium iron phosphate-based positive electrode active material useful as a positive electrode material for a lithium ion secondary battery.

携帯電子機器、ハイブリッド自動車、電気自動車等に用いられる二次電池の開発が行われており、特にリチウムイオン二次電池が広く知られている。当該リチウムイオン電池は、基本的に正極、負極、非水電解質及びセパレータからなり、正極材料としてはLiCoO2が広く用いられ、さらにLiNiO2、LiMn24などが開発されている。しかし、これらのリチウム系金属酸化物は、高電圧ではあるが、容量が低いという問題がある。 Secondary batteries used for portable electronic devices, hybrid cars, electric cars, and the like have been developed, and lithium ion secondary batteries are particularly widely known. The lithium ion battery basically includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator. LiCoO 2 is widely used as a positive electrode material, and LiNiO 2 , LiMn 2 O 4 and the like have been developed. However, these lithium-based metal oxides have a problem that the capacity is low although the voltage is high.

これらに対し、最近になって、オリビン構造を有するリン酸鉄リチウム等のリン酸化合物を正極に用いることが提案されている(特許文献1)。しかしながら、このリン酸鉄リチウムの合成法は固相法であり、不活性ガス雰囲気下で焼成と粉砕を行う必要があり、操作が複雑であった。   On the other hand, recently, it has been proposed to use a phosphate compound such as lithium iron phosphate having an olivine structure for the positive electrode (Patent Document 1). However, this method of synthesizing lithium iron phosphate is a solid phase method, which requires firing and pulverization in an inert gas atmosphere, and the operation is complicated.

そこで、リン酸鉄リチウムを水熱反応で製造する試みがなされている(特許文献2及び3、非特許文献1)。これらの方法は、リチウム化合物、鉄化合物、リン酸化合物を耐圧容器内で水熱反応させるというものである。   Therefore, attempts have been made to produce lithium iron phosphate by a hydrothermal reaction (Patent Documents 2 and 3, Non-Patent Document 1). In these methods, a lithium compound, an iron compound, and a phosphoric acid compound are hydrothermally reacted in a pressure resistant vessel.

特開平9−171827号公報Japanese Patent Laid-Open No. 9-171827 特開2002−151082号公報JP 2002-151082 A 特開2004−95385号公報JP 2004-95385 A

Electrochemistry Communications 3(2001)505−508Electrochemistry Communications 3 (2001) 505-508

これら従来の水熱反応によるリン酸鉄リチウムの製造法によれば固相法に比べて、粒径が均一なものが得られるものの、副反応が生じ生成物に不純物が混入する、粒子径の大きなものが混入することがあり、得られる電池の放電特性が十分でないなどの問題があることが判明した。
従って、より微細で均一な粒径を有し、得られる二次電池の充放電特性に優れたリン酸鉄リチウムを高純度、高収率で製造する方法が望まれていた。
According to these conventional methods for producing lithium iron phosphate by hydrothermal reaction, particles having a uniform particle size can be obtained as compared with the solid phase method, but side reactions occur and impurities are mixed into the product. It has been found that there is a problem that large ones may be mixed in and the discharge characteristics of the obtained battery are not sufficient.
Accordingly, there has been a demand for a method for producing lithium iron phosphate having a finer and more uniform particle size and excellent charge / discharge characteristics of the obtained secondary battery with high purity and high yield.

そこで本発明者は、鉄化合物、リン酸化合物及びリチウム化合物の水熱反応条件について種々検討した結果、リチウム化合物とリン酸化合物と水を最初に混合し、混合物を一定の還元性雰囲気に調整し、次いで2価の鉄化合物を添加して水熱反応させれば、反応途中の副反応や凝結もなく操作が容易であり、かつ微細で均一な粒径を有する高純度のリン酸鉄リチウムが高収率で得られること、また得られたリン酸鉄リチウムを正極材料として用いれば、高容量で充放電特性に優れたリチウムイオン二次電池が得られることを見出し、本発明を完成した。
すなわち、本発明は、リチウム化合物、リン酸化合物及び水を混合後、還元性化合物を添加して混合物の酸化還元電位を−1mV未満の還元雰囲気とし、次いで2価の鉄化合物を添加して水熱反応することを特徴とするリン酸鉄リチウムの製造法を提供するものである。
また、本発明は、リチウム化合物、リン酸化合物及び水を混合後、還元性化合物を添加して混合物の酸化還元電位を−1mV未満の還元雰囲気とし、炭素源を添加し、次いで2価の鉄化合物を添加して水熱反応を行い、次いで不活性ガス又は還元雰囲気下に焼成することを特徴とするリン酸鉄リチウム系正極活物質の製造法を提供するものである。
また、本発明は、上記の製造法により得られたリン酸鉄リチウムを正極材料として含有するリチウムイオン二次電池を提供するものである。
Therefore, as a result of various studies on the hydrothermal reaction conditions of the iron compound, phosphate compound and lithium compound, the present inventor mixed lithium compound, phosphate compound and water first, and adjusted the mixture to a constant reducing atmosphere. Then, if a divalent iron compound is added and subjected to a hydrothermal reaction, a high-purity lithium iron phosphate having a fine and uniform particle diameter is easy to operate without side reactions or condensation during the reaction. The inventors have found that a lithium ion secondary battery having a high capacity and excellent charge / discharge characteristics can be obtained if the obtained lithium iron phosphate is used as a positive electrode material, and the present invention has been completed.
That is, in the present invention, after mixing a lithium compound, a phosphoric acid compound and water, a reducing compound is added to make the oxidation-reduction potential of the mixture less than -1 mV, and then a divalent iron compound is added to add water. The present invention provides a method for producing lithium iron phosphate characterized by thermal reaction.
In the present invention, after mixing a lithium compound, a phosphoric acid compound and water, a reducing compound is added to make the oxidation-reduction potential of the mixture less than -1 mV, a carbon source is added, and then divalent iron is added. The present invention provides a method for producing a lithium iron phosphate-based positive electrode active material characterized in that a compound is added, subjected to a hydrothermal reaction, and then fired in an inert gas or a reducing atmosphere.
Moreover, this invention provides the lithium ion secondary battery which contains the lithium iron phosphate obtained by said manufacturing method as a positive electrode material.

本発明方法によれば、操作が容易であるとともに副反応が生じない。また本発明方法によれば、微細で均一な粒径を有する高純度のリン酸鉄リチウムが高収率で得られる。本発明方法により得られたリン酸鉄リチウムを正極材料として用いれば、高容量で充放電特性に優れたリチウムイオン二次電池が得られる。   According to the method of the present invention, the operation is easy and no side reaction occurs. Further, according to the method of the present invention, high purity lithium iron phosphate having a fine and uniform particle size can be obtained in high yield. When lithium iron phosphate obtained by the method of the present invention is used as a positive electrode material, a lithium ion secondary battery having a high capacity and excellent charge / discharge characteristics can be obtained.

実施例1で得られたLiFePO4のSEM像を示す。It shows an SEM image of LiFePO 4 obtained in Example 1. 実施例1で得られたLiFePO4のXRDチャートを示す。It shows the XRD chart of LiFePO 4 obtained in Example 1. 実施例2で得られたLiFePO4のSEM像を示す。It shows an SEM image of LiFePO 4 obtained in Example 2. 実施例2で得られたLiFePO4のXRDチャートを示す。It shows the XRD chart of LiFePO 4 obtained in Example 2. 比較例1で得られたLiFePO4のSRM像を示す。It shows the SRM image of LiFePO 4 produced in Comparative Example 1. 比較例1で得られたLiFePO4のXRDチャートを示す。It shows the XRD chart of LiFePO 4 obtained in Comparative Example 1.

本発明のリン酸鉄リチウムの製造法においては、まず、リチウム化合物、リン酸化合物及び水を混合する。   In the method for producing lithium iron phosphate of the present invention, first, a lithium compound, a phosphate compound and water are mixed.

リン酸鉄リチウムの合成原料は、基本的に2価の鉄化合物とリチウム化合物とリン酸化合物であるが、本発明においては、最初にリチウム化合物、リン酸化合物及び水の混合物を調製しておき、最後に2価の鉄化合物を添加することが、副反応を防止し、反応を容易に進行させるうえで重要である。2価の鉄化合物とリン酸化合物と水を最初に混合しておき、これに炭素源を加え、窒素ガスを導入した後に炭酸リチウムを加えると、反応中に凝結を生じ、撹拌できなくなり、特殊な撹拌装置を必要とする。一方、2価の鉄化合物と炭酸リチウムと水を最初に混合し、炭素源を加え、窒素ガスを導入した後にリン酸化合物を加えると、過度の発泡により撹拌が困難になり、凝結が生じる。これに対し、本発明のような順序で原料を添加すると、凝結が生じることなく、撹拌も容易であり、反応がスムーズに進行する。   The synthetic raw material of lithium iron phosphate is basically a divalent iron compound, a lithium compound and a phosphate compound. In the present invention, a mixture of a lithium compound, a phosphate compound and water is prepared first. Finally, the addition of a divalent iron compound is important for preventing side reactions and allowing the reaction to proceed easily. When a divalent iron compound, a phosphoric acid compound and water are mixed first, a carbon source is added to this, and nitrogen gas is added after introducing nitrogen gas, condensation occurs during the reaction, which makes stirring impossible and makes it special. A simple stirring device is required. On the other hand, when a divalent iron compound, lithium carbonate, and water are first mixed, a carbon source is added, a nitrogen gas is introduced, and then a phosphoric acid compound is added, stirring becomes difficult due to excessive foaming and condensation occurs. In contrast, when the raw materials are added in the order as in the present invention, no agglomeration occurs, stirring is easy, and the reaction proceeds smoothly.

原料として用いられるリチウム化合物としては、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等のリチウム金属塩、水酸化リチウム、炭酸リチウム等が挙げられるが、炭酸リチウムを使用するのが安価である点で好ましい。   Examples of the lithium compound used as a raw material include lithium metal salts such as lithium fluoride, lithium chloride, lithium bromide, and lithium iodide, lithium hydroxide, lithium carbonate, etc., but it is inexpensive to use lithium carbonate. It is preferable in a certain point.

リン酸化合物としては、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸、リン酸アンモニウム、リン酸水素アンモニウム等が用いられる。   As the phosphoric acid compound, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, ammonium phosphate, ammonium hydrogen phosphate and the like are used.

リチウム化合物及びリン酸化合物の使用量はリチウムイオン及びリン酸イオンのモル比換算で2.5:1〜3.7:1が好ましく、略2.8:1〜3.3〜1とするのがより好ましい。   The amount of the lithium compound and phosphate compound used is preferably 2.5: 1 to 3.7: 1 in terms of molar ratio of lithium ion and phosphate ion, and is approximately 2.8: 1 to 3.3-1. Is more preferable.

水の使用量は、原料化合物の溶解性、撹拌の容易性、合成の効率等の点から、リン酸化合物のリンイオン1モルに対して10〜50モルが好ましく、さらに13〜30モルが好ましく、特に15〜20モルが好ましい。   The amount of water used is preferably 10 to 50 mol, more preferably 13 to 30 mol with respect to 1 mol of phosphorus ion of the phosphoric acid compound, from the viewpoints of solubility of the raw material compound, easiness of stirring, synthesis efficiency, and the like. 15-20 mol is particularly preferable.

リチウム化合物とリン酸化合物と水の添加順序は特に限定されず、またこれらの原料の混合時間も限定されない。これらの原料の混合は、室温、例えば10〜35℃で行えばよい。   The order of addition of the lithium compound, phosphate compound and water is not particularly limited, and the mixing time of these raw materials is not limited. These raw materials may be mixed at room temperature, for example, 10 to 35 ° C.

本発明方法においては、リチウム化合物、リン酸化合物及び水の混合物に、還元性物質を添加して混合物の酸化還元電位を−1mV未満の還元雰囲気とする。このように混合物を還元雰囲気とすることにより、後に添加する2価の鉄化合物の3価への酸化が抑制され、高純度のリン酸鉄リチウムが効率良く得られる。   In the method of the present invention, a reducing substance is added to a mixture of a lithium compound, a phosphoric acid compound and water so that the oxidation-reduction potential of the mixture is reduced to less than -1 mV. Thus, by making a mixture into a reducing atmosphere, oxidation to the trivalence of the bivalent iron compound added later is suppressed, and highly purified lithium iron phosphate is obtained efficiently.

用いられる還元性物質としては、アンモニア又はアンモニア発生化合物が挙げられる。より具体的には、アンモニア、尿素、メチルアミン等が挙げられるが、酸化還元電位を−1mV未満にする効率の点でアンモニアがより好ましい。   Examples of the reducing substance used include ammonia and an ammonia generating compound. More specifically, ammonia, urea, methylamine, and the like can be mentioned. Ammonia is more preferable from the viewpoint of efficiency for reducing the oxidation-reduction potential to less than -1 mV.

還元性物質の添加量は、混合物の酸化還元電位を−1mV未満とする量、−5mV未満とする量がより好ましく、−10〜−500mVとする量がさらに好ましい。アンモニアを使用する場合は、2価の鉄化合物1モルに対してアンモニア量として0.01モル以上が好ましく、さらに0.05モル以上がより好ましい。   The amount of the reducing substance added is more preferably an amount that makes the oxidation-reduction potential of the mixture less than -1 mV, an amount that is less than -5 mV, and an amount that is -10 to -500 mV is more preferred. When using ammonia, 0.01 mol or more is preferable as an ammonia amount with respect to 1 mol of a divalent iron compound, and 0.05 mol or more is more preferable.

本発明方法においては、2価の鉄化合物を添加する前に、混合物に窒素ガスを導入するのが好ましい。窒素ガスの導入は、反応液中の溶存酸素量を低下させ、後に添加する2価の鉄化合物の酸化を防止する点から好ましい。窒素ガスの導入量は、溶液中の溶存酸素濃度が1.0mg/L以下になるまで行うのが好ましく、特に0.5mg/L以下となるまで行うのがさらに好ましい。窒素ガスの導入手段としては、溶液中に窒素ガスをバブリングすることにより行うのが好ましい。   In the method of the present invention, it is preferable to introduce nitrogen gas into the mixture before adding the divalent iron compound. The introduction of nitrogen gas is preferable from the viewpoint of reducing the amount of dissolved oxygen in the reaction solution and preventing oxidation of a divalent iron compound added later. The amount of nitrogen gas introduced is preferably carried out until the dissolved oxygen concentration in the solution is 1.0 mg / L or less, more preferably 0.5 mg / L or less. Nitrogen gas is preferably introduced by bubbling nitrogen gas into the solution.

また、本発明方法においては、後に添加する2価の鉄化合物の酸化を防止するために、この時点で酸化防止剤を添加してもよい。酸化防止剤の添加時期は、窒素ガスの導入と当時でもよいし、これらの操作の前でも中間でも後でもよい。酸化防止剤としては、アスコルビン酸、アスコルビン酸エステル、アスコルビン酸塩、イソアスコルビン酸、アルデヒド類、水素ガス、亜硫酸塩等が挙げられる。これらの酸化防止剤の使用量は、2価の鉄化合物の鉄イオン1モルに対して0.001モル〜0.1モルが好ましく、0.005モル〜0.05モルがさらに好ましい。   In the method of the present invention, an antioxidant may be added at this point in order to prevent oxidation of a divalent iron compound added later. The antioxidant may be added at the time of introduction of nitrogen gas and at that time, or before, during or after these operations. Examples of the antioxidant include ascorbic acid, ascorbic acid ester, ascorbate, isoascorbic acid, aldehydes, hydrogen gas, sulfite and the like. The amount of these antioxidants to be used is preferably 0.001 mol to 0.1 mol, and more preferably 0.005 mol to 0.05 mol, per 1 mol of iron ions of the divalent iron compound.

また、本発明方法においては、炭素源の添加は、水熱反応後でもよいが、水熱反応前に添加しておくのが、均一な正極活物質を得る点で好ましい。ここで炭素源としては、グルコース、フルクトース、ポリエチレングリコール、ポリビニルアルコール、カルボキシメチルセルロース、サッカロース、デンプン、デキストリン、クエン酸が挙げられるが、安価である点からデンプン、グルコースが特に好ましい。炭素源の使用量は、得られるリン酸鉄リチウムを正極材料として使用した場合の充放電特性の点から、リチウム化合物とリン酸化合物、2価の鉄化合物及び水の混合物重量に対して0.1重量%〜15重量%が好ましく、さらに0.5重量%〜10重量%が好ましく、特に1.5重量%〜5重量%が好ましい。   In the method of the present invention, the carbon source may be added after the hydrothermal reaction, but it is preferable to add it before the hydrothermal reaction from the viewpoint of obtaining a uniform positive electrode active material. Examples of the carbon source include glucose, fructose, polyethylene glycol, polyvinyl alcohol, carboxymethylcellulose, saccharose, starch, dextrin, and citric acid, and starch and glucose are particularly preferable from the viewpoint of low cost. The amount of the carbon source used is 0. 0 with respect to the mixture weight of the lithium compound, phosphate compound, divalent iron compound and water from the viewpoint of charge / discharge characteristics when the obtained lithium iron phosphate is used as the positive electrode material. It is preferably 1 to 15% by weight, more preferably 0.5 to 10% by weight, and particularly preferably 1.5 to 5% by weight.

なお、還元性物質の添加、窒素ガスの導入及び炭素源の添加の順序は問わず、同時でもよい。   The order of addition of the reducing substance, introduction of nitrogen gas, and addition of the carbon source is not limited and may be simultaneous.

本発明方法においては、次に2価の鉄化合物を添加する。用いられる2価の鉄化合物としては、フッ化鉄、塩化鉄、臭化鉄、ヨウ化鉄等のハロゲン化鉄、硫酸鉄、シュウ酸鉄、酢酸鉄等が挙げられる。2価の鉄化合物の使用量は、鉄イオンとしてリン酸イオンと略等モルとするのが、高純度のリン酸鉄リチウムを得る点で好ましい。   Next, in the method of the present invention, a divalent iron compound is added. Examples of the divalent iron compound used include iron halides such as iron fluoride, iron chloride, iron bromide, and iron iodide, iron sulfate, iron oxalate, and iron acetate. The amount of the divalent iron compound used is preferably about equimolar to the phosphate ion as the iron ion from the viewpoint of obtaining high purity lithium iron phosphate.

本発明方法においては、次に前記混合物を微細で均一な粒径を有するリン酸鉄リチウムを得る点から撹拌することが好ましく、さらに30分以上混合することがより好ましい。混合に際しては、撹拌することが好ましい。この撹拌時間は30分以上、さらに30〜120分が好ましく、さらにまた60〜120分が好ましい。撹拌反応は、室温で行えばよく、10〜35℃で行うのが好ましい。撹拌は、通常の撹拌手段、例えばプロペラ撹拌、ポンプ循環撹拌により行うことができる。   In the method of the present invention, the mixture is preferably stirred from the viewpoint of obtaining lithium iron phosphate having a fine and uniform particle size, and more preferably mixed for 30 minutes or more. In mixing, it is preferable to stir. The stirring time is 30 minutes or more, preferably 30 to 120 minutes, and more preferably 60 to 120 minutes. The stirring reaction may be performed at room temperature, and is preferably performed at 10 to 35 ° C. Stirring can be performed by ordinary stirring means such as propeller stirring and pump circulation stirring.

次に反応混合物を水熱反応に付す。水熱反応は、反応混合物中に水が存在するので、耐圧容器中で密封して150℃以上に加熱すればよい。より好ましい反応温度は150〜200℃であり、さらに好ましくは180〜200℃である。圧力は、耐圧容器中密封して加熱するのみでよく、理論上1.0〜1.5MPa程度になる。加熱時間は1〜10時間が好ましく、さらに2〜5時間が好ましい。なお、水熱反応中は、反応液を撹拌しておくのが好ましい。   The reaction mixture is then subjected to a hydrothermal reaction. In the hydrothermal reaction, since water is present in the reaction mixture, the reaction mixture may be sealed in a pressure vessel and heated to 150 ° C or higher. A more preferable reaction temperature is 150 to 200 ° C, and further preferably 180 to 200 ° C. The pressure only needs to be sealed and heated in a pressure-resistant container, and is theoretically about 1.0 to 1.5 MPa. The heating time is preferably 1 to 10 hours, more preferably 2 to 5 hours. In addition, it is preferable to stir the reaction liquid during the hydrothermal reaction.

水熱反応終了後、生成したリン酸鉄リチウムをろ過により採取し、洗浄するのが好ましい。洗浄は、ケーキ洗浄機能を有したろ過装置を用いて水で行うのが好ましい。得られた結晶は、必要により乾燥する。乾燥手段は、噴霧乾燥、真空乾燥、凍結乾燥等が挙げられる。   After completion of the hydrothermal reaction, the produced lithium iron phosphate is preferably collected by filtration and washed. Washing is preferably performed with water using a filtration device having a cake washing function. The obtained crystals are dried if necessary. Examples of the drying means include spray drying, vacuum drying, freeze drying and the like.

得られたリン酸鉄リチウムは、不活性ガス又は還元雰囲気下で焼成することにより、正極材料として有用なリン酸鉄リチウムとなる。水熱反応前に炭素源を添加しなかった場合は、ここで炭素源を添加する。不活性ガスとしては、Ar、N2等が挙げられる。また還元雰囲気下とするには水素ガスを導入すればよい。焼成条件は600℃以上が好ましく、さらに600〜900℃が好ましく、特に600〜800℃が好ましい。焼成時間は0.5時間〜5時間が好ましく、さらに1時間〜3時間が好ましい。 The obtained lithium iron phosphate becomes a lithium iron phosphate useful as a positive electrode material by firing in an inert gas or a reducing atmosphere. If the carbon source is not added before the hydrothermal reaction, the carbon source is added here. Examples of the inert gas include Ar and N 2 . In addition, hydrogen gas may be introduced to obtain a reducing atmosphere. Firing conditions are preferably 600 ° C. or higher, more preferably 600 to 900 ° C., and particularly preferably 600 to 800 ° C. The firing time is preferably 0.5 hours to 5 hours, more preferably 1 hour to 3 hours.

本発明方法により得られるリン酸鉄リチウムは、化学組成がLiFePO4で示されるものであり、炭素によりコーティングされていることから正極活物質として有用である。得られるリン酸鉄リチウムは、平均粒子径が1μm以下と微細であり、かつその粒度分布がせまいという特徴がある。SEM像から計算された平均粒子径は1000nm以下であり、粒度分布は100〜800nmが好ましく、さらに200〜600nmが好ましく、特に300〜500nmが好ましい。平均粒子径は、600nm以下が好ましく、特に500nm以下が好ましい。 The lithium iron phosphate obtained by the method of the present invention has a chemical composition represented by LiFePO 4 and is useful as a positive electrode active material because it is coated with carbon. The obtained lithium iron phosphate has a feature that the average particle size is as fine as 1 μm or less and the particle size distribution is narrow. The average particle size calculated from the SEM image is 1000 nm or less, and the particle size distribution is preferably 100 to 800 nm, more preferably 200 to 600 nm, and particularly preferably 300 to 500 nm. The average particle size is preferably 600 nm or less, and particularly preferably 500 nm or less.

本発明方法により得られるリン酸鉄リチウム系正極活物質は、粒径が微細で均一であることから、リチウムイオン二次電池の正極材料として有用である。次に本発明方法で得られたリン酸鉄リチウム系正極活物質を正極材料として含有するリチウムイオン二次電池について説明する。   The lithium iron phosphate-based positive electrode active material obtained by the method of the present invention is useful as a positive electrode material for lithium ion secondary batteries because the particle size is fine and uniform. Next, a lithium ion secondary battery containing the lithium iron phosphate positive electrode active material obtained by the method of the present invention as a positive electrode material will be described.

本発明の正極材料を適用できるリチウムイオン二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The lithium ion secondary battery to which the positive electrode material of the present invention can be applied is not particularly limited as long as it has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components.

ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   Here, as long as lithium ions can be occluded at the time of charging and released at the time of discharging, the material structure is not particularly limited, and a known material structure can be used. For example, a carbon material such as lithium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and organic salt derivatives It is preferable that it is at least 1 type of these.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

次に実施例を挙げて、本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to this.

実施例1
Li2CO3 19.9g、H3PO4 17.6g及び水60.0gを混合した。これに28%アンモニア水0.11gを加え、酸化還元電位を−10mVとした後、デンプン3.0gを加え、次いで窒素ガスをバブリングし、溶存酸素濃度が0.1mg/L未満になったことを確認した。これにFeSO4・7H2O 50.0gを混合し、23±2℃でプロペラ式撹拌装置で60分間撹拌した。
60分間撹拌した混合物をオートクレーブに入れ、200℃で3時間加熱した。加熱中も撹拌を続けた。オートクレーブの内圧は1.5MPaであった。生成した結晶をろ過し、次いで水により洗浄した。結晶を60℃、1Torrの条件で真空乾燥した。得られた結晶をアルゴンガスに水素を3%導入した管状電気炉中で700℃、1時間焼成し、リン酸鉄リチウムの微細粉末を得た。得られた粉末のSEM像を図1にXRDチャートを図2示す。得られたリン酸鉄リチウムの粒子径は200〜400nmの範囲であり、高純度のリン酸鉄リチウムが得られたことが確認できた。
Example 1
19.9 g of Li 2 CO 3 , 17.6 g of H 3 PO 4 and 60.0 g of water were mixed. To this, 0.11 g of 28% ammonia water was added, the oxidation-reduction potential was adjusted to -10 mV, 3.0 g of starch was added, then nitrogen gas was bubbled, and the dissolved oxygen concentration became less than 0.1 mg / L. It was confirmed. This was mixed with 50.0 g of FeSO 4 .7H 2 O and stirred at 23 ± 2 ° C. with a propeller type stirring device for 60 minutes.
The mixture stirred for 60 minutes was placed in an autoclave and heated at 200 ° C. for 3 hours. Stirring was continued during heating. The internal pressure of the autoclave was 1.5 MPa. The formed crystals were filtered and then washed with water. The crystals were vacuum dried at 60 ° C. and 1 Torr. The obtained crystal was baked at 700 ° C. for 1 hour in a tubular electric furnace in which 3% of hydrogen was introduced into argon gas to obtain a fine powder of lithium iron phosphate. FIG. 1 shows an SEM image of the obtained powder, and FIG. 2 shows an XRD chart. The particle diameter of the obtained lithium iron phosphate was in the range of 200 to 400 nm, and it was confirmed that high purity lithium iron phosphate was obtained.

実施例2
Li2CO3 19.9g、H3PO4 17.6g及び水60.0gを混合した。これに28%アンモニア水0.55gを加え、酸化還元電位を−31mVとした後、デンプン3.0gを加え、次いで窒素ガスをバブリングし、溶存酸素濃度が0.1mg/L未満になったことを確認した。これにFeSO4・7H2O 50.0gを混合し、23±2℃でプロペラ式撹拌装置で60分間撹拌した。
60分間撹拌した混合物をオートクレーブに入れ、200℃で3時間加熱した。加熱中も撹拌を続けた。オートクレーブの内圧は1.5MPaであった。生成した結晶をろ過し、次いで水により洗浄した。結晶を60℃、1Torrの条件で真空乾燥した。得られた結晶をアルゴンガスに水素を3%導入した管状電気炉中で700℃、1時間焼成し、リン酸鉄リチウムの微細粉末を得た。得られた粉末のSEM像を図3にXRDチャートを図4示す。得られたリン酸鉄リチウムの粒子径は100〜300nmの範囲であり、高純度のリン酸鉄リチウムが得られたことが確認できた。
Example 2
19.9 g of Li 2 CO 3 , 17.6 g of H 3 PO 4 and 60.0 g of water were mixed. After adding 0.55 g of 28% aqueous ammonia and setting the redox potential to −31 mV, 3.0 g of starch was added, and then nitrogen gas was bubbled, so that the dissolved oxygen concentration was less than 0.1 mg / L. It was confirmed. This was mixed with 50.0 g of FeSO 4 .7H 2 O and stirred at 23 ± 2 ° C. with a propeller type stirring device for 60 minutes.
The mixture stirred for 60 minutes was placed in an autoclave and heated at 200 ° C. for 3 hours. Stirring was continued during heating. The internal pressure of the autoclave was 1.5 MPa. The formed crystals were filtered and then washed with water. The crystals were vacuum dried at 60 ° C. and 1 Torr. The obtained crystal was baked at 700 ° C. for 1 hour in a tubular electric furnace in which 3% of hydrogen was introduced into argon gas to obtain a fine powder of lithium iron phosphate. FIG. 3 shows an SEM image of the obtained powder, and FIG. 4 shows an XRD chart. The particle diameter of the obtained lithium iron phosphate was in the range of 100 to 300 nm, and it was confirmed that high purity lithium iron phosphate was obtained.

比較例1
Li2CO3 10.0g、H3PO4 17.6g及び水60.0gを混合した。このとき、スラリーの酸化還元電位は+73mVであった。これにデンプン3.0gを加え、次いで窒素ガスをバブリングし、溶存酸素濃度が0.1mg/L未満になったことを確認した。これにFeSO4・7H2O 50.0gを混合し、23±2℃でプロペラ式撹拌装置で60分間撹拌した。
60分間撹拌した混合物をオートクレーブに入れ、200℃で3時間加熱した。加熱中も撹拌を続けた。オートクレーブの内圧は1.5MPaであった。生成した結晶をろ過し、次いで水により洗浄した。結晶を60℃、1Torrの条件で真空乾燥した。得られた結晶をアルゴンガスに水素を3%導入した管状電気炉中で700℃、1時間焼成し、リン酸鉄リチウムの微細粉末を得た。得られた粉末のSEM像を図5にXRDチャートを図6示す。得られたリン酸鉄リチウムの粒子径は500〜800nmの範囲であり、粒子径の大きなリン酸鉄リチウムが得られた。
Comparative Example 1
Li 2 CO 3 10.0g, was mixed with H 3 PO 4 17.6 g, and water 60.0 g. At this time, the oxidation-reduction potential of the slurry was +73 mV. To this, 3.0 g of starch was added, and then nitrogen gas was bubbled to confirm that the dissolved oxygen concentration was less than 0.1 mg / L. This was mixed with 50.0 g of FeSO 4 .7H 2 O and stirred at 23 ± 2 ° C. with a propeller type stirring device for 60 minutes.
The mixture stirred for 60 minutes was placed in an autoclave and heated at 200 ° C. for 3 hours. Stirring was continued during heating. The internal pressure of the autoclave was 1.5 MPa. The formed crystals were filtered and then washed with water. The crystals were vacuum dried at 60 ° C. and 1 Torr. The obtained crystal was baked at 700 ° C. for 1 hour in a tubular electric furnace in which 3% of hydrogen was introduced into argon gas to obtain a fine powder of lithium iron phosphate. FIG. 5 shows an SEM image of the obtained powder, and FIG. 6 shows an XRD chart. The particle diameter of the obtained lithium iron phosphate was in the range of 500 to 800 nm, and lithium iron phosphate having a large particle diameter was obtained.

実施例3
実施例1、2、比較例1で得られた材料を正極材料に用いて電池を作製した。
実施例1、2、及び比較例1で得られた焼成物、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比75:15:10の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
次いで、上記の正極を用いてコイン型リチウムイオン二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LIPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウム二次電池(CR−2032)を製造した。
製造したリチウムイオン二次電池を用いて定電流密度での充放電試験を行った。このときの充電条件は電流0.1CA(17mA/g)、電圧4.2Vの定電流充電とし、放電条件は電流0.1CA、終止電圧2.0Vの定電流放電とした。温度は全て30℃とした。
また、放電条件を電池5CA、終止電圧2.0Vの定電池放電とする以外は、同様にして充放電試験を行った。
Example 3
Batteries were produced using the materials obtained in Examples 1 and 2 and Comparative Example 1 as positive electrode materials.
The fired products obtained in Examples 1 and 2 and Comparative Example 1, Ketjen Black (conductive agent), and polyvinylidene fluoride (binding agent) were mixed at a weight ratio of 75:15:10. N-methyl-2-pyrrolidone was added and sufficiently kneaded to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.
Next, a coin-type lithium ion secondary battery was constructed using the positive electrode. A lithium foil punched to φ15 mm was used for the negative electrode. As the electrolytic solution, a solution obtained by dissolving LIPF 6 at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type lithium secondary battery (CR-2032).
A charge / discharge test at a constant current density was performed using the manufactured lithium ion secondary battery. Charging conditions at this time were constant current charging with a current of 0.1 CA (17 mA / g) and a voltage of 4.2 V, and discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 2.0 V. All temperatures were 30 ° C.
A charge / discharge test was conducted in the same manner except that the discharge conditions were battery 5CA and constant battery discharge with a final voltage of 2.0V.

得られた放電容量の比(5C/1C)、正極活物質のFe(III)含有量、及びスラリーのORP(酸化還元電位)を表1に示す。   Table 1 shows the discharge capacity ratio (5C / 1C), the Fe (III) content of the positive electrode active material, and the ORP (redox potential) of the slurry.

表1から、本発明方法により得られるリン酸鉄リチウムは均一で微細な粒子であるとともに、Fe(III)含有量が低い。その結果、高レート(5C)での放電容量が高く、優れた放電特性を示すリチウムイオン二次電池が得られる。   From Table 1, the lithium iron phosphate obtained by the method of the present invention is uniform and fine particles and has a low Fe (III) content. As a result, a lithium ion secondary battery having a high discharge capacity at a high rate (5C) and excellent discharge characteristics can be obtained.

Claims (6)

リチウム化合物、リン酸化合物及び水を混合後、還元性化合物を添加して混合物の酸化還元電位を−1mV未満の還元雰囲気とし、次いで2価の鉄化合物を添加して水熱反応することを特徴とするリン酸鉄リチウムの製造法。   A lithium compound, a phosphoric acid compound and water are mixed, then a reducing compound is added to make the oxidation-reduction potential of the mixture less than -1 mV, and then a divalent iron compound is added to perform a hydrothermal reaction. And manufacturing method of lithium iron phosphate. リチウム化合物、リン酸化合物及び水を混合後、還元性化合物を添加して混合物の酸化還元電位を−1mV未満の還元雰囲気とし、炭素源を添加し、次いで2価の鉄化合物を添加して水熱反応を行い、次いで不活性ガス又は還元雰囲気下に焼成することを特徴とするリン酸鉄リチウム系正極活物質の製造法。   After mixing the lithium compound, the phosphoric acid compound and water, the reducing compound is added to make the oxidation-reduction potential of the mixture less than -1 mV, the carbon source is added, and then the divalent iron compound is added to add water. A method for producing a lithium iron phosphate-based positive electrode active material, wherein a thermal reaction is performed, followed by firing in an inert gas or a reducing atmosphere. 還元性化合物が、アンモニア又はアンモニア発生化合物である請求項1又は2記載の製造法。   The production method according to claim 1 or 2, wherein the reducing compound is ammonia or an ammonia-generating compound. 2価の鉄化合物の添加前に、反応系に窒素ガスを導入する請求項1〜3のいずれか1項記載の製造法。   The method according to any one of claims 1 to 3, wherein nitrogen gas is introduced into the reaction system before the addition of the divalent iron compound. 水熱反応が、耐圧容器中で150〜200℃の条件で行われるものである請求項1〜4のいずれか1項記載の製造法。   The method according to any one of claims 1 to 4, wherein the hydrothermal reaction is carried out in a pressure vessel at 150 to 200 ° C. 焼成条件が、600〜800℃である請求項2〜5のいずれか1項記載の製造法。   Firing conditions are 600-800 degreeC, The manufacturing method of any one of Claims 2-5.
JP2011192457A 2011-09-05 2011-09-05 Cathode active material Active JP5673953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011192457A JP5673953B2 (en) 2011-09-05 2011-09-05 Cathode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011192457A JP5673953B2 (en) 2011-09-05 2011-09-05 Cathode active material

Publications (2)

Publication Number Publication Date
JP2013053045A JP2013053045A (en) 2013-03-21
JP5673953B2 true JP5673953B2 (en) 2015-02-18

Family

ID=48130387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011192457A Active JP5673953B2 (en) 2011-09-05 2011-09-05 Cathode active material

Country Status (1)

Country Link
JP (1) JP5673953B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442744B2 (en) * 2008-10-22 2014-03-12 エルジー・ケム・リミテッド Lithium iron phosphate having olivine structure and analysis method thereof

Also Published As

Publication number Publication date
JP2013053045A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5725456B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP6151386B2 (en) Manufacturing method of olivine type lithium phosphate positive electrode material
JP2012193088A (en) Method for manufacturing positive electrode active material for lithium-ion battery
JP2015088266A (en) Lithium battery
JP5531304B2 (en) Method for producing positive electrode active material for secondary battery
JP5509423B2 (en) Method for producing zirconium-containing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5700346B2 (en) Method for producing lithium manganese phosphate positive electrode active material
US8968594B2 (en) Production method of positive electrode active material for lithium secondary battery
JP5709136B2 (en) Method for producing lithium iron phosphate and method for producing lithium iron phosphate-based positive electrode active material
JP5611167B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5765811B2 (en) Method for producing lithium iron phosphate positive electrode active material
JP2018041683A (en) Method for manufacturing olivine type lithium phosphate-based positive electrode material
JP6180070B2 (en) Method for producing lithium iron phosphate
JP5521180B2 (en) Method for producing lithium iron phosphate or lithium iron silicate
JP5759968B2 (en) Method for producing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP6055767B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5765810B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5649068B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5649067B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5673953B2 (en) Cathode active material
JP5649069B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5531247B2 (en) Method for producing lithium iron phosphate or lithium iron silicate
JP5822197B2 (en) Method for producing positive electrode active material for lithium ion battery
WO2016063932A1 (en) Manufacturing method for positive electrode active material for olivine-type lithium-ion secondary battery
JP5928954B2 (en) Process for producing olivine-type silicate compounds containing transition metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140714

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141216

R150 Certificate of patent or registration of utility model

Ref document number: 5673953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250