JP5673569B2 - Insulated wire - Google Patents
Insulated wire Download PDFInfo
- Publication number
- JP5673569B2 JP5673569B2 JP2012006626A JP2012006626A JP5673569B2 JP 5673569 B2 JP5673569 B2 JP 5673569B2 JP 2012006626 A JP2012006626 A JP 2012006626A JP 2012006626 A JP2012006626 A JP 2012006626A JP 5673569 B2 JP5673569 B2 JP 5673569B2
- Authority
- JP
- Japan
- Prior art keywords
- plasticizer
- vinyl chloride
- chloride resin
- acid ester
- insulated wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004014 plasticizer Substances 0.000 claims description 73
- -1 trimellitic acid ester Chemical class 0.000 claims description 42
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 39
- ARCGXLSVLAOJQL-UHFFFAOYSA-N anhydrous trimellitic acid Natural products OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 claims description 37
- 238000010292 electrical insulation Methods 0.000 claims description 27
- 239000011342 resin composition Substances 0.000 claims description 24
- 125000000217 alkyl group Chemical group 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 17
- 239000011347 resin Substances 0.000 claims description 17
- 229920005989 resin Polymers 0.000 claims description 17
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 238000009413 insulation Methods 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 230000000052 comparative effect Effects 0.000 description 26
- 238000011156 evaluation Methods 0.000 description 17
- 230000032683 aging Effects 0.000 description 16
- 239000004808 2-ethylhexylester Substances 0.000 description 12
- KRADHMIOFJQKEZ-UHFFFAOYSA-N Tri-2-ethylhexyl trimellitate Chemical compound CCCCC(CC)COC(=O)C1=CC=C(C(=O)OCC(CC)CCCC)C(C(=O)OCC(CC)CCCC)=C1 KRADHMIOFJQKEZ-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- HORIEOQXBKUKGQ-UHFFFAOYSA-N bis(7-methyloctyl) cyclohexane-1,2-dicarboxylate Chemical compound CC(C)CCCCCCOC(=O)C1CCCCC1C(=O)OCCCCCCC(C)C HORIEOQXBKUKGQ-UHFFFAOYSA-N 0.000 description 10
- 239000004806 diisononylester Substances 0.000 description 10
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 4
- YLQLIQIAXYRMDL-UHFFFAOYSA-N propylheptyl alcohol Chemical compound CCCCCC(CO)CCC YLQLIQIAXYRMDL-UHFFFAOYSA-N 0.000 description 4
- VZXWJVFQXZUFQS-UHFFFAOYSA-N 4-methyl-2-propylhexan-1-ol Chemical compound CCCC(CO)CC(C)CC VZXWJVFQXZUFQS-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical group C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- YKGYQYOQRGPFTO-UHFFFAOYSA-N bis(8-methylnonyl) hexanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCC(=O)OCCCCCCCC(C)C YKGYQYOQRGPFTO-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 231100000615 substance of very high concern Toxicity 0.000 description 2
- ALKCLFLTXBBMMP-UHFFFAOYSA-N 3,7-dimethylocta-1,6-dien-3-yl hexanoate Chemical compound CCCCCC(=O)OC(C)(C=C)CCC=C(C)C ALKCLFLTXBBMMP-UHFFFAOYSA-N 0.000 description 1
- QLPFHUNWDJSCFF-UHFFFAOYSA-N 3-propylheptan-2-ol Chemical compound CCCCC(C(C)O)CCC QLPFHUNWDJSCFF-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- IHBCFWWEZXPPLG-UHFFFAOYSA-N [Ca].[Zn] Chemical compound [Ca].[Zn] IHBCFWWEZXPPLG-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WZEFLOBFCQPVHR-UHFFFAOYSA-N bis(8-methylnonyl) cyclohexane-1,2-dicarboxylate Chemical compound CC(C)CCCCCCCOC(=O)C1CCCCC1C(=O)OCCCCCCCC(C)C WZEFLOBFCQPVHR-UHFFFAOYSA-N 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000007033 dehydrochlorination reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920006112 polar polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Organic Insulating Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulated Conductors (AREA)
Description
本発明は、電気絶縁性と耐寒性と耐熱老化性とを兼ね備えた軟質塩化ビニル樹脂組成物を用いた絶縁電線に関するものである。 The present invention relates to an insulated wire using a soft vinyl chloride resin composition having both electrical insulation and low-temperature resistance and thermal aging resistance.
塩化ビニル樹脂(ポリ塩化ビニル)は、優れた耐水性・耐薬品性を示し、更に電気絶縁性と難燃性とを示すことから電線被覆材として利用される代表的なハロゲン含有樹脂である。塩化ビニル樹脂を利用する場合、一般的に可塑剤としてフタル酸エステルやトリメリット酸エステルなどが添加されてきた。 Vinyl chloride resin (polyvinyl chloride) is a typical halogen-containing resin used as a wire covering material because it exhibits excellent water resistance and chemical resistance, and further exhibits electrical insulation and flame resistance. In the case of using a vinyl chloride resin, a phthalate ester or trimellitic acid ester has generally been added as a plasticizer.
例えば、特許文献1(特開平8-34891号公報)には、可塑剤として2-プロピルヘプタノールまたは2-プロピルヘプタノールと、4-メチル-2-プロピルヘキサノールとの混合物であって、4-メチル-2-プロピルヘキサノールの含有率が30重量%以下であるものと、フタル酸エステルを用いた塩化ビニル系樹脂組成物が開示されている。特許文献1によると、加工性及び耐寒性が改良された半硬質塩化ビニル系樹脂組成物を提供することができるとしている。
For example, Patent Document 1 (JP-A-8-34891) discloses 2-propylheptanol or a mixture of 2-propylheptanol and 4-methyl-2-propylhexanol as a plasticizer, A vinyl chloride-based resin composition using a phthalate ester having a methyl-2-propylhexanol content of 30% by weight or less is disclosed. According to
一方、近年、世界的に地球環境と人の健康を保護する気運が強く、産業界においても、より安全な材料の使用が強く望まれている。例えば、欧州連合(EU)においては、化学品における特定有害物質の使用制限に関する規則(REACH規則)が2008年6月1日に施行されている。フタル酸エステルの一部はREACH規則のSVHC(高懸念物質)に指定されており、それを含む可塑剤はREACH規則に対応できないという問題が生じていた。 On the other hand, in recent years, there is a strong desire to protect the global environment and human health worldwide, and the use of safer materials is strongly desired in the industrial world. For example, in the European Union (EU), the Regulation on the Restriction of Use of Certain Hazardous Substances in Chemicals (REACH Regulation) was enforced on June 1, 2008. Some of the phthalates are designated as SVHC (substance of very high concern) by the REACH regulation, and plasticizers that contain them are incapable of complying with the REACH regulation.
フタル酸エステルを含まない可塑剤が添加された塩化ビニル樹脂組成物は、例えば、特許文献2(特開平7-211153号公報)に提案されている。特許文献2には、可塑剤として2-プロピルヘプタノールまたは2-プロピルヘプタノールと、4-メチル-2-プロピルヘキサノールとの混合物であって、4-メチル-2-プロピルヘキサノールの含有量が30重量%以下であるものと、トリメリット酸とのトリエステルを用いた電線被覆用塩化ビニル樹脂組成物が開示されている。特許文献2によると、揮発性が低く可塑化効率、耐寒性、耐熱老化性等の諸性質が良好な電線被覆用塩化ビニル系樹脂組成物を提供することができるとしている。
A vinyl chloride resin composition to which a plasticizer not containing a phthalate ester is added is proposed in, for example, Patent Document 2 (Japanese Patent Laid-Open No. 7-211153).
特許文献2に記載の電線被覆用塩化ビニル系樹脂組成物は、電気絶縁性、耐寒性および耐熱老化性などにおいて良好な特性が得られることが期待されるが、可塑剤として比較的高価な化合物を使用しているため材料コストが高くなりやすく、低コスト化要求に対する対応が困難という問題があった。
The vinyl chloride resin composition for electric wire coating described in
従って、本発明の目的は、上記要求を満たすために、フタル酸エステルを含まず、かつ良好な電気絶縁性、耐寒性および耐熱老化性を兼ね備えた軟質塩化ビニル樹脂組成物からなる絶縁被覆を有する絶縁電線を低コストで提供することにある。 Therefore, an object of the present invention is to satisfy the above requirements by having an insulating coating made of a soft vinyl chloride resin composition that does not contain a phthalate ester and has good electrical insulation, cold resistance, and heat aging resistance. It is to provide an insulated wire at a low cost .
(I)本発明の一態様によると、金属導体線の外周に絶縁被覆を有する絶縁電線であって、前記絶縁被覆が、塩化ビニル樹脂に可塑剤を添加させてなる軟質塩化ビニル樹脂組成物であって、前記可塑剤は、トリメリット酸エステルからなる第1可塑剤と、シクロヘキサンジカルボン酸エステルからなる第2可塑剤との混合物であり、前記第1可塑剤(A)と前記第2可塑剤(B)との質量比(A/B)が、4/96以上96/4以下であり、前記第1可塑剤(A)と前記第2可塑剤(B)の合計量(A+B)が、前記塩化ビニル樹脂100質量部に対して40質量部以上80質量部以下であり、60℃雰囲気下における体積抵抗率が10 13 Ω・cm以上である電気絶縁性を有する軟質塩化ビニル樹脂組成物からなることを特徴とする絶縁電線を提供する。 (I) According to one aspect of the present invention, an insulated wire having an insulation coating on the outer periphery of a metal conductor wire, wherein the insulation coating is a soft vinyl chloride resin composition obtained by adding a plasticizer to a vinyl chloride resin. The plasticizer is a mixture of a first plasticizer made of trimellitic acid ester and a second plasticizer made of cyclohexanedicarboxylic acid ester, the first plasticizer (A) and the second plasticizer. The mass ratio (A / B) to (B) is 4/96 or more and 96/4 or less, and the total amount (A + B) of the first plasticizer (A) and the second plasticizer (B) is the 80 parts by der than 40 parts by weight or more with respect to 100 parts by weight of vinyl chloride resin is, the soft quality vinyl chloride resin composition having an electrical insulation property volume resistivity is 10 13 Ω · cm or more under a 60 ° C. atmosphere Provided is an insulated wire made of a material.
さらに、本発明は、上記の本発明に係る絶縁電線において、以下のような改良や変更を加えることができる。
(i)前記第1可塑剤にエステル結合している第1アルキル基および前記第2可塑剤にエステル結合している第2アルキル基は、いずれも炭素数が8以上10以下である。
Furthermore, the present invention can add the following improvements and changes to the above-described insulated wire according to the present invention.
(I) The first alkyl group ester-bonded to the first plasticizer and the second alkyl group ester-bonded to the second plasticizer both have 8 to 10 carbon atoms .
本発明によれば、フタル酸エステルを含まず、かつ良好な電気絶縁性、耐寒性および耐熱老化性を兼ね備えた軟質塩化ビニル樹脂組成物からなる絶縁被覆を有する絶縁電線を低コストで提供することができる。 According to the present invention, it is possible to provide an insulated wire having an insulating coating made of a soft vinyl chloride resin composition that does not contain a phthalate ester and has good electrical insulation, cold resistance, and heat aging resistance at low cost. Can do .
以下、本発明に係る実施形態を説明する。ただし、本発明は、ここで取り上げた実施の形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。 Embodiments according to the present invention will be described below. However, the present invention is not limited to the embodiment taken up here, and can be appropriately combined and improved without departing from the scope of the invention.
[軟質塩化ビニル樹脂組成物]
前述したように、本発明に使用する軟質塩化ビニル樹脂組成物は、塩化ビニル樹脂に添加する可塑剤に特徴がある。該可塑剤は、トリメリット酸エステルからなる第1可塑剤(A)と、シクロヘキサンジカルボン酸エステルからなる第2可塑剤(B)との混合物である。
[Soft vinyl chloride resin composition]
As described above, the soft vinyl chloride resin composition used in the present invention is characterized by a plasticizer added to the vinyl chloride resin. The plasticizer is a mixture of a first plasticizer (A) made of trimellitic acid ester and a second plasticizer (B) made of cyclohexanedicarboxylic acid ester.
本発明で利用するトリメリット酸エステル、およびシクロヘキサンジカルボン酸エステルは、それぞれ下記の一般化学式(1)および(2)で表される。なお、本発明において化学式中のRは、炭素数8以上10以下のアルキル基を示す。 The trimellitic acid ester and cyclohexanedicarboxylic acid ester used in the present invention are represented by the following general chemical formulas (1) and (2), respectively. In the present invention, R in the chemical formula represents an alkyl group having 8 to 10 carbon atoms.
本発明で利用する化学式(1)のトリメリット酸エステルとしては、例えば、トリメリット酸トリ-2-エチルヘキシル(TOTM)、トリメリット酸トリイソノニル(TINTM)、トリメリット酸トリイソデシル(TIDTM)等が挙げられる。また、本発明で利用する化学式(2)のシクロヘキサンジカルボン酸エステルとしては、例えば、1,2-シクロヘキサンジカルボン酸ジ-2-エチルヘキシル(DOCH)、1,2-シクロヘキサンジカルボン酸ジイソノニル(DINCH)、1,2-シクロヘキサンジカルボン酸ジイソデシル(DIDCH)等が挙げられる。 Examples of trimellitic acid ester of chemical formula (1) used in the present invention include tri-2-ethylhexyl trimellitic acid (TOTM), triisononyl trimellitic acid (TINTM), and triisodecyl trimellitic acid (TIDTM). . Examples of the cyclohexanedicarboxylic acid ester of the formula (2) used in the present invention include, for example, 1,2-cyclohexanedicarboxylic acid di-2-ethylhexyl (DOCH), 1,2-cyclohexanedicarboxylic acid diisononyl (DINCH), 1 , 2-cyclohexanedicarboxylate diisodecyl (DIDCH) and the like.
トリメリット酸エステルの添加(すなわち、第1可塑剤の添加)は、塩化ビニル樹脂組成物の電気絶縁性の向上効果は高いが耐寒性を低下させる傾向がある。これは、化学式(1)に示したようにトリメリット酸エステルはベンゼン環を有し分極性が高いため、極性ポリマである塩化ビニル樹脂との相互作用が強く結合力が強いことに起因する。言い換えると、分子間の結合性が高いほど柔軟性が低下するため耐寒性が低下するが、可塑剤中でのキャリア(例えば、イオン性不純物や、脱塩酸捕捉により生成される金属イオン)の移動が制限されるため電気絶縁性が向上する。 The addition of trimellitic acid ester (that is, the addition of the first plasticizer) has a high effect of improving the electrical insulation properties of the vinyl chloride resin composition, but tends to decrease the cold resistance. This is because, as shown in chemical formula (1), trimellitic ester has a benzene ring and high polarizability, and therefore has a strong interaction with the vinyl chloride resin, which is a polar polymer, and a strong binding force. In other words, the higher the intermolecular bond, the lower the flexibility and the lower the cold resistance, but the movement of carriers (for example, ionic impurities and metal ions generated by dehydrochlorination trapping) in the plasticizer. Therefore, electrical insulation is improved.
また、トリメリット酸エステルの添加は、塩化ビニル樹脂組成物の耐熱老化性の向上に寄与する。これは、加熱時における可塑剤の揮発量が少ないことに起因する。本発明において、トリメリット酸エステルは、シクロヘキサンジカルボン酸エステルに比較して分子量が大きい。そのため、分子間に働くファンデルワールス力が強くなり、沸点が高くなるため揮発しにくくなる。 Moreover, addition of trimellitic acid ester contributes to the improvement of the heat aging resistance of the vinyl chloride resin composition. This is because the volatilization amount of the plasticizer during heating is small. In the present invention, trimellitic acid ester has a higher molecular weight than cyclohexanedicarboxylic acid ester. For this reason, the van der Waals force acting between the molecules becomes strong and the boiling point becomes high, so that it is difficult to volatilize.
一方、シクロヘキサンジカルボン酸エステルの添加(すなわち、第2可塑剤の添加)は、耐寒性の向上効果は高いが電気絶縁性を低下させる傾向がある。これは、化学式(2)に示したようにシクロヘキサンジカルボン酸エステルがその分子構造において極性部分が少ないため(ベンゼン環を有さないため)、塩化ビニル樹脂との相互作用が弱く結合力も弱いことに起因する。言い換えると、分子間の結合性が低いため柔軟性が向上して耐寒性を向上させる。一方、可塑剤中でのキャリアの移動を制限する作用が小さく、温度上昇に伴って分子運動が活発になるため電気絶縁性が低下する。 On the other hand, the addition of cyclohexanedicarboxylic acid ester (that is, the addition of the second plasticizer) has a high effect of improving cold resistance, but tends to lower the electrical insulation. This is because, as shown in chemical formula (2), cyclohexanedicarboxylic acid ester has few polar parts in its molecular structure (because it does not have a benzene ring), and therefore the interaction with vinyl chloride resin is weak and the binding force is also weak. to cause. In other words, since the bonding property between molecules is low, flexibility is improved and cold resistance is improved. On the other hand, the effect of restricting the movement of carriers in the plasticizer is small, and the molecular motion becomes active as the temperature rises, so that the electrical insulation is lowered.
トリメリット酸エステルからなる第1可塑剤(A)と、シクロヘキサンジカルボン酸エステルからなる第2可塑剤(B)との質量比(A/B)は、4/96以上96/4以下であることが好ましい。該質量比(A/B)を「4/96≦A/B≦96/4」とすることで、軟質塩化ビニル樹脂組成物の電気絶縁性、耐寒性および耐熱老化性の全てをバランス良く向上させることができる。 The mass ratio (A / B) of the first plasticizer (A) made of trimellitic acid ester and the second plasticizer (B) made of cyclohexanedicarboxylic acid ester is 4/96 or more and 96/4 or less. Is preferred. By setting the mass ratio (A / B) to “4/96 ≦ A / B ≦ 96/4”, all the electrical insulation, cold resistance and heat aging resistance of the soft vinyl chloride resin composition are improved in a well-balanced manner. Can be made.
第1可塑剤と第2可塑剤との合計添加量は、100質量部の塩化ビニル樹脂に対して、40質量部以上80質量部以下であることが好ましい。合計添加量が40質量部未満では、十分な柔軟性が得られず、耐寒性および耐熱老化性が不十分となる。一方、合計添加量が80質量部超では、電気絶縁性が不十分となる。 The total addition amount of the first plasticizer and the second plasticizer is preferably 40 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the vinyl chloride resin. When the total addition amount is less than 40 parts by mass, sufficient flexibility cannot be obtained, and cold resistance and heat aging resistance are insufficient. On the other hand, if the total addition amount exceeds 80 parts by mass, the electrical insulation is insufficient.
塩化ビニル樹脂と可塑剤との結合性に起因する基本的効果に加えて、軟質塩化ビニル樹脂の電気絶縁性および耐寒性の特性は、可塑剤分子中のアルキル基の炭素数に強く影響を受ける。具体的には、アルキル基の炭素数が大きい可塑剤を添加した軟質塩化ビニル樹脂は、良好な耐寒性を示すが、電気絶縁性が低下する。それとは反対に、アルキル基の炭素数が小さい可塑剤を添加した軟質塩化ビニル樹脂は、耐寒性が低下するが、良好な電気絶縁性を示す。 In addition to the basic effects resulting from the bond between the vinyl chloride resin and the plasticizer, the electrical insulation and cold resistance characteristics of the soft vinyl chloride resin are strongly influenced by the carbon number of the alkyl group in the plasticizer molecule. . Specifically, a soft vinyl chloride resin to which a plasticizer having a large number of carbon atoms in an alkyl group is added exhibits good cold resistance, but its electrical insulation is reduced. In contrast, a soft vinyl chloride resin to which a plasticizer having a small number of carbon atoms in an alkyl group is added exhibits good electrical insulation, although the cold resistance is lowered.
第1可塑剤にエステル結合している第1アルキル基、および第2可塑剤にエステル結合している第2アルキル基は、いずれも炭素数が8以上10以下(C8以上C10以下)であることが好ましく、8以上9以下(C8以上C9以下)がより好ましい。アルキル基がC7以下では、絶縁被覆に要求される耐熱性が十分確保できない。これは、アルキル基が短いほど(すなわち、炭素数が少なく分子量が小さいほど)加熱によって可塑剤が揮発しやすくなることに起因する。可塑剤が揮発すると軟質塩化ビニル樹脂組成物が硬化してしまう。一方、アルキル基の炭素数がC11以上では、可塑剤のエステル合成に必要なアルコールに制約が生じ、結果としてコスト高の要因となることから好ましくない。 The first alkyl group ester-bonded to the first plasticizer and the second alkyl group ester-bonded to the second plasticizer both have 8 to 10 carbon atoms (C8 to C10). Is preferably 8 or more and 9 or less (C8 or more and C9 or less). When the alkyl group is C7 or less, sufficient heat resistance required for the insulation coating cannot be secured. This is because the shorter the alkyl group (that is, the smaller the number of carbon atoms and the smaller the molecular weight), the more easily the plasticizer volatilizes by heating. When the plasticizer volatilizes, the soft vinyl chloride resin composition is cured. On the other hand, when the carbon number of the alkyl group is C11 or more, the alcohol necessary for the plasticizer ester synthesis is restricted, and as a result, the cost is increased, which is not preferable.
[絶縁電線]
図1は、本発明に係る絶縁電線の1例を示す断面模式図である。図1に示したように、本発明に係る絶縁電線10は、金属導体線1の外周に前述の軟質塩化ビニル樹脂組成物からなる絶縁被覆2が形成されているものである。図1では、金属導体線1を単芯線として描いたが、多芯撚線であっても勿論よい。また、絶縁電線10の製造方法に特段の限定は無く、従前の方法を利用することができる。
[Insulated wire]
FIG. 1 is a schematic cross-sectional view showing an example of an insulated wire according to the present invention. As shown in FIG. 1, an
金属導体線1に特段の限定はなく、通常の絶縁電線で用いられる銅線、アルミニウム線の他に、金線や銀線などを利用することができる。また、銅線の外周にニッケルなどの金属めっきを施した導体でもよい。さらに、本発明に係る絶縁被覆2が被覆される導体形状にも特段の限定はなく、丸形状や四辺形状であってもよい。なお、本発明における四辺形状とは、角部が丸みを有する四角形状や角丸長方形状を含むものとする。
The
以下、本発明を実施例に基づいてより具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these.
(供試材の作製)
平均重合度1300の塩化ビニル樹脂(PVC)100質量部に対して、表に示した分量の可塑剤(後述する表1〜5参照)と、安定剤として3質量部のカルシウム−亜鉛系非鉛安定剤と、充填剤として20質量部の炭酸カルシウムおよび3.5質量部のケイ酸アルミニウムとを添加し混合した。その後、該混合物に対して、混練処理(ロール温度:160℃、5分間)とプレス処理(プレス温度:180℃、3分間予熱、10 MPaで2分間加圧)とを施して、厚さ1 mmと2 mmのシート状に成形し、軟質塩化ビニル樹脂組成物の供試材(比較例1〜9および実施例1〜17)を作製した。
(Production of test materials)
For 100 parts by weight of vinyl chloride resin (PVC) with an average degree of polymerization of 1300, the amount of plasticizer shown in the table (see Tables 1 to 5 described later) and 3 parts by weight of calcium-zinc based lead as a stabilizer Stabilizer and 20 parts by weight of calcium carbonate and 3.5 parts by weight of aluminum silicate as a filler were added and mixed. Thereafter, the mixture was kneaded (roll temperature: 160 ° C., 5 minutes) and pressed (press temperature: 180 ° C., preheated for 3 minutes, pressurized at 10 MPa for 2 minutes) to obtain a thickness of 1 Samples (Comparative Examples 1 to 9 and Examples 1 to 17) of soft vinyl chloride resin compositions were formed into sheet shapes of mm and 2 mm.
(試験・評価)
上記のようにして用意した軟質塩化ビニル樹脂組成物の供試材(比較例1〜9および実施例1〜17)に対し、JIS K 6723に準拠して耐熱老化性試験(伸び残率測定)、耐寒性試験(低温脆化温度測定)および電気絶縁性試験(体積抵抗率測定)を行った。
(Examination / Evaluation)
For the test materials (Comparative Examples 1 to 9 and Examples 1 to 17) of the soft vinyl chloride resin composition prepared as described above, heat aging resistance test (measurement of residual elongation rate) in accordance with JIS K 6723 A cold resistance test (low temperature embrittlement temperature measurement) and an electrical insulation test (volume resistivity measurement) were performed.
(1)耐熱老化性評価
熱処理前の供試材の伸びに対する熱処理(100℃雰囲気、120時間)後の供試材の伸びの残率(伸び残率)を算出した。JIS K 6723に示される1種1号の一般絶縁用被覆材に対して裕度をもって適用できるように、伸び残率が80%未満の場合を×(不合格)とし、80%以上の場合を○(合格)と評価した。
(1) Evaluation of heat aging resistance The residual elongation rate (elongation residual rate) of the test material after heat treatment (100 ° C. atmosphere, 120 hours) relative to the elongation of the test material before heat treatment was calculated. In order to be able to apply to the general insulation coating material of
(2)耐寒性評価
JIS K 6723に示される1種1号の一般絶縁用被覆材に対して裕度をもって適用できるように、低温脆化温度が-16℃より高い場合を×(不合格)とし、-16℃以下の場合を○(合格)と評価した。
(2) Evaluation of cold resistance
In order to be able to apply to the general insulation coating of
(3)電気絶縁性評価
JIS K 6723に示される1種1号の一般絶縁用被覆材に対して裕度をもって適用できるように、30℃雰囲気下における体積抵抗率が1014Ω・cmより低い場合を×(不合格)とし、1014Ω・cm以上の場合を○(合格)と評価した。また、60℃雰囲気下における体積抵抗率が1013Ω・cmより低い場合を×(不合格)とし、1013Ω・cm以上の場合を○(合格)と評価した。
(3) Electrical insulation evaluation
When the volume resistivity in an atmosphere of 30 ℃ is lower than 10 14 Ω · cm so that it can be applied with a margin to the general insulation coating of
(試験・評価結果)
比較例1〜9における添加した可塑剤と試験評価結果とを表1および表2に示し、実施例1〜17における添加した可塑剤と試験評価結果とを表3〜表5に示す。
(Test and evaluation results)
Tables 1 and 2 show the added plasticizers and test evaluation results in Comparative Examples 1 to 9, and Tables 3 to 5 show the added plasticizers and test evaluation results in Examples 1 to 17, respectively.
(比較例1)
まず、比較例について表1および2を参照しながら説明する。比較例1は、100質量部のPVCに対して、可塑剤としてトリメリット酸エステルの1種であるTOTM(トリメリット酸トリ-2-エチルヘキシル)を20質量部(per hundred resin: phr)と、脂肪族二塩基酸エステルの1種であるDIDA(アジピン酸ジイソデシル)を30質量部添加したものである。比較例1は電気絶縁性の評価が不合格であった。これは、DIDAが鎖状構造を有し(環状構造を有さず)、PVC中で立体障害が生じにくいことに加えて、非極性基の割合が非常に大きいことに起因して、PVCとの親和性が極めて低かったためと考えられた。なお、脂肪族二塩基酸エステルはPVCとの親和性が低いため、30 phr超の添加では均質混合が困難であった。
(Comparative Example 1)
First, a comparative example will be described with reference to Tables 1 and 2. In Comparative Example 1, 20 parts by mass (per hundred resin: phr) of TOTM (trimellitic acid tri-2-ethylhexyl) as one kind of trimellitic acid ester as a plasticizer with respect to 100 parts by mass of PVC, 30 parts by mass of DIDA (diisodecyl adipate), which is one of aliphatic dibasic acid esters, is added. In Comparative Example 1, the electrical insulation evaluation was unacceptable. This is due to the fact that DIDA has a chain structure (no cyclic structure) and is less susceptible to steric hindrance in PVC. This was thought to be due to the extremely low affinity. In addition, since aliphatic dibasic acid ester had low affinity with PVC, it was difficult to perform homogeneous mixing when added in excess of 30 phr.
(比較例2〜3)
比較例2は、可塑剤としてトリメリット酸エステルの1種であるTOTMを50 phr添加したものであり、比較例3は、同じくトリメリット酸エステルの1種であるTIDTM(トリメリット酸トリイソデシル)を50 phr添加したものである。トリメリット酸エステルのみを添加した比較例2〜3は、耐寒性の評価が不合格であった。前述したように、トリメリット酸エステルは、ベンゼン環を有し分極性が高いため、極性の高いPVCとの親和性が高い。そのため、PVC分子との間での相互作用が大きく高い凝集力を生み、PVCと一緒に低温脆化したものと考えられた。
(Comparative Examples 2-3)
Comparative Example 2 was obtained by adding 50 phr of TOTM, which is one kind of trimellitic acid ester, as a plasticizer, and Comparative Example 3 was obtained by adding TIDTM (triisodecyl trimellitic acid), which is also one kind of trimellitic acid ester. 50 phr added. Comparative Examples 2 to 3 to which only trimellitic acid ester was added failed in evaluation of cold resistance. As described above, trimellitic acid ester has a high affinity with highly polar PVC because it has a benzene ring and high polarizability. For this reason, it was considered that the interaction with PVC molecules produced a large cohesive force, resulting in low-temperature embrittlement along with PVC.
(比較例4〜5)
比較例4は、可塑剤としてシクロヘキサンジカルボン酸の1種であるDOCH(1,2-シクロヘキサンジカルボン酸ジ-2-エチルヘキシル)を50 phr添加したものであり、比較例5は、同じくシクロヘキサンジカルボン酸の1種であるDINCH(1,2-シクロヘキサンジカルボン酸ジイソノニル)を50 phr添加したものである。シクロヘキサンジカルボン酸エステルのみを添加した比較例4〜5は、高温域(60℃)での電気絶縁性の評価が不合格であった。前述したように、シクロヘキサンジカルボン酸エステルは、ベンゼン環を有さず非極性基の割合も大きいことから、極性の高いPVCとの親和性が低い。そのため、加熱時において分子活動が活発となる。加えて、可塑剤中でのキャリアの移動を制限する作用が小さいことから、電気絶縁性の評価が不合格になったと考えられた。
(Comparative Examples 4-5)
Comparative Example 4 was obtained by adding 50 phr of DOCH (di-2-
また、DOCHのみの添加(比較例4)では、耐熱老化性の評価も不合格であった。これは、DOCHの分子量が比較的小さい(分子量=392)ことから、加熱時における揮発量が多かったことに起因すると考えられた。 In addition, the addition of DOCH alone (Comparative Example 4) also failed in the evaluation of heat aging resistance. This was thought to be due to the fact that the molecular weight of DOCH was relatively small (molecular weight = 392), and that the amount of volatilization during heating was large.
比較例2〜5に示したように、トリメリット酸エステルおよびシクロヘキサンジカルボン酸エステルのうちの1種のみを添加した供試材では、耐寒性、電気絶縁性および耐熱老化性のすべての特性を十分に満たせないことが確認された。 As shown in Comparative Examples 2 to 5, the test material to which only one of trimellitic acid ester and cyclohexanedicarboxylic acid ester was added had sufficient characteristics of cold resistance, electrical insulation and heat aging resistance. It was confirmed that it was not satisfied.
(比較例6〜7)
比較例6は、トリメリット酸エステルの1種であるTOTMを1.2 phrと、シクロヘキサンジカルボン酸の1種であるDINCHを28.8 phr添加したものである。また、比較例7は、トリメリット酸エステルの1種であるTOTMを28.8 phrと、シクロヘキサンジカルボン酸の1種であるDINCHを1.2 phr添加したものである。トリメリット酸エステルとシクロヘキサンジカルボン酸の合計添加量が40質量部に満たない比較例6〜7は、耐熱老化性および耐寒性の評価が不合格であった。これは、可塑剤の合計添加量が本発明で規定する量よりも少ないために、充分な効果を発揮できなかったためと考えられた。
(Comparative Examples 6-7)
Comparative Example 6 is obtained by adding 1.2 phr of TOTM, which is one kind of trimellitic acid ester, and 28.8 phr, of DINCH, which is one kind of cyclohexanedicarboxylic acid. In Comparative Example 7, 28.8 phr of TOTM, which is one kind of trimellitic acid ester, and 1.2 phr, which is one kind of cyclohexanedicarboxylic acid, are added. In Comparative Examples 6 to 7, in which the total amount of trimellitic acid ester and cyclohexanedicarboxylic acid was less than 40 parts by mass, the evaluation of heat aging resistance and cold resistance was unacceptable. This was thought to be because the total amount of plasticizer added was less than the amount specified in the present invention, so that a sufficient effect could not be exhibited.
(比較例8〜9)
比較例8は、トリメリット酸エステルの1種であるTOTMを3.6 phrと、シクロヘキサンジカルボン酸の1種であるDINCHを86.4 phr添加したものである。また、比較例9は、トリメリット酸エステルの1種であるTOTMを86.4 phrと、シクロヘキサンジカルボン酸の1種であるDINCHを3.6 phr添加したものである。トリメリット酸エステルとシクロヘキサンジカルボン酸の合計添加量が80質量部を超える比較例8〜9は、電気絶縁性の評価が不合格であった。これは、可塑剤の合計添加量が本発明で規定する量よりも過剰であるために、絶縁被覆としての体積抵抗率が低下したため(すなわち、電気絶縁性が低下した)と考えられた。
(Comparative Examples 8-9)
Comparative Example 8 is obtained by adding 3.6 phr of TOTM, which is one kind of trimellitic acid ester, and 86.4 phr, of DINCH, which is one kind of cyclohexanedicarboxylic acid. In Comparative Example 9, 86.4 phr of TOTM, which is a kind of trimellitic ester, and 3.6 phr, of DINCH, which is a kind of cyclohexanedicarboxylic acid, are added. In Comparative Examples 8 to 9 in which the total addition amount of trimellitic acid ester and cyclohexanedicarboxylic acid exceeds 80 parts by mass, the evaluation of electrical insulating properties failed. This was thought to be because the volume resistivity as the insulating coating was lowered (that is, the electrical insulation property was lowered) because the total amount of plasticizer added was more than the amount specified in the present invention.
(実施例1〜3)
次に、本発明に係る実施例について表3〜5を参照しながら説明する。実施例1は、可塑剤としてトリメリット酸エステルの1種であるTOTMを2 phrと、シクロヘキサンジカルボン酸エステルの1種であるDINCHを48 phr添加したものである。実施例2は、TOTMを20 phrと、DINCHを30 phr添加したものである。また、実施例3は、TOTMを48 phrと、DINCHを2 phr添加したものである。いずれの実施例も、耐熱老化性、耐寒性および電気絶縁性の評価が全て合格であった。実施例1〜3の結果と比較例2,5の結果との比較から、第1可塑剤(A)と第2可塑剤(B)との混合比は、少なくとも「4/96≦A/B≦96/4」の範囲が好ましいことが実証された。
(Examples 1-3)
Next, examples according to the present invention will be described with reference to Tables 3 to 5. In Example 1, 2 phr of TOTM which is one kind of trimellitic acid ester and 48 phr of DINCH which is one kind of cyclohexanedicarboxylic acid ester are added as plasticizers. In Example 2, 20 phr of TOTM and 30 phr of DINCH were added. In Example 3, 48 phr of TOTM and 2 phr of DINCH were added. In all the examples, the evaluations of heat aging resistance, cold resistance and electrical insulation were all acceptable. From the comparison between the results of Examples 1 to 3 and the results of Comparative Examples 2 and 5, the mixing ratio of the first plasticizer (A) and the second plasticizer (B) is at least “4/96 ≦ A / B. A range of ≦ 96/4 ”has been demonstrated to be preferred.
(実施例4〜13)
実施例4〜13は、上記の実施例1〜3に加えて、第1可塑剤と第2可塑剤との合計添加量を50 phrと固定して、第1可塑剤と第2可塑剤との組合せ(すなわち、第1アルキル基および第2アルキル基の炭素数の影響)を調査したものである。トリメリット酸エステルとしては、TOTM(C8)、TINTM(1,2,4-ベンゼントリカルボン酸トリイソノニル、C9)、TIDTM(C10)を用い、シクロヘキサンジカルボン酸としては、DOCH(C8)、DINCH(C9)、DIDCH(1,2-シクロヘキサンジカルボン酸ジイソデシル、C10)を用いた。
(Examples 4 to 13)
In Examples 4 to 13, in addition to the above Examples 1 to 3, the total addition amount of the first plasticizer and the second plasticizer is fixed to 50 phr, and the first plasticizer and the second plasticizer (That is, the influence of the number of carbon atoms of the first alkyl group and the second alkyl group). The trimellitic acid ester is TOTM (C8), TINTM (1,2,4-benzenetricarboxylic acid triisononyl, C9), TIDTM (C10), and cyclohexanedicarboxylic acid is DOCH (C8), DINCH (C9). , DIDCH (
実施例4〜13で示したように、いずれの場合も耐熱老化性、耐寒性および電気絶縁性の評価が全て合格であった。実施例1〜3に加えて実施例4〜13の結果から、第1可塑剤(A)と第2可塑剤(B)との混合比が「4/96≦A/B≦96/4」であれば、第1アルキル基および第2アルキル基の炭素数が8〜10の範囲で自由に組合せが可能であることが実証された。 As shown in Examples 4 to 13, in all cases, the evaluations of heat aging resistance, cold resistance and electrical insulation were all acceptable. From the results of Examples 4 to 13 in addition to Examples 1 to 3, the mixing ratio of the first plasticizer (A) and the second plasticizer (B) was “4/96 ≦ A / B ≦ 96/4”. Then, it was demonstrated that the first alkyl group and the second alkyl group can be freely combined in the range of 8 to 10 carbon atoms.
(実施例14〜17)
実施例14〜17は、第1可塑剤としてTOTMを用い、第2可塑剤としてDINCHを用いて、第1可塑剤と第2可塑剤との合計添加量の影響を調査したものである。実施例14〜17で示したように、いずれの場合も耐熱老化性、耐寒性および電気絶縁性の評価が全て合格であった。実施例1〜3に加えて実施例14〜17の結果と、比較例6〜9の結果との比較から、第1可塑剤と第2可塑剤との合計添加量は、40質量部以上80質量部以下の範囲が好ましいことが実証された。
(Examples 14 to 17)
Examples 14-17 investigated the influence of the total addition amount of a 1st plasticizer and a 2nd plasticizer, using TOTM as a 1st plasticizer and using DINCH as a 2nd plasticizer. As shown in Examples 14 to 17, in all cases, the evaluations of heat aging resistance, cold resistance and electrical insulation were all acceptable. From the comparison between the results of Examples 14 to 17 and the results of Comparative Examples 6 to 9 in addition to Examples 1 to 3, the total addition amount of the first plasticizer and the second plasticizer is 40 parts by mass or more 80 A range of less than or equal to parts by weight has been demonstrated to be preferred.
以上示したように、本発明に係る軟質塩化ビニル樹脂組成物は、フタル酸エステルを含まず、かつ良好な電気絶縁性、耐寒性および耐熱老化性を兼ね備えていることが確認された。さらに、可塑剤として比較的安価な化合物を使用しているため、低コスト化が可能になる。また、当該軟質塩化ビニル樹脂組成物からなる絶縁被覆を有する絶縁電線は、それらの特長を享受できると言える。 As described above, it was confirmed that the soft vinyl chloride resin composition according to the present invention does not contain a phthalate ester and has good electrical insulation, cold resistance and heat aging resistance. Furthermore, since a relatively inexpensive compound is used as the plasticizer, the cost can be reduced. Moreover, it can be said that the insulated wire which has the insulation coating which consists of the said soft vinyl chloride resin composition can enjoy those characteristics.
1…導体、2…絶縁被覆、10…絶縁電線。
1 ... conductor, 2 ... insulation, 10 ... insulated wire.
Claims (2)
前記絶縁被覆が、塩化ビニル樹脂に可塑剤を添加させてなる軟質塩化ビニル樹脂組成物であって、前記可塑剤は、トリメリット酸エステルからなる第1可塑剤と、シクロヘキサンジカルボン酸エステルからなる第2可塑剤との混合物であり、前記第1可塑剤(A)と前記第2可塑剤(B)との質量比(A/B)が、4/96以上96/4以下であり、前記第1可塑剤(A)と前記第2可塑剤(B)の合計量(A+B)が、前記塩化ビニル樹脂100質量部に対して40質量部以上80質量部以下であり、60℃雰囲気下における体積抵抗率が10 13 Ω・cm以上である電気絶縁性を有する軟質塩化ビニル樹脂組成物からなることを特徴とする絶縁電線。 An insulated wire having an insulation coating on the outer periphery of the metal conductor wire,
The insulating coating is a soft vinyl chloride resin composition in which a plasticizer is added to a vinyl chloride resin, and the plasticizer is a first plasticizer made of trimellitic acid ester and a cyclohexanedicarboxylic acid ester. 2 plasticizer, and the mass ratio (A / B) of the first plasticizer (A) and the second plasticizer (B) is 4/96 or more and 96/4 or less, 1 plasticizer (a) and said second plasticizer total amount of (B) (a + B) is, the Ri der 40 parts by mass or more 80 parts by weight with respect to 100 parts by weight of vinyl chloride resin, under 60 ° C. atmosphere insulated wire, wherein the volume resistivity is from the soft matter vinyl chloride resin composition having an electrical insulation property is 10 13 Ω · cm or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012006626A JP5673569B2 (en) | 2012-01-17 | 2012-01-17 | Insulated wire |
CN201310016170.4A CN103205067B (en) | 2012-01-17 | 2013-01-16 | Soft vinyl chloride resin composition and the insulated electric conductor using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012006626A JP5673569B2 (en) | 2012-01-17 | 2012-01-17 | Insulated wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013147520A JP2013147520A (en) | 2013-08-01 |
JP5673569B2 true JP5673569B2 (en) | 2015-02-18 |
Family
ID=48752481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012006626A Expired - Fee Related JP5673569B2 (en) | 2012-01-17 | 2012-01-17 | Insulated wire |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5673569B2 (en) |
CN (1) | CN103205067B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190049611A (en) * | 2017-11-01 | 2019-05-09 | 주식회사 엘지화학 | Plasticizer composition and resin composition comprising the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013147519A (en) * | 2012-01-17 | 2013-08-01 | Hitachi Cable Ltd | Soft vinyl chloride resin composition and insulated wire using the same |
CN106164164A (en) | 2014-03-27 | 2016-11-23 | 新日本理化株式会社 | Vinyl chloride resin plasticizer containing non-phthalic acid system ester and the vinyl chloride resin composition containing this plasticizer |
JP6461530B2 (en) * | 2014-09-18 | 2019-01-30 | リケンテクノス株式会社 | Flame retardant vinyl chloride resin composition |
EP3305772A4 (en) | 2015-05-27 | 2018-12-05 | New Japan Chemical Co., Ltd. | Epoxycyclohexane dicarboxylic acid diester, plasticizer, stabilizer and resin composition |
JP6520570B2 (en) * | 2015-08-26 | 2019-05-29 | 新日本理化株式会社 | Plasticizer for vinyl chloride resin containing 1,2-cyclohexanedicarboxylic acid diester |
JP2017155093A (en) * | 2016-02-29 | 2017-09-07 | 矢崎エナジーシステム株式会社 | Polyvinyl chloride resin composition, and wire and cable prepared therewith |
KR102294862B1 (en) * | 2018-06-12 | 2021-08-30 | 주식회사 엘지화학 | Plasticizer composition and resin composition comprising the same |
KR102260895B1 (en) | 2018-06-12 | 2021-06-07 | 주식회사 엘지화학 | Plasticizer composition and resin composition comprising the same |
KR20230069472A (en) * | 2021-11-12 | 2023-05-19 | 한화솔루션 주식회사 | Plasticizer composition and vinylchloride resin composition comprising the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4314711B2 (en) * | 2000-01-27 | 2009-08-19 | 新日本理化株式会社 | Cyclohexanedicarboxylic acid diester plasticizer, vinyl chloride resin composition, and vinyl chloride resin molded article using the same |
JP3967094B2 (en) * | 2001-05-29 | 2007-08-29 | 日立電線株式会社 | Polyvinyl chloride resin composition-coated wires and cables |
TW201118163A (en) * | 2009-09-30 | 2011-06-01 | Dow Global Technologies Inc | Acetylated derivatives of castor oil and their blends with epoxidized fatty acid esters |
CN101735533A (en) * | 2010-01-21 | 2010-06-16 | 上海纳米技术及应用国家工程研究中心有限公司 | Environmentally-friendly antibacterial polyvinyl chloride composite material and preparation method thereof |
CN101831119A (en) * | 2010-03-17 | 2010-09-15 | 扬州凯尔化工有限公司 | Antibacterial PVC hard sheet suitable for packing medicament |
JP5423890B2 (en) * | 2010-06-04 | 2014-02-19 | 株式会社オートネットワーク技術研究所 | Wire covering material |
-
2012
- 2012-01-17 JP JP2012006626A patent/JP5673569B2/en not_active Expired - Fee Related
-
2013
- 2013-01-16 CN CN201310016170.4A patent/CN103205067B/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190049611A (en) * | 2017-11-01 | 2019-05-09 | 주식회사 엘지화학 | Plasticizer composition and resin composition comprising the same |
KR102237632B1 (en) * | 2017-11-01 | 2021-04-08 | 주식회사 엘지화학 | Plasticizer composition and resin composition comprising the same |
US11767420B2 (en) | 2017-11-01 | 2023-09-26 | Lg Chem, Ltd. | Plasticizer composition and resin composition including the same |
Also Published As
Publication number | Publication date |
---|---|
JP2013147520A (en) | 2013-08-01 |
CN103205067B (en) | 2016-06-29 |
CN103205067A (en) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5673569B2 (en) | Insulated wire | |
EP2470597B1 (en) | Heat stabilized polymeric composition with epoxidized fatty acid ester plasticizer | |
EP2245089B2 (en) | A replacement plasticizer system for phthalate-plasticized formulations | |
US10844194B2 (en) | Plasticizer composition and resin composition including same | |
KR101952338B1 (en) | Plasticizer composition and resin composition comprising the same | |
KR102237632B1 (en) | Plasticizer composition and resin composition comprising the same | |
CA2563137A1 (en) | Non-lead jacket for non-metallic sheathed electrical cable | |
CN101445633A (en) | Fire retardancu vinyl chloride resin combination and fire retardancu vinyl chloride resin covered electric wire | |
WO1993023466A1 (en) | Electrical grade polyvinyl chloride resin composition stabilized with a non-lead stabilizer | |
JP2013147519A (en) | Soft vinyl chloride resin composition and insulated wire using the same | |
EP2728587B1 (en) | Flat cable | |
US20130206450A1 (en) | Plasticizer system with improved electrical properties | |
US10590260B2 (en) | Plasticizer composition, resin composition, and methods for preparing same | |
EP3369771B1 (en) | Plasticizer composition, resin composition, and methods for preparing same | |
EP3269764B1 (en) | Plasticizer composition, resin composition, and methods for preparing same | |
JP2013040268A (en) | Vinyl chloride resin composition for thin wall wear resistant electric cable coating and thin wall wear resistant electric cable | |
EP3227261B1 (en) | Ester plasticizers based on ethylhexanol and propylheptanol | |
WO2014084313A1 (en) | Plasticizer for vinyl chloride resin, and vinyl chloride resin composition containing same | |
JP4168904B2 (en) | Polyester plasticizer and vinyl chloride resin composition | |
JP2001266649A (en) | Polyvinyl chloride composition and electric cable using the same | |
JP2014098135A (en) | Soft vinyl chloride resin composition, and electric wire and cable using the same | |
JPH0525342A (en) | Antistatic chlorine-containing resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20131202 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5673569 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |