JP5669623B2 - ポリアミド樹脂組成物及び成形品 - Google Patents
ポリアミド樹脂組成物及び成形品 Download PDFInfo
- Publication number
- JP5669623B2 JP5669623B2 JP2011042677A JP2011042677A JP5669623B2 JP 5669623 B2 JP5669623 B2 JP 5669623B2 JP 2011042677 A JP2011042677 A JP 2011042677A JP 2011042677 A JP2011042677 A JP 2011042677A JP 5669623 B2 JP5669623 B2 JP 5669623B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- mol
- resin composition
- polyamide
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Polyamides (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
また、特許文献4に開示されている技術では、吸水後の剛性の改良が十分ではないため、上記同様、使用環境下による物性変化が大きくなってしまうという問題がある。
さらに、特許文献5、6に開示されている技術では、低吸水性、高耐熱性に優れる特性があるものの、成形性が不十分であり、成形条件によっては、外観性、ヒケ等の成形表面不良が発生するという問題がある。
(c−p)の含有量>(b−p)の含有量≧0.1 ・・・(1)
すなわち、本発明は、以下のとおりである。
(A):(a−p)アジピン酸単位、(b−p)イソフタル酸単位、及び(c−p)1,
4−シクロヘキサンジカルボン酸単位、を含むジカルボン酸成分単位と、ジアミン成分単
位と、を含むポリアミド共重合体であって、
当該ポリアミド共重合体を構成する前記(a−p)、前記(b−p)、及び前記(c−
p)を含む前記ジカルボン酸成分単位の合計100モル%における、前記(b−p)の含
有量(モル%)と前記(c−p)との含有量(モル%)の関係が下記式(1)を満たすポ
リアミド共重合体100質量部と、
(c−p)の含有量>(b−p)の含有量≧0.1 ・・・(1)
(B):繊維状強化材であって、繊維の断面の長径をD2、断面の短径をD1とするとき
、D2/D1比(以下、扁平率と表す。)が1.5以上10以下である繊維状強化材1〜300質量部と、
を、含有し、
前記(B)繊維状強化材がガラス繊維であるポリアミド樹脂組成物。
〔2〕
前記(B)繊維状強化材が、扁平率2.5以上10以下である前記〔1〕に記載のポリ
アミド樹脂組成物。
〔3〕
前記(a−p)、前記(b−p)、及び前記(c−p)を含む前記ジカルボン酸成分単
位の合計100モル%に対して、
前記(a−p)アジピン酸単位の含有量が40〜80モル%であり、
前記(b−p)イソフタル酸単位の含有量が0.1〜25モル%であり、
前記(c−p)1,4−シクロヘキサンジカルボン酸単位の含有量が15〜40モル%
である、
前記〔1〕又は〔2〕に記載のポリアミド樹脂組成物。
〔4〕
前記ジアミン成分単位が、脂肪族ジアミン成分単位である、前記〔1〕乃至〔3〕のいずれか一に記載のポリアミド樹脂組成物。
〔5〕
前記ジアミン成分単位が、ヘキサメチレンジアミン単位である、前記〔1〕乃至〔4〕のいずれか一に記載のポリアミド樹脂組成物。
〔6〕
前記(A)ポリアミド共重合体が、(a´−p)前記アジピン酸と前記ヘキサメチレン
ジアミンとからなる単位、(b´−p)前記イソフタル酸と前記ヘキサメチレンジアミン
とからなる単位、及び、(c´−p)前記1,4−シクロヘキサンジカルボン酸と前記ヘ
キサメチレンジアミンとからなる単位を含む、前記〔1〕乃至〔5〕のいずれか一に記載のポリアミド樹脂組成物。
〔7〕
(a−m)アジピン酸、(b−m)イソフタル酸、及び(c−m)1,4−シクロヘキ
サンジカルボン酸を含むジカルボン酸成分と、ジアミン成分と、を共重合させることによ
り得られるポリアミド共重合体であって、
前記(c−m)1,4−シクロヘキサンジカルボン酸、前記(a−m)アジピン酸、及
び前記(b−m)イソフタル酸を含むジカルボン酸成分それぞれに由来する単位の合計1
00モル%における、前記ポリアミド共重合体中における(b−p)イソフタル酸単位の
含有量(モル%)と(c−1−p)1,4−シクロヘキサンジカルボン酸単位のトランス
異性体の単位の含有量(モル%)との関係が、下記式(2)を満たす(A)ポリアミド共
重合体100質量部と、
(c−1−p)1,4−シクロヘキサンジカルボン酸単位のトランス異性体の単位の含
有量>(b−p)イソフタル酸単位の含有量≧0.1 ・・・(2)
(B)繊維状強化材であって、繊維の断面の長径をD2、断面の短径をD1とする
とき、D2/D1比(以下、扁平率と表す。)が1.5以上10以下である繊維状強化材1〜300質量部と、
を、含有し、
前記(B)繊維状強化材がガラス繊維であるポリアミド樹脂組成物。
〔8〕
前記(a−m)アジピン酸、前記(b−m)イソフタル酸、及び前記(c−m)1,4
−シクロヘキサンジカルボン酸を含む前記ジカルボン酸成分と、
前記ジアミン成分と、
の、共重合における最終重合到達温度が270℃以上である、前記〔7〕に記載のポリアミド樹脂組成物。
〔9〕
前記ジアミン成分が、脂肪族ジアミン成分である、前記〔7〕又は〔8〕に記載のポリアミド樹脂組成物。
〔10〕
前記脂肪族ジアミン成分が、ヘキサメチレンジアミンである、前記〔9〕に記載のポリアミド樹脂組成物。
〔11〕
前記共重合の原料モノマーとして用いる前記(c−m)1,4−シクロヘキサンジカル
ボン酸中の前記シス異性体(c−2−m)に対する前記トランス異性体(c−1−m)の
モル比率((c−1−m)/(c−2−m))が、50/50〜10/90である、前記
〔7〕乃至〔10〕のいずれか一に記載のポリアミド樹脂組成物。
〔12〕
前記〔1〕乃至〔11〕のいずれか一に記載のポリアミド樹脂組成物を含む成形品。
〔13〕
自動車部品である前記〔12〕に記載の成形品。
〔14〕
電子部品である前記〔12〕に記載の成形品。
〔15〕
家電OA機器部品又は携帯機器部品である前記〔12〕に記載の成形品。
本実施形態のポリアミド樹脂組成物は、
(A):(a−p)アジピン酸単位、(b−p)イソフタル酸単位、及び(c−p)1,4−シクロヘキサンジカルボン酸単位を含むジカルボン酸成分単位と、
ジアミン成分単位と、を含むポリアミド共重合体であって、
当該ポリアミド共重合体を構成する前記(a−p)、前記(b−p)、及び前記(c−p)を含む前記ジカルボン酸成分単位の合計100モル%における、前記(b−p)の含有量(モル%)と前記(c−p)との含有量(モル%)の関係が下記式(1)を満たすポリアミド共重合体100質量部と、
(c−p)の含有量>(b−p)の含有量≧0.1 ・・・(1)
(B):繊維状強化材であって、繊維の断面の長径をD2、断面の短径をD1とするとき、D2/D1比(以下、扁平率と表す。)が1.5以上10以下である繊維状強化材1〜300質量部と、
を、含有するポリアミド樹脂組成物である。
(A)ポリアミド共重合体(本明細書中、(A):ポリアミド共重合体、ポリアミド共重合体(A)と記載することもある。)は、(a−p)アジピン酸単位、(b−p)イソフタル酸単位、及び(c−p)1,4−シクロヘキサンジカルボン酸単位、を含むジカルボン酸成分単位と、ジアミン成分単位とを含むポリアミド共重合体であって、当該ポリアミド共重合体を構成する前記(a−p)、前記(b−p)、及び前記(c−p)を含む前記ジカルボン酸成分単位の合計100モル%における、前記(b−p)の含有量(モル%)と前記(c−p)の含有量(モル%)の関係が、下記式(1)を満たすポリアミド共重合体である。
これにより、吸水剛性、熱時剛性に優れるだけでなく、成形外観性にも優れるポリアミド樹脂組成物とすることができる。
(c−p)の含有量>(b−p)の含有量≧0.1 ・・・(1)
前記(A)ポリアミド共重合体中のジカルボン酸成分単位の組成割合としては、前記(a−p)アジピン酸単位、(b−p)イソフタル酸単位、及び(c−p)1,4−シクロヘキサンジカルボン酸単位を含むジカルボン酸成分単位の合計100モル%に対して、好ましくは(a−p)アジピン酸単位の含有量が40〜80モル%、(b−p)イソフタル酸単位の含有量が0.1〜25モル%、及び(c−p)1,4−シクロヘキサンジカルボン酸単位の含有量が15〜40モル%であり、より好ましい組成割合は(a−p)アジピン酸単位の含有量が45〜80モル%、(b−p)イソフタル酸単位の含有量が1〜25モル%、及び(c−p)1,4−シクロヘキサンジカルボン酸単位の含有量が20〜40モル%であり、更に(b−p)と(c−p)の含有量の関係が上記式(1)を満たすポリアミド共重合体である。
組成割合を上記範囲内とし、かつ前記式(1)の関係を満たすことにより、成形外観性を損なうことなく、吸水剛性、熱時剛性が更に優れたポリアミド樹脂組成物とすることができる。
なお、ポリアミド共重合体を構成する各組成の割合は核磁気共鳴装置(NMR)によって求めることができる。
前記(A)ポリアミド共重合体中のジアミン成分単位としては、特に限定されないが、脂肪族ジアミン、芳香族ジアミン、主鎖から分岐した置換基を持つジアミン等が挙げられ、これらの中でも、脂肪族ジアミンが好ましい。
(A)ポリアミド共重合体には、本実施形態の目的を損なわない範囲で、(a−m)アジピン酸、(b−m)イソフタル酸、及び(c−m)1,4−シクロヘキサンジカルボン酸以外の脂肪族ジカルボン酸、脂環族ジカルボン酸、芳香族ジカルボン酸、重縮合可能なアミノ酸、ラクタム等を共重合成分として用いることができる。
前記種々の置換基としては、例えば、炭素数1〜6のアルキル基、炭素数6〜12のアリール基、炭素数7〜20のアリールアルキル基、クロロ基及びブロモ基等のハロゲン基、炭素数3〜10のアルキルシリル基、並びにスルホン酸基及びそのナトリウム塩等のその塩である基等が挙げられる。
前記(A)ポリアミド共重合体の原料として、分子量調節や耐熱水性向上のために、末端封止剤を更に添加することができる。例えば、前記(A)ポリアミド共重合体を重合する際に、公知の末端封止剤を、さらに添加することができる。
前記(A)ポリアミド共重合体の分子量については、特に限定されないが、成形性及び機械物性の観点から、数平均分子量(Mn)は、好ましくは7000〜100000であり、より好ましくは7500〜50000であり、さらに好ましくは10000〜40000である。
数平均分子量(Mn)は、例えば、トリフルオロ酢酸ナトリウムを0.1モル%溶解したヘキサフルオロイソプロパノール(HFIP)を溶媒として用い、標準試料としてポリメタクリル酸メチル(PMMA)を用いて、ゲルパーミエーションクロマトグラフィー(GPC)により求めることができる。
前記(A)ポリアミド共重合体の数平均分子量(Mn)が7000以上の場合には、靱性の低下を一層抑制できる傾向があり、また100000以下の場合には、成形性の低下を一層抑制できる傾向がある。
前記(A)ポリアミド共重合体の融点は、好ましくは210〜340℃であり、より好ましくは230〜330℃であり、さらに好ましくは240〜320℃であり、よりさらに好ましくは240〜300℃である。
融点の測定は、JIS K7121に準じて行うことができる。より具体的には、例えば、PERKIN−ELMER社製、「DSC−7」を用いて測定することができる。
具体的には、サンプル8mgを用いて、昇温速度20℃/minの条件下、400℃まで昇温して、得られた融解曲線のピーク温度を融点とする。
融点が210℃以上の場合には、耐薬品性や耐熱性の低下を一層抑制できる傾向があり、340℃以下の場合には成形時の熱分解等を一層抑制できる傾向がある。
前記(A)ポリアミド共重合体のガラス転移温度は、好ましくは50〜110℃であり、より好ましくは50〜100℃であり、さらに好ましくは50〜90℃である。
ガラス転移温度の測定は、JIS K7121に準じて行うことができる。より具体的には、例えば、PERKIN−ELMER社製、「DSC−7」を用いて測定することができる。
まず、試料をホットステージ(例えば、Mettler社製、「EP80」)で溶融させ、溶融状態のサンプルを液体窒素中に急冷し、固化させ、測定サンプルとする。測定サンプル10mgを用いて、昇温速度20℃/minの条件下、30〜300℃の範囲で昇温して、ガラス転移温度を測定することができる。
ガラス転移温度が50℃以上の場合には、耐熱性や耐薬品性の低下を起こし難く、吸水性が増すことを効果的に防止できる。また、ガラス転移温度が110℃以下の場合には、成形外観性が更に優れたものが得られる。
(A)ポリアミド共重合体の製造方法としては、特に限定されず、公知の方法を用いることができる。
例えば、アジピン酸、イソフタル酸、1,4−シクロヘキサンジカルボン酸、ヘキサメチレンジアミン、必要に応じてその他の成分との混合物の水溶液又は水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(熱溶融重合法);熱溶融重合法で得られたポリアミド共重合体を融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(熱溶融重合・固相重合法);アジピン酸、イソフタル酸、1,4−シクロヘキサンジカルボン酸、ヘキサメチレンジアミン、必要に応じてその他の成分との混合物の水溶液又は水の懸濁液を加熱し、析出したプレポリマーをさらにニーダー等の押出機で再び溶融させて重合度を上昇させる方法(プレポリマー・押出重合法);アジピン酸、イソフタル酸、1,4−シクロヘキサンジカルボン酸、ヘキサメチレンジアミン、必要に応じてその他の成分との混合物の水溶液又は水の懸濁液を加熱し、析出したプレポリマーをさらにポリアミドの融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(プレポリマー・固相重合法);アジピン酸、イソフタル酸、1,4−シクロヘキサンジカルボン酸、ヘキサメチレンジアミン、必要に応じてその他の成分との混合物、固体塩又は重縮合物を、固体状態を維持したまま重合(固相重合法)させる方法等が挙げられる。
また、重合装置についても、特に限定されず、公知の装置、例えば、オートクレーブ型の反応器、タンブラー型反応器、ニーダー等の押出機型反応器等を用いることができる。
例えば、アジピン酸、イソフタル酸、1,4−シクロヘキサンジカルボン酸、及びヘキサメチレンジアミンとの混合物、固体塩、又は水溶液等を、110〜200℃の温度下で攪拌し、約60〜90%まで水蒸気を徐々に抜いて加熱濃縮する。続いて、内部圧力を約1.5〜5.0MPa(ゲージ圧)になるまで加熱を続ける。その後、水及び/又はガス成分を除きながら圧力を約1.5〜5.0MPa(ゲージ圧)に保ち、内部温度が好ましくは250℃以上、より好ましくは260℃以上、さらに好ましくは270℃以上に達した時点で、水及び/又はガス成分を除くとともに、圧力を徐々に抜いて常圧又は減圧下で重縮合を行う熱溶融重合法を用いることができる。
さらには、アジピン酸、イソフタル酸、1,4−シクロヘキサンジカルボン酸、及びヘキサメチレンジアミンとの混合物、固体塩、又は重縮合物を融点以下の温度で熱重縮合させる固相重合法等も用いることができる。
これらの方法は必要に応じて組み合わせてもよい。
ポリアミド共重合体の構造単位は核磁気共鳴装置(NMR)によって確認することができる。
(A)ポリアミド共重合体が、下記式(2)を満たすことにより、成形外観性を損なうことなく、吸水剛性及び高温剛性を一層向上させることができる。
(c−1−p)1,4−シクロジカルボン酸に由来する単位のトランス異性体の単位の含有量>(b−p)イソフタル酸に由来する単位の含有量≧0.1 ・・・(2)
なお、(c−1−p)1,4−シクロジカルボン酸に由来する単位のトランス異性体の単位の含有量と、(b−p)イソフタル酸に由来する単位の含有量は、それぞれNMRによって求められる。
例えば、上記した熱溶融重合法を採用する場合、最終内部温度を上記温度範囲としつつ、常圧で又は減圧して重縮合を行うことが好ましい。
押出温度は、JIS K7121に準じた示差走査熱量(DSC)測定で求まる融点よりも1〜100℃程度高い温度であることが好ましい。剪断速度は、100(sec-1)以上程度であることが好ましく、平均滞留時間は、0.1〜15分間程度であることが好ましい。上記の押出条件とすることにより、着色や高分子量化できない等の問題の発生を効果的に抑制できる。
触媒は、ポリアミドの製造に用いられる公知のものであれば特に限定されず、例えば、リン酸、亜リン酸、次亜リン酸、オルト亜リン酸、ピロ亜リン酸、フェニルホスフィン酸、フェニルホスホン酸、2−メトキシフェニルホスホン酸、2−(2’−ピリジル)エチルホスホン酸、及びそれらの金属塩等が挙げられる。
金属塩の金属としては、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモン等の金属塩やアンモニウム塩等が挙げられる。
また、エチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、デシルエステル、イソデシルエステル、オクタデシルエステル、ステアリルエステル、フェニルエステル等のリン酸エステル類も用いることができる。
原料モノマーとして用いられる(c−m)1,4−シクロヘキサンジカルボン酸は、トランス体とシス体のどちらか一方を用いてもよいし、トランス体とシス体の種々の比率の混合物として用いてもよい。
(c−m)1,4−シクロジカルボン酸は高温で異性化し一定の比率になることや、シス体が、トランス体よりも、ジアミンとの当量塩の水溶性が高いことから、原料モノマーとして用いる(c−m)1,4−シクロジカルボン酸中のシス異性体(c−2−m)に対するトランス異性体(c−1−m)のモル比率((c−1−m)/(c−2−m))は、好ましくは50/50〜10/90であり、より好ましくは40/60〜10/90であり、さらに好ましくは35/65〜15/85である。
トランス体/シス体比を上記範囲とすることにより、成形外観性を損なうことなく、吸水剛性及び熱時剛性に一層優れるポリアミド樹脂組成物とすることができる。トランス体/シス体比は、核磁気共鳴装置(NMR)を用いて測定することができる。
ポリアミド共重合体(A)と、後述する繊維状強化材(B)(本明細書中、(B):繊維状強化材、繊維状強化材(B)、繊維強化材と記載することもある。)とを含む本実施形態のポリアミド樹脂組成物は、剛性に優れている。
(B)繊維状強化材としては、特に限定されるものではなく、例えば、ガラス繊維、炭素繊維、ケイ酸カルシウム繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維等が挙げられる。特に、強度や剛性の観点から、ガラス繊維や炭素繊維が好ましい。
(B)繊維状強化材は、1種類で用いてもよいし、2種類以上を組み合わせて用いてもよい。
扁平率(又は長径及び短径)はメーカーによる公称値があればそれをそのまま使用できるが、公称値が無い場合は顕微鏡による測定値から容易に求められる。
扁平率が、例えば15〜20程度に大きいと、他の成分との混合の他、混練、成形等の処理の際、破砕されてしまうおそれがあり、所望の効果が得られない場合がある。
細すぎる場合は繊維の紡糸が困難な場合があり、太すぎる場合はポリアミド樹脂との接触面積の減少等により、成形品の機械的強度が低下してしまうおそれがある。
短径D1は3μm以上が好ましく、短径D1が3μm以上で、かつ扁平率が3より大きい値であることがより好ましい。
特に、底面に多数のオリフィスを有するオリフィスプレートにおいて、複数のオリフィス出口を囲み、当該オリフィスプレート底面より下方に延びる凸状縁を設けたオリフィスプレート、又は、単数もしくは複数のオリフィス孔を有するノズルチップの外周部先端から下方に延びる複数の凸状縁を設けた異形断面ガラス繊維紡糸用ノズルチップを使用して製造された、扁平率が1.5以上10以下のガラス繊維が好ましい。
(B)繊維状強化材は、繊維ストランドをロービングとしてそのまま使用してもよく、さらに切断工程を得て、チョップドガラスストランドとして使用してもよい。
(B)繊維状強化材の配合量を(A)ポリアミド100質量部に対して1質量部以上とすることにより、本実施形態のポリアミド樹脂組成物の機械的強度等が向上し、また、配合量を200質量部以下とすることにより、成形性に優れるポリアミド樹脂組成物が得られる。
また、ガラス繊維の引張強度は、任意であるが、通常290kg/mm2以上である。
これらの中でも、Eガラスが、入手が容易である観点から好ましい。
これらガラス繊維は、例えば、γ−メタクリルオキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン等のシランカップリング剤で表面処理されていることが好ましく、その付着量はガラス繊維重量(ガラス繊維と表面処理剤との合計量)に対し通常0.01質量%以上である。
さらに、必要に応じ、集束剤により処理を施すこともできる。集束剤としては、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体、エポキシ化合物、ポリウレタン樹脂、アクリル酸のホモポリマー、アクリル酸とその他共重合性モノマーとのコポリマー、並びにこれらの第1級、第2級及び第3級アミンとの塩、並びにカルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体を含む共重合体等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
特に、ポリアミド樹脂組成物の機械的強度の観点から、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体、エポキシ化合物及びポリウレタン樹脂、並びにこれらの組み合わせが好ましく、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体及びポリウレタン樹脂、並びにこれらの組み合わせがより好ましい。
本実施形態のポリアミド組成物は、上記(B):扁平率が1.5以上10以下の繊維状強化材以外にも、所定の無機充填材を併用してもよい。
このような無機充填材としては、一般的な円形断面(扁平率1)のガラス繊維や炭素繊維等も含まれる。これらガラス繊維や炭素繊維の中でも、数平均繊維径が3〜30μmであり、重量平均繊維長が100〜750μmであり、重量平均繊維長と数平均繊維径とのアスペクト比(L/D)が10〜100であるものが、高い特性を発現するという観点からさらに好ましく用いられる。
また、ガラス繊維の引張強度は、任意であるが、通常290kg/mm2以上である。
これらの中でも、Eガラスが、入手が容易である観点から好ましい。
これらガラス繊維は、例えば、γ−メタクリルオキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン等のシランカップリング剤で表面処理されていることが好ましく、その付着量はガラス繊維重量に対し通常0.01質量%以上である。
さらに、必要に応じ、集束剤により、処理を施すこともできる。集束剤としては、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体、エポキシ化合物、ポリウレタン樹脂、アクリル酸のホモポリマー、アクリル酸とその他共重合性モノマーとのコポリマー、並びにこれらの第1級、第2級及び第3級アミンとの塩、並びにカルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体を含む共重合体等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
特に、ポリアミド樹脂組成物の機械的強度の観点から、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体、エポキシ化合物及びポリウレタン樹脂、並びにこれらの組み合わせが好ましく、カルボン酸無水物含有不飽和ビニル単量体と前記カルボン酸無水物含有不飽和ビニル単量体を除く不飽和ビニル単量体とを構成単位として含む共重合体及びポリウレタン樹脂、並びにこれらの組み合わせがより好ましい。
さらに、無機充填材としては、タルク、マイカ、カオリン、及び窒化珪素等がより好ましく、タルク、マイカ、カオリン、及び窒化珪素等の中でも、数平均繊維径が0.1〜3μmであるものがさらに好ましく用いられる。
本実施形態のポリアミド樹脂組成物には、必要に応じて、本実施形態の目的を損なわない範囲で、熱劣化、熱時の変色防止、耐熱エージング性、及び耐候性の向上を目的に、劣化抑制剤を添加してもよい。
劣化抑制剤としては、特に限定されないが、例えば、酢酸銅及びヨウ化銅等の銅化合物、ヒンダードフェノール化合物等のフェノール系安定剤、ホスファイト系安定剤、ヒンダードアミン系安定剤、トリアジン系安定剤、及びイオウ系安定剤等からなる群より選ばれる少なくとも1種の劣化防止剤が挙げられる。
これらの、劣化抑制剤は、1種類単独で用いてもよいし、2種類以上を組み合せて用いてもよい。
成形性改良剤としては、特に限定されないが、高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸エステル、及び高級脂肪酸アミド等からなる群より選ばれる少なくとも1種の成形性改良剤が挙げられる。
高級脂肪酸金属塩としては、例えば、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、モンタン酸カルシウム、及びモンタン酸ナトリウム、パルミチン酸カルシウム等が挙げられる。
これらの中でも、成形性の観点から、モンタン酸の金属塩及びステアリン酸の金属塩等が好ましい。
これらの中でも、成形性の観点から、炭素数8〜40の脂肪族カルボン酸と炭素数8〜40の脂肪族アルコールとのエステルが好ましい。
前記アルコールとしては、例えば、ステアリルアルコール、ベヘニルアルコール、及びラウリルアルコール等が挙げられる。高級脂肪酸エステルとしては、例えば、ステアリン酸ステアリル、ベヘン酸ベヘニル等が挙げられる。
高級脂肪酸アミドとしては、例えば、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、エチレンビスステアリルアミド、エチレンビスオレイルアミド、N−ステアリルステアリルアミド、N−ステアリルエルカ酸アミド等が挙げられる。
これらの中でも、成形性の観点から、好ましくはステアリン酸アミド、エルカ酸アミド、エチレンビスステアリルアミド、及びN−ステアリルエルカ酸アミドであり、より好ましくはエチレンビスステアリルアミド及びN−ステアリルエルカ酸アミドである。これらの、高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸エステル、及び高級脂肪酸アミドは、それぞれ1種類単独で用いてもよいし、2種類以上を組み合せて用いてもよい。
着色剤としては、特に限定されないが、例えば、ニグロシン等の染料、酸化チタン及びカーボンブラック等の顔料、アルミニウム、着色アルミニウム、ニッケル、スズ、銅、金、銀、白金、酸化鉄、ステンレス、及びチタン等の金属粒子、並びにマイカ製パール顔料、カラーグラファイト、カラーガラス繊維、及びカラーガラスフレーク等のメタリック顔料等からなる群より選ばれる少なくとも1種の着色剤が挙げられる。
他の樹脂としては、特に限定されず、熱可塑性樹脂やゴム成分等が挙げられる。
これらの熱可塑性樹脂は、1種類単独で用いてもよいし、2種類以上を組み合せて用いてもよい。
これらのゴム成分は、1種類単独で用いてもよいし、2種類以上を組み合せて用いてもよい。
本実施形態のポリアミド樹脂組成物は、(A)ポリアミド共重合体に、上述した(B)繊維状強化材、無機充填材、劣化抑制剤、成形性改良剤、着色剤等の各種添加剤、その他の樹脂等を配合することにより作製できる。
配合方法としては、特に限定されず、公知の押出技術を用いることができる。その際、配合、混練方法や混練順序は、特に限定されず、通常用いられる混合機、例えば、ヘンシェルミキサー、タンブラー、及びリボンブレンダー等を用いて混合できる。
混練機としては、通常、1軸又は多軸の押出機が用いられるが、これらの中でも、生産性の観点から、減圧装置を備えた2軸押出機が好ましい。
本実施形態のポリアミド樹脂組成物の成形品は、上述した本実施形態のポリアミド樹脂組成物を、所定の方法により成形することにより得られる。
成形方法としては、本実施形態のポリアミド樹脂組成物から成形品を得ることができる方法であれば、特に限定されず、公知の成形方法を用いることができる。
例えば、押出成形、射出成形、真空成形、ブロー成形、射出圧縮成形、加飾成形、他材質成形、ガスアシスト射出成形、発砲射出成形、低圧成形、超薄肉射出成形(超高速射出成形)、及び金型内複合成形(インサート成形、アウトサート成形)等の成形方法が挙げられる。
成形品としては、特に限定されないが、例えば、自動車部品、電気部品、電子部品、携帯機器部品、機械・工業部品、事務機器部品、航空・宇宙部品において好適に用いることができる。
電器・電子部品としては、例えば、コネクター、スイッチ、リレー、プリント配線板、電子部品ハウジング、コンセント、ノイズフィルター、コイルボビン、及びモーターエンドキャップ等が挙げられる。
携帯機器部品としては、例えば、携帯電話、スマートフォン、パソコン、携帯ゲーム機器、デジタルカメラ等の筐体、及び構造体等が挙げられる。
また、本実施形態の成形品は、表面外観に優れているので、成形品表面に塗装膜を形成させた成形品としても好ましく用いられる。塗装膜の形成方法は公知の方法であれば特に制限はなく、例えば、スプレー法、静電塗装法等の塗装によることができる。また、塗装に用いる塗料は、公知のものであれば特に限定されず、メラミン架橋タイプのポリエステルポリオール樹脂塗料、アクリルウレタン系塗料等を用いることができる。
実施例及び比較例に用いた材料の構造、物性の測定方法、成形方法、評価方法を以下に示す。
(ポリアミドの数平均分子量(Mn))
ポリアミド共重合体の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により求めた。
装置は東ソー(株)製、「HLC−8020」を、検出器は示差屈折計(RI)を、溶媒はトリフルオロ酢酸ナトリウムを0.1モル%溶解させたヘキサフルオロイソプロパノール(HFIP)を、カラムは東ソー(株)製、「TSKgel−GMHHR−H」2本と「G1000HHR」1本を用いた。
溶媒流量は0.6mL/min、サンプル濃度は1〜3(mgサンプル)/1(mL溶媒)であり、フィルターでろ過し、不溶分を除去し、測定試料とした。
得られた溶出曲線をもとに、ポリメタクリル酸メチル(PMMA)換算により、数平均分子量(Mn)を算出した。
ポリアミド共重合体中の1,4−シクロヘキサンジカルボン酸のトランス異性体比率は、ポリアミド共重合体30〜40mgをヘキサフルオロイソプロパノール重水素化物1.2gに溶解し、1H−NMRで測定した。
装置は日本電子(株)製、「JNM ECA−500」を用いた。1,4−シクロヘキサンジカルボン酸の場合、トランス異性体に由来するピーク面積とシス異性体に由来するピーク面積との比率からトランス異性体比率(トランス異性体/シス異性体)を求めた。
また、ポリアミド共重合体中の構成単位の割合は、1H−NMRで測定し、各成分に由来するピーク面積の比率から求めた。
比率計算に用いたピークを下記に示す。
<ポリアミド共重合体中の1,4−シクロヘキサンジカルボン酸のトランス/シス比>
トランスピーク:1.98ppm
シスピーク:1.77ppm、1.86ppm
<ポリアミド共重合体中の構成単位の割合>
1,4−シクロヘキサンジカルボン酸:上記トランス/シス比に用いたピーク
アジピン酸 :2.3ppm、2.4ppm
イソフタル酸 :3.5ppm
ヘキサメチレンジアミン :3.28ppm、3.5ppm
HPLC(高速液体クロマトグラフィー)装置を用いて、原料モノマーである1,4−シクロヘキサンジカルボン酸におけるトランス/シスのモル比を測定した。
HPLC装置としては、島津製作所(株)製 LC−10Aを用いた。1,4−シクロヘキサンジカルボン酸モノマーを、逆相カラムを用いたグレジェント溶離法により、トランス成分(溶出時間約11分)と、シス成分(溶出時間約14.5分)とに分離し、それぞれのピーク面積の比により求めた。
HPLC分析条件の詳細を以下に示す。
装置:島津製作所(株)LC−10A vp
逆相(C30)カラム:野村化学(株)Develosil PRAQUOUS
温度:40℃
流速:1.0mL/min
検出:UV214nm
移動相A:水(0.1質量% トリフルオロ酢酸含有))
移動相B:水/アセトニトリル=10/90(0.1質量%トリフルオロ酢酸含有)
移動相混合比:B=0→100%(15分間)
試料濃度:10mg/mL
(溶媒:(水/アセトニトリル)=50/50)
試料溶液注入量:20mL
融点は、JIS K7121に準じて、PERKIN−ELMER社製、「DSC−7」を用いて測定した。
測定条件は、窒素雰囲気下、試料約10mgを昇温速度20℃/minで昇温したときに現れる吸熱ピーク(融解ピーク)の温度をTm1(℃)とし、Tm1+40℃の溶融状態で温度を2分間保った後、降温速度20℃/minで30℃まで降温、2分間保持した後、昇温速度20℃/minで昇温したときに現れる吸熱ピーク(融解ピーク)のピーク温度を融点(Tm2(℃))とした。
ガラス転移温度は、JIS K7121に準じて、PERKIN−ELMER社製、「DSC−7」を用いて測定した。
まず、サンプルをホットステージ(Mettler社製、「EP80」)で溶融させ、溶融状態のサンプルを液体窒素中で急冷し、固化させ、測定用サンプルとした。
測定用サンプル10mgを、昇温速度20℃/minの条件下、30〜300℃の範囲で昇温して、そのガラス転移温度を測定した。
成形品は、射出成形機を用いて作製した。
射出成形機は日精樹脂(株)製、「PS40E」を用いた。金型温度を100℃に設定し、射出17秒、冷却20秒の射出成形条件で、厚み4mmのISO試験片を得た。なお、シリンダー温度は、前記融点測定法に準じて求めたポリアミド共重合体の融点より約30℃高い温度条件に設定した。
前記厚み4mmのISOダンベルを作製し、試験片とした。
得られた試験片を用いて、ISO178に準じて、曲げ弾性率を測定した。
後述する吸水処理を行う前の曲げ弾性率を、吸水前(Dry)曲げ弾性率とした。
前記ISOダンベルを試験片として用いて、80℃の温水中で24時間浸漬後、ISO178に準じて、吸水後(Wet)曲げ弾性率を測定した。
また、Wet保持率を、下記式を用いて求めた。
Wet保持率(%)=吸水後(Wet)曲げ弾性率/吸水前(Dry)曲げ弾性率×100
前記厚み4mmの試験片を用いて、100℃雰囲気下でISO178に準じて曲げ弾性率を測定した。100℃保持率は下記式を用いて求めた。
100℃保持率(%)=100℃曲げ弾性率/吸水前(Dry)曲げ弾性率×100
成形品は、射出成形機を用いて作製した。
射出成形機は東芝機械(株)製、「IS150E」を用いた。金型温度を90℃に設定し、射出12秒、冷却20秒の射出成形条件で、縦130mm×横130mm×厚み4mmの試験片を得た。なお、シリンダー温度は、前記融点測定法に準じて求めたポリアミド共重合体の融点より約30℃高い温度条件に設定した。
堀場(株)製、ハンディ光沢度計「IG320」により、前記成形外観性評価用の成形品の60℃反射グロス値を求めた。
成形品は、射出成形機を用いて作製した。
射出成形機は日精樹脂(株)製、「PS40E」を用いた。金型温度を100℃に設定し、冷却20秒で固定し、射出時間を変化させて(条件1=2秒、条件2=8秒)、厚み4mmのISO試験片を得た。評価用のISO試験片は、成形開始から20ショット以降の10枚の試験片を用いた。
なお、シリンダー温度は、前記融点測定法に準じて求めたポリアミド共重合体の融点より約30℃高い温度条件に設定した。
ヒケの測定は、ISO試験片各10枚の流動末端部の最先端からゲート部に向かって5mm毎、3箇所の厚みデプスゲージにより測定し、その3箇所の厚み変化の平均値を計算し、さらに10枚の平均値を計算し、各射出条件の厚み変化とした。
厚み変化:ISO試験片金型の試験片厚み(4mm)から厚み方向における寸法変化の数値
ヒケ変化率は下記式を用いて求めた。ヒケ変化率の数値が小さい程、成形依存性が少ないことを示す。
ヒケ変化率(%)=(1−<条件2>の厚み変化/<条件1>の厚み変化))×100
(材料)
実施例、及び比較例におけるポリアミド共重合体の製造において、下記化合物を用いた。
(1)アジピン酸 和光純薬工業(株)製 商品名:アジピン酸
(2)1,4−シクロヘキサンジカルボン酸 イーストマンケミカル製 商品名:1,4−CHDA HPグレード(トランス体/シス体(モル比)=25/75)
(3)イソフタル酸 和光純薬工業(株)製 商品名:イソフタル酸
(4)ヘキサメチレンジアミン 和光純薬工業(株)製 商品名:ヘキサメチレンジアミン
アジピン酸517.0g(3.54モル)、イソフタル酸55.1g(0.33モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸285.5g(1.66モル)、ヘキサメチレンジアミン642.3g(5.53モル)を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を準備した。
この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。
110〜150℃の温度下で撹拌しながら、水蒸気を徐々に抜いて、溶液濃度70質量%まで濃縮した。その後、内部温度を218℃まで昇温した。このとき、オートクレーブは1.8MPaまで昇圧した。そして、内部温度が270℃になるまで、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次に、1時間かけて圧力を1MPaまで下げ、更に15分、窒素をオートクレーブ内部に流しながら重合を進めて、ポリアミド共重合体を得た。このとき、重合の最終内部温度は290℃であった。
得られたポリアミド共重合体を2mm以下の大きさまで粉砕し、100℃、窒素雰囲気下で12時間乾燥した。得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は69.8モル%であった。
得られたポリアミド共重合体(A1)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A1)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
アジピン酸440.9g(3.02モル)、イソフタル酸91.1g(0.55モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸330.6g(1.92モル)、ヘキサメチレンジアミン637.4g(5.49モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。
このとき、重合の最終内部温度は291℃であった。得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は71.4モル%であった。
得られたポリアミド共重合体(A2)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A2)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
アジピン酸509.4g(3.49モル)、イソフタル酸128.7g(0.77モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸219.1g(1.27モル)、ヘキサメチレンジアミン642.9g(5.53モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。このとき、重合の最終内部温度は292℃であった。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は71.8モル%であった。
得られたポリアミド共重合体(A3)の組成を下記表1に示す。表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A3)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
アジピン酸433.3g(2.97モル)、イソフタル酸173.3g(1.04モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸255.3g(1.48モル)、ヘキサメチレンジアミン638.1g(5.49モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。このとき、重合の最終内部温度は293℃であった。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は72.0モル%であった。
得られたポリアミド共重合体(A4)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A4)分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
アジピン酸595.3g(4.07モル)、イソフタル酸83.4g(0.50モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸172.9g(1.00モル)、ヘキサメチレンジアミン648.4g(5.58モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。このとき、重合の最終内部温度は290℃であった。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は72.2モル%であった。
得られたポリアミド共重合体(A5)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A5)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
アジピン酸333.5g(2.28モル)、イソフタル酸207.6g(1.25モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸327.5g(1.90モル)、ヘキサメチレンジアミン631.4g(5.43モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。このとき、重合の最終内部温度は290℃であった。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は70.2モル%であった。
得られたポリアミド共重合体(A6)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A6)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
アジピン酸332.9g(2.28モル)、イソフタル酸135.2g(0.81モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸401.6g(2.33モル)、ヘキサメチレンジアミン630.3g(5.42モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。このとき、重合の最終内部温度は292℃であった。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は72.1モル%であった。
得られたポリアミド共重合体(A7)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A7)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
アジピン酸268.1g(1.83モル)、イソフタル酸233.1g(1.40モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸371.7g(2.16モル)、ヘキサメチレンジアミン627.1g(5.40モル)とした以外は製造例1に記載した方法で、ポリアミド共重合体を重合した。このとき、重合の最終内部温度は291℃であった。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は72.3モル%であった。
得られたポリアミド共重合体(A8)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A8)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
アジピン酸692.2g(4.74モル)、イソフタル酸74.9g(0.45モル)、トランス体/シス体のモル比が80/20である1,4−シクロヘキサンジカルボン酸77.7g(0.45モル)、ヘキサメチレンジアミン655.2g(5.64モル)を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を準備した。この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。110〜150℃の温度下で撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。その後、内部温度を218℃に昇温した。このとき、オートクレーブは1.8MPaまで昇圧した。そのまま1時間、253℃になるまで、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次に、1時間かけて圧力を1MPaまで下げ、更に15分間、窒素をオートクレーブ内部に流しながら重合を進めて、ポリアミド共重合体を得た。
これを2mm以下の大きさまで粉砕し、100℃、窒素雰囲気下で12時間乾燥した。
得られたポリアミド共重合体(A9)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A9)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
アジピン酸595.9g(4.08モル)、イソフタル酸129.9g(0.78モル)、トランス体/シス体のモル比が80/20である1,4−シクロヘキサンジカルボン酸125.0g(0.73モル)、ヘキサメチレンジアミン649.1g(5.59モル)とした以外は、製造例9に記載した方法で、ポリアミド共重合体を重合した。
得られたポリアミド共重合体(A10)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A10)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
アジピン酸317.5g(2.17モル)、イソフタル酸270.7g(1.63モル)、トランス体/シス体のモル比が80/20である1,4−シクロヘキサンジカルボン酸280.6g(1.63モル)、ヘキサメチレンジアミン631.2g(5.43モル)とした以外は、製造例9に記載した方法で、ポリアミド共重合体を重合した。
得られたポリアミド共重合体(A11)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A11)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
アジピン酸509.9g(3.49モル)、イソフタル酸174.8g(1.05モル)、トランス体/シス体のモル比が80/20である1,4−シクロヘキサンジカルボン酸171.7g(1.00モル)、ヘキサメチレンジアミン643.6g(5.54モル)とした以外は製造例9に記載した方法で、ポリアミド共重合体を重合した。
得られたポリアミド共重合体(A12)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A12)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
アジピン酸509.4g(3.49モル)、イソフタル酸128.7g(0.77モル)、トランス体/シス体のモル比が25/75である1,4−シクロヘキサンジカルボン酸219.1g(1.27モル)、ヘキサメチレンジアミン642.9g(5.53モル)を蒸留水1500gに溶解させ、原料モノマーの等モル50質量%均一水溶液を作った。
この水溶液を内容積5.4Lのオートクレーブに仕込み、窒素置換した。110〜150℃の温度下で撹拌しながら、溶液濃度70質量%まで水蒸気を徐々に抜いて濃縮した。その後、内部温度を218℃に昇温した。このとき、オートクレーブは1.8MPaまで昇圧した。そのまま1時間、253℃になるまで、水蒸気を徐々に抜いて圧力を1.8MPaに保ちながら1時間反応させた。
次に、1時間かけて圧力を1MPaまで下げ、更に15分間、窒素をオートクレーブ内部に流しながら重合を進めて、ポリアミド共重合体を得た。このとき、重合の最終内部温度は275℃であった。
これを2mm以下の大きさまで粉砕し、100℃、窒素雰囲気下で12時間乾燥した。
得られたポリアミド共重合体に含まれる1,4−シクロジカルボン酸成分のトランス異性体比率は56.7モル%であった。
得られたポリアミド共重合体(A13)の組成を下記表1に示す。下記表1に示すポリアミド共重合体の構成単位の割合は、得られた共重合体を1H−NMRにより分析することによって求めた。
得られたポリアミド共重合体(A13)の分子量、融点、ガラス転移温度を、上記記載の方法により評価した。評価結果を下記表1に示す。
(B1)扁平ガラス繊維(GF−1)
商品名:CSG 3PA−820S(日東紡績社製)
扁平率=4(D2=28μm、D1=7μm)、カット長3mm
(B2)円形断面ガラス繊維(GF−2)
商品名:CSX 3J−451S(日東紡績社製)
扁平率=1(平均繊維径11μm)、カット長3mm
<実施例1>
ポリアミド共重合体(A1)100質量部を、東芝機械社製、TEM35mm2軸押出機(設定温度:前記融点測定法に準じて求めたポリアミド共重合体の融点より約30℃高い温度、スクリュー回転数300rpm)にフィードホッパーより供給した。
さらに、サイドフィード口より、ポリアミド共重合体(A)100質量部に対して、ガラス繊維(B1)を100質量部の割合で供給し、紡口より押出された溶融混練物をストランド状で冷却し、ペレタイズしてペレット状のポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A2)を用いた以外は実施例1に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性の評価)を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A3)を用いた以外は実施例1に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A3)100質量部を、東芝機械社製、TEM35mm2軸押出機(設定温度:前記融点測定法に準じて求めたポリアミド共重合体の融点より約30℃高い温度、スクリュー回転数300rpm)にフィードホッパーより供給した。
さらに、サイドフィード口より、ポリアミド共重合体(A)100質量部に対して、ガラス繊維(B1)を50質量部の割合で供給し、紡口より押出された溶融混練物をストランド状で冷却し、ペレタイズしてペレット状のポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A4)を用いた以外は実施例1に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A5)を用いた以外は実施例1に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A6)を用いた以外は実施例1に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A7)を用いた以外は実施例1に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A8)を用いた以外は実施例1に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A13)を用いた以外は、実施例に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A9)を用いた以外は実施例1に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A10)を用いた以外は実施例1に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A11)を用いた以外は実施例1に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A12)を用いた以外は実施例1に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
ポリアミド共重合体(A3)、繊維状強化材(B2)を用いた以外は実施例1に記載した方法と同様にして、ポリアミド樹脂組成物を得た。
上記記載の方法により、上述した各曲げ弾性率(吸水剛性と熱時剛性)、成形性(成形表面ヒケ性、及び外観性)の評価を行った。評価結果を下記表2に示す。
一方、(b−p)イソフタル酸単位の含有量(モル%)と(c−p)1,4−シクロヘキサンジカルボン酸単位の含有量(モル%)の関係が、(b−p)の含有量=(c−p)の含有量である比較例1、3、及び(b−p)と(c−p)の関係が(b−p)の含有量>(c−p)の含有量である比較例2、4のポリアミド共重合体から得られた成形品は、吸水剛性、100℃での熱時剛性が大きく低下したことが確認された。
さらに、(b−p)イソフタル酸単位と(c−p)1,4−シクロヘキサンジカルボン酸単位との関係が、(c−p)の含有量>(b−p)の含有量であり、かつ(c−1−p)1,4−シクロジカルボン酸に由来する単位のトランス異性体の単位の含有量>(b−p)イソフタル酸に由来する単位の含有量≧0.1である実施例3のポリアミド共重合体から得られた成形品は、実施例9の成形品に比較して、吸水剛性、熱時剛性、成形性(ヒケ、外観)が一層優れていることが確認された。
Claims (15)
- (A):(a−p)アジピン酸単位、(b−p)イソフタル酸単位、及び(c−p)1,
4−シクロヘキサンジカルボン酸単位を含むジカルボン酸成分単位と、
ジアミン成分単位と、を含むポリアミド共重合体であって、
当該ポリアミド共重合体を構成する前記(a−p)、前記(b−p)、及び前記(c−
p)を含む前記ジカルボン酸成分単位の合計100モル%における、前記(b−p)の含
有量(モル%)と前記(c−p)との含有量(モル%)の関係が下記式(1)を満たすポ
リアミド共重合体100質量部と、
(c−p)の含有量>(b−p)の含有量≧0.1 ・・・(1)
(B):繊維状強化材であって、繊維の断面の長径をD2、断面の短径をD1とするとき
、D2/D1比(以下、扁平率と表す。)が1.5以上10以下である繊維状強化材1〜300質量部と、
を、含有し、
前記(B)繊維状強化材がガラス繊維であるポリアミド樹脂組成物。 - 前記(B)繊維状強化材が、扁平率2.5以上10以下である請求項1に記載のポリア
ミド樹脂組成物。 - 前記(a−p)、前記(b−p)、及び前記(c−p)を含む前記ジカルボン酸成分単
位の合計100モル%に対して、
前記(a−p)アジピン酸単位の含有量が40〜80モル%であり、
前記(b−p)イソフタル酸単位の含有量が0.1〜25モル%であり、
前記(c−p)1,4−シクロヘキサンジカルボン酸単位の含有量が15〜40モル%
である、
請求項1又は2に記載のポリアミド樹脂組成物。 - 前記ジアミン成分単位が、脂肪族ジアミン成分単位である、請求項1乃至3のいずれか一項に記載のポリアミド樹脂組成物。
- 前記ジアミン成分単位が、ヘキサメチレンジアミン単位である、請求項1乃至4のいずれか一項に記載のポリアミド樹脂組成物。
- 前記(A)ポリアミド共重合体が、
(a´−p)前記アジピン酸と前記ヘキサメチレンジアミンとからなる単位、
(b´−p)前記イソフタル酸と前記ヘキサメチレンジアミンとからなる単位、
及び、(c´−p)前記1,4−シクロヘキサンジカルボン酸と前記ヘキサメチレンジア
ミンとからなる単位を含む、請求項1乃至5のいずれか一項に記載のポリアミド樹脂組成物。 - (a−m)アジピン酸、(b−m)イソフタル酸、及び(c−m)1,4−シクロヘキ
サンジカルボン酸を含むジカルボン酸成分と、ジアミン成分と、を共重合させることによ
り得られるポリアミド共重合体であって、
前記(c−m)1,4−シクロヘキサンジカルボン酸、前記(a−m)アジピン酸、及
び前記(b−m)イソフタル酸を含むジカルボン酸成分それぞれに由来する単位の合計1
00モル%における、前記ポリアミド共重合体中における(b−p)イソフタル酸単位の
含有量(モル%)と(c−1−p)1,4−シクロヘキサンジカルボン酸単位のトランス
異性体の単位の含有量(モル%)との関係が、下記式(2)を満たす(A)ポリアミド共
重合体100質量部と、
(c−1−p)1,4−シクロヘキサンジカルボン酸単位のトランス異性体の単位の含
有量>(b−p)イソフタル酸単位の含有量≧0.1 ・・・(2)
(B)繊維状強化材であって、繊維の断面の長径をD2、断面の短径をD1とする
とき、D2/D1比(以下、扁平率と表す。)が1.5以上10以下である繊維状強化材1〜300質量部と、
を、含有し、
前記(B)繊維状強化材がガラス繊維であるポリアミド樹脂組成物。 - 前記(a−m)アジピン酸、前記(b−m)イソフタル酸、及び前記(c−m)1,4
−シクロヘキサンジカルボン酸を含む前記ジカルボン酸成分と、
前記ジアミン成分と、
の、共重合における最終重合到達温度が270℃以上である、請求項7に記載のポリアミド樹脂組成物。 - 前記ジアミン成分が、脂肪族ジアミン成分である、請求項7又は8に記載のポリアミド樹脂組成物。
- 前記脂肪族ジアミン成分が、ヘキサメチレンジアミンである、請求項9に記載のポリアミド樹脂組成物。
- 前記共重合の原料モノマーとして用いる前記(c−m)1,4−シクロヘキサンジカル
ボン酸中の前記シス異性体(c−2−m)に対する前記トランス異性体(c−1−m)の
モル比率((c−1−m)/(c−2−m))が、50/50〜10/90である、請求
項7乃至10のいずれか一項に記載のポリアミド樹脂組成物。 - 請求項1乃至11のいずれか一項に記載のポリアミド樹脂組成物を含む成形品。
- 自動車部品である請求項12に記載の成形品。
- 電子部品である請求項12に記載の成形品。
- 家電OA機器部品又は携帯機器部品である請求項12に記載の成形品。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011042677A JP5669623B2 (ja) | 2011-02-28 | 2011-02-28 | ポリアミド樹脂組成物及び成形品 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011042677A JP5669623B2 (ja) | 2011-02-28 | 2011-02-28 | ポリアミド樹脂組成物及び成形品 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012180401A JP2012180401A (ja) | 2012-09-20 |
JP5669623B2 true JP5669623B2 (ja) | 2015-02-12 |
Family
ID=47011868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011042677A Expired - Fee Related JP5669623B2 (ja) | 2011-02-28 | 2011-02-28 | ポリアミド樹脂組成物及び成形品 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5669623B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5669627B2 (ja) * | 2011-03-02 | 2015-02-12 | 旭化成ケミカルズ株式会社 | ポリアミド樹脂組成物及び成形品 |
JP5669626B2 (ja) * | 2011-03-02 | 2015-02-12 | 旭化成ケミカルズ株式会社 | ポリアミド樹脂組成物及び成形品 |
CN108659524B (zh) * | 2018-05-23 | 2020-11-24 | 江苏金发科技新材料有限公司 | 低浮纤长玻纤增强聚酰胺复合材料及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2878933B2 (ja) * | 1992-06-25 | 1999-04-05 | 旭化成工業株式会社 | ポリアミド樹脂組成物および表面光沢性の優れた成形品 |
NL1005520C2 (nl) * | 1997-03-13 | 1998-09-15 | Dsm Nv | Automobielonderdelen uit een polyamide samenstelling. |
US6936682B2 (en) * | 2000-12-11 | 2005-08-30 | Asahi Kasei Kabushiki Kaisha | Polyamide |
JP5404393B2 (ja) * | 2007-06-04 | 2014-01-29 | 旭化成ケミカルズ株式会社 | ポリアミド−ポリフェニレンエーテル樹脂組成物及びフィルム |
JP2009007482A (ja) * | 2007-06-28 | 2009-01-15 | Toray Ind Inc | ポリアミド樹脂組成物およびそれからなる車両内外装部品 |
JP2009040808A (ja) * | 2007-08-06 | 2009-02-26 | Mitsubishi Engineering Plastics Corp | レーザー溶着用熱可塑性樹脂組成物、成形品及び成形品の製造方法 |
US8476354B2 (en) * | 2008-12-23 | 2013-07-02 | E I Du Pont De Nemours And Company | Low sink marks and excellent surface appearance reinforced polyamide compositions |
-
2011
- 2011-02-28 JP JP2011042677A patent/JP5669623B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012180401A (ja) | 2012-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW593540B (en) | Filled polyamide moulding materials having improved processing behavior | |
JP5497921B2 (ja) | 共重合ポリアミド | |
JP5636220B2 (ja) | ポリアミド組成物及びポリアミド組成物を成形した成形体 | |
JP5667983B2 (ja) | ポリアミド共重合体及び成形品 | |
JP2014231603A (ja) | ポリアミド樹脂組成物及び成形品 | |
KR101500824B1 (ko) | 폴리아미드 및 폴리아미드 조성물 | |
JP5844627B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP5669623B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP5669626B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP5669627B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP5997526B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP5637772B2 (ja) | ポリアミド溶着成形品 | |
JP2012184284A (ja) | ポリアミド樹脂組成物及び成形品 | |
JP6067254B2 (ja) | 共重合ポリアミド | |
JP2013001836A (ja) | ポリアミド溶着成形品 | |
JP5959190B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP5806920B2 (ja) | ヒケを改善する方法 | |
JP6042110B2 (ja) | 共重合ポリアミド | |
JP5972088B2 (ja) | ポリアミド樹脂組成物及び成形体 | |
JP2012184277A (ja) | ポリアミド樹脂組成物及び成形品 | |
JP5850726B2 (ja) | ポリアミド樹脂組成物及び成形品 | |
JP2012184306A (ja) | ポリアミド組成物及び成形体 | |
JP2013124268A (ja) | ポリアミド樹脂組成物を含む溶着成形品 | |
JP2013122001A (ja) | 自動車外装部品用ポリアミド樹脂組成物及び当該ポリアミド樹脂組成物を含む自動車外装部品 | |
JP2012184305A (ja) | ポリアミド組成物及び成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140311 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140509 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141014 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20141024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5669623 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |