[go: up one dir, main page]

JP5661960B1 - Chemical heat storage material - Google Patents

Chemical heat storage material Download PDF

Info

Publication number
JP5661960B1
JP5661960B1 JP2014093682A JP2014093682A JP5661960B1 JP 5661960 B1 JP5661960 B1 JP 5661960B1 JP 2014093682 A JP2014093682 A JP 2014093682A JP 2014093682 A JP2014093682 A JP 2014093682A JP 5661960 B1 JP5661960 B1 JP 5661960B1
Authority
JP
Japan
Prior art keywords
heat storage
temperature
storage material
heat
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014093682A
Other languages
Japanese (ja)
Other versions
JP2015209530A (en
Inventor
勝正 前田
勝正 前田
前田 健治
健治 前田
英知 前田
英知 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Techno Co Ltd
Original Assignee
Sanyo Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Techno Co Ltd filed Critical Sanyo Techno Co Ltd
Priority to JP2014093682A priority Critical patent/JP5661960B1/en
Application granted granted Critical
Publication of JP5661960B1 publication Critical patent/JP5661960B1/en
Publication of JP2015209530A publication Critical patent/JP2015209530A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

【解決手段】水和反応に基づく発熱可能温度が30℃以下であり、かつ脱水反応に基づく蓄熱可能温度が250℃以下であることを特徴とする化学蓄熱材。この化学蓄熱材は、カルシウムリチウムアルミネートからなる。A chemical heat storage material characterized in that an exothermic temperature based on a hydration reaction is 30 ° C. or lower and a heat storage possible temperature based on a dehydration reaction is 250 ° C. or lower. This chemical heat storage material is made of calcium lithium aluminate.

Description

本発明は、低温での発熱、かつ低温での蓄熱が可能な化学蓄熱材に関する。 The present invention relates to a chemical heat storage material capable of generating heat at a low temperature and storing heat at a low temperature.

化学反応を利用して熱の吸収、放出を行なうことのできる物質である化学蓄熱材は、広く知られており、これを利用したケミカルヒートポンプは、排気熱として大気中へ放出されているエネルギーの回収および再利用の観点から有効である。例えば、各種エンジン(ガソリンエンジン、ガスエンジン、ディーゼルエンジン等)、鉄鋼や化学品等の製造工場、ごみ焼却場等からは多くの熱エネルギーが排出され、これらの排気熱源は未利用のまま排出されている場合が殆どで、化学蓄熱材を利用したこれら排気熱源からの排気熱の有効利用が検討されている。
代表的な化学蓄熱材である酸化カルシウム(CaO 分子量:56.1)は、下式のように、水和反応により、水酸化カルシウム( Ca(OH) 分子量:74.1)に変換される際、発熱(放熱)する。
<水和反応> CaO + HO ⇒ Ca(OH) + Q(熱量:109.2kJ/モル)
また、水酸化カルシウムは、下式のように、脱水反応により、酸化カルシウムに変換される際、蓄熱(吸熱)する。
<脱水反応> Ca(OH) + Q(熱量:109.2kJ/モル) ⇒ CaO + H
この酸化カルシウムを蓄熱材として使用した場合は、先ず、前記酸化カルシウムの水和反応に基づく発熱がおこる。 次に、排気熱等を利用した蓄熱により、水酸化カルシウムは酸化カルシウムに再変換される。 この蓄熱の際、脱水分が減量する。 この減量率は、蓄熱材の質量あたりに蓄熱する熱量と直接、相関する値であり、蓄熱材の蓄熱性を示す重要な尺度となる。 例えば、水酸化カルシウムを、高温で処理し、脱水反応を行い、元の酸化カルシウムに戻す蓄熱操作を行った際の、減量率が32.1質量%であると、酸化カルシウム1モル(56.1g)当たりの109.2kJ熱量が完全に蓄熱されたことになる。 従い、例えば、ある温度で、脱水反応を行い、水酸化カルシウムの一部が脱水された時の減量率が3.2質量%であると、酸化カルシウム1モル(56.1g)当たりの10.9kJの熱量が蓄熱されたことになり、減量率が0質量%であると、全く蓄熱されていないことになる。
Chemical heat storage materials, which can absorb and release heat using chemical reactions, are widely known, and chemical heat pumps that use this are the sources of energy released into the atmosphere as exhaust heat. It is effective from the viewpoint of recovery and reuse. For example, a lot of heat energy is emitted from various engines (gasoline engines, gas engines, diesel engines, etc.), steel and chemical manufacturing factories, garbage incinerators, etc., and these exhaust heat sources are discharged unused. However, effective utilization of exhaust heat from these exhaust heat sources using chemical heat storage materials is being studied.
Calcium oxide (CaO 2 molecular weight: 56.1), which is a typical chemical heat storage material, is converted to calcium hydroxide (Ca (OH) 2 molecular weight: 74.1) by a hydration reaction as shown in the following formula. At that time, it generates heat (heat radiation).
<Hydration reaction> CaO + H 2 O ⇒ Ca (OH) 2 + Q (calorie: 109.2 kJ / mol)
Calcium hydroxide stores heat (endothermic) when it is converted to calcium oxide by a dehydration reaction as shown in the following formula.
<Dehydration reaction> Ca (OH) 2 + Q (calorie: 109.2 kJ / mol) ⇒ CaO + H 2 O
When this calcium oxide is used as a heat storage material, first, heat is generated based on the hydration reaction of the calcium oxide. Next, calcium hydroxide is reconverted to calcium oxide by heat storage using exhaust heat or the like. During this heat storage, the amount of dehydration is reduced. This weight loss rate is a value that directly correlates with the amount of heat stored per mass of the heat storage material, and is an important measure of the heat storage performance of the heat storage material. For example, when the weight loss rate is 32.1% by mass when calcium hydroxide is treated at a high temperature, subjected to a dehydration reaction and returned to the original calcium oxide, 1 mol of calcium oxide (56. The amount of heat of 109.2 kJ per 1 g) is completely stored. Therefore, for example, when a dehydration reaction is performed at a certain temperature and the weight loss rate when a part of calcium hydroxide is dehydrated is 3.2 mass%, 10.10 g per 1 mol (56.1 g) of calcium oxide. A heat amount of 9 kJ is stored, and if the weight loss rate is 0% by mass, no heat is stored.

酸化カルシウムは、30℃以下の低温で水和反応が起こるので、発熱性は良好である。 しかし、これを化学蓄熱材として使用した場合、水和反応により生成した水酸化カルシウムの脱水反応を起こさせるために、500℃以上の高温が必要である。 従い、排熱源として有効利用が期待されている、例えば250℃以下の低温度領域の熱源では、数時間加熱を続けても、その前記減量率は、1質量%にも満たず、このような低温度領域では、実質的に蓄熱が不可能であった。 逆に、例えば、水酸化ニッケルは、230℃程度の低温で、脱水反応を起こすので、この温度での蓄熱は可能であるが、蓄熱により生成する酸化ニッケルは、110℃程度のような高温の水蒸気でも、水和反応が起こらず、30℃のような低温度領域では、実質的に発熱が不可能であった。 Since calcium oxide undergoes a hydration reaction at a low temperature of 30 ° C. or less, the exothermic property is good. However, when this is used as a chemical heat storage material, a high temperature of 500 ° C. or higher is required in order to cause a dehydration reaction of calcium hydroxide generated by the hydration reaction. Therefore, in a heat source in a low temperature region of, for example, 250 ° C. or less, which is expected to be effectively used as an exhaust heat source, even if heating is continued for several hours, the weight loss rate is less than 1% by mass. In the low temperature region, heat storage was practically impossible. Conversely, for example, nickel hydroxide undergoes a dehydration reaction at a low temperature of about 230 ° C., so heat storage at this temperature is possible, but nickel oxide generated by heat storage has a high temperature of about 110 ° C. Even with water vapor, a hydration reaction did not occur, and heat generation was substantially impossible in a low temperature region such as 30 ° C.

そこで、より低温での発熱と、より低温での蓄熱との両立を目指した化学蓄熱材が種々提案されている。 例えば、酸化アルミニウムカルシウムと水酸化カルシウムの混合物(特許文献1)、450℃以下で仮焼した水酸化マグネシウム(特許文献2)、マグネシウムと、ニッケル、コバルト、銅、アルミニウム等との複合酸化物 (特許文献3)、吸湿性金属塩を添加したマグネシウムまたはカルシウムの水酸化物 (特許文献4)、 表面に膨張化グラファイトを担持したカルシウムやマグネシウムの水酸化物(特許文献5)、アルカリ金属の塩化物が化学的に結合したカルシウムやマグネシウムの水酸化物(特許文献6)等がより低温で発熱および蓄熱が可能な化学蓄熱材として提案されている。 Therefore, various chemical heat storage materials have been proposed that aim to achieve both heat generation at a lower temperature and heat storage at a lower temperature. For example, a mixture of aluminum calcium oxide and calcium hydroxide (patent document 1), magnesium hydroxide calcined at 450 ° C. or less (patent document 2), composite oxide of magnesium and nickel, cobalt, copper, aluminum or the like ( Patent Document 3), Magnesium or Calcium Hydroxide with Addition of Hygroscopic Metal Salt (Patent Document 4), Calcium or Magnesium Hydroxide with Expanded Graphite on the Surface (Patent Document 5), Alkali Metal Chloride Hydroxides of calcium and magnesium (Patent Document 6) and the like in which chemicals are chemically bonded have been proposed as chemical heat storage materials capable of generating heat and storing heat at lower temperatures.

特開平1−135889号公報Japanese Patent Laid-Open No. 1-135889 特許第2510120号公報Japanese Patent No. 2510120 特許第4765072号公報Japanese Patent No. 4765072 特許第5177386号公報Japanese Patent No. 5177386 特開2013−112706号公報JP2013-112706A 特開2013−216763号公報JP 2013-216863 A

しかしながら、前記した公知の蓄熱材では、30℃以下のような低温で発熱させ、かつ、250℃以下のような低温で畜熱させることができなかった。 すなわち、このような低温で、発熱と蓄熱とが両立して可能となるような蓄熱材は知られていなかった。 したがい、公知の蓄熱材を、前記した広範な用途でのケミカルヒートポンプに適応することは難しかった。 However, the above-described known heat storage material cannot generate heat at a low temperature such as 30 ° C. or less and cannot heat the animal at a low temperature such as 250 ° C. or less. That is, no heat storage material has been known that enables both heat generation and heat storage at such a low temperature. Therefore, it has been difficult to apply the known heat storage material to the chemical heat pump in the wide range of applications described above.

そこで本発明は、上記課題を解決するものであって、低温での発熱、かつ低温での蓄熱が両立可能な化学蓄熱材の提供を目的とする。 Then, this invention solves the said subject, Comprising: It aims at provision of the chemical heat storage material in which heat_generation | fever at low temperature and heat storage at low temperature are compatible.

本発明者らは、特定の組成を有する金属酸化物からなる化学蓄熱材により上記課題が解決されることを見出し、本発明の完成に至った。 The present inventors have found that the above problem can be solved by a chemical heat storage material made of a metal oxide having a specific composition, and have completed the present invention.

すなわち、本発明は下記を趣旨とするものである。
カルシウムリチウムアルミネートからなり、水和反応に基づく発熱可能温度が30℃以下であり、かつ脱水反応に基づく蓄熱可能温度が250℃以下であることを特徴とする化学蓄熱材。
That is, the present invention has the following purpose.
A chemical heat storage material comprising calcium lithium aluminate, having a heat generating temperature based on a hydration reaction of 30 ° C or lower and a heat storage temperature based on a dehydration reaction of 250 ° C or lower.

本発明の化学蓄熱材は、穏和な条件での、発熱および蓄熱が可能なので、これを用いたケミカルヒートポンプは、未利用のまま排出されている排気熱源に幅広く利用することができる。 Since the chemical heat storage material of the present invention can generate heat and store heat under mild conditions, a chemical heat pump using the chemical heat storage material can be widely used as an exhaust heat source that is discharged without being used.

以下、本発明について詳細に説明する。
本発明の化学蓄熱材は、水和反応に基づく発熱可能温度が30℃以下であり、かつ脱水反応に基づく蓄熱可能温度が250℃以下である。
Hereinafter, the present invention will be described in detail.
The chemical heat storage material of the present invention has a heat generating temperature based on a hydration reaction of 30 ° C. or lower, and a heat storage temperature based on a dehydration reaction of 250 ° C. or lower.

ここで、水和反応に基づく発熱可能温度の判定は以下の手順で行うことができる。 すなわち、所定の温度とした試料18gをガラス製試験管(寸法:内径30mm、高さ200mm)に投入し、これに所定の温度とした水20gを注入し、注入直後からの水温を測定する。 水を注入した直後から30分以内に、上昇した水温の最高値と注入した水の水温との差が30℃以上であり、かつ水温差が30℃以上の水温の持続時間が10分以上である場合、その温度で発熱可能と判定する。 Here, the determination of the heat generating temperature based on the hydration reaction can be performed by the following procedure. That is, 18 g of a sample having a predetermined temperature is put into a glass test tube (dimensions: inner diameter 30 mm, height 200 mm), 20 g of water having a predetermined temperature is poured therein, and the water temperature immediately after the injection is measured. Within 30 minutes immediately after injecting water, the difference between the maximum value of the increased water temperature and the water temperature of the injected water is 30 ° C. or more, and the duration of the water temperature with the water temperature difference of 30 ° C. or more is 10 minutes or more. If there is, it is determined that heat can be generated at that temperature.

また、脱水反応に基づく蓄熱可能温度の判定は以下のようにして行うことができる。すなわち、水和反応に基づく発熱が終了した試料を乾燥後、以下の手順で、所定温度での脱水反応に基づく減量率を算出し、この減量率が10%以上であれば、この温度で、蓄熱可能と判定される。
(イ) 試料である発熱後の化学蓄熱材約40mgを熱天秤(TG)測定用のセル(直径5mm、高さ5mmの白金製円筒容器)に投入する。
(ロ) このセルを熱天秤測定装置(株式会社リガク製 差動型示差熱天秤/TG8120に設置し、乾燥窒素気流中で120℃、120分処理することにより、化学蓄熱材に物理的に吸着していた水分を除去した際の質量Aを読み取る。
(ハ) 前記120℃で60分の処理後、引き続きTG測定装置内で、窒素気流中、約10分でセル温度を所定温度(240〜250℃)まで昇温し、その後、この所定温度とした定温で60分処理する。(この処理で部分的もしくは完全に脱水反応が起こり蓄熱される) この処理でのTG曲線を取得し、前記処理後の試料の質量Bを読み取り、化学蓄熱材の減量率を、以下の計算式を用いて算出する。
減量率(質量%)=100×(A−B)/A
Moreover, the determination of the heat storage possible temperature based on a dehydration reaction can be performed as follows. That is, after drying the sample that has generated heat based on the hydration reaction, the weight loss rate based on the dehydration reaction at a predetermined temperature is calculated according to the following procedure, and if this weight loss rate is 10% or more, at this temperature, It is determined that heat can be stored.
(A) About 40 mg of the chemical heat storage material after heat generation as a sample is put into a thermobalance (TG) measurement cell (platinum cylindrical container having a diameter of 5 mm and a height of 5 mm).
(B) This cell is physically adsorbed to a chemical heat storage material by installing it on a thermobalance measuring device (Differential differential thermal balance / TG8120 manufactured by Rigaku Corporation) and treating it in a dry nitrogen stream at 120 ° C for 120 minutes. The mass A when the moisture that has been removed is removed is read.
(C) After the treatment at 120 ° C. for 60 minutes, the cell temperature is continuously raised to a predetermined temperature (240 to 250 ° C.) in about 10 minutes in a TG measurement device, and then the predetermined temperature and Process for 60 minutes at the constant temperature. (This process partially or completely causes a dehydration reaction to store heat) Obtains a TG curve in this process, reads the mass B of the sample after the process, and calculates the weight loss rate of the chemical heat storage material as Calculate using.
Weight loss rate (mass%) = 100 × (A−B) / A

本発明の化学蓄熱材は、前記発熱可能温度が、30℃以下であることが必須要件であるが、20℃以下であることが好ましい。このようにすることにより、低温度領域での優れた発熱性が確保される。 In the chemical heat storage material of the present invention, it is essential that the heat generating temperature is 30 ° C. or lower, but it is preferably 20 ° C. or lower. By doing in this way, the exothermic property in the low temperature range is ensured.

また、本発明の化学蓄熱材は、前記蓄熱可能温度が250℃以下であることが必須要件であるが、240℃以下であることが好ましい。このようにすることにより、低温度領域での優れた蓄熱性が確保される。 In addition, the chemical heat storage material of the present invention has an essential requirement that the heat storage possible temperature is 250 ° C. or lower, but is preferably 240 ° C. or lower. By doing in this way, the outstanding thermal storage property in a low temperature area is ensured.

前記したような特性を有する本発明の化学蓄熱材は、酸化カルシウム、酸化アルミニウム、酸化リチウムの複合酸化物からなるカルシウムリチウムアルミネートであり、酸化カルシウム、酸化アルミニウム、酸化リチウムの一部または全部が固溶化したカルシウムリチウムアルミネートからなるものであることが好ましい。 The chemical heat storage material of the present invention having the characteristics as described above is a calcium lithium aluminate composed of a composite oxide of calcium oxide, aluminum oxide, and lithium oxide, and a part or all of calcium oxide, aluminum oxide, and lithium oxide are included. It is preferably made of a solid solution calcium lithium aluminate .

本発明で用いられるカルシウムリチウムアルミネートは、例えば以下のようなプロセスで製造することができる。すなわち、質量比で、CaO:Alが2:8〜8:2である酸化カルシウムと酸化アルミニウムとの混合物100質量部に、1〜20質量部の酸化リチウムを加え、均一な混合物として後、これを1000℃以上、好ましくは1400℃以上の温度に加熱して、これらの混合物の一部または全部を固溶化させ、これを、冷却、粉砕することにより粉体状として得ることができる。 本発明の化学蓄熱材には、このような乾式プロセスに基づくカルシウムリチウムアルミネートを好ましく用いることができる。 The calcium lithium aluminate used in the present invention can be produced, for example, by the following process. That is, 1 to 20 parts by mass of lithium oxide is added to 100 parts by mass of a mixture of calcium oxide and aluminum oxide having a mass ratio of CaO: Al 2 O 3 of 2: 8 to 8: 2 to obtain a uniform mixture. Thereafter, this is heated to a temperature of 1000 ° C. or higher, preferably 1400 ° C. or higher, so that a part or all of the mixture is solid solution, and cooled and pulverized to obtain a powder. . For the chemical heat storage material of the present invention, calcium lithium aluminate based on such a dry process can be preferably used.

また、前記カルシウムリチウムアルミネートは、予め、質量比で、CaO:Alが2:8〜8:2の酸化カルシウムと酸化アルミニウムとの均一な混合物を1000℃以上、好ましくは1400℃以上の温度に加熱して、冷却、粉砕して、カルシウムアルミネート粉体を製造しておき、これに酸化リチウムを均一に添加混合し、300℃以上の高温で熱処理することによっても得ることができる。 なお、前記カルシウムアルミネート粉体は、アルミナセメントとして市販されている粉体も好ましく用いることができる。 すなわちこのアルミナセメントに酸化リチウムを均一に添加混合し、加熱処理をすることによってもカルシウムリチウムアルミネートを得ることができる。 In addition, the calcium lithium aluminate is a mass mixture of CaO: Al 2 O 3 of 2: 8 to 8: 2 in a uniform mixture of calcium oxide and aluminum oxide at 1000 ° C. or higher, preferably 1400 ° C. or higher. It is also possible to obtain calcium aluminate powder by heating to a temperature of, cooled and pulverized, uniformly adding lithium oxide to this, and heat-treating at a high temperature of 300 ° C. or higher. . In addition, the said calcium aluminate powder can also use preferably the powder marketed as an alumina cement. That is, calcium lithium aluminate can also be obtained by uniformly adding and mixing lithium oxide to the alumina cement, followed by heat treatment.

前記カルシウムリチウムアルミネート粉体製造過程において、前記した混合物を固溶化した後、冷却する際、冷却速度を調整することにより、結晶質もしくは非晶質いずれのカルシウムリチウムアルミネートでも製造することが出来るが、本発明の化学蓄熱材に使用されるカルシウムリチウムアルミネートは結晶質であっても、非晶質であっても良い。 In the calcium lithium aluminate powder manufacturing process, after cooling the above-mentioned mixture, when cooling, the crystalline lithium lithium aluminate can be manufactured by adjusting the cooling rate. However, the calcium lithium aluminate used in the chemical heat storage material of the present invention may be crystalline or amorphous.

カルシウムリチウムアルミネート粉体の粒度に制限はないが、体積基準の平均粒径が、300μm以下のものが好ましく用いられ、150μm以下のものがより好ましく、100μm以下のものがさらに好ましい。ここで、平均粒子径が300μmより大きい場合、水和反応が遅れ、発熱が遅くなる傾向がある。 Although there is no restriction | limiting in the particle size of calcium lithium aluminate powder, that whose average particle diameter of a volume basis is 300 micrometers or less is used preferably, 150 micrometers or less are more preferable, and 100 micrometers or less are more preferable. Here, when the average particle size is larger than 300 μm, the hydration reaction tends to be delayed and the heat generation tends to be delayed.

カルシウムリチウムアルミネート粉体の原料となる酸化カルシウム、酸化アルミニウム、酸化リチウム粉体の混合方法に制限はなく、公知の乾式法や湿式法を用いることができる。 There are no limitations on the method of mixing calcium oxide, aluminum oxide, and lithium oxide powder, which are raw materials for the calcium lithium aluminate powder, and a known dry method or wet method can be used.

乾式法で均一混合するには、前記原料粉体を、ボールミル、ビーズミル、V型ブレンダー、ナウターミキサー、パン型ミキサー、オムニミキサー等の混合機を用いて均一混合すればよい。 In order to uniformly mix by the dry method, the raw material powder may be uniformly mixed using a mixer such as a ball mill, a bead mill, a V-type blender, a nauter mixer, a pan-type mixer, or an omni mixer.

また、湿式法で均一混合するには、前記原料粉体を、アルコールや水等の媒体中に分散して撹拌することにより均一に混合後、媒体であるアルコールや水を留去すれば良い。 Further, in order to uniformly mix by a wet method, the raw material powder may be dispersed in a medium such as alcohol or water and stirred to uniformly mix, and then the alcohol or water as the medium may be distilled off.

バインダ成分を少量配合し、カルシウムリチウムアルミネート粉体を造粒して用いることもできる。ここで用いられるバインダとしては、250℃では分解しないポリイミドやポリアミドイミド等耐熱性を有する有機高分子や無機バインダである粘土等を用いることが好ましい。 A small amount of a binder component can be blended, and calcium lithium aluminate powder can be granulated and used. As the binder used here, it is preferable to use a heat-resistant organic polymer such as polyimide or polyamideimide that does not decompose at 250 ° C., or clay that is an inorganic binder.

前記カルシウムリチウムアルミネートには、本発明の効果を実質的に喪失させない範囲で他の成分を配合することができる。 これらの成分の例としては、鉄粉、アルミ粉等の金属粉体やカーボン粉体などの熱伝導性改良材が挙げられる。 The calcium lithium aluminate can be blended with other components within a range that does not substantially lose the effects of the present invention. Examples of these components include metal powders such as iron powder and aluminum powder, and thermal conductivity improving materials such as carbon powder.

以上述べたように、本発明の化学蓄熱材は、30℃以下の低温で、水和反応に基づく発熱が可能であり、かつ250℃以下の低温で、脱水反応に基づく蓄熱が可能であるので、これを用いたケミカルヒートポンプは、これまで排熱の回収、再利用が難しかった様々な分野で幅広く利用することができる。 As described above, the chemical heat storage material of the present invention can generate heat based on a hydration reaction at a low temperature of 30 ° C. or lower, and can store heat based on a dehydration reaction at a low temperature of 250 ° C. or lower. The chemical heat pump using this can be widely used in various fields where it has been difficult to recover and reuse exhaust heat.

以下、実施例に基づき本発明を更に具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited only to these Examples.

実施例における発熱性の評価は以下の手順で行った。
測定雰囲気を所定温度(20℃〜30℃)とし、試料18gをガラス製試験管(寸法:内径30mm、高さ200mm)に投入し、これに所定の温度とした水20gを注入し、注入直後からの水温を測定する。 水を注入した直後から30分以内に、上昇した水温の最高値と注入した水の水温との差が30℃以上であり、かつ水温差が30℃以上の水温の持続時間が10分以上である場合、その温度で発熱可能と判定した。
The exothermic evaluation in the examples was performed according to the following procedure.
The measurement atmosphere is set to a predetermined temperature (20 ° C. to 30 ° C.), 18 g of a sample is put into a glass test tube (dimension: inner diameter 30 mm, height 200 mm), and 20 g of water at a predetermined temperature is injected into the glass test tube. Measure the water temperature from Within 30 minutes immediately after injecting water, the difference between the maximum value of the increased water temperature and the water temperature of the injected water is 30 ° C. or more, and the duration of the water temperature with the water temperature difference of 30 ° C. or more is 10 minutes or more. In some cases, it was determined that heat could be generated at that temperature.

実施例における蓄熱性の評価は以下の様に行った。
前記発熱性試験で得られた発熱後の蓄熱材を含む水分散体を、減圧下、30℃以下の温度で乾燥して、大部分の水を蒸発させたのち、以下の手順(イ)〜(ハ)に従って熱天秤(TG)を測定した。
(イ) 試料である発熱後の化学蓄熱材約40mgを熱天秤(TG)測定用のセル(直径5mm、高さ5mmの白金製円筒容器)に投入する。
(ロ) このセルを熱天秤測定装置(株式会社リガク製 差動型示差熱天秤/TG8120)に設置し、乾燥窒素気流中で120℃、60分処理することにより、化学蓄熱材に物理的に吸着していた水分を除去した際の質量Aを読み取る。
(ハ) 前記120℃で60分の処理後、引き続きTG測定装置内で、窒素気流中、約10分でセル温度を所定温度(250℃以下)まで昇温し、この温度とした定温で60分処理する。この処理でのTG曲線を取得し、前記処理後の試料の質量Bを読み取り、化学蓄熱材の減量率を、以下の計算式を用いて算出する。
減量率(質量%)=100×(A−B)/A
この減量率が10%以上の時、その温度で蓄熱可能と判定した。
Evaluation of the heat storage property in the examples was performed as follows.
The water dispersion containing the heat storage material after heat generation obtained in the exothermic test is dried at a temperature of 30 ° C. or less under reduced pressure to evaporate most of the water. A thermobalance (TG) was measured according to (c).
(A) About 40 mg of the chemical heat storage material after heat generation as a sample is put into a thermobalance (TG) measurement cell (platinum cylindrical container having a diameter of 5 mm and a height of 5 mm).
(B) By installing this cell in a thermobalance measuring device (Differential differential thermal balance / TG8120, manufactured by Rigaku Corporation) and treating it in a dry nitrogen stream at 120 ° C. for 60 minutes, it is physically applied to a chemical heat storage material. The mass A when the adsorbed moisture is removed is read.
(C) After the treatment at 120 ° C. for 60 minutes, the cell temperature is raised to a predetermined temperature (250 ° C. or lower) in about 10 minutes in a TG measurement apparatus in about 10 minutes. Process for minutes. A TG curve in this process is acquired, the mass B of the sample after the process is read, and the weight loss rate of the chemical heat storage material is calculated using the following calculation formula.
Weight loss rate (mass%) = 100 × (A−B) / A
When this weight loss rate was 10% or more, it was determined that heat could be stored at that temperature.

なお、体積基準の平均粒径は、株式会社堀場製作所製レーザ回折式粒度分布測定装置LA−910を用い、それぞれの粉体をエタノール中に分散させて測定した。 The volume-based average particle diameter was measured by dispersing each powder in ethanol using a laser diffraction particle size distribution measuring apparatus LA-910 manufactured by Horiba, Ltd.

[実施例1]
酸化カルシウム8質量部、酸化アルミニウム12質量部、酸化リチウム1質量部とをボールミルで均一に混合し、坩堝に投入後、1500℃で1時間加熱した後、冷却して生成した固溶体を坩堝から取出し、これをボールミルで粉砕して、平均粒径32μmのカルシウムリチウムアルミネート粉体からなる化学蓄熱材P−1を得た。P−1の発熱性(水和温度30℃)および蓄熱性(脱水温度250℃)を前記した手順に従って測定した。結果を表1に示す。
[Example 1]
8 parts by mass of calcium oxide, 12 parts by mass of aluminum oxide, and 1 part by mass of lithium oxide are uniformly mixed with a ball mill, put into a crucible, heated at 1500 ° C. for 1 hour, and then cooled to take out the solid solution produced. This was pulverized with a ball mill to obtain a chemical heat storage material P-1 made of calcium lithium aluminate powder having an average particle size of 32 μm. P-1 exothermicity (hydration temperature 30 ° C.) and heat storage (dehydration temperature 250 ° C.) were measured according to the procedure described above. The results are shown in Table 1.

[実施例2]
酸化カルシウム粉体12質量部と酸化アルミニウム粉体8質量部としたこと以外は、前記と同様にして、平均粒径35μmのカルシウムリチウムアルミネート粉体からなる化学蓄熱材P−2を得た。P−2の発熱性(水和温度30℃)および蓄熱性(脱水温度250℃)を前記した手順に従って測定した。結果を表1に示す。
[Example 2]
A chemical heat storage material P-2 made of calcium lithium aluminate powder having an average particle size of 35 μm was obtained in the same manner as described above except that 12 parts by mass of calcium oxide powder and 8 parts by mass of aluminum oxide powder were used. The exothermic property (hydration temperature 30 ° C.) and heat storage property (dehydration temperature 250 ° C.) of P-2 were measured according to the procedure described above. The results are shown in Table 1.

[実施例3]
市販のアルミナセメント20質量部と酸化リチウム1質量部をボールミルで均一に混合し、300℃で2時間処理した。 これを粉砕して、平均粒径41μmのカルシウムリチウムアルミネート粉体からなる化学蓄熱材P−3を得た。P−3の発熱性(水和温度30℃)および蓄熱性(脱水温度250℃)を前記した手順に従って測定した。結果を表1に示す。なお、ここで用いた市販のアルミナセメントの組成は酸化カルシウム36質量%、酸化アルミニウム55質量%、その他成分9質量%であり、カルシウムリチウムアルミネート含有量は91質量%であった。
[Example 3]
20 parts by mass of commercially available alumina cement and 1 part by mass of lithium oxide were uniformly mixed by a ball mill and treated at 300 ° C. for 2 hours. This was pulverized to obtain a chemical heat storage material P-3 made of calcium lithium aluminate powder having an average particle size of 41 μm. The exothermic property (hydration temperature 30 ° C.) and heat storage property (dehydration temperature 250 ° C.) of P-3 were measured according to the procedure described above. The results are shown in Table 1. The composition of the commercially available alumina cement used here was 36% by mass of calcium oxide, 55% by mass of aluminum oxide, 9% by mass of other components, and the content of calcium lithium aluminate was 91% by mass.

[実施例4]
P−3の発熱性(水和温度20℃)および蓄熱性(脱水温度250℃)を前記した手順に従って測定した。結果を表1に示す。
[Example 4]
The exothermic property (hydration temperature 20 ° C.) and heat storage property (dehydration temperature 250 ° C.) of P-3 were measured according to the procedure described above. The results are shown in Table 1.

[実施例5]
P−3の発熱性(水和温度30℃)および蓄熱性(脱水温度240℃)を前記した手順に従って測定した。結果を表1に示す。
[Example 5]
The exothermic property (hydration temperature 30 ° C.) and heat storage property (dehydration temperature 240 ° C.) of P-3 were measured according to the procedure described above. The results are shown in Table 1.

[実施例6]
酸化リチウムの配合量を1.5質量部としたこと以外は実施例3と同様に行い、化学蓄熱材P−4を得た。P−4の発熱性(水和温度30℃)および蓄熱性(脱水温度250℃)を前記した手順に従って測定した。結果を表1に示す。
[Example 6]
Except having made the compounding quantity of lithium oxide into 1.5 mass parts, it carried out similarly to Example 3 and obtained the chemical heat storage material P-4. P-4 exothermic properties (hydration temperature 30 ° C.) and heat storage properties (dehydration temperature 250 ° C.) were measured according to the procedure described above. The results are shown in Table 1.

[実施例7]
酸化リチウムの配合量を2.0質量部としたこと以外は実施例3と同様に行い、化学蓄熱材P−5を得た。P−5の発熱性(水和温度30℃)および蓄熱性(脱水温度250℃)を前記した手順に従って測定した。結果を表1に示す。
[Example 7]
Except having made the compounding quantity of lithium oxide into 2.0 mass parts, it carried out similarly to Example 3 and obtained the chemical heat storage material P-5. P-5 exothermic properties (hydration temperature 30 ° C.) and heat storage properties (dehydration temperature 250 ° C.) were measured according to the procedure described above. The results are shown in Table 1.

[比較例1]
実施例1で用いたものと同様の組成とした原料を、固溶化させることなく混合し、ボールミルで均一に混合することにより、平均粒径が28μmの混合粉体からなる化学蓄熱材C−1を得た。 C−1の発熱性(水和温度30℃)および蓄熱性(脱水温度250℃)を前記した手順に従って測定した。結果を表1に示す。
[Comparative Example 1]
A raw material having the same composition as that used in Example 1 was mixed without solid solution, and mixed uniformly by a ball mill, whereby a chemical heat storage material C-1 comprising a mixed powder having an average particle size of 28 μm. Got. The exothermic properties (hydration temperature 30 ° C.) and heat storage properties (dehydration temperature 250 ° C.) of C-1 were measured according to the procedure described above. The results are shown in Table 1.

[比較例2]
酸化リチウムを用いなかったこと以外は実施例1と同様にして平均粒径が21μmの粉体からなる化学蓄熱材C−2を得た。C−2の発熱性(水和温度30℃)を前記した手順に従って測定した。結果を表1に示す。
[Comparative Example 2]
A chemical heat storage material C-2 made of powder having an average particle size of 21 μm was obtained in the same manner as in Example 1 except that lithium oxide was not used. The exothermicity of C-2 (hydration temperature 30 ° C.) was measured according to the procedure described above. The results are shown in Table 1.

[比較例3]
酸化リチウムを用いなかったこと以外は実施例3で用いたアルミナセメントのみ(C−3とする)の発熱性(水和温度30℃)を前記した手順に従って測定した。結果を表1に示す。
[Comparative Example 3]
Except that lithium oxide was not used, the exothermic property (hydration temperature 30 ° C.) of only the alumina cement used in Example 3 (referred to as C-3) was measured according to the procedure described above. The results are shown in Table 1.

[比較例4]
特許文献6の実施例1の記載に従い、水酸化カルシウムと塩化リチウムの粉体とを乾式で均一に混合し、この混合物を、300℃で300分処理することにより、粉体の全質量に対する塩化リチウムの配合量を6.8質量%とした粉体からなる化学蓄熱材C−4を得た。 C−4の発熱性(水和温度30℃)を前記した手順に従って測定した。結果を表1に示す。
[Comparative Example 4]
According to the description in Example 1 of Patent Document 6, calcium hydroxide and lithium chloride powder are uniformly mixed in a dry process, and this mixture is treated at 300 ° C. for 300 minutes, whereby the total mass of the powder is chlorinated. A chemical heat storage material C-4 made of powder with a lithium content of 6.8% by mass was obtained. The exothermicity of C-4 (hydration temperature 30 ° C.) was measured according to the procedure described above. The results are shown in Table 1.

[比較例5]
特許文献1の記載を参考に、水酸化カルシウムに、7質量%のアルミニウム粉末と水を加えることにより得られた反応物を500℃で処理し、これを粉砕することにより、化学蓄熱材C−5を得た。C−5の発熱性(水和温度30℃)を前記した手順に従って測定した。結果を表1に示す。
[Comparative Example 5]
With reference to the description in Patent Document 1, a reaction product obtained by adding 7% by mass of aluminum powder and water to calcium hydroxide is treated at 500 ° C. and pulverized to obtain a chemical heat storage material C- 5 was obtained. The exothermicity of C-5 (hydration temperature 30 ° C.) was measured according to the procedure described above. The results are shown in Table 1.

[比較例6]
特許文献2の実施例1の記載に従い、水酸化マグネシウム350℃で120分仮焼することにより、酸化マグネシウム粉体(粒径10〜30μm)からなる化学蓄熱材C−6を得た。C−6の発熱性(水和温度30℃)を前記した手順に従って測定した。結果を表1に示す。
[Comparative Example 6]
According to the description in Example 1 of Patent Document 2, the heat storage material C-6 made of magnesium oxide powder (particle size: 10 to 30 μm) was obtained by calcining at 350 ° C. for 120 minutes. The exothermicity of C-6 (hydration temperature 30 ° C.) was measured according to the procedure described above. The results are shown in Table 1.

[比較例7]
特許文献3の段落番号[0014]の記載に従い、10モル%の塩化リチウムが配合された水酸化マグネシウム粉体を得た。これを坩堝に投入し、250℃で120分処理して脱水することにより、化学蓄熱材C−7を得た。C−7の発熱性(水和温度30℃)を前記した手順に従って測定した。結果を表1に示す。
[Comparative Example 7]
In accordance with the description in paragraph [0014] of Patent Document 3, magnesium hydroxide powder containing 10 mol% lithium chloride was obtained. This was put into a crucible, treated at 250 ° C. for 120 minutes and dehydrated to obtain a chemical heat storage material C-7. The exothermicity of C-7 (hydration temperature 30 ° C.) was measured according to the procedure described above. The results are shown in Table 1.

[実施例8]
実施例3の発熱試験で得られたP−3を含むスラリを30℃の減圧乾燥機で乾燥を行い大部分の水を蒸発させたのち、これを、ステンレス製の容器に入れ、100℃で減圧乾燥を行い、P−3に含まれていた吸着水を除去した。これをステンレス製の容器に移し替え、窒素ガス雰囲気下、250℃で2時間処理し、脱水反応を行い、再生された蓄熱材P−6を得た。 P−6の発熱性(水和温度30℃)および蓄熱性(脱水温度250℃)を前記した手順に従って測定した。結果を表1に示す。
[Example 8]
The slurry containing P-3 obtained in the exothermic test of Example 3 was dried with a vacuum dryer at 30 ° C. to evaporate most of the water, and then put in a stainless steel container at 100 ° C. The adsorbed water contained in P-3 was removed by drying under reduced pressure. This was transferred to a stainless steel container, treated in a nitrogen gas atmosphere at 250 ° C. for 2 hours, subjected to a dehydration reaction, and a regenerated heat storage material P-6 was obtained. P-6 exothermic properties (hydration temperature 30 ° C.) and heat storage properties (dehydration temperature 250 ° C.) were measured according to the procedure described above. The results are shown in Table 1.

[比較例8]
実施例8で用いた吸着水を除去したのみで、250℃での脱水を行わなかった試料(C−8とする)の発熱性(水和温度30℃)を前記した手順に従って測定した。結果を表1に示す。
[Comparative Example 8]
The exothermic property (hydration temperature 30 ° C.) of a sample (denoted as C-8) in which only the adsorbed water used in Example 8 was removed but not dehydrated at 250 ° C. was measured according to the procedure described above. The results are shown in Table 1.

実施例1〜7で示した様に、本発明の化学蓄熱材は、30℃以下という低温度領域で、水和による発熱反応が進行し、水温が20℃以上上昇することが判る。また、250℃以下という低温度領域で、10質量%以上の減量率を有しており、このような低温でも充分に脱水反応が進行することが判る。 さらに、実施例8で示した様に、250℃で脱水され蓄熱された本発明の蓄熱材は、30℃以下という低温度領域で、再び、水和による発熱反応が進行し、水温が30℃以上上昇することが判る。これにより、この脱水反応で化学蓄熱材は再生され、再び水和反応を行うことができ、本発明の蓄熱材は再生使用可能であることが判る。 これに対し、比較例1で示した様に、酸化カルシウムそのものを発熱材として利用したものは、30℃以下という低温度領域で、水和による発熱が可能であっても、250℃以下の低温では殆ど脱水されないことが判る。 また、比較例3で示した様に、カルシウムアルミネートのみでは、30℃以下という低温度領域では、殆ど水和による発熱反応が進行ないことが判る。 さらに、公知の化学蓄熱材では、30℃以下という低温度領域では、殆ど水和による発熱反応が進行ないことが判る。 As shown in Examples 1 to 7, it can be seen that the chemical heat storage material of the present invention undergoes an exothermic reaction due to hydration in a low temperature region of 30 ° C. or less, and the water temperature rises by 20 ° C. or more. Moreover, it has a weight loss rate of 10% by mass or more in a low temperature region of 250 ° C. or less, and it can be seen that the dehydration reaction proceeds sufficiently even at such a low temperature. Furthermore, as shown in Example 8, the heat storage material of the present invention dehydrated and stored at 250 ° C. has an exothermic reaction due to hydration again in a low temperature region of 30 ° C. or less, and the water temperature is 30 ° C. It turns out that it rises more. Thus, the chemical heat storage material is regenerated by this dehydration reaction, and the hydration reaction can be performed again, and it can be seen that the heat storage material of the present invention can be recycled. On the other hand, as shown in Comparative Example 1, the one using calcium oxide itself as a heat generating material has a low temperature of 250 ° C. or less even if heat generation by hydration is possible in a low temperature region of 30 ° C. or less. It turns out that it is hardly dehydrated. In addition, as shown in Comparative Example 3, it can be seen that with only calcium aluminate, an exothermic reaction due to hydration hardly proceeds in a low temperature region of 30 ° C. or lower. Furthermore, it can be seen that in known chemical heat storage materials, the exothermic reaction due to hydration hardly proceeds in a low temperature region of 30 ° C. or lower.

以上述べたように、本発明の化学蓄熱材は、穏和な条件での、発熱および蓄熱が可能なので、これを用いたケミカルヒートポンプは、未利用のまま排出されている排気熱源に幅広く利用することができる。

表1
As described above, since the chemical heat storage material of the present invention can generate heat and store heat under mild conditions, a chemical heat pump using this can be widely used as an exhaust heat source that is discharged unused. Can do.

Table 1

Claims (1)

カルシウムリチウムアルミネートからなり、水和反応に基づく発熱可能温度が30℃以下であり、かつ脱水反応に基づく蓄熱可能温度が250℃以下であることを特徴とする化学蓄熱材。 A chemical heat storage material comprising calcium lithium aluminate, having a heat generating temperature based on a hydration reaction of 30 ° C or lower and a heat storage temperature based on a dehydration reaction of 250 ° C or lower.
JP2014093682A 2014-04-30 2014-04-30 Chemical heat storage material Expired - Fee Related JP5661960B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014093682A JP5661960B1 (en) 2014-04-30 2014-04-30 Chemical heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093682A JP5661960B1 (en) 2014-04-30 2014-04-30 Chemical heat storage material

Publications (2)

Publication Number Publication Date
JP5661960B1 true JP5661960B1 (en) 2015-01-28
JP2015209530A JP2015209530A (en) 2015-11-24

Family

ID=52437562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093682A Expired - Fee Related JP5661960B1 (en) 2014-04-30 2014-04-30 Chemical heat storage material

Country Status (1)

Country Link
JP (1) JP5661960B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798917B2 (en) * 2017-03-29 2020-12-09 タテホ化学工業株式会社 Chemical heat storage material and its manufacturing method
JP6815915B2 (en) * 2017-03-29 2021-01-20 タテホ化学工業株式会社 Chemical heat storage material and its manufacturing method
JP6798916B2 (en) * 2017-03-29 2020-12-09 タテホ化学工業株式会社 Chemical heat storage material and its manufacturing method
KR102697677B1 (en) * 2018-02-16 2024-08-23 다테호 가가쿠 고교 가부시키가이샤 Chemical heat storage material and its manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135889A (en) * 1987-11-20 1989-05-29 Mayekawa Mfg Co Ltd Thermal energy storing substance capable of reversible reaction and method for storing and releasing heat
JP2510120B2 (en) * 1993-01-20 1996-06-26 善男 吉澤 Chemical heat pump
JP2002284549A (en) * 2001-03-28 2002-10-03 Denki Kagaku Kogyo Kk Alumina cement, alumina cement composition, and amorphous refractory using the same
JP2005528465A (en) * 2002-04-02 2005-09-22 ローディア コンシューマー スペシャルティーズ リミテッド Orthophosphoric acid-based self-heating composition infiltrated into highly porous inorganic oxide, its production method and its use
JP4765072B2 (en) * 2006-05-17 2011-09-07 国立大学法人東京工業大学 Chemical heat pump
JP5177386B2 (en) * 2008-02-07 2013-04-03 国立大学法人東京工業大学 Chemical heat pump
JP2013112706A (en) * 2011-11-25 2013-06-10 Tokyo Institute Of Technology Chemical heat storage material and chemical heat pump
JP2013216763A (en) * 2012-04-06 2013-10-24 Toyota Central R&D Labs Inc Chemical heat storage material, and reaction device, heat storage device, and vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135889A (en) * 1987-11-20 1989-05-29 Mayekawa Mfg Co Ltd Thermal energy storing substance capable of reversible reaction and method for storing and releasing heat
JP2510120B2 (en) * 1993-01-20 1996-06-26 善男 吉澤 Chemical heat pump
JP2002284549A (en) * 2001-03-28 2002-10-03 Denki Kagaku Kogyo Kk Alumina cement, alumina cement composition, and amorphous refractory using the same
JP2005528465A (en) * 2002-04-02 2005-09-22 ローディア コンシューマー スペシャルティーズ リミテッド Orthophosphoric acid-based self-heating composition infiltrated into highly porous inorganic oxide, its production method and its use
JP4765072B2 (en) * 2006-05-17 2011-09-07 国立大学法人東京工業大学 Chemical heat pump
JP5177386B2 (en) * 2008-02-07 2013-04-03 国立大学法人東京工業大学 Chemical heat pump
JP2013112706A (en) * 2011-11-25 2013-06-10 Tokyo Institute Of Technology Chemical heat storage material and chemical heat pump
JP2013216763A (en) * 2012-04-06 2013-10-24 Toyota Central R&D Labs Inc Chemical heat storage material, and reaction device, heat storage device, and vehicle

Also Published As

Publication number Publication date
JP2015209530A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5661960B1 (en) Chemical heat storage material
KR101398682B1 (en) Hexagonal boron nitride powder and method for producing same
CA2791470C (en) Method for producing base-activated carbon
CN109853226A (en) Heat Insulation film and its manufacturing method and electronic equipment and battery unit
Kallenberger et al. Alginate‐Derived Salt/Polymer Composites for Thermochemical Heat Storage
EP3279288B1 (en) Chemical heat storage material, and composition for forming chemical heat storage material
TW201711956A (en) Carbonaceous material for sodium ion secondary battery negative electrode, and sodium ion secondary battery using carbonaceous material for sodium ion secondary battery negative electrode
JP2013112706A (en) Chemical heat storage material and chemical heat pump
CN102712743A (en) Process for production of spherical furfuryl alcohol resin particles, spherical furfuryl alcohol resin particles produced thereby, and spherical carbon particles and spherical active carbon particles obtained using same
US10246336B2 (en) Method of making alkali activated carbon
WO2014050796A1 (en) Hydrolytic exothermic agent
TW201034962A (en) Method for producing alumina
Maddu et al. Structural and dielectric properties of CaTiO3 synthesized utilizing Duck’s eggshell as a calcium source
JP4523829B2 (en) Carbon nanofiber / phenolic resin composite carbonized material, conductive resin composition, electrode for secondary battery, carbon material for electric double layer capacitor polarizable electrode, electric double layer capacitor polarizable electrode
JP6214510B2 (en) Chemical heat storage material and chemical heat storage material forming composition
CN106458619B (en) heat-resisting aluminium hydroxide and its manufacturing method
JP3960397B2 (en) Electric double layer capacitor
US20150232733A1 (en) Alumina sintered body and method for producing same
Xu et al. A comprehensive study on the phase composition, mechanical properties and stability of Li4SiO4-Li2ZrO3 biphasic ceramics
Strutynska et al. Novel Nanostructured Na+, Cu2+ (Zn2+), CO32−‐HAP/Alginate Composite Scaffold: Fabrication, Characterization and Mechanical Properties
JP5407028B2 (en) Desiccant raw material and production method thereof
JP2004299928A (en) Hardly ignitable activated carbon and its manufacturing method, and method for processing waste gas
JP6408073B1 (en) Manufacturing method of coal
JP6798916B2 (en) Chemical heat storage material and its manufacturing method
CN116574546B (en) Preparation method of cow dung biomass fuel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141203

R150 Certificate of patent or registration of utility model

Ref document number: 5661960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees