JP5669107B2 - Cubic boron nitride coating method and material obtained thereby - Google Patents
Cubic boron nitride coating method and material obtained thereby Download PDFInfo
- Publication number
- JP5669107B2 JP5669107B2 JP2011549043A JP2011549043A JP5669107B2 JP 5669107 B2 JP5669107 B2 JP 5669107B2 JP 2011549043 A JP2011549043 A JP 2011549043A JP 2011549043 A JP2011549043 A JP 2011549043A JP 5669107 B2 JP5669107 B2 JP 5669107B2
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- cubic boron
- iron
- transition metal
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims description 59
- 229910052582 BN Inorganic materials 0.000 title claims description 58
- 238000000576 coating method Methods 0.000 title claims description 50
- 239000000463 material Substances 0.000 title claims description 34
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 94
- 239000000758 substrate Substances 0.000 claims description 56
- 229910052742 iron Inorganic materials 0.000 claims description 46
- 229910052723 transition metal Inorganic materials 0.000 claims description 43
- 150000003624 transition metals Chemical class 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 34
- 239000011248 coating agent Substances 0.000 claims description 31
- 229910021332 silicide Inorganic materials 0.000 claims description 22
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 20
- 238000005229 chemical vapour deposition Methods 0.000 claims description 16
- 238000005240 physical vapour deposition Methods 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 238000001069 Raman spectroscopy Methods 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 11
- 238000012360 testing method Methods 0.000 claims description 11
- 229910009043 WC-Co Inorganic materials 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 6
- 239000007888 film coating Substances 0.000 claims 1
- 238000009501 film coating Methods 0.000 claims 1
- 239000010408 film Substances 0.000 description 53
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 38
- 229910052796 boron Inorganic materials 0.000 description 38
- 210000002381 plasma Anatomy 0.000 description 26
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- 229910017052 cobalt Inorganic materials 0.000 description 17
- 239000010941 cobalt Substances 0.000 description 17
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 239000007789 gas Substances 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 13
- 229910052786 argon Inorganic materials 0.000 description 12
- 238000010587 phase diagram Methods 0.000 description 12
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 12
- 230000005496 eutectics Effects 0.000 description 11
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- -1 ferrous metals Chemical class 0.000 description 7
- 229910000997 High-speed steel Inorganic materials 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 229910015900 BF3 Inorganic materials 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229910020674 Co—B Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- PNUPSASLQPUQMK-UHFFFAOYSA-N argon boron Chemical compound [B].[Ar] PNUPSASLQPUQMK-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000002233 thin-film X-ray diffraction Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- AHUYEGXBZOIGNH-UHFFFAOYSA-N [B].[N].[He] Chemical compound [B].[N].[He] AHUYEGXBZOIGNH-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 229910002056 binary alloy Inorganic materials 0.000 description 2
- HZEIHKAVLOJHDG-UHFFFAOYSA-N boranylidynecobalt Chemical compound [Co]#B HZEIHKAVLOJHDG-UHFFFAOYSA-N 0.000 description 2
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910021350 transition metal silicide Inorganic materials 0.000 description 2
- OFEAOSSMQHGXMM-UHFFFAOYSA-N 12007-10-2 Chemical compound [W].[W]=[B] OFEAOSSMQHGXMM-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910019001 CoSi Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- KPSZQYZCNSCYGG-UHFFFAOYSA-N [B].[B] Chemical compound [B].[B] KPSZQYZCNSCYGG-UHFFFAOYSA-N 0.000 description 1
- WRSVIZQEENMKOC-UHFFFAOYSA-N [B].[Co].[Co].[Co] Chemical compound [B].[Co].[Co].[Co] WRSVIZQEENMKOC-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000005885 boration reaction Methods 0.000 description 1
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000007737 ion beam deposition Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/342—Boron nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
本発明は、耐摩耗性、低摩擦性、耐熱性、熱伝導性、電気絶縁性等に優れ、切削工具、耐摩耗性治具等に応用可能な新規な材料であって、特に、立方晶窒化ホウ素を被覆した材料およびその製造方法に関する。 The present invention is a novel material that is excellent in wear resistance, low friction, heat resistance, thermal conductivity, electrical insulation, etc., and can be applied to cutting tools, wear-resistant jigs, etc. The present invention relates to a material coated with boron nitride and a method for producing the same.
立方晶窒化ホウ素(cubic Boron Nitride:cBN)は、硬度,耐摩耗性,しゅう動性,熱伝導性,電気絶縁性に優れることから、難削材研削や高速切削のためのコーティング材、またヒートシンクや耐熱高絶縁性コーティングに使用される材料として永年期待されてきた。 Cubic Boron Nitride (cBN) is excellent in hardness, wear resistance, sliding property, thermal conductivity, and electrical insulation. It has been expected for many years as a material used for heat-resistant and highly insulating coatings.
cBNは、硬い基材の上にコーティングすることで、cBNの有する硬度を有効活用することができる。ここで、硬い材料であり工具に利用される部材として、鋼(例えば、高速度鋼(high-speed steel;ハイス))は、鉄、コバルト、ニッケルの鉄系金属(遷移金属)が主成分として含まれ、また、炭化タングステン(WC)に代表される超硬合金は、鉄系遷移金属が結合相として含まれる。 By coating cBN on a hard substrate, the hardness of cBN can be effectively utilized. Here, steel (for example, high-speed steel (high-speed steel)) is a hard material and used as a tool. Iron, cobalt and nickel-based metals (transition metals) are the main components. In addition, a cemented carbide represented by tungsten carbide (WC) contains an iron-based transition metal as a binder phase.
これらの材料へ窒化ホウ素(Boron Nitride:BN)をコーティングする場合は、鉄系金属の触媒作用のため、sp2結合の窒化ホウ素(例えば、六方晶窒化ホウ素(hexagonal
Boron Nitride;hBN)、乱層構造窒化ホウ素(turbostratic Boron Nitride;tBN)、非晶質窒化ホウ素(amorphous Boron Nitride;aBN))が生成しやすいことから、これらの材料へcBNをコーティングすることは困難であった。
この鉄系金属の触媒作用による妨害を防ぐため、鉄系金属を結合相とする超硬合金の場合は、基体表面付近の鉄系金属を酸処理で除去する方法が提案されてきた。When boron nitride (BN) is coated on these materials, sp 2 -bonded boron nitride (eg hexagonal boron nitride (eg hexagonal boron nitride) is used due to the catalytic action of ferrous metals.
Boron Nitride (hBN), turbostratic Boron Nitride (tBN), and amorphous Boron Nitride (aBN) Met.
In order to prevent the interference caused by the catalytic action of the iron-based metal, a method of removing the iron-based metal in the vicinity of the substrate surface by acid treatment has been proposed in the case of a cemented carbide having the iron-based metal as a binder phase.
しかし、鉄系金属を除去する方法では、当該酸処理後の表面は純炭化相のみとなり、表面近傍の強度が低下するという問題がある。また、表面の鉄系金属が一旦除去された場合でも、cBN膜を作成する際の高温化処理により、基材内部から結合材の遷移金属が基材表面に拡散することとなり、cBN生成を妨害するという問題がある。 However, the method of removing the iron-based metal has a problem that the surface after the acid treatment is only a pure carbonized phase and the strength in the vicinity of the surface is lowered. In addition, even if the surface iron-based metal is once removed, the transition metal of the binder diffuses from the inside of the base material to the base material surface due to the high temperature treatment at the time of forming the cBN film, thereby obstructing the generation of cBN. There is a problem of doing.
従来の立方晶窒化ホウ素コーティング法として、cBNと基材の間にTi,Zr等の金属あるいは金属窒化物を中間層として介在させる方法がある(例えば、特許文献1)。また、従来の立方晶窒化ホウ素コーティング法としては、超硬材料上への密着性を良くするために、ホウ素をコーティング後、熱拡散により鉄系金属をホウ化して、或いはホウ素を含むガスと反応させ基体をホウ化してその触媒作用を封じるという方法が提案されている(例えば、特許文献2)。 As a conventional cubic boron nitride coating method, there is a method in which a metal such as Ti or Zr or a metal nitride is interposed as an intermediate layer between cBN and a base material (for example, Patent Document 1). In addition, as a conventional cubic boron nitride coating method, in order to improve adhesion to a super hard material, boron is coated and then iron-based metal is borated by thermal diffusion or reacts with a gas containing boron. A method is proposed in which the substrate is borated to seal off its catalytic action (for example, Patent Document 2).
しかし、従来の立方晶窒化ホウ素コーティング法では、中間層を設ける場合には、製造プロセスが複雑になり、コストアップとなること、また場合によっては、中間層の硬さ、強度が不足のため、複合材料全体の機械的強度が低下するという課題を有する。また熱膨張係数のミスマッチで中間層あるいはcBN膜が剥れやすくなる場合があり、その製造プロセスに精密なコントロールが要求されることとなり、実施化の場合のコストアップになるという課題を有する。 However, in the conventional cubic boron nitride coating method, when an intermediate layer is provided, the manufacturing process becomes complicated and the cost increases, and in some cases, the hardness and strength of the intermediate layer are insufficient, It has the subject that the mechanical strength of the whole composite material falls. In addition, there is a case where the intermediate layer or the cBN film is likely to be peeled off due to mismatch of thermal expansion coefficients, which requires a precise control in the manufacturing process, and there is a problem that the cost in the case of implementation is increased.
また、従来の立方晶窒化ホウ素コーティング法では、基体をホウ化するに際して、単に熱拡散によりホウ化を行っているので、ホウ化(硼化)の程度をコントロールすることが難しく、ホウ素(硼素)不足の場合は表面層の鉄系金属がホウ化されずに残るという課題を有する。また、鉄系金属のホウ化が不十分の場合には、その触媒作用によりBNコーティング時にsp2結合BN相が生成しやすいという課題を有する。Further, in the conventional cubic boron nitride coating method, when boring the substrate, boriding is simply performed by thermal diffusion, so it is difficult to control the degree of boriding (boron). If insufficient, the iron-based metal in the surface layer remains unborated. In addition, when boring of the iron-based metal is insufficient, there is a problem that an sp 2 -bonded BN phase is likely to be generated during BN coating due to its catalytic action.
逆にホウ素過剰の場合は、例えば炭化タングステン(WC)に代表される超硬合金ではその主成分たるWCはホウ化されにくいので、WC上に固体ホウ素が残るという課題を有する。WC上に過剰の固体ホウ素がある場合は、その窒化反応ではcBNができずsp2結合BN相が生成しやすいという課題を有する。
これらの理由のため、超硬合金や高速度鋼のような鉄系遷移金属を含有する基材上へcBNコーティングを実施する技術は、現在のところ十分に確立されていない。Conversely, when boron is excessive, for example, a cemented carbide represented by tungsten carbide (WC) has a problem that solid boron remains on the WC because the main component of WC is not easily borated. When there is an excess of solid boron on WC, there is a problem that cBN cannot be formed by the nitriding reaction, and an sp 2 -bonded BN phase is easily generated.
For these reasons, techniques for performing cBN coating on substrates containing ferrous transition metals such as cemented carbide and high speed steel are not well established at present.
本発明は、前記課題を解消するためになされたもので、鉄系遷移金属を含有する基材上へのsp2結合BNの生成を抑え、該鉄系金属の触媒作用による妨害を防ぐことにより、立方晶窒化ホウ素膜の密着性および均一性を向上させる立方晶窒化ホウ素コーティング技術を提供することを目的とする。The present invention has been made to solve the above-described problems, and suppresses the formation of sp 2 -bonded BN on a substrate containing an iron-based transition metal and prevents interference due to the catalytic action of the iron-based metal. Another object of the present invention is to provide a cubic boron nitride coating technique that improves the adhesion and uniformity of a cubic boron nitride film.
本発明者らは、鋭意研究の結果、如上の基材に含有されている鉄系遷移金属そのものの一部を確実にホウ化(硼化)またはケイ化(珪化)することにより、上記目的が達成され得ることを見出し、本発明を導き出した。 As a result of diligent research, the inventors of the present invention have achieved the above object by reliably boring (boriding) or siliciding (siliciding) part of the iron-based transition metal itself contained in the base material. It was found that this can be achieved, and the present invention was derived.
かくして、本発明は、鉄系遷移金属を含有する基材上に、立方晶窒化ホウ素を主成分とする膜をコーティングする工程を含む立方晶窒化ホウ素コーティング方法において、前記立方晶窒化ホウ素膜をコーティングする工程の前に、前記基材上に該基材に含有されている前記遷移金属のホウ化物またはケイ化物を形成する前工程を含むことを特徴とする方法を提供するものである。 Thus, the present invention provides a cubic boron nitride coating method including a step of coating a film mainly composed of cubic boron nitride on a substrate containing an iron-based transition metal, and coating the cubic boron nitride film. The present invention provides a method characterized by including a pre-process for forming a boride or silicide of the transition metal contained in the base material on the base material before the step of performing the step.
<基材の種類>
本発明のコーティング法が適用される鉄系遷移金属を含有する基材とは、鉄系遷移金属を結合相(結合剤)とする超硬合金または、鉄系遷移金属を構成成分とする鋼(特に高速度鋼)である。ここで、本発明に関連して、鉄系遷移金属とは、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)およびニッケル(Ni)であり、特に、鉄(Fe)、コバルト(Co)およびニッケル(Ni)を指称する。超硬合金としては、WC−Co系合金、WC−TiC−Co系合金、WC−TaC−Co系合金、WC−Ni系合金、WC−Ni−Cr系合金、TiN−Ni系合金等の鉄、コバルト、ニッケルを結合剤とするものが挙げられる。このうち、最も広く用いられている超硬合金はWC−Co系合金であるが、これはWCの硬度、高温強度等とCoのWCに対する良接着性により、合金としての硬度、靭性、対欠損性等の機械的特性が特に優れているからである。高速度鋼は、しばしば「ハイス」や「HSS」と略称される。<Type of substrate>
The base material containing an iron-based transition metal to which the coating method of the present invention is applied is a cemented carbide having an iron-based transition metal as a binder phase (binder), or a steel having an iron-based transition metal as a constituent ( Particularly high speed steel). Here, in the context of the present invention, iron-based transition metals are chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co) and nickel (Ni), and particularly iron (Fe). , Cobalt (Co) and nickel (Ni). As the cemented carbide, iron such as WC-Co alloy, WC-TiC-Co alloy, WC-TaC-Co alloy, WC-Ni alloy, WC-Ni-Cr alloy, TiN-Ni alloy, etc. , Cobalt and nickel as binders. Of these, the most widely used cemented carbide is a WC-Co alloy, which has hardness, toughness, and deficiency as an alloy due to the hardness of WC, high temperature strength, etc. and good adhesion of Co to WC. This is because the mechanical properties such as properties are particularly excellent. High speed steel is often abbreviated as “His” or “HSS”.
本発明は、このような高硬度基材にcBNをコーティングするのに有効であり、得られる材料は、cBNの高硬度、耐熱性、耐酸化性、低摩耗性等を有効活用できる応用分野(例えば、切削工具、研削工具、ドリル等の加工工具、金型、ダイス、ボンディングツール等の対磨耗冶具、磁気記憶媒体の保護膜等の高温・耐酸化性の低摩擦摺動部材)に用いることができる。本発明は、WC−Co系超硬合金のように、鉄系遷移金属としてコバルト(Co)を含有する基材に対して適用されるのが特に好ましい。 The present invention is effective for coating cBN on such a high-hardness base material, and the obtained material is an application field in which the high hardness, heat resistance, oxidation resistance, low wear resistance, etc. of cBN can be effectively utilized ( For example, cutting tools, grinding tools, drills and other processing tools, anti-wear tools such as dies, dies and bonding tools, and high-temperature and oxidation-resistant low-friction sliding members such as protective films for magnetic storage media) Can do. The present invention is particularly preferably applied to a substrate containing cobalt (Co) as an iron-based transition metal, such as a WC-Co-based cemented carbide.
<ホウ化物の形成>
本発明に従うcBNコーティング法の好ましい態様においては、鉄系遷移金属を含有する基材上に立方晶窒化ホウ素をコーティングする前に、該基材上に該遷移金属のホウ化物(硼化物)を形成する前工程が含まれる。<Boride formation>
In a preferred embodiment of the cBN coating method according to the present invention, the transition metal boride (boride) is formed on the substrate prior to coating the cubic boron nitride on the substrate containing the iron-based transition metal. A pre-process is included.
ホウ化物を形成するこの前工程は、鉄系遷移金属を含有する基材上にホウ素をコーティングし、その後、該遷移金属とホウ素とが溶融する温度にまで加熱した後、該鉄系遷移金属とホウ素とが固化する温度にまで冷却することから成る。特に、この加熱温度が、鉄系遷移金属とホウ素とから成る2成分系における最もホウ素リッチな組成の共晶の共晶点以上であることが好ましい。 This pre-process for forming the boride includes coating boron on a substrate containing an iron-based transition metal, and then heating to a temperature at which the transition metal and boron melt, Cooling to a temperature at which boron solidifies. In particular, the heating temperature is preferably equal to or higher than the eutectic point of the eutectic having the most boron-rich composition in a two-component system composed of an iron-based transition metal and boron.
このようなホウ化物形成前工程により、基材上にホウ化物として鉄系遷移金属とホウ素との固溶体(特にホウ素リッチな固溶体)が予め形成されていることにより、sp2結合のBNの生成を抑制してcBN相がコーティングされるものと考えられる。By such a pre-boride formation step, a solid solution of iron-based transition metal and boron (especially boron-rich solid solution) is formed in advance as a boride on the base material, thereby generating sp 2 -bonded BN. It is considered that the cBN phase is coated with suppression.
以下、コバルト含有炭化タングステンから成る超硬合金基材のように鉄系遷移金属としてCo(コバルト)が含有されている場合を例にとり、本発明に従うホウ化物形成について考察する。図1は、コバルト−ホウ素2成分系の状態図(常圧下)である。コバルトのような鉄系遷移金属とホウ素の状態図は、一般に、図に示されるように、融解曲線(凝固曲線)が複数の極小値を示す複数の共晶点(温度)を示す。 Hereinafter, the formation of boride according to the present invention will be considered by taking as an example the case where Co (cobalt) is contained as an iron-based transition metal, such as a cemented carbide substrate made of cobalt-containing tungsten carbide. FIG. 1 is a phase diagram (under normal pressure) of a cobalt-boron binary system. A phase diagram of an iron-based transition metal such as cobalt and boron generally shows a plurality of eutectic points (temperatures) at which a melting curve (solidification curve) shows a plurality of minimum values, as shown in the figure.
本発明に従えば、この状態図を参照して、ホウ化条件として、コバルトとホウ素が溶融する(液体化)する温度(図の状態図でLで示される領域の存する温度)にまで加熱した後、コバルトとホウ素とが固化する温度(図の状態図でSで示される領域の存する温度)まで冷却(急冷)する。 According to the present invention, with reference to this state diagram, heating was performed as a boring condition up to a temperature at which cobalt and boron melt (liquefy) (temperature at which a region indicated by L in the state diagram of FIG. Exists). Then, it cools (rapidly cools) to a temperature at which cobalt and boron are solidified (a temperature at which a region indicated by S in the state diagram in the figure exists).
ここで、本発明の関与するCo−B系においては、予め基板上にホウ素がコーティングされているので、図に示される状態図のうち、ホウ素(B)がリッチな領域、すなわち、図の右側が、温度条件を定めるのに資することができるものと考えられる。 Here, in the Co-B system in which the present invention is involved, since the substrate is coated with boron in advance, the boron (B) rich region in the state diagram shown in the figure, that is, the right side of the figure. However, it is thought that it can contribute to setting temperature conditions.
すなわち、Co−B系の場合、本発明に従う好ましい態様として、Co(コバルト)とB(ホウ素)とから成る2成分系における最もホウ素リッチな組成の共晶の共晶点〔図の状態図中、Bが(原子のパーセントで)61%のCo−B共晶点〕である1350℃以上の温度に加熱した後、その共晶点以下の温度(図の状態図で、S1+S2で示される領域の存する温度:例えば、1000℃以下)にまで冷却することにより、基材上にホウ化物(BリッチなCoB固溶体)の層が形成され(成膜され)、Co相またはCoリッチの相は存在しないと考えられる。That is, in the case of the Co—B system, as a preferred embodiment according to the present invention, the eutectic point of the eutectic of the most boron-rich composition in the binary system composed of Co (cobalt) and B (boron) [in the state diagram of FIG. , B is 61% Co-B eutectic point (percent of atoms), and then heated to a temperature equal to or higher than 1350 ° C. and then below the eutectic point (in the state diagram of the figure, S 1 + S 2 By cooling to the temperature where the indicated region exists: for example, 1000 ° C. or lower), a boride (B-rich CoB solid solution) layer is formed (formed) on the substrate, and the Co phase or Co-rich layer is formed. It is believed that no phase exists.
他の鉄系遷移金属についても、上記と同様に、状態図を参考にして、ホウ化物を形成するための温度条件を定めることができる。例えば、図8および図9は、鉄系遷移金属として、それぞれ、鉄およびニッケルを含有する基材のホウ化条件を定めるのに用いることのできるFe−B系の状態図およびNi−B系の状態図である。いずれの場合においても、鉄とホウ素またはニッケルとホウ素が溶融する温度(それらの状態図でLで示される領域の存する温度)にまで加熱した後、鉄とホウ素またはニッケルホウ素とが固化する温度にまで急冷する。特に、Fe−B系においては、図中に示す共晶点(1500℃)以上、また、Ni−B系においては図中に示す共晶点(1018℃)以上に加熱した後、急冷することが好ましい。 For other iron-based transition metals, similarly to the above, temperature conditions for forming borides can be determined with reference to the phase diagram. For example, FIGS. 8 and 9 show Fe-B phase diagrams and Ni-B phase diagrams that can be used to define boriding conditions for substrates containing iron and nickel, respectively, as iron-based transition metals. It is a state diagram. In any case, after heating to a temperature at which iron and boron or nickel and boron are melted (temperature in the region indicated by L in those phase diagrams), to a temperature at which iron and boron or nickel boron are solidified. Cool down quickly. In particular, in the Fe-B system, heating to the eutectic point (1500 ° C.) or higher shown in the figure, and in the Ni-B system, heating to the eutectic point (1018 ° C.) or higher shown in the figure, followed by rapid cooling Is preferred.
融体(液体)の存在する温度が低い場合には、融体の存在する状態でもcBN堆積が可能である。液体状態のCoとBは、例えば、WC−Co超硬合金のようにホウ化物をつくりにくいWC粒上に固体のホウ素が存在する場合にも、CoとWCの親和性のため濡れていき、ホウ素と結合相Coの相互拡散を促進し、さらにWCのホウ化も促進し、均一なcBNのコーティングが容易となり得る。 When the temperature at which the melt (liquid) exists is low, cBN deposition is possible even in the presence of the melt. Co and B in the liquid state are wetted due to the affinity between Co and WC even when solid boron is present on WC grains where borides are difficult to form, such as WC-Co cemented carbide. The interdiffusion of boron and binder phase Co is promoted, and further boration of WC is promoted, and uniform cBN coating can be facilitated.
かくして、本発明に従うホウ化物形成工程においては、先ず、ホウ素(硼素)の供給を行い、ホウ素コーティングを行う。基材上へのホウ素コーティングは、既知の手段を工夫して行うことができ、例えば、ホウ素供給源として三フッ化ホウ素などを用いて、化学気相成長法(CVD:化学蒸着法)、電子ビーム蒸着,イオンビーム蒸着,イオンプレーティング,スパッタリング,レーザーアブレーション等の物理的気相成長法(PVD:物理蒸着法)、あるいは固体ホウ素粉末のシーディングのいずれかまたはこれらの手段を組み合わせることにより行うことができる。ホウ素コーティングに要する時間は、一般に、5分〜20分であり、例えば、10分である。 Thus, in the boride forming step according to the present invention, first, boron (boron) is supplied and boron coating is performed. Boron coating on the substrate can be performed by devising known means. For example, using boron trifluoride as a boron source, chemical vapor deposition (CVD: chemical vapor deposition), electron Either physical vapor deposition (PVD: physical vapor deposition) such as beam deposition, ion beam deposition, ion plating, sputtering, laser ablation, or seeding of solid boron powder, or a combination thereof. be able to. The time required for boron coating is generally 5 to 20 minutes, for example, 10 minutes.
ホウ素コーティング後、既に詳述したように、基材を所定温度に加熱して所定時間保持した後、冷却する。所定の加熱温度に保持する時間は、一般に、1分〜10分間であり、また、冷却は、所定の加熱温度から冷却温度に1分以下で急冷することが好ましい。 After the boron coating, as already described in detail, the substrate is heated to a predetermined temperature and held for a predetermined time, and then cooled. The time for holding at the predetermined heating temperature is generally 1 minute to 10 minutes, and the cooling is preferably rapidly cooled from the predetermined heating temperature to the cooling temperature in 1 minute or less.
以上のホウ化物形成工程は、真空中、アルゴン等の不活性ガス中、窒素ガス中、または不活性ガスと窒素の混合ガス中で行うことができる。この際、水素を含むガス中または水素を含むプラズマ中で行う場合は、不活性ガス雰囲気中の場合よりかなり低い温度で、遷移金属とホウ素を共融させることができ、より低温で遷移金属のホウ化物(固溶体)を形成することができる。これは、水素が加わることで成分がひとつ増加し、融点降下が起るためと考えられる。水素を含むプラズマ中の方が、水素を含有するガス中より、この共融操作の反応速度を上げることができる。 The boride formation process described above can be performed in vacuum, in an inert gas such as argon, in nitrogen gas, or in a mixed gas of inert gas and nitrogen. At this time, when performed in a gas containing hydrogen or in a plasma containing hydrogen, the transition metal and boron can be eutectic at a considerably lower temperature than in an inert gas atmosphere. A boride (solid solution) can be formed. This is presumably because the addition of hydrogen increases the component by one and lowers the melting point. The reaction rate of the eutectic operation can be increased in the plasma containing hydrogen than in the gas containing hydrogen.
<ケイ化物の形成>
本発明に従うcBNコーティング法の別の好ましい態様においては、鉄系遷移金属を含有する基材上に該遷移金属のケイ化物(珪化物)を形成する前工程が含まれる。
B(ホウ素)はCo(コバルト)などの鉄系遷移金属とは反応が遅いので、Bと該遷移金属とが溶融してBがCoに入り易いようにして、液体から固体に冷却することが必要である。これに対して、Si(ケイ素:珪素)はCoなどの鉄系遷移金属とは反応し易いので、従来から知られた各種手段により、高温で該遷移金属の表面に蒸着させることにより、その遷移金属のケイ化物を得ることができる。すなわち、本発明に従いケイ化物を形成する前工程は、ケイ素供給源となる原料から、化学気相成長法(CVD:化学蒸着法)または物理的気相成長法(PVD:物理蒸着法)により、鉄系遷移金属を含有する基材の表面にケイ素を蒸着させることにより、該遷移金属のケイ化物を形成することから成る。<Formation of silicides>
In another preferred embodiment of the cBN coating method according to the present invention, a pre-process for forming a silicide (silicide) of the transition metal on a substrate containing an iron-based transition metal is included.
Since B (boron) reacts slowly with iron-based transition metals such as Co (cobalt), it can be cooled from a liquid to a solid by melting B and the transition metal so that B can easily enter Co. is necessary. On the other hand, since Si (silicon: silicon) easily reacts with iron-based transition metals such as Co, the transition can be achieved by vapor deposition on the surface of the transition metal at high temperatures by various conventionally known means. Metal silicides can be obtained. That is, the pre-process for forming a silicide according to the present invention is performed by using a chemical vapor deposition method (CVD: chemical vapor deposition method) or a physical vapor deposition method (PVD: physical vapor deposition method) from a raw material serving as a silicon source. Forming the transition metal silicide by depositing silicon on the surface of the substrate containing the iron-based transition metal.
CVD法には、プラズマCVDや光CVD等が知られているが、本発明にはプラズマCVDが適している。ケイ素供給源となる原料ガスをアルゴンまたはアルゴン+水素などの雰囲気中で、加熱した基材に蒸着させることにより、鉄系遷移金属のケイ化物が形成される。CVD法の原料ガスとしては、シラン(SiH4)、ジシラン(Si2H6)、ジクロルシラン(SiH2Cl2)、四塩化珪素(SiCl4)等の珪素を含むガス、あるいはモノメチルシラン(SiH3CH3)、テトラメチルシリコン(Si(CH4)4)、テトラエトキシシリコン(TEOS:Si(OC2H5)4)等の珪素および/または炭素を含むガスが挙げられる。As the CVD method, plasma CVD, photo-CVD, or the like is known, but plasma CVD is suitable for the present invention. By depositing a source gas serving as a silicon supply source on a heated substrate in an atmosphere of argon or argon + hydrogen, an iron-based transition metal silicide is formed. As a source gas for the CVD method, a gas containing silicon such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), silicon tetrachloride (SiCl 4 ), or monomethylsilane (SiH 3). Examples thereof include gases containing silicon and / or carbon such as CH 3 ), tetramethyl silicon (Si (CH 4 ) 4 ), and tetraethoxy silicon (TEOS: Si (OC 2 H 5 ) 4 ).
基材温度を、300℃以上、好ましくは500℃以上とすることで、直接鉄系遷移金属のケイ化を行うことができる。鉄系遷移金属を結合相とする超硬合金の場合には、超硬物質相〔例えば、コバルト含有炭化タングステン(WC−Co)の場合には、WC相が該当する〕は、鉄系遷移金属相よりケイ化反応が遅く、500℃程度では十分にケイ化されないことから、ケイ素の気化しやすい条件(例えば、低温でのCVD法または水素プラズマ中でのケイ化)で、鉄系遷移金属相のみをケイ化することができる。基材を800℃以上に加熱すると、超硬物質相もケイ化される。 By setting the substrate temperature to 300 ° C. or higher, preferably 500 ° C. or higher, the iron-based transition metal can be directly silicided. In the case of a cemented carbide having an iron-based transition metal as a binder phase, the cemented carbide phase (for example, in the case of cobalt-containing tungsten carbide (WC-Co), the WC phase is applicable) is an iron-based transition metal. Since the silicidation reaction is slower than that of the phase and is not sufficiently silicided at about 500 ° C., the iron-based transition metal phase can be used under conditions where silicon is easily vaporized (for example, CVD at low temperature or silicidation in hydrogen plasma). Only can be silicified. When the substrate is heated to 800 ° C. or higher, the cemented carbide phase is also silicided.
PVD法としては、イオンビーム蒸着、イオンプレーティングまたは固体ケイ素をターゲットとして電子ビーム蒸着やスパッタリングすることが挙げられ、好ましい手法としてアルゴンなどの不活性ガス中での高周波スパッタリング法が例示される。PVDの場合、基材表面に存在する当初の固体ケイ素が薄い場合でも、その後の加熱により固体ケイ素が結合相に吸収ケイ化されて充分なケイ化物層が形成される。 Examples of the PVD method include ion beam vapor deposition, ion plating, or electron beam vapor deposition or sputtering using solid silicon as a target, and a preferable method is a high frequency sputtering method in an inert gas such as argon. In the case of PVD, even when the initial solid silicon present on the surface of the substrate is thin, the solid silicon is absorbed and silicified into the binder phase by subsequent heating to form a sufficient silicide layer.
<cBNのコーティング>
以上のようにして、鉄系遷移金属を含有する基材上に、該金属のホウ化物またはケイ化物を形成した後に、cBNのコーティング(成膜)を実施する。このcBNの成膜は、これまで知られている立方晶窒化ホウ素の化学気相成長法(CVD)、物理的気相成長法(PVD)のいずれかあるいはそれら組み合わせた方法を用いることにより行うことができる。すなわち、プラズマジェット、マイクロ波プラズマ,誘導結合型プラズマ,電子サイクロトロン共鳴プラズマなどのさまざまな高密度プラズマを用いるプラズマCVD法、バイアススパッタリング、イオンビーム蒸着、イオンビームアシスト蒸着等のPVD法を用いることができる。<Coating of cBN>
As described above, after the boride or silicide of the metal is formed on the base material containing the iron-based transition metal, coating (film formation) of cBN is performed. This cBN film is formed by using a known method of chemical vapor deposition (CVD) or physical vapor deposition (PVD) of cubic boron nitride or a combination thereof. Can do. That is, it is possible to use a plasma CVD method using various high-density plasmas such as plasma jet, microwave plasma, inductively coupled plasma, and electron cyclotron resonance plasma, PVD methods such as bias sputtering, ion beam evaporation, and ion beam assisted evaporation. it can.
このうち、フッ素を用いるプラズマCVD法が特に好ましい。すなわち、ジボラン,三フッ化ホウ素等のホウ素源、窒素,アンモニア等の窒素源、及び三フッ化ホウ素,フッ素,フッ化水素等のフッ素源を気相中に供給し、気相をプラズマ化により活性化し、立方晶窒化ホウ素を基体上へ析出させる。このCVDの実施により、後述するように、特に結晶性のよいcBN膜を高い密着性でコーティングすることができる。 Among these, the plasma CVD method using fluorine is particularly preferable. That is, a boron source such as diborane and boron trifluoride, a nitrogen source such as nitrogen and ammonia, and a fluorine source such as boron trifluoride, fluorine and hydrogen fluoride are supplied into the gas phase, and the gas phase is converted into plasma. Activate and deposit cubic boron nitride onto the substrate. By performing this CVD, as will be described later, a cBN film having particularly good crystallinity can be coated with high adhesion.
フッ素を用いるプラズマCVD法によるcBNのコーティングに際しては、反応容器壁或いは反応容器内に設置した参照電極に対し、基体にバイアス電圧をかける。反応とプラズマの制御のために水素および希ガスのうちどちらか単独を或いは両方を加えることができる。プラズマの種類としては、プラズマジェット,マイクロ波プラズマ,誘導結合型プラズマ,電子サイクロトロン共鳴プラズマなどのさまざまな高密度プラズマを利用できる。 When cBN is coated by the plasma CVD method using fluorine, a bias voltage is applied to the substrate with respect to a reaction vessel wall or a reference electrode installed in the reaction vessel. One or both of hydrogen and a rare gas can be added for reaction and plasma control. As a kind of plasma, various high-density plasmas such as plasma jet, microwave plasma, inductively coupled plasma, and electron cyclotron resonance plasma can be used.
基体バイアスには直流、交流、高周波、或いはそれらの重積、或いはそれらをパルス化した電源のいずれでも用いることができる。最適なバイアス電圧は、ガス圧、ガス組成、基体温度等により異なるが、0〜−150V程度、プラズマの種類によっては0〜+100V程度の正のバイアスを用いることも可能である。 As the substrate bias, any of direct current, alternating current, high frequency, a stack of them, or a power source obtained by pulsing them can be used. The optimum bias voltage varies depending on the gas pressure, gas composition, substrate temperature, etc., but a positive bias of about 0 to −150 V or about 0 to +100 V can be used depending on the type of plasma.
<材料の特性>
本発明に従えば、超硬合金や高速度鋼などの基材に対して、高結晶性のcBNが高密着度にコーティングされた優れた被覆材料が得られる。
すなわち、得られるcBN膜は、ラマンスペクトルでcBNの光学的縦波モードのフォノンによるラマン散乱又は光学的横波モードのフォノンによるラマン散乱のいずれか一方あるいは両方の半値幅が、50cm-1以下のピークを示し、あるいは、薄膜X線回折で、前記表面膜の立方晶窒化ホウ素の(111)、(200)、(220)、(311)の内のいずれか1の反射ピークの2θの半値幅が、それぞれ1.5、2.5、2.5、3度以下であるような高い結晶性を有する。さらに結晶性がよい場合は、上記ラマンピークの半値幅は25cm-1以下に、X線回折の(111)、(200)、(220)、(311)の内のいずれか1の反射ピークの2θの半値幅が、それぞれ1、1.5、1.5、2度以下となる。<Material properties>
According to the present invention, it is possible to obtain an excellent coating material in which a highly crystalline cBN is coated with a high degree of adhesion on a base material such as cemented carbide or high speed steel.
That is, the obtained cBN film has a peak in which either or both of Raman scattering by phonons in the optical longitudinal wave mode of cBN and Raman scattering by phonons in the optical transverse wave mode are 50 cm −1 or less in the Raman spectrum. Or the half width of 2θ of the reflection peak of any one of (111), (200), (220), and (311) of the cubic boron nitride of the surface film by thin film X-ray diffraction Have high crystallinity of 1.5, 2.5, 2.5 or 3 degrees or less, respectively. Further, when the crystallinity is good, the half width of the Raman peak is 25 cm −1 or less, and the reflection peak of any one of (111), (200), (220), and (311) of X-ray diffraction is used. The half width of 2θ is 1, 1.5, 1.5, 2 degrees or less, respectively.
また、本発明によって得られるcBNコート材料は、cBNの密着度が高く、スクラッチテストにより密着度を測定すると、本発明によるホウ化物を形成させた場合、剥れ加重は30N以上であり、また、本発明によるケイ化物を形成させた場合は10N以上であることが確認されている。 In addition, the cBN coating material obtained by the present invention has high cBN adhesion, and when the adhesion is measured by a scratch test, when the boride according to the present invention is formed, the peel load is 30 N or more. When the silicide according to the present invention is formed, it is confirmed that it is 10 N or more.
本発明に従えば、このように密着性の優れたcBN被覆材料が得られる様子をWC−Co系超硬合金の場合を例として模式的に説明すると次のようになる:すなわち、図2に示すように、ホウ化物またはケイ化物の相2が、基体3(WC相31およびCo相32からなる)と、cBN膜1との間の中間層として存在する。ホウ化物またはケイ化物の相2は、より詳細には、WC相31と接する面ではタングステンのホウ化物またはケイ化物が主に生じており、Co相32と接する面ではコバルトのホウ化物またはケイ化物が主に生じている。また、ケイ化物を形成させる場合、前述のように、基材の温度を調節する等の手段により、専らCoとケイ化物を形成させ、WC相にはcBNが直接コーティングされていることもある。なお、超硬物質相(WC相)に直接cBNがコーティングされている場合には、弾性率が高いという特性があり、一方、ケイ化物が基体表面の全面に存在する場合には、じん性が高いという特性がある。コーティングによりこのような特性の違いがあるために、用途に応じて両者を使い分けて利用することができる。
According to the present invention, how a cBN coating material having excellent adhesion can be obtained will be schematically described as an example of a WC-Co cemented carbide as follows: That is, FIG. As shown, a boride or
これに対して、従来のcBNコーティング方法では、図3に示すように、sp2結合BN膜100が、基体3に成膜されること(同図(a))や、cBNをコーティングする場合に、分厚いsp2結合BN膜100が、基体3に成膜されること(同図(b))があり、sp2結合BN膜100上のcBNコーティングが剥がれ易い状態であった。しかし、本発明のcBNコーティング方法では、Co(コバルト)がホウ化物(ホウ素との固溶体)またはケイ化物となることで、sp2結合BN生成への触媒作用が抑制され、図2に示すように、cBN膜の生成と密着性の向上が可能となった。本発明のcBN膜は基体側にごく微量のsp2結合BNが存在する場合があるが、この場合もcBN膜の密着性は良好である。In contrast, in the conventional cBN coating method, as shown in FIG. 3, the sp 2 -bonded
本発明の実施に際して、化学気相成長法(CVD:化学蒸着法)により、ホウ化物またはケイ化物の形成およびその後の立方晶窒化ホウ素を主成分とする膜のコーティングを実施する場合には、供給ガスを切り替えることにより、同一装置内で共通化して実施できることとなり、製造工程を簡略化して作業負荷を軽減することができる。ホウ化物またはケイ化物の形成およびcBNコーティングのいずれかあるいは複数の工程がPVD法の場合でも、それらの工程を工夫することにより同一装置内で全工程を実施することができる。 In the practice of the present invention, when chemical vapor deposition (CVD: chemical vapor deposition) is used to form a boride or silicide and then coat a film mainly composed of cubic boron nitride, supply By switching the gas, it can be performed in common in the same apparatus, and the manufacturing process can be simplified and the work load can be reduced. Even when one or a plurality of steps of boride or silicide formation and cBN coating is a PVD method, all steps can be performed in the same apparatus by devising those steps.
なお、上記では、cBNコーティングの対象となる基材として、主として、Co(コバルト)を結合相とする超硬合金について説明したが、本発明は、鉄系遷移金属を含有する他の種類の基材にも同様に適用できる。この場合でも、上述したcBNコーティングと同等なcBNコーティングを実施することができる。 In the above description, the cemented carbide having Co (cobalt) as the binder phase is mainly described as the base material to be cBN coated. However, the present invention is not limited to other types of substrates containing iron-based transition metals. The same applies to the material. Even in this case, a cBN coating equivalent to the cBN coating described above can be performed.
以下、本発明の特徴をさらに具体的に説明するため実施例を示すが、本発明はこれらの実施例によって制限されるものではない。
下記実施例のうち、実施例1−3は、cBNコーティングの前にホウ化物を形成する例であり、実施例4および5は、cBNコーティングの前にケイ化物を形成する例である。また、剥れ加重は、ダイアモンド圧子を押し付け加重を増しながら引っ張るスクラッチ試験により測定したものである。EXAMPLES Hereinafter, examples will be shown to describe the features of the present invention more specifically, but the present invention is not limited to these examples.
Of the following examples, Example 1-3 is an example of forming a boride before cBN coating, and Examples 4 and 5 are examples of forming a silicide before cBN coating. The peel load is measured by a scratch test in which a diamond indenter is pressed and pulled while increasing the load.
アルゴンと三フッ化ホウ素と水素ガス(20:0.01:0.1)のプラズマから、基板温度700℃にて、6%コバルト含有炭化タングステン(以下WC−6%Co)基板上に10分間ホウ素膜を堆積し、そのままアルゴン−水素プラズマ(20:0.1)中で1100℃に5分間加熱後、500℃に冷却してホウ化物を形成した。その後アルゴン−三フッ化ホウ素―水素―窒素ガス(20:0.003:0.005:1.5)からのプラズマCVDにより基板温度850℃、基板バイアス−85Vにて20分間の反応によりcBN膜を堆積させた。 A plasma of argon, boron trifluoride and hydrogen gas (20: 0.01: 0.1) is used for 10 minutes on a 6% cobalt-containing tungsten carbide (hereinafter referred to as WC-6% Co) substrate at a substrate temperature of 700 ° C. A boron film was deposited and heated as it was in argon-hydrogen plasma (20: 0.1) to 1100 ° C. for 5 minutes and then cooled to 500 ° C. to form a boride. The cBN film was then reacted by plasma CVD from argon-boron trifluoride-hydrogen-nitrogen gas (20: 0.003: 0.005: 1.5) at a substrate temperature of 850 ° C. and a substrate bias of −85 V for 20 minutes. Was deposited.
これらのプロセスは、全て同じ反応槽内で圧力50Torrでアークジェットプラズマを用いて行った。このcBN膜の膜厚は4ミクロンであった。密着性をアコースティックエミッション付きスクラッチテスト機で調べたところ、剥れ加重は40Nであった。 These processes were all carried out using arc jet plasma at a pressure of 50 Torr in the same reactor. The thickness of this cBN film was 4 microns. When the adhesion was examined with a scratch tester with acoustic emission, the peel load was 40N.
この膜のラマン散乱スペクトルを図4に示すが、光学的縦波モードのフォノンによるラマン散乱又は光学的横波モードのフォノンによるラマン散乱のピークの半値幅はそれぞれ、20.1、39.1cm-1であった。FIG. 4 shows the Raman scattering spectrum of this film. The half-value widths of the Raman scattering peak due to the optical longitudinal wave mode phonon or the Raman scattering peak due to the optical transverse wave mode phonon are 20.1 and 39.1 cm −1, respectively. Met.
(比較例1)
実施例1と同じ装置で、WC−6%Coの基板上に、ホウ素コートのプロセスなしに、アルゴン−三フッ化ホウ素―水素―窒素ガス(20:0.003:0.005:1.5)からのプラズマCVDにより基板温度850℃、基板バイアス−85Vにて20分間の反応をさせたところ、sp2結合のBNを主成分とするやわらかな剥れやすい膜が得られたのみであった。(Comparative Example 1)
In the same apparatus as in Example 1, an argon-boron trifluoride-hydrogen-nitrogen gas (20: 0.003: 0.005: 1.5) was formed on a WC-6% Co substrate without a boron coating process. When the reaction was carried out for 20 minutes at a substrate temperature of 850 ° C. and a substrate bias of −85 V by plasma CVD from (1), only a soft and easy-to-peel film composed mainly of sp 2 -bonded BN was obtained. .
(比較例2)
実施例1と同じプロセスであるが、アルゴン−水素中プラズマ中の1100℃での加熱なしにBN成膜を行ったところ、sp2結合BNの上にcBNの生成した膜が得られたが、取り出し後数時間で剥れてしまった。(Comparative Example 2)
Although the same process as in Example 1 was carried out, and a BN film was formed without heating at 1100 ° C. in an argon-hydrogen plasma, a film in which cBN was formed on sp 2 -bonded BN was obtained. It peeled off within a few hours after removal.
(比較例3)
実施例1と同じプロセスであるが、アルゴン−水素プラズマ中の1100℃での加熱の代わりに、アルゴンのみのプラズマ中の1100℃での5分間の加熱の後にBN成膜で得られた膜は、sp2結合BNの上にcBNの生成した膜であったが、スクラッチテストによる剥れ加重は<1Nと密着性が劣っていた。(Comparative Example 3)
The same process as in Example 1, but instead of heating at 1100 ° C. in an argon-hydrogen plasma, the film obtained by BN deposition after 5 minutes of heating at 1100 ° C. in an argon only plasma is The film was formed by cBN on sp 2 -bonded BN, but the peel load by the scratch test was inferior to <1N in adhesion.
実施例1と同じプロセスであるが、アルゴン−水素プラズマの代わりに、アルゴンのみのプラズマ中での1分間の1370℃の加熱後、850℃の成膜で得られたcBN膜は剥れ加重30Nの密着性を示した。 The same process as Example 1, but after heating at 1370 ° C. for 1 minute in argon-only plasma instead of argon-hydrogen plasma, the cBN film obtained by film formation at 850 ° C. has a peeling load of 30 N The adhesion was shown.
WC−6%Co基材上に、アルゴン中の高周波スパッタリングにより、約1μmのホウ素膜をコーティングした。その後、実施例1と同じアークジェットプラズマCVD装置にてアルゴンプラズマ中1370℃で1分間の加熱後500℃まで冷却し、アルゴン−三フッ化ホウ素―水素―窒素ガス(20:0.003:0.005:1.5)からの50TorrでのプラズマCVDにより基板温度850℃、基板バイアス−85Vにて20分間の反応によりcBN膜を堆積させた。850℃の成膜で得られたcBN膜は、剥れ加重30Nの密着性を示した。
これら実施例および比較例の結果を下記の表にまとめて一覧で記載した。A boron film of about 1 μm was coated on a WC-6% Co substrate by high frequency sputtering in argon. Thereafter, the same arc jet plasma CVD apparatus as in Example 1 was heated in argon plasma at 1370 ° C. for 1 minute, then cooled to 500 ° C., and argon-boron trifluoride-hydrogen-nitrogen gas (20: 0.003: 0) 0.005: 1.5), a cBN film was deposited by a reaction for 20 minutes at a substrate temperature of 850 ° C. and a substrate bias of −85 V by plasma CVD at 50 Torr. The cBN film obtained by film formation at 850 ° C. exhibited adhesion with a peeling load of 30N.
The results of these examples and comparative examples are summarized in the following table and listed.
アルゴンと四塩化珪素と水素ガス(20:0.005:0.01)のプラズマから、基板温度800℃にて、WC−6%Coを10分間ケイ化(珪化)し、その後アルゴン、三フッ化ホウ素、水素、窒素ガス(20:0.003:0.005:1.5)からのプラズマCVDにより基板温度850℃にて20分間の反応によりcBN膜を堆積させた。これらのプロセスは全て同じ反応槽内で圧力50Torr下でのアークジェットプラズマを用いた。このcBN膜の膜厚は4ミクロンであった。 From a plasma of argon, silicon tetrachloride and hydrogen gas (20: 0.005: 0.01), WC-6% Co is silicided (silicified) for 10 minutes at a substrate temperature of 800 ° C., and then argon, three fluorine A cBN film was deposited by reaction for 20 minutes at a substrate temperature of 850 ° C. by plasma CVD from boron fluoride, hydrogen, and nitrogen gas (20: 0.003: 0.005: 1.5). All these processes used arc jet plasma under the pressure of 50 Torr in the same reactor. The thickness of this cBN film was 4 microns.
この膜の薄膜X線回折図を図5に示す。sp2結合のBNのピークは目立たず、cBNのピークが見られ、特に111反射は鋭いピークとなっている。そのほかにWSi2とCoSiが現れている。A thin film X-ray diffraction pattern of this film is shown in FIG. The sp 2 -bonded BN peak is not conspicuous, and a cBN peak is observed, and particularly the 111 reflection is a sharp peak. In addition, WSi 2 and CoSi appear.
この膜のラマン散乱スペクトルを図7に示す。光学的縦波モードのフォノンによるラマン散乱および光学的横波モードのフォノンによるラマン散乱の半値幅はそれぞれ20.4、34.1cm-1であった。この膜は密着性がよく、スクラッチテストによる密着性テストでは、剥れ加重は40Nであった。The Raman scattering spectrum of this film is shown in FIG. The half widths of Raman scattering by phonons in the optical longitudinal wave mode and Raman scattering by phonons in the optical transverse wave mode were 20.4 and 34.1 cm −1 , respectively. This film had good adhesion, and in the adhesion test by the scratch test, the peeling load was 40N.
(比較例4)
実施例4と同じプロセスにおいて、最初のケイ化処理なしにBNの成膜を行った場合は、図6の薄膜X線回折図に示すように、sp2結合のBNを主成分(tBN)とする、剥れやすい膜しか得られなかった。膜厚は4.3ミクロンであった。cBNは非常に弱く、tBNが最も強く現れている。この膜に、スクラッチテストによる密着性テストを行ったところ、剥れ加重は1N以下であった。(Comparative Example 4)
In the same process as in Example 4, when the BN film was formed without the first silicidation treatment, as shown in the thin film X-ray diffraction diagram of FIG. 6, the sp 2 -bonded BN was used as the main component (tBN). As a result, only a film that was easy to peel off was obtained. The film thickness was 4.3 microns. cBN is very weak and tBN appears most strongly. When this film was subjected to an adhesion test by a scratch test, the peel load was 1 N or less.
6%コバルト含有炭化タングステン(以下WC−6%Co)基材上に、アルゴン中の高周波スパッタリングにより、約100nmの珪素膜をコーティングした。これをヘリウム−窒素−三フッ化ホウ素−水素ガス(80:20:1.5:15)からの高周波誘導プラズマCVD法にて基体温度700℃で300mTorrの圧力下、+30Vのバイアス電圧を用いた30分の成膜により、cBNを主成分とする約2ミクロン厚の膜を得た。この膜に、アコースティックエミッション付きスクラッチテスト機による密着性テストを行ったところ、剥れ加重は10Nであった。 A silicon film having a thickness of about 100 nm was coated on a 6% cobalt-containing tungsten carbide (hereinafter referred to as WC-6% Co) substrate by high-frequency sputtering in argon. This was subjected to high frequency induction plasma CVD using helium-nitrogen-boron trifluoride-hydrogen gas (80: 20: 1.5: 15) and a bias voltage of +30 V was used at a substrate temperature of 700 ° C. and a pressure of 300 mTorr. A film having a thickness of about 2 microns containing cBN as a main component was obtained by film formation for 30 minutes. When this film was subjected to an adhesion test using a scratch tester with acoustic emission, the peel load was 10 N.
(比較例5)
同じ材質の基材を用い、珪素コーティングなしで、ヘリウム−窒素−三フッ化ホウ素−水素ガス(80:20:1.5:15)からの高周波誘導プラズマCVD法にて、基体温度700℃で300mTorrの圧力下、+30Vのバイアス電圧を用いてBN膜をコートし、cBNおよびsp2結合のBNからなる約2ミクロン厚の膜を得た。この膜にスクラッチテストによる密着性テストを行ったところ、剥れ加重は1N以下であった。(Comparative Example 5)
Using a base material of the same material, without a silicon coating, by a high frequency induction plasma CVD method from helium-nitrogen-boron trifluoride-hydrogen gas (80: 20: 1.5: 15) at a substrate temperature of 700 ° C. Under a pressure of 300 mTorr, a BN film was coated using a bias voltage of +30 V to obtain a film about 2 microns thick consisting of cBN and sp 2 bonded BN. When this film was subjected to an adhesion test by a scratch test, the peel load was 1 N or less.
高硬度基体との高密着性のc−BN膜被覆複合体で、高硬度、高耐磨耗性、高耐熱性、高熱伝導度が必要とされる切削工具、研削工具、ドリル等のコーティングへの応用、および耐摩耗性コーティング等への応用が期待される。 A c-BN film-coated composite with high adhesion to a high-hardness substrate. For coatings such as cutting tools, grinding tools, and drills that require high hardness, high wear resistance, high heat resistance, and high thermal conductivity. And application to wear-resistant coatings are expected.
Claims (5)
前記立方晶窒化ホウ素膜をコーティングする工程の前に、前記基材上に該基材に含有されている前記遷移金属のケイ化物を形成する前工程を含み、前記前工程が、化学気相成長(CVD)法または物理気相成長(PVD)法により、鉄系遷移金属を含有する基材の表面にケイ素を蒸着させることにより該遷移金属のケイ化物を形成することから成ることを特徴とする方法。In a cubic boron nitride coating method including a step of coating a film mainly composed of cubic boron nitride on a substrate containing an iron-based transition metal,
Before the step of coating the cubic boron nitride film, the step of forming a silicide of the transition metal contained in the base material on the base material, wherein the pre-process includes chemical vapor deposition Characterized by forming a silicide of the transition metal by depositing silicon on the surface of the substrate containing the iron-based transition metal by a (CVD) method or a physical vapor deposition (PVD) method. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011549043A JP5669107B2 (en) | 2010-01-11 | 2011-01-11 | Cubic boron nitride coating method and material obtained thereby |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010003510 | 2010-01-11 | ||
JP2010003511 | 2010-01-11 | ||
JP2010003510 | 2010-01-11 | ||
JP2010003511 | 2010-01-11 | ||
JP2011549043A JP5669107B2 (en) | 2010-01-11 | 2011-01-11 | Cubic boron nitride coating method and material obtained thereby |
PCT/JP2011/050292 WO2011083869A1 (en) | 2010-01-11 | 2011-01-11 | Cubic boron nitride coating method and material produced by the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2011083869A1 JPWO2011083869A1 (en) | 2013-05-16 |
JP5669107B2 true JP5669107B2 (en) | 2015-02-12 |
Family
ID=44305604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011549043A Expired - Fee Related JP5669107B2 (en) | 2010-01-11 | 2011-01-11 | Cubic boron nitride coating method and material obtained thereby |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5669107B2 (en) |
WO (1) | WO2011083869A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2548855A (en) * | 2016-03-30 | 2017-10-04 | Imp Innovations Ltd | Oxidation resistant coating and methods of manufacturing thereof |
JP7049894B2 (en) * | 2018-04-04 | 2022-04-07 | 東京エレクトロン株式会社 | Boron-based film film forming method and film forming equipment |
US12157939B2 (en) * | 2019-02-08 | 2024-12-03 | Oerlikon Surface Solutions Ag, Pfäffikon | Coated tool with coating comprising boride-containing diffusion barrier layer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3499799A (en) * | 1963-12-12 | 1970-03-10 | Texas Instruments Inc | Process for preparing dense,adherent boron nitride films and certain articles of manufacture |
JPS62109976A (en) * | 1985-11-08 | 1987-05-21 | Toshiba Tungaloy Co Ltd | Member covered with cubic boron nitride |
JPH04124283A (en) * | 1990-09-17 | 1992-04-24 | Sumitomo Electric Ind Ltd | Coating method of boron nitride film |
JPH07300665A (en) * | 1994-05-02 | 1995-11-14 | Yuken Kogyo Kk | Method for forming boron cementation layer and boron film on metallic base material |
-
2011
- 2011-01-11 WO PCT/JP2011/050292 patent/WO2011083869A1/en active Application Filing
- 2011-01-11 JP JP2011549043A patent/JP5669107B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3499799A (en) * | 1963-12-12 | 1970-03-10 | Texas Instruments Inc | Process for preparing dense,adherent boron nitride films and certain articles of manufacture |
JPS62109976A (en) * | 1985-11-08 | 1987-05-21 | Toshiba Tungaloy Co Ltd | Member covered with cubic boron nitride |
JPH04124283A (en) * | 1990-09-17 | 1992-04-24 | Sumitomo Electric Ind Ltd | Coating method of boron nitride film |
JPH07300665A (en) * | 1994-05-02 | 1995-11-14 | Yuken Kogyo Kk | Method for forming boron cementation layer and boron film on metallic base material |
Non-Patent Citations (2)
Title |
---|
JPN6011011663; Tatsumi USAMIA,et al.: 'Deposition of BN films on metal substrates from a fluorine-containing plasma' Surface & Coatings Technology vol.203, 2009, p.929-933 * |
JPN6011011664; J.WANG,et al.: 'NEW METHOD FOR PREPARING CUBIC BORON NITRIDE HARDENED LAYERS' Surface Engineering Vol.19,No.5, 2003, p.369-372 * |
Also Published As
Publication number | Publication date |
---|---|
WO2011083869A1 (en) | 2011-07-14 |
JPWO2011083869A1 (en) | 2013-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4704950B2 (en) | Amorphous carbon-based hard multilayer film and hard surface member having this film on the surface | |
Saijo et al. | The improvement of the adhesion strength of diamond films | |
Borges et al. | Influence of nitrided and carbonitrided interlayers on enhanced nucleation of diamond on stainless steel 304 | |
CN108396309B (en) | A kind of cubic boron nitride coated cutting tool and preparation method thereof | |
Gaydaychuk et al. | Influence of Al-Si-N interlayer on residual stress of CVD diamond coatings | |
CN1304632C (en) | Cutting fool boron nitride composite coating layer and its preparation method | |
JP5669107B2 (en) | Cubic boron nitride coating method and material obtained thereby | |
JP3031719B2 (en) | Diamond film deposition method on electroless plated nickel layer | |
JP3214891B2 (en) | Diamond coated members | |
JP5387815B2 (en) | Cubic boron nitride coating composite | |
JPH0819522B2 (en) | Diamond-coated sintered alloy with excellent adhesion and method for producing the same | |
JPH0222471A (en) | Diamond coated sintered hard alloy and method for coating sintered hard alloy with diamond | |
Shih et al. | Application of diamond coating to tool steels | |
EP0721998A1 (en) | Method and apparatus for vapour deposition of diamond film | |
CN100584996C (en) | Coating method of diamond film and cemented carbide parts coated with diamond | |
CN114807849A (en) | A kind of nanocomposite high entropy nitride coating and composite deposition method thereof | |
JPH05263251A (en) | Coated and sintered body | |
JP4116144B2 (en) | Manufacturing method of hard carbon coating member | |
JP2011174110A (en) | Material for cubic boron nitride coating, and method for manufacturing the same | |
JP2008144273A (en) | Manufacturing method of hard carbon coating member | |
JP4649946B2 (en) | Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating | |
JP3134378B2 (en) | Diamond coated hard material | |
JP4133150B2 (en) | Method for producing diamond film-coated member | |
JP3190090B2 (en) | Manufacturing method of diamond coated member | |
JP2006307298A (en) | Nitride film and method of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5669107 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |