JP5669351B2 - Method for producing 4-methyl-1-pentene polymer film - Google Patents
Method for producing 4-methyl-1-pentene polymer film Download PDFInfo
- Publication number
- JP5669351B2 JP5669351B2 JP2008271061A JP2008271061A JP5669351B2 JP 5669351 B2 JP5669351 B2 JP 5669351B2 JP 2008271061 A JP2008271061 A JP 2008271061A JP 2008271061 A JP2008271061 A JP 2008271061A JP 5669351 B2 JP5669351 B2 JP 5669351B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- methyl
- pentene polymer
- stretching
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 title claims description 63
- 229920006254 polymer film Polymers 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 claims description 20
- 229920000642 polymer Polymers 0.000 claims description 16
- RYPKRALMXUUNKS-UHFFFAOYSA-N 2-Hexene Natural products CCCC=CC RYPKRALMXUUNKS-UHFFFAOYSA-N 0.000 claims 2
- 230000003287 optical effect Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- 229920005530 TPX™ MX002O Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920002600 TPX™ Polymers 0.000 description 1
- 229920005535 TPX™ RT31 Polymers 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- -1 ethylene, propylene, 1-butene Chemical class 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Landscapes
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Description
本発明は、4−メチル−1−ペンテン系重合体フィルムの製造法に関する。特に、二軸延伸に適する4−メチル−1−ペンテン系重合体フィルムの製造法に関する。 The present invention relates to a method for producing a 4-methyl-1-pentene polymer film. In particular, the present invention relates to a method for producing a 4-methyl-1-pentene polymer film suitable for biaxial stretching.
4−メチル−1−ペンテン系重合体は、耐熱性、透明性、剥離性およびガス透過性等に優れ、理化学実験器具や電子レンジ食器のほか、離型フィルムや剥離紙、高圧ゴムホース製造用シース・マンドレルやLEDモールドなどの産業資材分野、耐熱ラップフィルム、青果物用鮮度保持袋などの食品包装分野など、広範囲に使用されている。 4-Methyl-1-pentene polymer is excellent in heat resistance, transparency, releasability, gas permeability, etc. In addition to physics and labware, microwave oven tableware, release film, release paper, sheath for manufacturing high pressure rubber hose -Widely used in industrial material fields such as mandrels and LED molds, food packaging fields such as heat-resistant wrap film and freshness-maintaining bags for fruits and vegetables.
また、4−メチル−1−ペンテン系重合体のフィルムは光学的等方性が高く(すなわち、レタデーション値が低い)、光学用途のフィルムとして有用である。上記光学的等方性は、フィルムを延伸するとさらに良好になる。 In addition, a film of 4-methyl-1-pentene polymer has high optical isotropy (that is, a low retardation value), and is useful as a film for optical applications. The optical isotropy becomes even better when the film is stretched.
しかし、4−メチル−1−ペンテン系重合体のフィルムは延伸成形性が悪く、延伸時にネッキングなどの延伸ムラや延伸切れを生じて、膜厚が均一な延伸フィルムを得ることが困難である。延伸倍率が高い場合には特にそうである。 However, a film of 4-methyl-1-pentene polymer has poor stretch moldability, and stretching unevenness such as necking or stretching breakage occurs during stretching, and it is difficult to obtain a stretched film having a uniform film thickness. This is especially true when the draw ratio is high.
そこで、特定の温度で同時二軸延伸を行った後、特定温度で熱固定して4−メチル−1−ペンテン系重合体の二軸延伸フィルムを製造する方法が提案されている(例えば、特許文献1)。この方法は、延伸成形における条件管理が煩雑である。 Therefore, a method has been proposed in which a biaxially stretched film of 4-methyl-1-pentene polymer is produced by performing simultaneous biaxial stretching at a specific temperature and then heat-fixing at the specific temperature (for example, patents). Reference 1). In this method, condition management in stretch molding is complicated.
また、4−メチル−1−ペンテン系重合体にα−オレフィン系共重合体等の樹脂成分や、炭化水素油等の軟化剤を配合したものを延伸する方法が提案されている(例えば、特許文献2)。この方法は、延伸成形性の改善には適しているが、4−メチル−1−ペンテン系重合体自体の特性を損なう他、液状成分を多量に添加した場合にはブリードが問題となる。
本発明は、上記事情に鑑み、4−メチル−1−ペンテン系重合体自体の特性を損なうことなく良好に延伸できる4−メチル−1−ペンテン系重合体フィルムの製造法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a method for producing a 4-methyl-1-pentene polymer film that can be satisfactorily stretched without impairing the properties of the 4-methyl-1-pentene polymer itself. And
本発明者らは、4−メチル−1−ペンテン系重合体をダイスからフィルム状に溶融押出した後、一対のロール間を、一定のロール線圧をかけながら通して4−メチル−1−ペンテン系重合体フィルムを製造する方法において、上記ロール線圧を特定の小さい値にすることにより、上記フィルムの厚さはロールを通過する前後でほとんど変わらないまま、厚さが均一で表面が平滑なフィルムを得ることができるとともに、上記目的が達成されることを見出し、本発明に到達した。 The present inventors melt-extruded 4-methyl-1-pentene-based polymer from a die into a film, and then passed between a pair of rolls while applying a constant roll linear pressure to 4-methyl-1-pentene. In the method for producing a polymer film, by making the roll linear pressure a specific small value, the thickness of the film remains almost unchanged before and after passing through the roll, and the thickness is uniform and the surface is smooth. The inventors have found that the above object can be achieved while obtaining a film, and have reached the present invention.
すなわち、本発明は、二軸延伸用の4−メチル−1−ペンテン系重合体フィルムの製造方法であって、4−メチル−1−ペンテン系重合体をダイスからフィルム状に溶融押出した後、一対のロール間を通して4−メチル−1−ペンテン系重合体フィルムを製造する方法において、ロール間を通るフィルム状の溶融押出物に対するロール線圧が0.1kg/cm〜5kg/cmであることを特徴とする方法である。 That is, the present invention is a method for producing a 4-methyl-1-pentene polymer film for biaxial stretching, after the 4-methyl-1-pentene polymer is melt-extruded from a die into a film, In the method for producing a 4-methyl-1-pentene polymer film between a pair of rolls, the roll linear pressure for the film-like melt-extruded product passing between the rolls is 0.1 kg / cm to 5 kg / cm. It is the method characterized by this.
本発明方法によって得られるフィルムは、膜厚が均一でかつ二軸延伸成形性に優れる。したがって、これを二軸延伸して得られるフィルムは、均一な膜厚を有する。また、延伸して得られるフィルムは、優れた光学的等方性を有する(すなわち、レタデーション値が低い)ので、光学用途のフィルムとして有用である。 The film obtained by the method of the present invention has a uniform film thickness and excellent biaxial stretch moldability. Therefore, the film obtained by biaxially stretching this has a uniform film thickness. Moreover, since the film obtained by extending | stretching has the outstanding optical isotropy (namely, retardation value is low), it is useful as a film for optical uses.
本発明における「4−メチル−1−ペンテン系重合体」は、4−メチル−1−ペンテンの単独重合体の他に、4−メチル−1−ペンテンと他のα−オレフィンとの共重合体を包含する。これらは1種単独で、または2種以上を組み合わせて使用することができる。上記α−オレフィンは、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、1−デセン、1−デトラデセン、1−オクタデセン、1−ヘキサデセン、1−ドデセンおよび1−テトラデセン等の炭素数2〜30のオレフィンであり、それらを1種単独で、または2種以上を混合して使用することができる。 The “4-methyl-1-pentene polymer” in the present invention is a copolymer of 4-methyl-1-pentene and other α-olefin in addition to a homopolymer of 4-methyl-1-pentene. Is included. These can be used individually by 1 type or in combination of 2 or more types. The α-olefin has 2 carbon atoms such as ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decene, 1-detradecene, 1-octadecene, 1-hexadecene, 1-dodecene and 1-tetradecene. -30 olefins, which can be used alone or in admixture of two or more.
また、本発明における4−メチル−1−ペンテン系重合体は、メルトフローレート(MFR)が、ASTM D1238に準じ、荷重5.0kg、温度260℃の条件で測定した値で、1〜300g/10分の範囲にあることが好ましい。より好ましくは5〜200g/10分の範囲である。また、融点は、好ましくは130〜250℃、より好ましくは150〜240℃である。 The 4-methyl-1-pentene polymer in the present invention has a melt flow rate (MFR) measured according to ASTM D1238 under the conditions of a load of 5.0 kg and a temperature of 260 ° C. It is preferably in the range of 10 minutes. More preferably, it is the range of 5-200 g / 10min. The melting point is preferably 130 to 250 ° C, more preferably 150 to 240 ° C.
上記4−メチル−1−ペンテン系重合体は、従来公知の方法によって製造することができ、また、市販品を使用することもできる。市販品の例としては、三井化学(株)製のTPX MX002O、MX021およびRT31が挙げられる。 The 4-methyl-1-pentene polymer can be produced by a conventionally known method, and a commercially available product can also be used. Examples of commercially available products include TPX MX002O, MX021 and RT31 manufactured by Mitsui Chemicals.
本発明方法において押出溶融される4−メチル−1−ペンテン系重合体は、本発明の目的を損なわない範囲で、熱安定剤、酸化防止剤、光安定剤、紫外線吸収剤、滑剤、抗菌剤、消臭剤、アンチブロッキング剤等を含んでいてもよい。 The 4-methyl-1-pentene polymer extruded and melted in the method of the present invention is a heat stabilizer, antioxidant, light stabilizer, ultraviolet absorber, lubricant, antibacterial agent as long as the object of the present invention is not impaired. Further, it may contain a deodorant, an antiblocking agent and the like.
本発明における4−メチル−1−ペンテン系重合体フィルムは、4−メチル−1−ペンテン系重合体をダイスからフィルム状に溶融押出した後、一対のロール間を通して製膜し、冷却後、巻き取りを行う、いわゆるTダイ法によって製造され、ロール間を通るフィルム状の溶融押出物に特定のロール線圧がかけられる。 The 4-methyl-1-pentene polymer film in the present invention is obtained by melt-extruding a 4-methyl-1-pentene polymer from a die into a film, forming a film through a pair of rolls, cooling, winding A specific roll linear pressure is applied to the film-like melt extrudate which is produced by a so-called T-die method and takes between rolls.
本発明方法では、上記ロール線圧を90kg/cm以下、好ましくは20kg/cm以下、さらに好ましくは5kg/cm以下に制御することにより、膜厚が均一でかつ二軸延伸に適するフィルムが得られる。上記ロール線圧は小さい方が好ましいが、実際上の問題から、下限は0.1kg/cmである。ロール線圧が上記値より大きいと、得られたフィルムを二軸延伸に付したとき、フィルムが破断する場合がある。ロール線圧の制御は、ロールにかかる圧力をエアー圧や油圧で調整することにより行われ得る。 In the method of the present invention, by controlling the roll linear pressure to 90 kg / cm or less, preferably 20 kg / cm or less, more preferably 5 kg / cm or less, a film having a uniform film thickness and suitable for biaxial stretching can be obtained. . The roll linear pressure is preferably small, but the lower limit is 0.1 kg / cm due to practical problems. If the roll linear pressure is larger than the above value, the film may break when the obtained film is subjected to biaxial stretching. The roll linear pressure can be controlled by adjusting the pressure applied to the roll with air pressure or hydraulic pressure.
本発明方法において、ロールの温度は特に制限されない。例えば、20〜100℃が好適に使用される。 In the method of the present invention, the temperature of the roll is not particularly limited. For example, 20-100 degreeC is used suitably.
本発明方法における製膜の条件は、原材料の融点やMFR、得られるフィルムの厚み等により適宜選定することができ、好ましくは、溶融温度200〜320℃、ダイス温度200〜320℃が使用される。また、ラインスピードも、適宜選定すれば良く、0.5〜50m/分の範囲が好ましい。また、ドロー比は小さいほど好ましく、一対のロール間での速度に対する、巻き取り部での速度の比は0.9〜1.1であることが好ましい。また、リップ開口は、一対のロール間でのフィルム厚の1〜70倍であることが好ましい。 The conditions for film formation in the method of the present invention can be appropriately selected depending on the melting point and MFR of the raw materials, the thickness of the obtained film, and the like. Preferably, a melting temperature of 200 to 320 ° C and a die temperature of 200 to 320 ° C are used. . Further, the line speed may be appropriately selected, and is preferably in the range of 0.5 to 50 m / min. The draw ratio is preferably as small as possible, and the ratio of the speed at the winding portion to the speed between the pair of rolls is preferably 0.9 to 1.1. Moreover, it is preferable that a lip opening is 1 to 70 times the film thickness between a pair of rolls.
こうして得られるフィルムは、膜厚が均一であり、また、これを二軸延伸に付すと、膜厚が均一で、レタデーション値(R0)が低いフィルムが得られる。なお、本明細書において、レタデーション値(R0)とは、下記式で表わされる、フィルム面内の位相差であり、590nmの波長で測定した値である。
R0=(Nx−Ny)xd
ここで、NxおよびNyは、フィルム面内で互いに直交する方向における屈折率であり(ただし、Nx≧Ny)、dはフィルムの厚さである。
The film thus obtained has a uniform film thickness, and when subjected to biaxial stretching, a film having a uniform film thickness and a low retardation value (R0) can be obtained. In the present specification, the retardation value (R0) is a retardation in the film plane represented by the following formula, and is a value measured at a wavelength of 590 nm.
R0 = (Nx−Ny) xd
Here, Nx and Ny are refractive indexes in directions orthogonal to each other in the film plane (where Nx ≧ Ny), and d is the thickness of the film.
本発明の二軸延伸用フィルムの厚みは特に制限されないが、10μm以上であることが好ましい。10μm未満であると、延伸時に破れなどの問題が発生する。より好ましくは100μm以上、5mm未満である。 The thickness of the biaxially stretching film of the present invention is not particularly limited, but is preferably 10 μm or more. If it is less than 10 μm, problems such as tearing occur during stretching. More preferably, it is 100 μm or more and less than 5 mm.
本発明の方法で得られたフィルムは次いで、通常の延伸に付すことができる。本発明方法で得られるフィルムは、二軸延伸(逐次二軸延伸、同時二軸延伸)に特に適する。本発明方法で得られるフィルムは、例えば縦横とも6倍の高倍率で二軸延伸しても、膜厚が均一なフィルムを得ることができ、こうして得られた延伸フィルムは、延伸前のフィルムよりもレタデーション値が低くなってさらに良好な光学的等方性を有するので、光学用途のフィルムとして有用である。 The film obtained by the method of the present invention can then be subjected to normal stretching. The film obtained by the method of the present invention is particularly suitable for biaxial stretching (sequential biaxial stretching, simultaneous biaxial stretching). Even if the film obtained by the method of the present invention is biaxially stretched at a high magnification of 6 times in both the longitudinal and lateral directions, a film having a uniform film thickness can be obtained, and the stretched film thus obtained is more than the film before stretching. Since the retardation value is lowered and the optical isotropy is further improved, it is useful as a film for optical applications.
以下、本発明を下記の実施例および比較例によって説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to the following examples and comparative examples, but the present invention is not limited thereto.
実施例1〜7および比較例1〜3
表1に示す4−メチル−1−ペンテン系重合体を、Tダイ押出機を使用して溶融混練してダイスから押し出し、これを温度70℃の一対の冷却ロール間に、表1に示すロール線圧をかけながら10m/分の速度で通して、厚さ350μm、幅50cmの原反フィルムを製造した。ダイス温度は表1に示す通りである。
なお、比較例2については、一対の冷却ロールを用いる代わりにエアナイフ法を使用し、比較例3については静電密着法を使用したので、ロール線圧は共に0kg/cmである。
Examples 1-7 and Comparative Examples 1-3
A 4-methyl-1-pentene polymer shown in Table 1 is melt-kneaded using a T-die extruder and extruded from a die, and the roll shown in Table 1 is placed between a pair of cooling rolls at a temperature of 70 ° C. An original film having a thickness of 350 μm and a width of 50 cm was produced by passing it at a speed of 10 m / min while applying a linear pressure. The die temperature is as shown in Table 1.
In Comparative Example 2, an air knife method was used instead of using a pair of cooling rolls, and an electrostatic contact method was used in Comparative Example 3, so that both roll linear pressures were 0 kg / cm.
得られた原反フィルムを、パンタグラフ式バッチ二軸延伸装置(東洋精機製作所製、ヘビー型)を用いて、表1に示す延伸温度で同時二軸延伸した(4x4倍、延伸速度1m/分)。
得られた原反フィルムおよび二軸延伸フィルムについて、下記の評価試験を行った。結果を表1に示す。
The obtained raw film was simultaneously biaxially stretched at a stretching temperature shown in Table 1 using a pantograph batch biaxial stretching apparatus (manufactured by Toyo Seiki Seisakusho, heavy type) (4 × 4 times, stretching speed 1 m / min). .
The following evaluation tests were performed on the obtained raw film and biaxially stretched film. The results are shown in Table 1.
試験方法
(1)原反フィルムの膜厚安定性
製膜したフィルムを幅方向に10cm間隔で4ヶ所、流れ方向に20cm間隔で3ヶ所の計12ヶ所の厚みを測定した。得られた12の厚みデータの最大値と最小値との差をRとし、(R/平均厚み)x100の値を求め、下記基準に従って判定した。厚みの測定は、ソニーマグネスケール株式会社製デジタルマイクロメーター ミューメイトを使用して行った。以下、厚み測定は全て同測定器により実施した。
○:40未満
×:40以上
Test Method (1) Film thickness stability of raw film Films were measured for a total of 12 thicknesses, 4 at 10 cm intervals in the width direction and 3 at 20 cm intervals in the flow direction. The difference between the maximum value and the minimum value of the obtained 12 thickness data was defined as R, and a value of (R / average thickness) × 100 was determined and determined according to the following criteria. The thickness was measured using a digital micrometer mumate manufactured by Sony Magnescale Co., Ltd. Hereinafter, all thickness measurements were performed with the same measuring device.
○: Less than 40 ×: 40 or more
(2)原反フィルムの平滑性
製膜したフィルムを全幅(50cm)×1mの大きさに切断して試験片とし、これを、1升が1cm角である碁盤目の線を表面に有する透視可能な平坦な板の上に置いた。試験片全体の升目の個数(5000個)に対する、試験片が板に接触している升目の個数の割合を求め、下記基準に従って判定した。接触の確認は、板側からの目視により行った。試験片は、製膜し巻き上がった直後のフィルムを巻きの最表層からサンプリングした。
○:30%以上
×:30%未満
(2) Smoothness of the raw film The film formed into a film having a full width (50 cm) × 1 m is cut into a test piece, and this is a perspective view having a grid line with 1 cm square on the surface. Placed on a possible flat plate. The ratio of the number of cells in which the test piece is in contact with the plate with respect to the number of cells (5000) of the entire test piece was determined and determined according to the following criteria. The contact was confirmed by visual inspection from the plate side. The test piece was sampled from the outermost layer of the wound film immediately after film formation and winding.
○: 30% or more ×: Less than 30%
(3)延伸フィルムの膜厚安定性
原反フィルムに9mm角x100個(10x10個)の升目を付けて4x4倍に延伸し、図1に示す1〜16の数字を付けた16個の升目について、延伸後の各升目の(横の長さ/縦の長さ)x100の値を求め、その値が70〜130である升目の個数が12個以上である場合を◎、8〜11個である場合を○、4〜7個である場合を△、3個以下である場合を×とした。
(3) Film thickness stability of stretched film With respect to 16 squares with 9 mm square x 100 (10 x 10) squares stretched 4x4 times and numbered 1-16 shown in Fig. 1 , The value of each square after stretching (horizontal length / longitudinal length) x100 is obtained, and the case where the value is 70 to 130 and the number of squares is 12 or more is 8 to 11 In some cases, ◯, in the case of 4 to 7 pieces, Δ, and in the case of 3 pieces or less, x.
(4)レタデーション値(R0)
原反フィルムおよび延伸フィルムのR0を、王子計測機器(株)製の位相差測定装置KOBRA−WRを使用し、平行ニコル回転法によって測定した。
(4) Retardation value (R0)
R0 of the raw film and stretched film was measured by a parallel Nicol rotation method using a phase difference measuring device KOBRA-WR manufactured by Oji Scientific Instruments.
使用した試料は以下の通りである。
(1)TPX T3700:三井化学株式会社製、4−メチル−1−ペンテン系共重合体、MFR(ASTM D1238、荷重5.0kg、温度260℃)39g/10分、融点160℃、密度(ASTM D1505)0.839g/cm3
(2)TPX MX002O:三井化学株式会社製、4−メチル−1−ペンテンとエチレンおよびヘキセン−1との共重合体、MFR(ASTM D1238、荷重5.0kg、温度260℃)21g/10分、融点224℃、密度(ASTM D1505)0.835g/cm3
(3)TPX RT31:三井化学株式会社製、4−メチル−1−ペンテンとヘキセン−1との共重合体、MFR(ASTM D1238、荷重5.0kg、温度260℃)21g/10分、融点235℃、密度(ASTM D1505)0.833g/cm3
The samples used are as follows.
(1) TPX T3700: manufactured by Mitsui Chemicals, 4-methyl-1-pentene copolymer, MFR (ASTM D1238, load 5.0 kg, temperature 260 ° C.) 39 g / 10 minutes, melting point 160 ° C., density (ASTM D1505) 0.839 g / cm 3
(2) TPX MX002O: manufactured by Mitsui Chemicals, Copolymer of 4-methyl-1-pentene with ethylene and hexene-1, MFR (ASTM D1238, load 5.0 kg, temperature 260 ° C.) 21 g / 10 minutes, Melting point 224 ° C., density (ASTM D1505) 0.835 g / cm 3
(3) TPX RT31: manufactured by Mitsui Chemicals, Copolymer of 4-methyl-1-pentene and hexene-1, MFR (ASTM D1238, load 5.0 kg, temperature 260 ° C.) 21 g / 10 min, melting point 235 ° C, density (ASTM D1505) 0.833 g / cm 3
表1から明らかなように、特定の範囲の線圧を使用した実施例1〜7では、膜厚安定性および平滑性に優れた原反フィルムが得られ、それを二軸延伸して得られたフィルムは、膜厚安定性に優れるとともに、原反フィルムよりも低い、良好なレタデーション値を有する。 As is clear from Table 1, in Examples 1 to 7 using a linear pressure in a specific range, a raw film excellent in film thickness stability and smoothness is obtained, and obtained by biaxially stretching it. The film has excellent film thickness stability and a good retardation value lower than that of the original film.
一方、本発明の範囲より高い線圧を使用した比較例1では、原反フィルムは良好な膜厚安定性および平滑性を有したが、それを二軸延伸に付すと、フィルムが破断して、延伸不能であった。 On the other hand, in Comparative Example 1 using a linear pressure higher than the range of the present invention, the raw film had good film thickness stability and smoothness. However, when it was subjected to biaxial stretching, the film was broken. It was impossible to stretch.
線圧が0kg/cmである比較例2および3では、原反フィルムの膜厚安定性および平滑性が悪く、それを二軸延伸して得られたフィルムも、膜厚安定性が不十分であった。また、レタデーション値も高かった。 In Comparative Examples 2 and 3 where the linear pressure is 0 kg / cm, the film thickness stability and smoothness of the raw film are poor, and the film obtained by biaxially stretching the film also has insufficient film thickness stability. there were. Moreover, the retardation value was also high.
本発明方法によって得られるフィルムは、膜厚が均一で平滑性も良く、かつ二軸延伸成形性に優れるので、これを二軸延伸すると、膜厚が均一なフィルムが得られる。また、延伸して得られたフィルムは、光学的等方性が高い(すなわち、レタデーション値が低い)。したがって、従来用途の他、光学用途のフィルムとして有用である。 The film obtained by the method of the present invention has a uniform film thickness, good smoothness, and excellent biaxial stretching moldability. When this film is biaxially stretched, a film having a uniform film thickness can be obtained. Moreover, the film obtained by extending | stretching has high optical isotropy (namely, retardation value is low). Therefore, it is useful as a film for optical applications in addition to conventional applications.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008271061A JP5669351B2 (en) | 2008-10-21 | 2008-10-21 | Method for producing 4-methyl-1-pentene polymer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008271061A JP5669351B2 (en) | 2008-10-21 | 2008-10-21 | Method for producing 4-methyl-1-pentene polymer film |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014009798A Division JP5728597B2 (en) | 2014-01-22 | 2014-01-22 | Method for producing 4-methyl-1-pentene polymer film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010099857A JP2010099857A (en) | 2010-05-06 |
JP5669351B2 true JP5669351B2 (en) | 2015-02-12 |
Family
ID=42290943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008271061A Active JP5669351B2 (en) | 2008-10-21 | 2008-10-21 | Method for producing 4-methyl-1-pentene polymer film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5669351B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5539175B2 (en) * | 2010-12-09 | 2014-07-02 | リケンテクノス株式会社 | Method for producing packaging film |
CN112406146B (en) * | 2020-10-26 | 2022-07-01 | 安徽铜峰电子股份有限公司 | Biaxially oriented poly-4-methyl-1-pentene film and preparation method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62290515A (en) * | 1986-06-11 | 1987-12-17 | Mitsui Toatsu Chem Inc | Manufacture of heat resistant resin film |
JP2000211014A (en) * | 1999-01-26 | 2000-08-02 | Toray Ind Inc | Preparation of thermoplastic resin sheet |
JP2000226459A (en) * | 1999-02-05 | 2000-08-15 | Daiya Plastic Kk | Olefin resin film and its production |
JP2000229345A (en) * | 1999-02-09 | 2000-08-22 | Daiya Plastic Kk | Thermoplastic resin film good in printability and production thereof |
JP4759394B2 (en) * | 2006-01-23 | 2011-08-31 | シーダム株式会社 | Thermoplastic resin sheet and manufacturing method thereof |
JP4365384B2 (en) * | 2006-05-08 | 2009-11-18 | 株式会社日本製鋼所 | Forming roll |
JP2008055890A (en) * | 2006-06-06 | 2008-03-13 | Fujifilm Corp | Thermoplastic resin film, its production method, polarizing plate, optical compensation film, antireflection film, and liquid crystal display device |
US20100258960A1 (en) * | 2007-09-21 | 2010-10-14 | Sumitomo Chemical Company, Limited | Process for producing optical film made of thermoplastic resin |
JP5056336B2 (en) * | 2007-10-17 | 2012-10-24 | コニカミノルタアドバンストレイヤー株式会社 | Manufacturing method of optical film |
-
2008
- 2008-10-21 JP JP2008271061A patent/JP5669351B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010099857A (en) | 2010-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7647840B2 (en) | Biaxially oriented polypropylene film | |
TWI773665B (en) | Biaxially oriented polypropylene film | |
KR101978082B1 (en) | Polymer compositions for extrusion coating | |
JP7230911B2 (en) | Polypropylene laminated film | |
KR20190111975A (en) | Biaxially oriented polypropylene-based film | |
JP5857046B2 (en) | Stretch hood made from ULDPE rich formulation | |
WO2019065306A1 (en) | Polypropylene-based laminate film | |
JP3579758B2 (en) | Polypropylene-based biaxially stretched film | |
JP2024099658A (en) | Biaxially oriented polypropylene-based resin film and package using the same | |
KR20230117111A (en) | Biaxially oriented polypropylene resin film and package using the same | |
JP6281950B2 (en) | Polyolefin-based unstretched multilayer film | |
KR100435942B1 (en) | Unstretched polypropylene molding | |
JP5669351B2 (en) | Method for producing 4-methyl-1-pentene polymer film | |
JP6994398B2 (en) | Polypropylene film | |
JP5728597B2 (en) | Method for producing 4-methyl-1-pentene polymer film | |
US9518161B2 (en) | Polymer compositions, methods of making the same, and articles made therefrom | |
CN109679194B (en) | Puncture-resistant polyethylene composition and film thereof | |
KR101909577B1 (en) | Manufacturing method of polypropylene composition for higher transparency, softness and shrinkage | |
JP5135008B2 (en) | Method for producing biaxially stretched film | |
JP4742213B2 (en) | Polyolefin resin degreasing film | |
JP6446882B2 (en) | Biaxially stretched polypropylene film | |
TW202444572A (en) | Biaxially oriented polypropylene film containing voids | |
KR20230112116A (en) | Biaxially oriented polypropylene resin film and package using the same | |
WO2024161917A1 (en) | Biaxially oriented polypropylene film and laminate of same | |
JP2009214508A (en) | Method for producing biaxially oriented film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110428 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121010 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121205 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131022 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5669351 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |