[go: up one dir, main page]

JP5659540B2 - Steel plate surface defect inspection method and apparatus - Google Patents

Steel plate surface defect inspection method and apparatus Download PDF

Info

Publication number
JP5659540B2
JP5659540B2 JP2010088487A JP2010088487A JP5659540B2 JP 5659540 B2 JP5659540 B2 JP 5659540B2 JP 2010088487 A JP2010088487 A JP 2010088487A JP 2010088487 A JP2010088487 A JP 2010088487A JP 5659540 B2 JP5659540 B2 JP 5659540B2
Authority
JP
Japan
Prior art keywords
steel sheet
defect
divided
area
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010088487A
Other languages
Japanese (ja)
Other versions
JP2010266430A (en
Inventor
手塚 浩一
浩一 手塚
和広 八尋
和広 八尋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010088487A priority Critical patent/JP5659540B2/en
Publication of JP2010266430A publication Critical patent/JP2010266430A/en
Application granted granted Critical
Publication of JP5659540B2 publication Critical patent/JP5659540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、スラブ、厚板、熱延鋼板等の鋼板材料の製造ラインにおける鋼板表面欠陥検査方法および装置に関し、特に、鋼板毎または鋼板内で、表面性状変動が大きい鋼板を対象にした欠陥検査に好適なものに関する。   The present invention relates to a steel sheet surface defect inspection method and apparatus in a production line for steel sheet materials such as slabs, thick plates, hot rolled steel sheets, and the like, and in particular, defect inspection for steel sheets having a large surface property variation for each steel sheet or within a steel sheet. It is related with what is suitable for.

スラブ、厚板、熱延鋼板等の鋼板材料(以下、鋼板と称する)の製造ラインにおいては、連続して搬送、通板される鋼板表面に疵、欠陥が発生した場合、当該鋼板を不合格或いは、保留とし、手入れ等の処置を行う。このため、鋼板の表面欠陥を検出する必要があり、搬送ライン上の鋼板を目視により監視し、表面欠陥の有無を判断している。   In the production line of steel plate materials (hereinafter referred to as “steel plates”) such as slabs, thick plates, hot rolled steel plates, etc., if any flaws or defects occur on the surface of the steel plates that are continuously conveyed and passed, the steel plates are rejected. Or, it is put on hold and treatment such as care is performed. For this reason, it is necessary to detect the surface defect of a steel plate, the steel plate on a conveyance line is visually monitored, and the presence or absence of a surface defect is judged.

厚板鋼板は、最大幅は5m以上、最大長さは25m以上になるため、搬送される鋼板表面(及び裏面)を単独の検査員ですべて監視する事は困難であり、複数の検査員を配置することにより鋼板表面検査を行っている。   Thick steel plates have a maximum width of 5 m or more and a maximum length of 25 m or more. Therefore, it is difficult to monitor all of the steel plate surface (and back surface) being transported by a single inspector. The steel sheet surface inspection is performed by arranging.

また、搬送時の検査では鋼板表面の欠陥の有無を検出する事は可能であるものの、詳細な判別・判定は困難であるため、欠陥が検出された鋼板に関しては、オフライン位置に移送し、停止状態で欠陥位置及び欠陥状態の確認を行い、必要な処置を行っている。   In addition, although it is possible to detect the presence or absence of defects on the surface of the steel sheet during inspection during transport, it is difficult to discriminate and judge in detail, so the steel sheet in which defects are detected is transferred to an offline position and stopped. In the state, the defect position and the defect state are confirmed, and necessary measures are taken.

しかし、目視判定は、検査員の負荷が高く、欠陥見逃し等の可能性や個人差による欠陥検出レベルのばらつきがあるため、鋼板全面について均質な表面検査を行うことは難しかった。   However, in the visual determination, the load on the inspector is high, and there is a possibility of missing a defect or a variation in defect detection level due to individual differences. Therefore, it is difficult to perform a uniform surface inspection on the entire surface of the steel sheet.

上述のような目視検査の課題に対して、CCDカメラを用い、厚板の凹凸欠陥をも検出するための投光角と受光角とし、変更フィルターで明るい点の光強度を下げ、反射光の変化を緩和する技術がある(例えば、特許文献1)。   In response to the above-mentioned problems of visual inspection, a CCD camera is used and the projection angle and reception angle for detecting irregularities on thick plates are also set. There is a technique for mitigating changes (for example, Patent Document 1).

特開2002−303582号公報JP 2002-303582 A

しかし、特許文献1に開示された技術は、モノクロCCDカメラを利用しているため、色むら状の欠陥検出や色調の表面変動には適用できないという問題がある。また、正常部と異常部との弁別には固定の閾値を設定しようとする一般的な手法であるため、スラブ、厚板、熱延材などの表面性状(地合)が粗く、鋼板毎或いは鋼板内の表面性状変動が大きい場合には特許文献1の技術では、過検出や未検出などの問題が解決されないままである。   However, since the technique disclosed in Patent Document 1 uses a monochrome CCD camera, there is a problem that it cannot be applied to detection of uneven color defects or surface variations in color tone. Moreover, since it is a general method for setting a fixed threshold value for discriminating between a normal part and an abnormal part, the surface properties (texture) of slabs, thick plates, hot rolled materials, etc. are rough, When the surface property variation in the steel plate is large, the technique of Patent Document 1 does not solve problems such as overdetection and non-detection.

本発明では、これら従来技術の問題点に鑑み、色調まで含め、表面性状変動が大きい鋼板を検査対象にして、過検出・未検出を抑えた、欠陥部(異常部)の検出を行うことができる、鋼板表面欠陥検査方法および装置を提供することを課題とする。   In the present invention, in view of the problems of these prior arts, it is possible to detect a defective portion (abnormal portion) while suppressing over-detection / non-detection with a steel sheet having a large surface texture variation including the color tone as an inspection target. An object of the present invention is to provide a steel sheet surface defect inspection method and apparatus.

上記課題は、以下の発明によって解決できる。   The above problems can be solved by the following invention.

[1] 光を照射した鋼板表面をカラーカメラにより撮像し、撮像したカラー画像のR/G/B各成分の平均輝度、最大輝度、最小輝度、輝度の分散の少なくとも一つの値を算出し、算出した値を所定の設定値と比較して、鋼板表面の欠陥の有無および/または程度を判定することを特徴とする鋼板表面欠陥検査方法。   [1] The surface of the steel sheet irradiated with light is imaged by a color camera, and at least one value of average luminance, maximum luminance, minimum luminance, and luminance dispersion of each R / G / B component of the captured color image is calculated, A steel plate surface defect inspection method, wherein the calculated value is compared with a predetermined set value to determine the presence and / or extent of defects on the steel plate surface.

[2] [1]に記載の鋼板表面欠陥検査方法において、前記カラー画像を複数の領域に分割し、分割された各領域について、R/G/B各成分の平均輝度、最大輝度、最小輝度、輝度の分散の少なくとも一つの値を算出し、算出した値と前記設定値との比較、または、前記算出した値の分割された領域間での差異とに基づいて、欠陥が存在する領域を求めることを特徴とする鋼板表面欠陥検査方法。   [2] In the steel sheet surface defect inspection method according to [1], the color image is divided into a plurality of regions, and the average luminance, the maximum luminance, and the minimum luminance of each R / G / B component for each of the divided regions. Calculating at least one value of luminance dispersion, comparing the calculated value with the set value, or based on the difference between the divided areas of the calculated value A method for inspecting a surface defect of a steel sheet, characterized in that:

[3] [1]または[2]のいずれか1項に記載の鋼板表面欠陥検査方法において、前記設定値を、前記算出した各値から鋼板の表面性状を評価し、評価結果に基づいて設定することを特徴とする鋼板表面欠陥検査方法。   [3] In the steel sheet surface defect inspection method according to any one of [1] or [2], the set value is set based on an evaluation result by evaluating a surface property of the steel sheet from each of the calculated values. A method for inspecting a surface defect of a steel sheet.

[4] [2]または[3]のいずれか1項に記載の鋼板表面欠陥検査方法において、複数の領域に分割するにあたっては、予め定めた分割限度まで領域を分割した後、分割領域ごとに表面性状を評価し、表面性状が同等な隣接する分割領域を再統合することにより、鋼板の表面性状分布に対応した領域分割を行うことを特徴とする鋼板表面欠陥検査方法。   [4] In the steel sheet surface defect inspection method according to any one of [2] and [3], in dividing into a plurality of regions, after dividing the region up to a predetermined division limit, A steel sheet surface defect inspection method characterized by performing region division corresponding to the surface property distribution of a steel plate by evaluating surface properties and reintegrating adjacent divided regions having equivalent surface properties.

[5] 鋼板の表面に光を照射する光源と、該光源により照射された鋼板表面のカラー画像を撮像するカラーカメラと、
撮像したカラー画像のR/G/B各成分の平均輝度、最大輝度、最小輝度、輝度の分散の少なくとも一つの値を算出する画像処理装置と、算出した値を所定の設定値と比較して、鋼板表面の欠陥の有無および/または程度を判定、あるいは欠陥が存在する部位を推定する信号処理装置と、を具備することを特徴とする鋼板表面欠陥検査装置。
[5] A light source that irradiates light on the surface of the steel sheet, a color camera that captures a color image of the steel sheet surface irradiated by the light source,
An image processing apparatus that calculates at least one value of average luminance, maximum luminance, minimum luminance, and luminance variance of each R / G / B component of the captured color image, and compares the calculated value with a predetermined set value. A steel sheet surface defect inspection apparatus comprising: a signal processing apparatus that determines the presence and / or extent of defects on the steel sheet surface or estimates a site where defects exist.

本発明によれば、スラブ、厚板、熱延材等の表面性状変動が大きい鋼板材料に関して、材料表面をカラー撮像し、そのカラー画像の各R/G/B(赤、緑、青)各成分の平均輝度、最大輝度、最小輝度、輝度の分散を算出して、そのカラー画像内に、欠陥が含まれているか否かを判定するようにしたので、色むらなどの欠陥や色調などの変動影響を抑制し、過検出、未検出を抑えた、欠陥部(異常部)の検出を行うことが可能となる。   According to the present invention, regarding a steel plate material having a large variation in surface properties such as a slab, a thick plate, and a hot rolled material, the surface of the material is color-imaged, and each R / G / B (red, green, blue) of the color image is obtained. Since the average luminance, maximum luminance, minimum luminance, and luminance variance of the component are calculated and it is determined whether or not the color image contains a defect, defects such as color unevenness and color tone It becomes possible to detect a defective portion (abnormal portion) while suppressing the influence of fluctuation and suppressing overdetection and non-detection.

また、撮像したカラー画像を複数の領域に分割し、各領域に関して平均輝度、最大輝度、最小輝度、輝度の分散を求めて、各領域の値を設定値と比較、または、異なる領域の値とを比較して、欠陥の有無、程度、場所を推定するようにしたので、表面性状の変動によらず欠陥部(異常部)の正確な検出を行うことが可能となる。   In addition, the captured color image is divided into a plurality of areas, and the average luminance, maximum luminance, minimum luminance, and luminance distribution are calculated for each area, and the values of each area are compared with the set values or the values of different areas. Since the presence / absence, degree, and location of the defect are estimated, it is possible to accurately detect the defect portion (abnormal portion) regardless of the change in surface properties.

さらに、本発明では、予め撮像した鋼板表面の画像に対して前記推定を行い、撮像画像に併せて判定結果もガイダンス表示するので、検査員は画像、ガイダンス表示を元に検査を行うことにより、検査員の負荷を低減するとともに、検査員の個人差等による検査レベルのバラツキを低減することも可能となる。   Furthermore, in the present invention, the estimation is performed on the image of the steel plate surface imaged in advance, and the determination result is also displayed in guidance along with the captured image, so that the inspector performs the inspection based on the image and guidance display, In addition to reducing the load on the inspector, it is also possible to reduce variations in the inspection level due to individual differences among the inspectors.

実施形態1の厚板鋼板搬送ラインへの適用例を示す図である。It is a figure which shows the example of application to the thick steel plate conveyance line of Embodiment 1. FIG. 実施形態1に係る鋼板表面欠陥検査方法の処理概要を示す図である。It is a figure which shows the process outline | summary of the steel plate surface defect inspection method which concerns on Embodiment 1. FIG. 異常・欠陥部位の推定手順例を示すフローチャートである。It is a flowchart which shows the example of an abnormal / defective part estimation procedure. 異常・欠陥部位の推定手順例を示すフローチャートである。It is a flowchart which shows the example of an abnormal / defective part estimation procedure. 異常・欠陥部位の推定手順例を示すフローチャートである。It is a flowchart which shows the example of an abnormal / defective part estimation procedure. 実施形態2に係る鋼板表面欠陥検査方法の処理概要を示す図である。It is a figure which shows the process outline | summary of the steel plate surface defect inspection method which concerns on Embodiment 2. FIG. 実施形態2の厚板鋼板搬送ラインへの適用例を示す図である。It is a figure which shows the example of application to the thick steel plate conveyance line of Embodiment 2.

[実施形態1]
まず、発明者らは、従来の目視検査は、鋼材表面の色調なども考慮して表面性状判定、欠陥有無判定を行っていることに着目し、目視判定との照合性を高める観点や検出性能を高める観点において、モノクロ画像でなく、カラー画像を用いることとした。
[Embodiment 1]
First, the inventors have focused on the fact that the conventional visual inspection performs surface property determination and defect presence / absence determination in consideration of the color tone of the steel material surface, etc. From the viewpoint of improving the color, a color image is used instead of a monochrome image.

そして、鋼板表面性状(地合)が比較的滑らかで、変動が少ない場合には、輝度分布は狭い輝度の範囲に集中し、R/G/Bのバランスもほぼ等しい(平均輝度や最大輝度、最小輝度の値がほぼ等しい)ものとなる。ところが、画像領域内に異常な部分、すなわち、鋼板の地合に対して変動している部分(輝度の高い部分或いは輝度の低い部分)が存在する場合には、当該領域の輝度分布は他の領域とは異なる形状を有し、R/G/Bのバランスも変化するとの知見を得た。   And when the steel sheet surface texture (texture) is relatively smooth and the fluctuation is small, the luminance distribution is concentrated in a narrow luminance range, and the R / G / B balance is almost equal (average luminance, maximum luminance, The minimum luminance value is substantially equal). However, if there is an abnormal part in the image area, that is, a part that fluctuates with respect to the texture of the steel sheet (a part with high brightness or a part with low brightness), the brightness distribution of the area It has a shape different from that of the region and the knowledge that the balance of R / G / B is also changed.

その知見に基づいて、撮像した鋼板のカラー画像データ(R/G/B各成分の輝度データ、輝度分布、平均輝度、最大/最小輝度などの特徴的な値)から、鋼板全体の性状を評価し、鋼板画像の変動(表面性状変動)が所定の範囲外で、異常・欠陥部位の存在可能性が高いと判定した場合には、鋼板画像を複数領域へ分割し、分割した領域毎又は領域間での評価を繰り返して、鋼板(画像)中の異常・欠陥部位の推定を行う本発明を想到したのである。   Based on the knowledge, the properties of the entire steel sheet are evaluated from the color image data of the imaged steel sheet (characteristic values such as luminance data, luminance distribution, average luminance, maximum / minimum luminance of each R / G / B component) When it is determined that the fluctuation (surface texture fluctuation) of the steel sheet image is outside the predetermined range and the possibility of the presence of an abnormality / defect is high, the steel sheet image is divided into a plurality of areas, and each divided area or area The present invention was conceived by repeating the evaluation between the two to estimate the abnormality / defect site in the steel sheet (image).

図1は、実施形態1の厚板鋼板搬送ラインへの適用例を示す図である。図中、1は光源、3はカラーラインCCDカメラである撮像装置、4は信号処理装置、5は画像表示装置、7は搬送ロール、8は鋼板、9はPLG、10は画像処理部、11は判定処理部をそれぞれ表す。   FIG. 1 is a diagram illustrating an application example of the first embodiment to the thick steel plate conveyance line. In the figure, 1 is a light source, 3 is an imaging device which is a color line CCD camera, 4 is a signal processing device, 5 is an image display device, 7 is a transport roll, 8 is a steel plate, 9 is a PLG, 10 is an image processing unit, 11 Represents a determination processing unit.

鋼板搬送ラインは、一定間隔の搬送ロール7により構成され、ロールの回転により搬送ライン上の鋼板8を搬送する。この搬送ラインでは、最大幅5m程度、最大長25m程度の厚板鋼板が搬送される。そして、鋼板表面の撮像を行うために、ライン上面に光源1及び撮像装置3を配置する。鋼板裏面の撮像を行う場合には、同様にライン下面に光源1及び撮像装置3を配置すればよい。   The steel plate conveyance line is composed of conveyance rolls 7 at regular intervals, and conveys the steel plate 8 on the conveyance line by the rotation of the roll. In this conveyance line, a thick steel plate having a maximum width of about 5 m and a maximum length of about 25 m is conveyed. And in order to image the steel plate surface, the light source 1 and the imaging device 3 are arrange | positioned on the line upper surface. When imaging the back surface of the steel plate, the light source 1 and the imaging device 3 may be similarly arranged on the lower surface of the line.

光源1の入射角度は、例えば15°で、撮像装置3の受光角は、例えば5°の角度とし、正反射位置から10°ずらした拡散反射成分を受光する。これは、正反射位置では、鋼板表面性状の影響による画像(輝度)変動が大きくなり、欠陥等異常部位の画像上での判別性が悪化する為である。なお、上記の光源の入射角やカメラの受光角は、一例であり、対象ライン、対象材料にあわせて、光源、カメラの角度を最適な値に適宜設定すればよい。   The incident angle of the light source 1 is, for example, 15 °, and the light receiving angle of the imaging device 3 is, for example, 5 °. The diffuse reflection component shifted by 10 ° from the regular reflection position is received. This is because, at the regular reflection position, the image (brightness) fluctuation due to the influence of the steel sheet surface property becomes large, and the discriminability on the image of the abnormal part such as a defect is deteriorated. The incident angle of the light source and the light receiving angle of the camera are examples, and the angles of the light source and the camera may be appropriately set to optimum values according to the target line and the target material.

鋼板表面を投光するための光源は、光ファイバを直線状に配列した線状光源(直線状の配列方向は搬送方向に対し直交方向)であり、ファイバ端から光を出射し、前面に配置されたシリンドリカルレンズにより集光して(集光方向は搬送方向)、鋼板表面にライン状の光を照射する。なお、光源としては、LEDを直線状に配置してシリンドリカルレンズを介して鋼板表面にライン状の光を照射するものや、撮像位置に対して複数の投光器を配置する等、ライン条件、鋼板条件に合わせて選択すればよい。   The light source for projecting the steel plate surface is a linear light source in which optical fibers are arranged in a straight line (the linear arrangement direction is perpendicular to the transport direction), and the light is emitted from the fiber end and placed on the front surface. The light is condensed by the cylindrical lens (condensing direction is the conveying direction), and the surface of the steel sheet is irradiated with line-shaped light. In addition, as light sources, LEDs are arranged in a straight line and light is irradiated on the surface of the steel sheet through a cylindrical lens, or a plurality of projectors are arranged at the imaging position. You may choose according to.

撮像装置3は、カラーラインCCDカメラであり、鋼板表面上の光が照射された箇所に視野を設定する。なお、鋼板搬送方向の照射範囲(集光して照射する領域)は、検査対象の鋼板の板幅範囲で、カメラの視野位置が投光範囲内に収まるように設定する。カメラや光源は、1台で鋼板の幅方向(搬送方向に対し直交方向)全てを測定できない場合には、幅方向に複数台設置すればよい。   The imaging device 3 is a color line CCD camera, and sets a field of view at a location irradiated with light on the surface of the steel plate. Note that the irradiation range in the steel plate conveyance direction (the region where light is collected and irradiated) is set so that the visual field position of the camera is within the projection range within the plate width range of the steel plate to be inspected. If a single camera or light source cannot measure all of the width direction of the steel sheet (the direction orthogonal to the transport direction), a plurality of cameras and light sources may be installed in the width direction.

また、ラインにPLG(パルス発生器)9を設置し、所定の搬送距離(例えば、0.25mmや0.5mmなど)毎にパルスを発生させ、そのパルスに同期して撮像(カラーラインCCDカメラのラインスキャン)を行うことにより、搬送速度によらず、鋼板搬送方向に一定長ピッチでの撮像を行う。   Also, a PLG (pulse generator) 9 is installed in the line, a pulse is generated at every predetermined transport distance (for example, 0.25 mm, 0.5 mm, etc.), and imaging is performed in synchronization with the pulse (color line CCD camera). (Line scan), imaging is performed at a constant long pitch in the steel plate conveyance direction regardless of the conveyance speed.

撮像装置3で撮像した撮像信号は信号処理装置4中の画像処理部10に入力され、搬送方向に信号を並べることによって、2次元の鋼板画像データを生成する。生成された画像データは、判定処理部11及び目視検査位置に設置された画像表示装置5に出力される。   An imaging signal imaged by the imaging device 3 is input to the image processing unit 10 in the signal processing device 4, and two-dimensional steel plate image data is generated by arranging the signals in the transport direction. The generated image data is output to the determination processing unit 11 and the image display device 5 installed at the visual inspection position.

判定処理部11では、後述する図2〜5に示す手順で、鋼板画像データの処理を行い、鋼板中の異常・欠陥部位の推定を行う。判定処理部11で得られた、異常・欠陥部の推定位置情報は、目視検査位置に測定箇所が到達するタイミングにあわせて、画像とともに画像表示装置5に出力され、目視検査の支援情報として活用される。表示画像範囲に、異常・欠陥推定部がある場合には、推定部の外枠表示、点滅表示、色変更表示等を行うとともに、検査員の注意を喚起し、検査見逃しの防止のために、警報音、アナウンスなどを行ってもよい。   The determination processing unit 11 processes the steel plate image data according to the procedure shown in FIGS. 2 to 5 described later, and estimates an abnormality / defect portion in the steel plate. The estimated position information of the abnormality / defect portion obtained by the determination processing unit 11 is output to the image display device 5 together with the image at the timing when the measurement location reaches the visual inspection position, and is used as support information for the visual inspection. Is done. When there is an abnormality / defect estimation part in the display image range, the outer frame display, blinking display, color change display, etc. of the estimation part are performed, and the attention of the inspector is raised to prevent the inspection from being overlooked. An alarm sound, announcement, etc. may be given.

画像表示装置5としては、表面(上面)、裏面(下面)がわかるように設置し、例えば、複数画面を設け、撮像した全幅の画像データを縮小、分割して表示する画面と、欠陥が発生しやすい箇所(例えば、鋼板の幅エッジ部分)の画像を等倍に表示するとよい。また、画像表示装置の構成や表示位置、表示拡大率、表示タイミングなどは、操業条件や表面性状に合わせて、任意に変更可能となるようにしてもよい。また、画像処理部10で、画像の輝度信号の変化点を強調するための微分処理などを行い、その画像を表示するようにしてもよい。   The image display device 5 is installed so that the front surface (upper surface) and the back surface (lower surface) can be seen. For example, a plurality of screens are provided, and a screen in which the captured image data of the entire width is reduced and divided is displayed, and defects are generated. It is good to display the image of the part which is easy to do (for example, the width edge part of a steel plate) at equal magnification. Further, the configuration, display position, display magnification, display timing, and the like of the image display device may be arbitrarily changed according to the operation conditions and surface properties. Further, the image processing unit 10 may perform differentiation processing for emphasizing the change point of the luminance signal of the image and display the image.

図2は、実施形態1に係る鋼板表面欠陥検査方法の処理概要を示す図である。先ず、鋼板全体の性状評価(1)を行った後に、長手方向(2)−1および幅方向(2)-2に分割して、正常部または異常部が長手方向ならびに幅方向のどの位置にあるかの粗評価を行う。そして、異常部位の粗判定(3)の後に、異常部位を小分割して、小分割領域毎で欠陥/異常部推定(4)を行う。   FIG. 2 is a diagram illustrating a processing outline of the steel sheet surface defect inspection method according to the first embodiment. First, after performing the property evaluation (1) of the entire steel sheet, the steel sheet is divided into the longitudinal direction (2) -1 and the width direction (2) -2, and the normal part or the abnormal part is located at any position in the longitudinal direction or the width direction. A rough evaluation is performed. Then, after rough determination (3) of the abnormal part, the abnormal part is subdivided and defect / abnormal part estimation (4) is performed for each subdivision region.

図3〜5は、異常・欠陥部位の推定手順例を示すフローチャートである。以下、処理手順を図3から順を追って詳細に説明する。   3 to 5 are flowcharts showing an example of an abnormality / defective part estimation procedure. Hereinafter, the processing procedure will be described in detail from FIG.

(1)カラー画像全領域のR/G/B各成分の輝度データの分布から、画像領域全体でのR/G/B各成分の輝度分布評価(I:平均輝度、Imax:最大輝度、Imin:最小輝度、I:輝度の分散の算出)を実施する。(ステップS101)
各成分の評価結果(算出値)及び各成分間の評価結果の差異により鋼板(画像)全体の評価を行う。各成分の輝度のバラツキ(I)が小さい場合(ステップS102のNo)には、鋼板の性状は比較的均一であると評価でき、各成分の輝度のバラツキ(I)が大きい場合(ステップ102のYes)には、鋼板内での性状変動が大きい(異常な部分、欠陥が存在する)と判断する(ステップS105)。
(1) Evaluation of the luminance distribution of each R / G / B component in the entire image area (I a : average luminance, I max : maximum luminance) from the distribution of luminance data of each R / G / B component in the entire color image area , I min : minimum luminance, I d : calculation of luminance dispersion). (Step S101)
The entire steel plate (image) is evaluated based on the difference between the evaluation results (calculated values) of the components and the evaluation results between the components. When the luminance variation (I d ) of each component is small (No in step S102), it can be evaluated that the properties of the steel plate are relatively uniform, and when the luminance variation (I d ) of each component is large (step) In 102 (Yes), it is determined that the property variation within the steel plate is large (abnormal portions and defects are present) (step S105).

また、バラツキ(I)が小さい場合でも、各成分の平均値に対して最大値、最小値の偏差((Imax-I)、(I-Imin))の絶対値が大きい場合(ステップS103のYes)には、鋼板全体の中に、表面性状等が異常な部分即ち、欠陥或いは、異常部位が存在すると判断する(ステップS105)。 Even when the variation (I d ) is small, the absolute value of the deviation between the maximum value and the minimum value ((I max -I a ), (I a -I min )) is large with respect to the average value of each component. In (Yes in step S103), it is determined that a portion having an abnormal surface texture, that is, a defect or an abnormal portion exists in the entire steel sheet (step S105).

鋼板カラー画像全体に対しての各成分の算出データに対して、判定基準を設け、鋼板の性状が均一であり、異常・欠陥部位の存在可能性が低いと評価できる場合(ステップS104のNo)には、評価を終了する(ステップS106)。   A case where judgment criteria are provided for the calculation data of each component for the entire color image of the steel plate, and the properties of the steel plate are uniform and it can be evaluated that the possibility of the presence of an abnormality / defect portion is low (No in step S104). The evaluation is finished (step S106).

また、R/G/B各成分間の算出値の差異が大きい場合(ステップS104のYes)にも異常部が存在すると判断する。   Further, it is determined that an abnormal portion exists even when the difference in the calculated values between the R / G / B components is large (Yes in step S104).

(2)鋼板全体の評価の結果、異常・欠陥部が存在すると判断される場合(ステップS105)、異常部位の推定を行う(ステップS201以降の処理、図4参照)。   (2) As a result of the evaluation of the entire steel sheet, when it is determined that there is an abnormality / defect (step S105), an abnormal region is estimated (processing after step S201, see FIG. 4).

鋼板画像を長手方向に分割し(ステップS201)、各領域のR/G/B各成分の輝度分布評価(平均輝度、最大/最小輝度、輝度の分散の算出)を行う(ステップS202)。そして、算出した平均輝度、最大/最小輝度、輝度の分散についてR/G/B各成分毎で分割領域間における差を算出する(ステップS203)。   The steel plate image is divided in the longitudinal direction (step S201), and luminance distribution evaluation (calculation of average luminance, maximum / minimum luminance, luminance variance) of each R / G / B component in each region is performed (step S202). Then, the difference between the divided regions is calculated for each R / G / B component with respect to the calculated average luminance, maximum / minimum luminance, and luminance variance (step S203).

次に、算出した差に基づいて、分割領域間の輝度分布評価にバラツキがあるかどうかを判断する(ステップS204)。分割領域間の評価結果が異なる(ステップS204のYes)場合には、他分割領域との差が所定以上となる回数が最も多い領域を抽出(ステップS205)し、欠陥有り、異常部位を含む長手領域を確定する(ステップS207)。   Next, based on the calculated difference, it is determined whether or not there is variation in the luminance distribution evaluation between the divided regions (step S204). If the evaluation results between the divided areas are different (Yes in step S204), the area having the largest number of times that the difference from the other divided areas is equal to or greater than a predetermined value is extracted (step S205), and the length including the defect and the abnormal part The area is determined (step S207).

また、分割領域間で差が大きく異ならない場合(ステップS204のNo)には、特定の長手領域のみが異常ではなく、幅方向の特定部位が、長手方向に亘って異常と判定する(ステップS206)。   If the difference between the divided regions is not significantly different (No in Step S204), it is determined that only the specific longitudinal region is not abnormal and the specific portion in the width direction is abnormal in the longitudinal direction (Step S206). ).

(3)次に図5に移って画像を幅方向に分割し(ステップS301)、各領域のR/G/B各成分の評価を行い、(2)の処理と同様に、鋼板中の異常、欠陥が含まれると考えられる幅領域を推定する(ステップS302〜S307)。   (3) Next, moving to FIG. 5, the image is divided in the width direction (step S <b> 301), and R / G / B components in each region are evaluated. Similar to the processing in (2), abnormalities in the steel sheet The width region that is considered to contain a defect is estimated (steps S302 to S307).

次に、これまでに推定した、異常・欠陥があると推定される幅方向分割領域と長手方向分割領域の重なった領域に、異常、欠陥が存在すると判断する(ステップS308)。   Next, it is determined that there is an abnormality or defect in a region where the width direction divided region and the longitudinal direction divided region estimated so far have an abnormality / defect overlapped with each other (step S308).

ステップS308で決定した領域に対して、再度領域を分割する必要がある場合には(ステップS309のYes)、ステップS201に戻り、上記(2)〜(3)に述べた処理を繰り返す事により、位置の更なる絞込みを行う。   When it is necessary to divide the area again with respect to the area determined in step S308 (Yes in step S309), the process returns to step S201 and repeats the processes described in (2) to (3) above. Further refine the position.

なお、領域の更なる分割は、要求される位置分解能から適宜決定すればよく、場合によっては、1回のみの計算で終了してもよい。また、最初に設定する分割領域も計算時間などを考慮して適宜決定すればよい。   Note that the further division of the region may be appropriately determined from the required position resolution, and may be completed with only one calculation in some cases. In addition, the divided area to be set first may be appropriately determined in consideration of the calculation time.

[実施形態2]
本実施形態では、撮像した鋼板表裏面のカラー画像に対して、全体或いは、分割した領域毎にR/G/B成分の評価を行い、代表値(評価値)を求める事により鋼板の表面性状を推定し、鋼板表面性状に対応して適切な設定値を設定する事により鋼板中の異常・欠陥部の判定を行う。
[Embodiment 2]
In this embodiment, the surface properties of the steel sheet are obtained by evaluating the R / G / B component for the entire color image or for each divided region and obtaining a representative value (evaluation value) for the color images of the captured steel sheet front and back surfaces. Is determined, and an abnormality / defect in the steel sheet is determined by setting an appropriate set value corresponding to the surface property of the steel sheet.

図6は、実施形態2に係る鋼板表面欠陥検査方法の処理概要を示す図である。図に従い以下に説明を行う。   FIG. 6 is a diagram illustrating a processing outline of the steel sheet surface defect inspection method according to the second embodiment. The following description is made according to the figure.

(1)鋼板表面画像からR/G/Bデータ(R/G/B単色輝度)の分割画像、およびモノクロ(黒/白)画像を生成する。   (1) A divided image of R / G / B data (R / G / B single color luminance) and a monochrome (black / white) image are generated from the steel plate surface image.

(2)各画像データを予め定めた複数の領域に分割する。幅方向等分割、或いは一定幅分割、長手方向等分割、或いは一定長さ分割を行う。   (2) Each image data is divided into a plurality of predetermined areas. A width direction equal division, a constant width division, a longitudinal direction equal division, or a constant length division is performed.

(3)R/G/B及びモノクロ(黒/白)の輝度データに関して、輝度分布の評価として、例えば、最大輝度、最小輝度、最大分布輝度、平均輝度、輝度分散を算出する。   (3) For luminance data of R / G / B and monochrome (black / white), for example, the maximum luminance, the minimum luminance, the maximum distribution luminance, the average luminance, and the luminance variance are calculated as the luminance distribution evaluation.

(4)輝度分散、最大輝度、および最小輝度を用いて表面性状の判定を行う。すなわち、輝度分散が予め設定した規定値より大きい場合には、当該領域の表面性状が粗いと判定する。また、輝度の分散が小さい場合には、当該領域の表面性状は均一であると判定する。但し、輝度の分散が小さい場合でも、最大輝度と最小輝度との差が大きい場合には、比較的均一な領域内に、表面性状の粗い部分あるいは、異常部が存在すると判定する。   (4) The surface texture is determined using the luminance dispersion, the maximum luminance, and the minimum luminance. That is, if the luminance dispersion is larger than a preset specified value, it is determined that the surface property of the area is rough. When the luminance dispersion is small, it is determined that the surface property of the area is uniform. However, even when the variance of luminance is small, if the difference between the maximum luminance and the minimum luminance is large, it is determined that a rough surface portion or an abnormal portion exists in a relatively uniform region.

R/G/B及びモノクロ(黒/白)総てで、輝度分布評価結果が同様の傾向であれば、鋼板表面に色調の偏り等は存在せず、表面性状が粗い場合でも、凹凸、付着物等による変動と判断できる。   If the luminance distribution evaluation results have the same tendency for all of R / G / B and monochrome (black / white), there is no color tone deviation on the steel sheet surface, and even if the surface texture is rough, unevenness, It can be judged as a variation due to kimono.

またR/G/Bに関して、輝度分布評価結果に傾向の差異が有る場合には、錆等の表面変化による鋼板表面に色調の偏りが存在すると判断できる。   Moreover, regarding R / G / B, when there is a difference in tendency in the luminance distribution evaluation results, it can be determined that there is a color tone bias on the steel sheet surface due to surface changes such as rust.

(5)輝度評価結果を元に当該領域に関する設定値(以下、閾値と呼ぶ)を設定する。閾値はR/G/B及びモノクロ(黒/白)それぞれに対して設定する。また、高輝度部検出のための上側閾値と、低輝度部検出のための下側閾値を、例えば以下のように設定する。   (5) A set value (hereinafter referred to as a threshold value) related to the area is set based on the luminance evaluation result. The threshold is set for each of R / G / B and monochrome (black / white). Further, for example, the upper threshold value for detecting the high luminance part and the lower threshold value for detecting the low luminance part are set as follows.

閾値設定例-1
上側閾値=平均輝度レベル+(最大輝度−平均輝度)×係数(設定定数)
下側閾値=平均輝度レベル−(平均輝度−最小輝度)×係数(設定定数)
なお、表面性状により係数を変更する。
Threshold setting example-1
Upper threshold = average luminance level + (maximum luminance−average luminance) × coefficient (setting constant)
Lower threshold = average luminance level− (average luminance−minimum luminance) × coefficient (setting constant)
The coefficient is changed depending on the surface properties.

閾値設定例-2
上側閾値=平均輝度レベル+2σ または 平均輝度レベル+3σ
下側閾値=平均輝度レベル−2σ または 平均輝度レベル−3σ
ここで、σは輝度分散を表し、表面性状により上式に示すごとく平均輝度レベルにプラスまたはマイナスする値を2σまたは3σ変更する。
Threshold setting example-2
Upper threshold = average luminance level + 2σ or average luminance level + 3σ
Lower threshold = average luminance level-2σ or average luminance level-3σ
Here, σ represents luminance dispersion, and a value that is added to or subtracted from the average luminance level is changed by 2σ or 3σ as shown in the above equation depending on the surface properties.

(6)各領域のR/G/B及びモノクロ(黒/白)データに対して、前記閾値設定に基づいて、閾値判定処理を行う。上側閾値より輝度が高い部分、及び下側閾値より輝度が低い部分を異常部として判定する。   (6) A threshold determination process is performed on the R / G / B and monochrome (black / white) data of each region based on the threshold setting. A portion having a higher luminance than the upper threshold and a portion having a lower luminance than the lower threshold are determined as abnormal portions.

(7)R/G/B及びモノクロ(黒/白)毎の異常部判定(閾値判定)処理結果を統合して、異常・欠陥部を検出する。対象とする欠陥の種類、鋼板種類等により、R/G/B及びモノクロ(黒/白)の総て、或いは何れか、又は組合せで、閾値判定された部分を、異常・欠陥部として判定するものとする。   (7) The abnormal / defect portions are detected by integrating the abnormal portion determination (threshold determination) processing results for each of R / G / B and monochrome (black / white). Depending on the type of target defect, the type of steel sheet, etc., all or any one or combination of R / G / B and monochrome (black / white) is determined as a threshold / defect portion. Shall.

図7は、実施形態2の厚板鋼板搬送ラインへの適用例を示す図である。図中、2aは光源(ランプ)、2bは光源(投光器)、および12は画像記録装置をそれぞれ表し、その他の符号については図1と同じである。なお、ここで鋼板表面を投光するための光源は、光源(ランプ)2a及び光源(投光器)2bから構成され、ランプ部ではランプ光を集光し、投光部の光ファイバに入射する。投光部では、入射光を光ファイバにより投光部側へ伝送する。投光部側では光ファイバを直線状に配列し、ファイバ端から光の投射を行い、前面に配置されたシリンドリカルレンズにより投射光を集光し、対象物に対してライン状の投光を行う。   FIG. 7 is a diagram illustrating an application example to the thick steel plate conveyance line of the second embodiment. In the figure, 2a represents a light source (lamp), 2b represents a light source (projector), and 12 represents an image recording apparatus, and the other symbols are the same as those in FIG. Here, the light source for projecting the surface of the steel sheet is composed of a light source (lamp) 2a and a light source (projector) 2b. The lamp section collects the lamp light and enters the optical fiber of the projecting section. In the light projecting unit, incident light is transmitted to the light projecting unit side by an optical fiber. On the light projecting unit side, optical fibers are arranged in a straight line, light is projected from the end of the fiber, projection light is collected by a cylindrical lens arranged on the front surface, and line light is projected onto an object. .

本実施形態では、ランプ部としてはハロゲンランプ光源を使用し、投光部1台に対して2台のランプ部を接続し、高輝度投光を可能としている。投光部長1.8mの投光部を使用し、対象物表面の投光範囲は、1.8m×25mmとなるように、レンズ、設置位置を調整している。   In the present embodiment, a halogen lamp light source is used as the lamp unit, and two lamp units are connected to one light projecting unit to enable high-intensity light projection. A light projecting unit having a light projecting unit length of 1.8 m is used, and the lens and the installation position are adjusted so that the light projecting range of the object surface is 1.8 m × 25 mm.

投光範囲(投光幅)は、対象鋼板の板幅範囲と光源、カメラの設置角度より決定し、対象鋼板の板幅範囲において、カメラの撮像位置が投光範囲内に収まるようにしている。板幅範囲が狭い場合には、投光幅を狭くし(集光し)輝度を上昇させる事も可能である。   The light projection range (light projection width) is determined from the plate width range of the target steel plate, the light source, and the installation angle of the camera, and the imaging position of the camera is within the light projection range in the plate width range of the target steel plate. . When the plate width range is narrow, it is possible to narrow the light projection width (condensed) and increase the luminance.

そして光源は、搬送ライン(鋼板)幅方向に、3セットを設置することにより、搬送ライン(鋼板)全幅に対する投光を可能としている。本実施形態では、ハロゲンランプを使用しているが、メタルハライド光源等を使用することも可能である。また、ランプ部+投光部の光源構成としているが、高輝度LEDアレイを使用した線状光源を使用する事も可能である。   And the light source is enabling the light projection with respect to the full width of a conveyance line (steel plate) by installing three sets in a conveyance line (steel plate) width direction. In the present embodiment, a halogen lamp is used, but a metal halide light source or the like can also be used. In addition, although the light source configuration of the lamp unit and the light projecting unit is used, a linear light source using a high-intensity LED array can be used.

鋼板搬送ライン6は一定間隔(例えば、1m間隔)の搬送ロール(径400mm×長さ5000mm)により構成され、ロールの回転により搬送ライン上の鋼板8を搬送する。搬送ラインでは、最大幅5250mm、最大長26mの厚板鋼板が搬送される。   The steel plate conveyance line 6 is constituted by a conveyance roll (diameter 400 mm × length 5000 mm) having a constant interval (for example, 1 m interval), and conveys the steel plate 8 on the conveyance line by the rotation of the roll. In the transfer line, a thick steel plate having a maximum width of 5250 mm and a maximum length of 26 m is transferred.

鋼板表面及び鋼板裏面の撮像を行うために、ライン上面及びライン下面に前述した光源(ランプ及び投光器)2a、2b及び撮像装置(カラーラインCCDカメラ)3を配置している。鋼板に対する光源からの投光角度は、上下面とも鉛直軸に対して、15°としている。   In order to image the steel plate surface and the steel plate back surface, the light sources (lamps and projectors) 2a and 2b and the imaging device (color line CCD camera) 3 described above are arranged on the upper surface and the lower surface of the line. The light projection angle from the light source to the steel plate is 15 ° with respect to the vertical axis on both the upper and lower surfaces.

カラーラインCCDカメラは鉛直軸に対して5°の角度で設置し、投光角度15°に対して正反射位置から10°ずらした角度としている。これは、正反射位置では、鋼板表面性状の影響による画像(輝度)変動が大きく、欠陥等異常部位の画像上での判別性が悪化する為である。光源、カメラの角度によって、撮像画像は変化する為、対象ライン、対象材料によって、光源、カメラの角度は最適に設定する必要がある。   The color line CCD camera is installed at an angle of 5 ° with respect to the vertical axis, and the angle is shifted by 10 ° from the regular reflection position with respect to the projection angle of 15 °. This is because, at the regular reflection position, image (brightness) fluctuations due to the influence of the steel sheet surface properties are large, and the discriminability on the image of abnormal parts such as defects is deteriorated. Since the captured image changes depending on the angle of the light source and the camera, it is necessary to optimally set the angle of the light source and the camera depending on the target line and the target material.

カラーラインCCDカメラ3をライン(鋼板)幅方向に複数台設置し、光源による投光位置の撮像を行う。カラーラインCCDカメラ3には、焦点距離35mmのレンズを装着し、カメラの視野範囲が550mmとなるように鋼板との距離を設定している(本実施形態では、画素数2048のカラーラインCCDカメラを使用し、カメラ1画素当りの分解能を2048の0.275mmとしている)。   A plurality of color line CCD cameras 3 are installed in the line (steel plate) width direction, and the light projection position is imaged by the light source. The color line CCD camera 3 is mounted with a lens having a focal length of 35 mm, and the distance to the steel plate is set so that the field of view of the camera is 550 mm (in this embodiment, the color line CCD camera with 2048 pixels). And the resolution per pixel of the camera is set to 2048 of 0.275 mm).

ライン(鋼板)幅方向に10台のカラーラインCCDカメラを設置することにより鋼板幅以上の視野を確保している。カメラの視野範囲は端部がラップし、ラップ部分が鋼板上の同一位置を撮像するように配置し、鋼板全面を隙間無く撮像する事を可能としている。   By installing 10 color line CCD cameras in the line (steel plate) width direction, a field of view that is greater than the steel plate width is secured. The field of view of the camera is arranged so that the end wraps and the wrap portion images the same position on the steel plate, and the entire surface of the steel plate can be imaged without a gap.

本実施形態では、搬送ラインの搬送速度(鋼板の速度)に同期して撮像を行うため、搬送ラインに設置されたPLG(パルス発生器)9により搬送距離0.275mm毎にパルスを発生させ、これに同期して撮像(カラーラインCCDカメラのラインスキャン)を行うことにより、搬送速度によらず、鋼板長手方向に一定長(0.275mm)ピッチでの撮像を行っている。   In the present embodiment, in order to perform imaging in synchronization with the conveyance speed (steel plate speed) of the conveyance line, a pulse is generated every conveyance distance of 0.275 mm by a PLG (pulse generator) 9 installed in the conveyance line, By performing imaging (line scanning of a color line CCD camera) in synchronization with this, imaging is performed at a constant length (0.275 mm) pitch in the longitudinal direction of the steel sheet regardless of the conveyance speed.

カラーラインCCDカメラからの撮像信号は、信号処理装置4中の撮像処理部10に入力され、2次元の鋼板画像データを生成する。生成された画像データは、判定処理部11及び検査位置に設置された画像表示装置5に伝送される。   An imaging signal from the color line CCD camera is input to the imaging processing unit 10 in the signal processing device 4 to generate two-dimensional steel plate image data. The generated image data is transmitted to the determination processing unit 11 and the image display device 5 installed at the inspection position.

判定処理部では、前述した鋼板画像データの処理を行い、鋼板画像の領域分割、領域内のR/G/B及びモノクロ(黒/白)輝度分布の評価を行い、領域毎の表面性状の評価、閾値の設定を行い、閾値判定による異常・欠陥部位の検出を行う。検査、判定処理部で得られた、異常・欠陥部の検出位置情報は、画像表示装置5に伝送される。   In the determination processing unit, the above-described processing of the steel plate image data is performed, the region division of the steel plate image, the R / G / B and monochrome (black / white) luminance distribution in the region are evaluated, and the surface property evaluation for each region. The threshold value is set, and the abnormality / defective part is detected by the threshold determination. The detected position information of the abnormality / defect portion obtained by the inspection / determination processing unit is transmitted to the image display device 5.

本実施形態では、画像表示装置において、撮像処理部より受信した鋼板画像データと、検査、判定処理部のより受信した異常・欠陥部の推定位置情報の表示を行う。鋼板カラー画像を表示し、表示画像範囲に、異常・欠陥推定部がある場合には、推定部の外枠表示、点滅表示、色変更表示等を行うとともに。警報音、アナウンス等を行い、検査員の注意を喚起し、検査見逃しの防止を図っている。   In the present embodiment, the image display apparatus displays the steel plate image data received from the imaging processing unit and the estimated position information of the abnormality / defect portion received from the inspection / determination processing unit. When a steel plate color image is displayed and there is an abnormality / defect estimation part in the display image range, an outer frame display, blinking display, color change display, etc. of the estimation part are performed. Alarm sounds, announcements, etc. are used to alert the inspector and prevent missed inspections.

画像表示装置としては、表面(上面)用、裏面(下面)用に各4面を設置し、4面中2面には、撮像した全幅の画像データを縮小、分割して表示し、2面には、ライン両エッジ部分の約500mm幅の画像を等倍に表示している(欠陥の発生しやすいエッジ部を重点的に監視するため)。画像表示装置の構成は任意に変更可能であり、画面数の増減、画像表示範囲の変更を行うことも可能である。   As the image display device, four surfaces are provided for the front surface (upper surface) and the back surface (lower surface), and the captured image data of the entire width is reduced and divided and displayed on two of the four surfaces. Shows an approximately 500mm wide image of both edges of the line (to monitor the edge where defects are likely to occur). The configuration of the image display device can be arbitrarily changed, and the number of screens can be increased or decreased and the image display range can be changed.

また、表示画像は、任意の位置を任意の倍率に拡大縮小して表示することも可能であり、鋼板の欠陥と推定される部分を拡大表示して、詳細の確認を行うことも可能である。   In addition, the display image can be displayed at an arbitrary magnification and reduced at an arbitrary magnification, and it is also possible to enlarge and display a portion estimated to be a defect of the steel sheet to confirm details. .

本実施形態では、検査位置に設置された画像表示装置5での画像データの表示は、撮像済鋼板が検査位置に到達した時点で開始し、鋼板の搬送速度に同期して画像の表示を行っているが、画像の表示自体は、鋼板搬送とは非同期に、任意のタイミングで表示することも可能である。   In this embodiment, the display of image data on the image display device 5 installed at the inspection position starts when the imaged steel plate reaches the inspection position, and displays an image in synchronization with the conveyance speed of the steel plate. However, the image display itself can also be displayed at an arbitrary timing asynchronously with the steel plate conveyance.

画像記録装置10を設置したことにより、撮像済鋼板画像の保存を実施し、撮像済、搬送済鋼板の画像を再表示し、再検査、確認を実施することも可能である。また、異常・欠陥部検出時に画像表示装置への異常・欠陥部の表示を実施しているが、当該部分が目視検査位置に到達した時点で、鋼板搬送の減速、停止を行い、検査員による目視確認を行うようにする事も可能である。さらに、異常・欠陥部検出時点で、合否判定、保留処理を実施し、鋼板搬送を終了し、保留処理された鋼板に関して、画像記録装置内の画像データによる再検査を実施し、最終的な処置を決定する形の運用も可能である。   By installing the image recording apparatus 10, it is possible to store the captured steel sheet image, redisplay the captured and transported steel sheet image, and perform re-examination and confirmation. In addition, abnormalities / defects are displayed on the image display device when abnormalities / defects are detected, but when that part reaches the visual inspection position, the steel plate transport is decelerated and stopped, It is also possible to perform visual confirmation. Furthermore, at the time of abnormality / defect portion detection, pass / fail judgment, hold processing is performed, steel plate conveyance is terminated, re-inspection with image data in the image recording device is performed on the hold processed steel plate, and final treatment is performed. It is also possible to operate in the form of determining

本実施形態では、表裏面(上下面)に光源カメラを配置しているが、側面部分に設置し、鋼板エッジ部の撮像、表示を行うことも可能である。   In this embodiment, the light source cameras are arranged on the front and back surfaces (upper and lower surfaces). However, it is also possible to install the light source cameras on the side surfaces and to capture and display the steel plate edge portion.

1 光源
2a 光源(ランプ)
2b 光源(投光器)
3 撮像装置(カラーラインCCDカメラ)
4 信号処理装置
5 画像表示装置
6 鋼板搬送ライン
7 搬送ロール
8 鋼板
9 PLG
10 画像処理部
11 判定処理部
12 画像記録装置
1 Light source 2a Light source (lamp)
2b Light source (sender)
3 Imaging device (color line CCD camera)
4 Signal Processing Device 5 Image Display Device 6 Steel Plate Transport Line 7 Transport Roll 8 Steel Plate 9 PLG
DESCRIPTION OF SYMBOLS 10 Image processing part 11 Determination processing part 12 Image recording apparatus

Claims (4)

光を照射した鋼板表面をカラーカメラにより撮像し、
撮像したカラー画像のR/G/B各成分及びモノクロの平均輝度、最大輝度、最小輝度、輝度の分散の値を算出し、
算出した値を所定の設定値と比較して、鋼板表面の欠陥の有無および/または程度を判定、あるいは欠陥が存在する部位を推定する性状評価を鋼板表面全体で行った後に、
異常・欠陥部が存在すると判断される場合、前記鋼板表面の画像を長手方向および幅方向に分割し、該分割された各領域のうち、長手方向を分割した領域の輝度分布評価を行い異常・欠陥部が存在する領域を判断したのち幅方向を分割した領域の輝度分布評価を行い異常・欠陥部が存在する領域を判断し、
該異常・欠陥部が存在すると判断された前記長手方向を分割した領域と前記幅方向を分割した領域の重なる領域を異常・欠陥部が存在する領域とし、
該領域においてさらに小さな領域に、長手方向および幅方向に分割し、該分割された各領域の輝度分布評価を行い、この繰り返し処理によって表面性状の判定、凹凸部、付着物、色調の偏りの存在の有無の判断情報を含む異常・欠陥の位置を推定することを特徴とする鋼板表面欠陥検査方法。
The surface of the steel sheet irradiated with light is imaged with a color camera,
Calculated R / G / B components and monochrome average luminance of the captured color image, the maximum brightness, minimum brightness, the distributed value of intensity,
After comparing the calculated value with a predetermined set value to determine the presence and / or extent of defects on the steel sheet surface, or to estimate the site where the defects are present on the entire steel sheet surface,
When it is determined that there is an abnormality / defect, the image of the steel sheet surface is divided in the longitudinal direction and the width direction, and among the divided regions, the luminance distribution is evaluated in the region divided in the longitudinal direction. After determining the area where the defect exists, evaluate the luminance distribution of the area divided in the width direction to determine the area where the abnormality / defect exists,
A region where the region divided in the longitudinal direction and the region divided in the width direction, which is determined to have the abnormality / defect portion, is defined as a region where the abnormality / defect portion exists,
The area is divided into smaller areas in the longitudinal direction and the width direction, and the luminance distribution of each divided area is evaluated. By repeating this process, surface properties are judged, uneven parts, deposits, and color tone are present. A method for inspecting a surface defect of a steel sheet, wherein the position of an abnormality / defect including information on whether or not there is a defect is estimated.
請求項1に記載の鋼板表面欠陥検査方法において、
前記設定値を、
前記算出した各値から鋼板の表面性状を評価し、評価結果に基づいて設定することを特徴とする鋼板表面欠陥検査方法。
In the steel sheet surface defect inspection method according to claim 1,
The set value is
A steel sheet surface defect inspection method, wherein the surface properties of a steel sheet are evaluated from the calculated values and set based on the evaluation result.
請求項1または2に記載の鋼板表面欠陥検査方法において、
複数の領域に分割するにあたっては、
予め定めた分割限度まで領域を分割した後、分割領域ごとに表面性状を評価し、表面性状が同等な隣接する分割領域を再統合することにより、鋼板の表面性状分布に対応した領域分割を行うことを特徴とする鋼板表面欠陥検査方法。
In the steel sheet surface defect inspection method according to claim 1 or 2,
When dividing into multiple areas,
After dividing the area up to a predetermined division limit, the surface texture is evaluated for each divided area, and the area division corresponding to the surface texture distribution of the steel sheet is performed by reintegrating adjacent divided areas having the same surface texture. A steel sheet surface defect inspection method characterized by the above.
鋼板の表面に光を照射する光源と、
該光源により照射された鋼板表面のカラー画像を撮像するカラーカメラと、
撮像したカラー画像のR/G/B各成分及びモノクロの平均輝度、最大輝度、最小輝度、輝度の分散の値を算出する画像処理装置と、
算出した値を所定の設定値と比較して、鋼板表面の欠陥の有無および/または程度を判定、あるいは欠陥が存在する部位を推定する信号処理装置と、
を具備する鋼板表面欠陥検査装置であって、
前記信号処理装置は、
前記鋼板表面全体の性状評価を行った後に、
異常・欠陥部が存在すると判断される場合、前記鋼板表面の画像を長手方向および幅方向に分割し、該分割された各領域のうち、長手方向を分割した領域の輝度分布評価を行い異常・欠陥部が存在する領域を判断したのち幅方向を分割した領域の輝度分布評価を行い異常・欠陥部が存在する領域を判断し、
該異常・欠陥部が存在すると判断された前記長手方向を分割した領域と前記幅方向を分割した領域の重なる領域を異常・欠陥部が存在する領域とし、
該領域においてさらに小さな領域に、長手方向および幅方向に分割し、該分割された各領域の輝度分布評価を行い、この繰り返し処理によって表面性状の判定、凹凸部、付着物、色調の偏りの存在の有無の判断情報を含む異常・欠陥の位置を推定する処理を行うことを特徴とする鋼板表面欠陥検査装置。
A light source for irradiating light on the surface of the steel sheet;
A color camera that captures a color image of the steel sheet surface irradiated by the light source;
An image processing apparatus for calculating R / G / B components and monochrome average luminance of the captured color image, the maximum brightness, minimum brightness, the distributed value of intensity,
A signal processing device that compares the calculated value with a predetermined set value to determine the presence and / or extent of defects on the surface of the steel sheet, or to estimate a site where defects exist;
A steel sheet surface defect inspection apparatus comprising:
The signal processing device includes:
After performing the property evaluation of the entire steel sheet surface,
When it is determined that there is an abnormality / defect, the image of the steel sheet surface is divided in the longitudinal direction and the width direction, and among the divided regions, the luminance distribution is evaluated in the region divided in the longitudinal direction. After determining the area where the defect exists, evaluate the luminance distribution of the area divided in the width direction to determine the area where the abnormality / defect exists,
A region where the region divided in the longitudinal direction and the region divided in the width direction, which is determined to have the abnormality / defect portion, is defined as a region where the abnormality / defect portion exists,
The area is divided into smaller areas in the longitudinal direction and the width direction, and the luminance distribution of each divided area is evaluated. By repeating this process, surface properties are judged, uneven parts, deposits, and color tone are present. A steel sheet surface defect inspection apparatus characterized by performing a process of estimating a position of an abnormality / defect including information on whether or not there is a defect.
JP2010088487A 2009-04-15 2010-04-07 Steel plate surface defect inspection method and apparatus Expired - Fee Related JP5659540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010088487A JP5659540B2 (en) 2009-04-15 2010-04-07 Steel plate surface defect inspection method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009098699 2009-04-15
JP2009098699 2009-04-15
JP2010088487A JP5659540B2 (en) 2009-04-15 2010-04-07 Steel plate surface defect inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2010266430A JP2010266430A (en) 2010-11-25
JP5659540B2 true JP5659540B2 (en) 2015-01-28

Family

ID=43363516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010088487A Expired - Fee Related JP5659540B2 (en) 2009-04-15 2010-04-07 Steel plate surface defect inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP5659540B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973909A (en) * 2015-03-10 2016-09-28 欧姆龙株式会社 Sheet inspection device
EP4443143A4 (en) * 2022-03-03 2025-03-12 Jfe Steel Corp Surface testing method for metallic material, surface testing device for metallic material and metallic material

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849397B2 (en) * 2011-01-31 2016-01-27 Jfeスチール株式会社 Surface defect detection device and surface defect detection method
CN102621147A (en) * 2012-03-09 2012-08-01 武汉钢铁工程技术集团有限责任公司 Steel plate surface color difference defect detecting device
JP5673621B2 (en) * 2012-07-18 2015-02-18 オムロン株式会社 Defect inspection method and defect inspection apparatus
JP6035124B2 (en) * 2012-11-28 2016-11-30 株式会社メック Defect inspection apparatus and defect inspection method
WO2014136276A1 (en) * 2013-03-08 2014-09-12 株式会社島津製作所 Device for setting region of interest for analysis
JP5889426B1 (en) * 2014-04-14 2016-03-22 株式会社東芝 Web inspection device, web inspection method, web inspection program
JP6496497B2 (en) * 2014-06-18 2019-04-03 株式会社大林組 Reinforcement inspection system, reinforcement inspection program, and reinforcement inspection method
JP6146389B2 (en) * 2014-10-01 2017-06-14 Jfeスチール株式会社 Steel surface inspection apparatus and method
JP6320315B2 (en) * 2015-02-06 2018-05-09 三菱電機株式会社 Mobile imaging device
KR101904241B1 (en) * 2016-06-21 2018-11-13 주식회사 에이디이 Electrode Tip Inspection Method and Apparatus for Spot Welding Machine
JP6627689B2 (en) * 2016-08-17 2020-01-08 Jfeスチール株式会社 Metal strip surface inspection method
JP6683088B2 (en) * 2016-09-23 2020-04-15 日本製鉄株式会社 Surface texture inspection device, surface texture inspection method and program
JP6883969B2 (en) * 2016-10-07 2021-06-09 トピー工業株式会社 Defect detection system for rolled materials
JP7039299B2 (en) * 2017-03-03 2022-03-22 株式会社神戸製鋼所 Residual grain boundary oxide layer inspection method and residual grain boundary oxide layer inspection device
JP6387477B1 (en) * 2017-06-23 2018-09-05 株式会社Rist Inspection device, inspection method, and inspection program
KR102031427B1 (en) * 2017-12-07 2019-10-11 주식회사 포스코 Apparatus for measuring roughness with variable width
JP7211265B2 (en) * 2019-05-22 2023-01-24 日本製鉄株式会社 Identification model generation device, identification model generation method, identification model generation program, steel flaw determination device, steel flaw determination method, and steel flaw determination program
JP7584268B2 (en) 2020-10-06 2024-11-15 三菱電機株式会社 Appearance inspection support device, appearance inspection support method, and appearance inspection support program
WO2023276101A1 (en) * 2021-07-01 2023-01-05 Primetals Technologies Japan 株式会社 Abnormality detection device and abnormality detection method
WO2023276102A1 (en) * 2021-07-01 2023-01-05 Primetals Technologies Japan 株式会社 Abnormality detection device and abnormality detection method
JP7620985B2 (en) 2022-06-17 2025-01-24 株式会社ホニック How to detect defects in cardboard sheets
CN118212235B (en) * 2024-05-21 2024-08-02 山东第一医科大学附属省立医院(山东省立医院) Capsule endoscope image screening method and system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101130A (en) * 1994-09-29 1996-04-16 Fuji Xerox Co Ltd Surface flaw inspecting device
JPH08145904A (en) * 1994-11-15 1996-06-07 Toshiba Eng Co Ltd Inspection equipment of bright defect/dark defect
JPH08189905A (en) * 1995-01-10 1996-07-23 Nippon Steel Corp Flaw inspection device
JP2001056297A (en) * 1999-08-17 2001-02-27 Electro Techno Kk Surface inspection method and device therefor
JP2002083303A (en) * 2000-07-04 2002-03-22 Nippon Sheet Glass Co Ltd Image processing apparatus and image processing method
JP4094399B2 (en) * 2002-10-16 2008-06-04 新日本製鐵株式会社 Steel plate wrinkle inspection method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973909A (en) * 2015-03-10 2016-09-28 欧姆龙株式会社 Sheet inspection device
CN105973909B (en) * 2015-03-10 2019-02-22 欧姆龙株式会社 Sheet material check device
EP4443143A4 (en) * 2022-03-03 2025-03-12 Jfe Steel Corp Surface testing method for metallic material, surface testing device for metallic material and metallic material

Also Published As

Publication number Publication date
JP2010266430A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5659540B2 (en) Steel plate surface defect inspection method and apparatus
US7435986B2 (en) System and method for detecting repeating defects in a light-management film
WO2017168780A1 (en) Device and method for inspecting surface defect in steel plate
JP5888035B2 (en) Method and apparatus for inspecting surface defects of cylindrical body or cylindrical body material
JP5842373B2 (en) Surface defect detection method and surface defect detection apparatus
JP2012078144A (en) Surface defect inspection device for transparent body sheet-like material
JP4739044B2 (en) Appearance inspection device
JP2017146302A (en) Surface defect inspection device and surface defect inspection method
WO2016208622A1 (en) Surface defect detection apparatus and surface defect detection method
JP2012002792A (en) Transparent film inspection device and defect detection method
JP2008025990A (en) Method and apparatus for detecting surface flaw of steel strip
JP2008275424A (en) Surface inspection device
JP2015064301A (en) Surface defect inspection device and surface defect inspection method
JP2011158328A (en) Oxide coating film adhesion strength evaluation method and its evaluation device of directional electromagnetic steel plate
JP2012037425A (en) Method for inspecting polycrystal silicon wafer and device thereof
JP6387909B2 (en) Surface defect detection method, surface defect detection apparatus, and steel material manufacturing method
KR20150084207A (en) Inspecting method for a winding defect of film
WO2018168510A1 (en) Cylindrical body surface inspection device and cylindrical body surface inspection method
JP2017207288A (en) Surface inspection device-purpose calibration plate and surface inspection device calibration method
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
WO2015159352A1 (en) Web inspection device, web inspection method, and web inspection program
JP5786631B2 (en) Surface defect inspection equipment
WO2023047866A1 (en) Sheet-like material unevenness measuring device, and sheet-like material unevenness measuring method
JP2009162579A (en) Quality evaluation device for paper cut surface and quality evaluation method using the same
JP2015200544A (en) Surface irregularity inspection device and surface irregularity inspection method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5659540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees