JP5658067B2 - Ceramic molded body, ceramic structure, and method for manufacturing ceramic structure - Google Patents
Ceramic molded body, ceramic structure, and method for manufacturing ceramic structure Download PDFInfo
- Publication number
- JP5658067B2 JP5658067B2 JP2011067616A JP2011067616A JP5658067B2 JP 5658067 B2 JP5658067 B2 JP 5658067B2 JP 2011067616 A JP2011067616 A JP 2011067616A JP 2011067616 A JP2011067616 A JP 2011067616A JP 5658067 B2 JP5658067 B2 JP 5658067B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- molded body
- ceramic molded
- electrolyte
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
Description
本発明は、セラミックス構造体の製造工程の途中で得られるセラミックス成形体に関し、より詳しくは有機バインダーや無機バインダーを多量に含有させることなく強度を向上させたセラミックス成形体に関する。 The present invention relates to a ceramic molded body obtained during the manufacturing process of a ceramic structure, and more particularly to a ceramic molded body having improved strength without containing a large amount of an organic binder or an inorganic binder.
通常、セラミックスからなる各種構造体(セラミックス構造体)は、有機バインダーが添加されたセラミックス形成材料に水を加えて混練して得た坏土を所定形状のセラミックス成形体に成形した後、それを乾燥してセラミックス乾燥体とし、このセラミックス乾燥体を脱脂して有機バインダーを除去してから焼成することによって製造される(例えば、特許文献1参照)。このようなセラミックス構造体の製造工程の途中で得られるセラミックス成形体は、白加工等の取り扱い時に、端部が欠ける等の不良が生じにくいよう、その強度をなるべく高くすることが望まれる。 In general, various structures made of ceramics (ceramic structures) are prepared by molding a kneaded clay obtained by adding water to a ceramic-forming material to which an organic binder has been added and kneading it into a ceramic molded body having a predetermined shape. It is produced by drying to make a ceramic dried body, degreasing the ceramic dried body to remove the organic binder, and then firing (see, for example, Patent Document 1). It is desired that the ceramic molded body obtained in the course of the manufacturing process of such a ceramic structure has a strength as high as possible so that defects such as chipping of the end portion are difficult to occur during handling such as white processing.
一般に、セラミックス形成材料に添加する有機バインダーの量を増加させれば、セラミックス成形体の強度は向上する。しかしながら、有機バインダーの添加量を増加させると、脱脂時や焼成時に有機バインダーが燃焼することにより生じるCO2や有害ガスの発生量も増加し、環境汚染、地球温暖化といった環境面での問題が生じる。また、有機バインダーの量を増加させると、脱脂による有機バインダー除去後の気孔率が増大するため、いわゆる脱脂切れが生じたり、最終的に得られるセラミックス構造体の機械的強度が低下したりするという問題もある。更に、大型のセラミックス構造体の製造する場合には、焼成時に表面近傍部分と内部との温度差が大きくなるため、多量の有機バインダーを含んでいると、熱応力によりクラック等の欠陥が発生し、構造体としての機械的強度が低下するだけでなく、歩留まりが大幅に低下するという問題もある。 Generally, if the amount of the organic binder added to the ceramic forming material is increased, the strength of the ceramic molded body is improved. However, if the amount of organic binder added is increased, the amount of CO 2 and harmful gases generated by burning the organic binder during degreasing and firing also increases, resulting in environmental problems such as environmental pollution and global warming. Arise. Further, when the amount of the organic binder is increased, the porosity after removing the organic binder by degreasing increases, so that so-called degreasing occurs or the mechanical strength of the finally obtained ceramic structure decreases. There is also a problem. Furthermore, when manufacturing large ceramic structures, the temperature difference between the vicinity of the surface and the interior increases during firing, so if a large amount of organic binder is included, defects such as cracks occur due to thermal stress. However, not only the mechanical strength of the structure is lowered, but also the yield is greatly reduced.
また、有機バインダーに代えて、あるいは有機バインダーと共に、無機バインダーをセラミックス形成材料に添加することによっても、セラミックス成形体の強度を向上させることができる(例えば、特許文献2参照)。しかしながら、無機バインダーは焼成後もセラミックス構造体中に残存するため、無機バインダーを多量に添加するとセラミックス構造体の組成が変化し、それに伴ってセラミックス構造体の製品特性が悪化する(例えば、熱膨張係数が増大する)という問題がある。更に、無機バインダーを多量に添加すると製造コストが上昇するという問題もある。 Moreover, it can replace with an organic binder or the intensity | strength of a ceramic molded object can be improved also by adding an inorganic binder to a ceramic formation material with an organic binder (for example, refer patent document 2). However, since the inorganic binder remains in the ceramic structure even after firing, the composition of the ceramic structure changes when a large amount of inorganic binder is added, and the product characteristics of the ceramic structure deteriorate accordingly (for example, thermal expansion) The coefficient increases). Furthermore, there is a problem that the production cost increases when a large amount of inorganic binder is added.
なお、坏土の調製時に、セラミックス形成材料に加える水の比率(水比)を低下させると、セラミックス成形体の強度が向上するが、坏土の硬度が上昇するため、混練や成形に用いる設備の負荷が大きくなり、設備の大型化による設備費の増大を招く。また、混練や成形の際の発熱も大きくなるため、冷却の強化が必要となり、エネルギー消費量も増大する。 When preparing the clay, reducing the ratio of water added to the ceramic forming material (water ratio) improves the strength of the ceramic molded body, but increases the hardness of the clay, so the equipment used for kneading and molding This increases the cost of equipment and increases equipment costs due to the increase in equipment size. In addition, since heat generation during kneading and molding increases, it is necessary to enhance cooling, and energy consumption increases.
本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、有機バインダーや無機バインダーを多量に含有させたり、水比を低下させたりすることなく強度を向上させたセラミックス成形体と、当該セラミックス成形体を用いて製造されたセラミックス構造体と、当該セラミックス成形体を用いたセラミックス構造体の製造方法を提供することにある。 The present invention has been made in view of such conventional circumstances, and the object of the present invention is to improve the strength without containing a large amount of organic binder or inorganic binder or lowering the water ratio. An object of the present invention is to provide a ceramic molded body, a ceramic structure manufactured using the ceramic molded body, and a method for manufacturing a ceramic structure using the ceramic molded body.
上記目的を達成するため、本発明によれば、以下のセラミックス成形体、セラミックス構造体及びセラミックス構造体の製造方法が提供される。 In order to achieve the above object, according to the present invention, the following ceramic molded body, ceramic structure, and method for producing the ceramic structure are provided.
[1] 有機バインダーが添加された、全体の20〜100質量%が疎水性原料からなるセラミックス形成材料に水を加えて混練して得た坏土を用いて成形したセラミックス成形体であって、前記有機バインダーの添加量が、前記セラミックス形成材料に対し外配で1〜10質量%であり、前記セラミックス成形体の表面の少なくとも一部に、電解質の溶解濃度が50%以上である電解質水溶液を塗布したものであり、前記電解質水溶液が、クエン酸イオン、酒石酸イオン及び酢酸イオンからなる群より選択される少なくとも1種の陰イオンと、アルカリ土類金属イオン(マグネシウムイオンを含む)、水素イオン及びアンモニウムイオンからなる群より選択される少なくとも1種の陽イオンとを含有するものであるセラミックス成形体。 [1] A ceramic molded body formed by using a kneaded material obtained by adding water and kneading water to a ceramic forming material in which 20 to 100% by mass of the whole is added with an organic binder and made of a hydrophobic raw material, An electrolyte aqueous solution in which the addition amount of the organic binder is 1 to 10% by mass with respect to the ceramic forming material, and an electrolyte solution concentration is 50% or more on at least a part of the surface of the ceramic molded body. all SANYO coated, the electrolyte solution is, citrate ions, (including magnesium ions) at least one anion selected from the group consisting of tartaric acid ions and acetic acid ions, alkaline earth metal ions, hydrogen ions and at least one der Ru ceramic body which contains a cation selected from the group consisting of ammonium ion.
[2] 前記疎水性原料の単位表面積当たりの水に対する浸漬熱が0.28J/m2以下である[1]に記載のセラミックス成形体。 [2] The ceramic molded body according to [1], wherein the immersion heat in water per unit surface area of the hydrophobic raw material is 0.28 J / m 2 or less.
[3] 前記セラミックス成形体の表面の一部にのみ前記電解質水溶液を塗布した[1]又は[2]に記載のセラミックス成形体。 [3] The ceramic molded body according to [1] or [2], in which the electrolyte aqueous solution is applied only to a part of the surface of the ceramic molded body.
[4] 前記電解質が、酢酸マグネシウム及びクエン酸からなる群より選択される少なくとも1種の電解質である[1]〜[3]の何れかに記載のセラミックス成形体。 [ 4 ] The ceramic molded body according to any one of [1] to [ 3 ], wherein the electrolyte is at least one electrolyte selected from the group consisting of magnesium acetate and citric acid.
[5] 押出成形により成形したものである[1]〜[4]の何れかに記載のセラミックス成形体。 [ 5 ] The ceramic molded body according to any one of [1] to [ 4 ], which is formed by extrusion molding.
[6] ハニカム形状に成形したものである[1]〜[5]の何れかに記載のセラミックス成形体。 [ 6 ] The ceramic molded body according to any one of [1] to [ 5 ], which is formed into a honeycomb shape.
[7] [1]〜[6]の何れかに記載のセラミックス成形体を乾燥させ、脱脂した後、焼成して得られたセラミックス構造体。 [ 7 ] A ceramic structure obtained by drying and degreasing the ceramic molded body according to any one of [1] to [ 6 ], followed by firing.
[8] [1]〜[6]の何れかに記載のセラミックス成形体を乾燥させ、脱脂した後、焼成するセラミックス構造体の製造方法。 [ 8 ] A method for producing a ceramic structure, wherein the ceramic formed body according to any one of [1] to [ 6 ] is dried, degreased, and then fired.
本発明のセラミックス成形体は、その表面の少なくとも一部に、所定溶解濃度の電解質水溶液を塗布したものであり、塗布した電解質水溶液中の電解質がセラミックス成形体中に含まれる有機バインダーから水分を奪って硬化させるため、高い強度を発揮する。よって、セラミックス成形体の強度を向上させるために、有機バインダーや無機バインダーを多量に含有させる必要が無く、その結果、それらバインダーの多量添加に伴う諸問題、具体的には、CO2や有害ガスの発生量増加による環境汚染や地球温暖化、気孔率増大による脱脂切れや機械的強度の低下、焼成時の熱応力増大に伴う欠陥発生と歩留まりの低下、セラミックス構造体の組成変化による製品特性の悪化、製造コストの上昇といった問題を解消できる。また、セラミックス成形体の強度を向上させるために、坏土の調製時にセラミックス形成材料に加える水の比率(水比)を低下させる必要も無く、その結果、坏土の硬度上昇に伴う諸問題、具体的には、混練や成形に用いる設備の負荷や発熱の増大によって生じる設備費とエネルギー消費量の増大の問題を解消できる。更に、本発明のセラミックス成形体を乾燥して得られるセラミックス乾燥体も、表面に電解質の膜が形成されるとともに、電解質が内部に浸透してバインダー的な役割を果たすことにより、高い強度を発揮するので、その取り扱いが容易となる。なお、セラミックス成形体の表面に塗布した電解質水溶液の乾燥は、セラミックス成形体本体の乾燥と同時に行うことができるので、本発明のセラミックス成形体を用いてセラミックス構造体を製造するに際し、乾燥工程が増加することはない。 The ceramic molded body of the present invention is obtained by applying an electrolyte aqueous solution having a predetermined dissolution concentration to at least a part of the surface thereof, and the electrolyte in the applied electrolyte aqueous solution deprives moisture from the organic binder contained in the ceramic molded body. High strength is exhibited. Therefore, it is not necessary to contain a large amount of an organic binder or an inorganic binder in order to improve the strength of the ceramic molded body. As a result, various problems associated with the addition of a large amount of these binders, specifically, CO 2 and harmful gases. Environmental pollution and global warming due to an increase in the generation amount of degreasing, degreasing due to increased porosity and a decrease in mechanical strength, generation of defects due to an increase in thermal stress during firing, a decrease in yield, and product characteristics due to a change in the composition of the ceramic structure Problems such as deterioration and increased manufacturing costs can be solved. In addition, in order to improve the strength of the ceramic molded body, it is not necessary to reduce the ratio (water ratio) of water added to the ceramic forming material during preparation of the clay, and as a result, various problems associated with the increase in hardness of the clay, Specifically, it is possible to solve the problem of an increase in equipment cost and energy consumption caused by an increase in load and heat generation of equipment used for kneading and molding. Furthermore, the ceramic dried body obtained by drying the ceramic molded body of the present invention also exhibits high strength because an electrolyte film is formed on the surface and the electrolyte permeates inside and plays a role of a binder. Therefore, the handling becomes easy. In addition, since drying of the aqueous electrolyte solution applied to the surface of the ceramic molded body can be performed simultaneously with the drying of the ceramic molded body, when the ceramic structure is manufactured using the ceramic molded body of the present invention, a drying process is performed. There is no increase.
また、本発明のセラミックス構造体は、本発明のセラミックス成形体を用いて製造されたものであるので、その製造に当たって、本発明のセラミックス成形体の前記効果を享受することができる。 Moreover, since the ceramic structure of the present invention is manufactured using the ceramic molded body of the present invention, the above-described effects of the ceramic molded body of the present invention can be enjoyed in the manufacture.
更に、本発明のセラミックス構造体の製造方法は、本発明のセラミックス成形体を用いてセラミックス構造体を製造するものであるので、その実施に当たって、本発明のセラミックス成形体の前記効果を享受することができる。 Furthermore, since the method for producing a ceramic structure of the present invention is to produce a ceramic structure using the ceramic molded body of the present invention, the above-described effects of the ceramic molded body of the present invention can be enjoyed in its implementation. Can do.
以下、本発明を具体的な実施形態に基づき説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。 Hereinafter, the present invention will be described based on specific embodiments, but the present invention should not be construed as being limited thereto, and based on the knowledge of those skilled in the art without departing from the scope of the present invention. Various changes, modifications, and improvements can be added.
前記のとおり、本発明のセラミックス成形体は、有機バインダーが添加された、全体の20〜100質量%が疎水性原料からなるセラミックス形成材料に水を加えて混練して得た坏土を用いて成形したセラミックス成形体であって、前記有機バインダーの添加量が、前記セラミックス形成材料に対し外配で1〜10質量%であり、前記セラミックス成形体の表面の少なくとも一部に、電解質の溶解濃度が50%以上である電解質水溶液を塗布したものであることを、その主要な特徴とする。 As described above, the ceramic molded body of the present invention uses a clay obtained by kneading water added to a ceramic forming material in which an organic binder is added and 20 to 100% by mass of the whole is made of a hydrophobic raw material. A molded ceramic molded body, wherein the amount of the organic binder added is 1 to 10% by mass with respect to the ceramic forming material, and at least part of the surface of the ceramic molded body has an electrolyte dissolution concentration Its main feature is that it is applied with an electrolyte aqueous solution having a ratio of 50% or more.
電解質水溶液を塗布する前のセラミックス成形体は、一般的なセラミックス構造体の製造工程の途中で得られるものであり、従来公知の方法によって得ることができる。具体的には、まず、有機バインダーが添加された、全体の20〜100質量%が疎水性原料からなるセラミックス形成材料に水を加えて混練して、坏土を得る。 The ceramic molded body before the application of the aqueous electrolyte solution is obtained in the course of a general ceramic structure manufacturing process, and can be obtained by a conventionally known method. Specifically, first, water is added to and kneaded with a ceramic-forming material in which 20 to 100% by mass of the whole, to which an organic binder has been added, is made of a hydrophobic raw material, to obtain a clay.
坏土を得るために用いるセラミックス形成材料は、焼成することによって最終的に製造しようとするセラミックス構造体の主成分となるセラミックスの粉末である。なお、本発明において、セラミックス形成材料は、全体の20〜100質量%、好ましくは、全体の70〜100質量%が疎水性原料からなることを要する。ここで、本発明における「疎水性原料」とは、単位表面積当たりの水に対する浸漬熱が0.52J/m2以下であるようなセラミックス粉末を意味する。セラミックス粉末の単位表面積当たりの水に対する浸漬熱(単位:J/m2)は、例えば、東京理工社製のマルチマイクロカロリーメーターで測定した浸漬熱(単位:J/g)を、Micromeritics社製の流動式比表面積測定装置で測定したBET比表面積(単位:m2/g)で除することにより算出することができる。 The ceramic forming material used to obtain the clay is a ceramic powder that is a main component of the ceramic structure to be finally produced by firing. In the present invention, the ceramic forming material is required to be 20 to 100% by mass, preferably 70 to 100% by mass of the entire material, from a hydrophobic raw material. Here, the “hydrophobic raw material” in the present invention means a ceramic powder having a heat of immersion in water per unit surface area of 0.52 J / m 2 or less. The immersion heat (unit: J / m 2 ) of water per unit surface area of the ceramic powder is, for example, the immersion heat (unit: J / g) measured with a multi-micro calorimeter manufactured by Tokyo Riko Co., Ltd. manufactured by Micromeritics. It can be calculated by dividing by the BET specific surface area (unit: m 2 / g) measured with a flow-type specific surface area measuring device.
セラミックス形成材料のうち、疎水性原料としては、例えば、タルク、カオリン、シリカ、シリカゲルを挙げることができる。また、セラミックス形成材料のうち、疎水性原料以外の原料(親水性原料)としては、例えば、アルミナ、マグネシア、水酸化アルミニウムを挙げることができる。セラミックス形成材料として、例えば、タルク、カオリン、アルミナ、シリカ及びマグネシアの粉末からなるコージェライト形成原料(焼成によりコージェライトを形成する原料)を用いる場合には、疎水性原料であるタルク、カオリン及びシリカの粉末がコージェライト形成原料全体の20質量%以上を占めるようにする。 Among the ceramic forming materials, examples of the hydrophobic raw material include talc, kaolin, silica, and silica gel. In addition, among ceramic forming materials, examples of raw materials (hydrophilic raw materials) other than hydrophobic raw materials include alumina, magnesia, and aluminum hydroxide. For example, when a cordierite forming raw material (a raw material for forming cordierite by firing) made of talc, kaolin, alumina, silica and magnesia powder is used as the ceramic forming material, hydrophobic materials such as talc, kaolin and silica are used. To account for 20% by mass or more of the entire cordierite-forming raw material.
本発明において、疎水性原料には、単位表面積当たりの水に対する浸漬熱が0.28J/m2以下であるものを用いるのが好ましい。 In the present invention, it is preferable to use a hydrophobic raw material having a heat of immersion in water per unit surface area of 0.28 J / m 2 or less.
このようなセラミックス形成材料に添加する有機バインダーとしては、例えば、メチルセルロース、ヒドロキシプロポキシルメチルセルロース、ヒドロキシエチルセルロース、カルボキシルメチルセルロース、ポリビニルアルコール等が好適に使用できる。有機バインダーの添加量は、セラミックス形成材料に対し外配で1〜10質量%、好ましくは、1〜6質量%である。有機バインダーの添加量が、セラミックス形成材料に対し外配で1質量%未満では、坏土の可塑性、成形性、保形性等が十分に得られない。一方、有機バインダーの添加量が多くなると、前述したように、CO2や有害ガスの発生量増加による環境汚染や地球温暖化、気孔率増大による脱脂切れや機械的強度の低下、焼成時の熱応力増大に伴う欠陥発生と歩留まりの低下といった問題が発生するので、セラミックス形成材料に対し外配で10質量%を超えない添加量とする。本発明のセラミックス成形体は、電解質水溶液を塗布することによって、その強度を向上させるものであるので、セラミックス形成材料に対し外配で10質量%を超えるような多量の有機バインダーを添加しなくても、十分な強度が得られる。 As an organic binder added to such a ceramic forming material, for example, methyl cellulose, hydroxypropoxyl methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and the like can be suitably used. The addition amount of the organic binder is 1 to 10% by mass, preferably 1 to 6% by mass with respect to the ceramic forming material. If the addition amount of the organic binder is less than 1% by mass with respect to the ceramic-forming material, the plasticity, moldability, shape retention and the like of the clay cannot be obtained sufficiently. On the other hand, as the amount of organic binder added increases, as described above, environmental pollution and global warming due to an increase in the generation amount of CO 2 and harmful gases, degreasing due to increased porosity, a decrease in mechanical strength, and heat during firing. Since problems such as generation of defects and a decrease in yield occur due to an increase in stress, the additive amount is set not to exceed 10% by mass with respect to the ceramic forming material. Since the ceramic molded body of the present invention improves its strength by applying an electrolyte aqueous solution, it is not necessary to add a large amount of an organic binder exceeding 10% by mass with respect to the ceramic forming material. However, sufficient strength can be obtained.
なお、セラミックス形成材料には、有機バインダーとともに、必要に応じて、他の添加物、例えば、分散剤、造孔剤、可塑剤、焼結助剤、無機バインダー等を添加してもよい。 In addition to the organic binder, other additives such as a dispersant, a pore former, a plasticizer, a sintering aid, an inorganic binder, and the like may be added to the ceramic forming material as necessary.
分散剤としては、例えば、ソルビタン脂肪酸エステル、エチレングリコール、デキストリン、脂肪酸石鹸、又はポリアルコール等を挙げることができる。造孔材としては、例えば、グラファイト、小麦粉、澱粉、フェノール樹脂、ポリメタクリル酸メチル、ポリエチレン、ポリエチレンテレフタレート、未発泡樹脂、既発泡樹脂、シラスバルーン、フライアッシュバルーン等を挙げることができる。可塑剤としては、例えば、グリセリン誘導体等を挙げることができる。焼成助剤としては、例えば、イットリア(Y2O3)、カルシア(CaO)、マグネシア(MgO)、又はセリア(CeO)等を挙げることができる。なお、これら各添加物は、目的に応じて1種単独で又は2種以上組み合わせて用いることができる。 Examples of the dispersant include sorbitan fatty acid ester, ethylene glycol, dextrin, fatty acid soap, or polyalcohol. Examples of the pore former include graphite, wheat flour, starch, phenol resin, polymethyl methacrylate, polyethylene, polyethylene terephthalate, unfoamed resin, foamed resin, shirasu balloon, fly ash balloon, and the like. As a plasticizer, a glycerol derivative etc. can be mentioned, for example. Examples of the firing aid include yttria (Y 2 O 3 ), calcia (CaO), magnesia (MgO), and ceria (CeO). Each of these additives can be used alone or in combination of two or more depending on the purpose.
無機バインダーとしては、例えば、モンモリロナイト、パイロフィライト、スメクタイト、バーミキュライト、アタパルジャイト、ハイドロタルサイト等が好適に使用できる。セラミックス形成材料に無機バインダーを添加する場合、その添加量は、セラミックス形成材料に対し外配で1〜10質量%とすることが好ましく、1〜3質量%とすることがより好ましい。無機バインダーの添加量が、セラミックス形成材料に対し外配で1質量%未満では、添加効果はほとんど得られない。また、無機バインダーの添加量が多くなると、前述したように、最終的に得られるセラミックス構造体の組成変化による製品特性の悪化、製造コストの上昇といった問題が発生するので、セラミックス形成材料に対し外配で10質量%を超えない程度の添加量とすることが好ましい。本発明のセラミックス成形体は、電解質水溶液を塗布することによって、その強度を向上させるものであるので、セラミックス形成材料に対し外配で10質量%を超えるような多量の無機バインダーを添加しなくても、十分な強度が得られる。 As the inorganic binder, for example, montmorillonite, pyrophyllite, smectite, vermiculite, attapulgite, hydrotalcite and the like can be preferably used. When an inorganic binder is added to the ceramic forming material, the amount added is preferably 1 to 10% by mass and more preferably 1 to 3% by mass with respect to the ceramic forming material. If the addition amount of the inorganic binder is less than 1% by mass with respect to the ceramic forming material, the addition effect is hardly obtained. In addition, when the amount of the inorganic binder added is increased, as described above, problems such as deterioration in product characteristics and increase in manufacturing cost due to a change in composition of the finally obtained ceramic structure occur. It is preferable to make the addition amount not to exceed 10% by mass. Since the ceramic molded body of the present invention improves its strength by applying an electrolyte aqueous solution, it is not necessary to add a large amount of an inorganic binder exceeding 10% by mass with respect to the ceramic forming material. However, sufficient strength can be obtained.
有機バインダーが添加されたセラミックス形成材料の混練に際し、分散媒として加える水の量は、セラミックス形成材料の種類によって異なるため、一義的に決定することは困難であるが、例えば、セラミックス形成材料がコージェライト形成原料である場合には、セラミックス形成材料に対して、外配で10〜50質量%程度の水を加えることが好ましい。混練は、従来公知の混練機、例えば、シグマニーダ、バンバリーミキサ、スクリュー式の押出混練機等を用いて行うことができる。特に、真空減圧装置(例えば、真空ポンプ等)を備えた混練機(いわゆる真空土練機や二軸連続混練押出成形機等)を用いると、欠陥が少なく、成形性の良好な坏土を得ることができ好ましい。 When kneading a ceramic forming material to which an organic binder has been added, the amount of water added as a dispersion medium varies depending on the type of ceramic forming material, and is difficult to determine uniquely. In the case of a light forming raw material, it is preferable to add about 10 to 50% by mass of water externally to the ceramic forming material. The kneading can be performed using a conventionally known kneader, for example, a sigma kneader, a Banbury mixer, a screw type extrusion kneader or the like. In particular, when a kneader (such as a so-called vacuum kneader or a biaxial continuous kneading extrusion molding machine) equipped with a vacuum depressurization apparatus (for example, a vacuum pump) is used, a clay with few defects and good moldability is obtained. Can be preferable.
混練により得られた坏土は、所定形状のセラミックス成形体に成形される。セラミックス成形体の形状としては、特に制限はなく、例えば、シート形状、チューブ形状、レンコン形状、ハニカム形状等を挙げることができる。なお、ハニカム形状とは、2つの端面を有し、それら端面間を貫通する複数のセルが隔壁によって区画形成された形状であり、このようなハニカム形状のセラミックス成形体は、ディーゼルパティキュレートフィルター(DPF)等のフィルターや排ガス浄化用触媒の触媒担体等の製造に用いられる。 The clay obtained by kneading is formed into a ceramic molded body having a predetermined shape. The shape of the ceramic molded body is not particularly limited, and examples thereof include a sheet shape, a tube shape, a lotus shape, and a honeycomb shape. The honeycomb shape is a shape having two end faces and a plurality of cells penetrating between the end faces defined by partition walls. Such a honeycomb-shaped ceramic molded body includes a diesel particulate filter ( It is used for manufacturing filters such as DPF) and catalyst carriers for exhaust gas purification catalysts.
セラミックス成形体を成形する方法についても、特に制限はなく、ろくろ成形、押出成形、射出成形、プレス成形、シート成形等の従来公知の成形法を用いることができる。例えば、ハニカム形状のセラミックス成形体を成形する場合には、坏土を、所望のセル形状、隔壁厚さ、セル密度を有する口金を用いて押出成形する方法が好適である。 The method for forming the ceramic molded body is not particularly limited, and conventionally known molding methods such as potter's wheel molding, extrusion molding, injection molding, press molding, and sheet molding can be used. For example, when a honeycomb-shaped ceramic molded body is formed, a method of extruding the clay using a die having a desired cell shape, partition wall thickness, and cell density is suitable.
本発明のセラミックス成形体は、このようにして得られたセラミックス成形体の表面の少なくとも一部に、電解質の溶解濃度が50%以上、好ましくは70%以上、より好ましくは90%以上である電解質水溶液を塗布したものである。なお、ここで言う「溶解濃度」とは、20℃における飽和溶解度に対する電解質水溶液の濃度の割合を意味し、下式により算出される。
溶解濃度(%)=(電解質の質量/電解質水溶液の質量)/飽和溶解度
The ceramic molded body of the present invention is an electrolyte in which the electrolyte concentration is 50% or higher, preferably 70% or higher, more preferably 90% or higher, on at least a part of the surface of the ceramic molded body thus obtained. An aqueous solution is applied. The “dissolution concentration” mentioned here means the ratio of the concentration of the aqueous electrolyte solution to the saturation solubility at 20 ° C., and is calculated by the following equation.
Dissolution concentration (%) = (mass of electrolyte / mass of aqueous electrolyte solution) / saturated solubility
電解質には、その周囲に水分を引きつける性質があるため、セラミックス成形体の表面に、電解質の溶解濃度が50%以上である電解質水溶液を塗布すると、塗布された電解質水溶液中の電解質が、セラミックス成形体中に含まれる有機バインダーから水分を奪う。そして、電解質に水分を奪われたセラミックス成形体中の有機バインダーは、瞬時にゲル化(離水)する。この有機バインダーのゲル化により、セラミックス成形体は硬化し、その強度が向上する。なお、有機バインダーから奪われた水分は、セラミックス成形体の表面から水滴となって外部に排出される。 Since the electrolyte has a property of attracting moisture around the electrolyte, when an electrolyte aqueous solution having an electrolyte dissolution concentration of 50% or more is applied to the surface of the ceramic molded body, the electrolyte in the applied electrolyte aqueous solution becomes a ceramic molded product. Removes moisture from organic binders in the body. And the organic binder in the ceramic molded body from which the water | moisture content was deprived by electrolyte gelates (water separation) instantly. Due to the gelation of the organic binder, the ceramic molded body is cured and its strength is improved. In addition, the water | moisture content deprived from the organic binder becomes a water droplet from the surface of a ceramic molded body, and is discharged | emitted outside.
このように本発明のセラミックス成形体は、電解質水溶液の塗布によって強度の向上が図られているので、有機バインダーや無機バインダーを多量に含有させなくても高い強度を発現し、その結果、それらバインダーの多量添加に伴う諸問題、具体的には、CO2や有害ガスの発生量増加による環境汚染や地球温暖化、気孔率増大による脱脂切れや機械的強度の低下、焼成時の熱応力増大に伴う欠陥発生と歩留まりの低下、セラミックス構造体の組成変化による製品特性の悪化、製造コストの上昇といった問題を解消できる。 As described above, since the strength of the ceramic molded body of the present invention is improved by the application of the aqueous electrolyte solution, high strength is exhibited without containing a large amount of organic binder or inorganic binder. Problems associated with the addition of a large amount of carbon dioxide, specifically, environmental pollution and global warming due to an increase in the amount of CO 2 and harmful gases generated, degreasing due to increased porosity, reduced mechanical strength, and increased thermal stress during firing It is possible to solve the problems such as generation of defects and a decrease in yield, deterioration of product characteristics due to a change in composition of the ceramic structure, and an increase in manufacturing cost.
また、本発明のセラミックス成形体は、電解質水溶液の塗布によって強度の向上が図られているので、坏土の調製時にセラミックス形成材料に加える水の比率(水比)を低下させなくても高い強度を発現し、その結果、坏土の硬度上昇に伴う諸問題、具体的には、坏土の混練や成形に用いる設備の負荷や発熱の増大によって生じる設備費とエネルギー消費量の増大の問題を解消できる。更に、本発明のセラミックス成形体を乾燥して得られるセラミックス乾燥体も、表面に電解質の膜が形成されるとともに、電解質が内部に浸透してバインダー的な役割を果たすことにより、高い強度を発揮するので、その取り扱いが容易となる。 In addition, since the strength of the ceramic molded body of the present invention is improved by applying an aqueous electrolyte solution, the strength is high without reducing the ratio of water added to the ceramic forming material (water ratio) during preparation of the clay. As a result, various problems associated with the increase in the hardness of the clay, specifically, the problem of the increase in equipment cost and energy consumption caused by the increase in the load and heat generation of the equipment used for kneading and forming the clay. Can be resolved. Furthermore, the ceramic dried body obtained by drying the ceramic molded body of the present invention also exhibits high strength because an electrolyte film is formed on the surface and the electrolyte permeates inside and plays a role of a binder. Therefore, the handling becomes easy.
なお、電解質の溶解濃度が50%未満の電解質水溶液を用いた場合には、電解質の水分を引きつける力が不十分となるため、セラミックス成形体中に含まれる有機バインダーから水分を奪うことができず、逆に、電解質水溶液の水分がセラミックス成形体中に含まれる有機バインダーに吸水されて、セラミックス成形体が軟化し、変形が生じることがある。 In addition, when an electrolyte aqueous solution having an electrolyte dissolution concentration of less than 50% is used, the power to attract the electrolyte becomes insufficient, so that moisture cannot be taken away from the organic binder contained in the ceramic molded body. On the contrary, the water in the electrolyte aqueous solution may be absorbed by the organic binder contained in the ceramic molded body, and the ceramic molded body may be softened and deformed.
また、前述のとおり、本発明においては、全体の20〜100質量%、好ましくは、70〜100質量%が疎水性原料からなるセラミックス形成材料を用いている。疎水性原料の含有量が、セラミックス形成材料全体の20質量%未満となる、すなわち、親水性原料の含有量が、セラミックス形成材料全体の80質量%を超えると、電解質によって有機バインダーから奪われた水分が外部に排出されずに、親水性原料の周囲に移動してしまい、セラミックス成形体が軟化し、変形が生じることがある。 Further, as described above, in the present invention, the ceramic forming material made of a hydrophobic raw material is used in an amount of 20 to 100% by mass, preferably 70 to 100% by mass. When the content of the hydrophobic raw material is less than 20% by mass of the entire ceramic forming material, that is, when the content of the hydrophilic raw material exceeds 80% by mass of the entire ceramic forming material, the electrolyte is deprived of the organic binder. In some cases, moisture is not discharged to the outside but moves around the hydrophilic raw material, and the ceramic formed body is softened and deformed.
本発明のセラミックス成形体は、その表面全体に電解質水溶液が塗布したものでもよいし、例えば、他の部位より肉薄で強度が劣る部分や、白加工が施される特定部分の強度を向上させるために、その表面の一部にのみ電解質水溶液が塗布したものでもよい。このように、電解質水溶液の塗布部分を強度向上が必要な部分に限定することにより、電解質の使用量を低減して、製造コストを抑えることができる。 The ceramic molded body of the present invention may be one in which an electrolyte aqueous solution is applied to the entire surface, for example, in order to improve the strength of a portion that is thinner and inferior in strength than other portions or a specific portion that is subjected to white processing. In addition, an aqueous electrolyte solution may be applied to only a part of the surface. In this way, by limiting the application part of the electrolyte aqueous solution to a part that requires strength improvement, the amount of electrolyte used can be reduced and the manufacturing cost can be suppressed.
なお、本発明のセラミックス成形体において、電解質水溶液に含まれる電解質の種類としては、クエン酸イオン、酒石酸イオン及び酢酸イオンからなる群より選択される少なくとも1種の陰イオンと、アルカリ土類金属イオン(マグネシウムイオンを含む)、水素イオン及びアンモニウムイオンからなる群より選択される少なくとも1種の陽イオンとが含有されていることが好ましい(電解質を、対になるイオンで示している)。電解質水溶液中に溶解させる電解質としては、例えば、クエン酸、酒石酸、酢酸、クエン酸マグネシウム、酒石酸マグネシウム、酢酸マグネシウム、クエン酸アンモニウム、酒石酸アンモニウム、酢酸アンモニウム等を挙げることができる(電解質を、物質名で示している)。これらの中でも、酢酸マグネシウム、クエン酸が特に好適に用いられる。また、電解質水溶液の塗布方法についても、特に制限はなく、例えば、スプレー塗布、刷毛塗り、電解質水溶液中へのセラミックス成形体の浸漬等の方法を用いることができる。また、電解質水溶液を塗布したセラミックス成形体は、その後のセラミックス構造体の製造工程において乾燥されるが、セラミックス成形体の表面に塗布した電解質水溶液の乾燥は、セラミックス成形体本体の乾燥と同時に行うことができるので、本発明のセラミックス成形体を用いてセラミックス構造体を製造するに際し、乾燥工程が増加することはない。 In the ceramic molded body of the present invention, the type of electrolyte contained in the aqueous electrolyte solution is at least one anion selected from the group consisting of citrate ions, tartrate ions and acetate ions, and alkaline earth metal ions. It is preferable that at least one cation selected from the group consisting of hydrogen ions and ammonium ions (including magnesium ions) is contained (the electrolyte is shown as a pair of ions). Examples of the electrolyte dissolved in the aqueous electrolyte solution include citric acid, tartaric acid, acetic acid, magnesium citrate, magnesium tartrate, magnesium acetate, ammonium citrate, ammonium tartrate, ammonium acetate and the like (the electrolyte is a substance name ). Among these, magnesium acetate and citric acid are particularly preferably used. Moreover, there is no restriction | limiting in particular also about the coating method of electrolyte aqueous solution, For example, methods, such as spray coating, brush coating, and immersion of the ceramic molded object in electrolyte aqueous solution, can be used. In addition, the ceramic molded body to which the aqueous electrolyte solution is applied is dried in the subsequent manufacturing process of the ceramic structure, but the aqueous electrolyte solution applied to the surface of the ceramic molded body should be dried simultaneously with the drying of the ceramic molded body itself. Therefore, when manufacturing the ceramic structure using the ceramic molded body of the present invention, the drying process does not increase.
次に、本発明のセラミックス構造体について説明する。本発明のセラミックス構造体は、本発明のセラミックス成形体を乾燥させ、脱脂した後、焼成して得られたものである。ここで、「脱脂」とは、乾燥後のセラミックス成形体(セラミックス乾燥体)に含まれる有機バインダー等の有機物を燃焼させて除去する操作を意味する。 Next, the ceramic structure of the present invention will be described. The ceramic structure of the present invention is obtained by drying, degreasing, and firing the ceramic molded body of the present invention. Here, “degreasing” means an operation of burning and removing organic substances such as an organic binder contained in a dried ceramic molded body (ceramic dried body).
セラミックス成形体の乾燥の方法には特に制限はなく、例えば、熱風乾燥、マイクロ波乾燥、誘電乾燥、減圧乾燥、真空乾燥、凍結乾燥等の従来公知の乾燥法を用いることができる。中でも、セラミックス成形体全体を迅速かつ均一に乾燥させることができる点で、熱風乾燥と、マイクロ波乾燥又は誘電乾燥とを組み合わせた乾燥方法を用いることが好ましい。 There is no particular limitation on the method for drying the ceramic molded body, and conventionally known drying methods such as hot air drying, microwave drying, dielectric drying, reduced pressure drying, vacuum drying, freeze drying and the like can be used. Among these, it is preferable to use a drying method in which hot air drying and microwave drying or dielectric drying are combined in that the entire ceramic molded body can be quickly and uniformly dried.
一般に、有機バインダーの燃焼温度は100〜300℃程度であるので、乾燥後のセラミックス成形体(セラミックス乾燥体)に含まれる有機物が、有機バインダーのみである場合、あるいは有機バインダーと有機バインダーの燃焼温度より低い温度で燃焼する有機物である場合には、脱脂温度を前記のような温度範囲に設定すればよい。また、セラミックス乾燥体に含まれる有機物が、有機バインダーと有機バインダーの燃焼温度より高い温度で燃焼する有機物である場合には、脱脂温度を当該有機物の燃焼温度以上の温度に設定する。 In general, since the combustion temperature of the organic binder is about 100 to 300 ° C., when the organic matter contained in the dried ceramic formed body (ceramic dry body) is only the organic binder, or the combustion temperature of the organic binder and the organic binder. In the case of an organic substance that burns at a lower temperature, the degreasing temperature may be set within the above temperature range. Moreover, when the organic substance contained in the ceramic dry body is an organic substance combusted at a temperature higher than the combustion temperature of the organic binder and the organic binder, the degreasing temperature is set to a temperature equal to or higher than the combustion temperature of the organic substance.
脱脂時間としては特に制限はないが、通常は、1〜10時間程度である。脱脂の雰囲気は、セラミックス乾燥体を構成するセラミックス形成材料やセラミックス乾燥体に含まれる有機バインダー等の有機物の種類によって適宜選択され、具体的な雰囲気としては、大気雰囲気、酸素雰囲気、窒素雰囲気、アルゴン雰囲気、真空雰囲気等を挙げることができる。 Although there is no restriction | limiting in particular as degreasing time, Usually, it is about 1 to 10 hours. The degreasing atmosphere is appropriately selected according to the ceramic forming material constituting the ceramic dried body and the type of organic substance such as an organic binder contained in the ceramic dried body. Specific atmospheres include an air atmosphere, an oxygen atmosphere, a nitrogen atmosphere, and an argon atmosphere. An atmosphere, a vacuum atmosphere, etc. can be mentioned.
セラミックス乾燥体を脱脂した後に行う焼成の条件(温度・時間)は、セラミックス乾燥体を構成するセラミックス形成材料の種類により異なるため、その種類に応じて適当な条件を選択すればよい。例えば、セラミックス形成材料として、コージェライト形成原料を用いた場合には、脱脂後のセラミックス乾燥体を、1300〜1500℃で、3〜10時間程度焼成することが好ましい。焼成温度が1300℃未満では、目的の結晶相(コージェライト相)が得られないことがあり、1500℃を超えると、融解してしまうことがある。また、焼成の雰囲気も、セラミックス乾燥体を構成するセラミックス形成材料の種類によって適宜選択され、具体的な雰囲気としては、大気雰囲気、酸素雰囲気、窒素雰囲気、アルゴン雰囲気、真空雰囲気等を挙げることができる。 Since the firing conditions (temperature and time) performed after degreasing the ceramic dry body vary depending on the type of ceramic forming material constituting the ceramic dry body, appropriate conditions may be selected according to the type. For example, when a cordierite forming raw material is used as the ceramic forming material, the degreased ceramic dried body is preferably fired at 1300 to 1500 ° C. for about 3 to 10 hours. If the firing temperature is less than 1300 ° C., the target crystal phase (cordierite phase) may not be obtained, and if it exceeds 1500 ° C., it may melt. The firing atmosphere is also appropriately selected depending on the type of ceramic forming material constituting the ceramic dried body. Specific examples of the atmosphere include an air atmosphere, an oxygen atmosphere, a nitrogen atmosphere, an argon atmosphere, and a vacuum atmosphere. .
本発明のセラミックス構造体は、本発明のセラミックス成形体を用いて製造されたものであるので、その製造に当たって、本発明のセラミックス成形体の前記効果を享受することができる。 Since the ceramic structure of the present invention is manufactured using the ceramic molded body of the present invention, the effects of the ceramic molded body of the present invention can be enjoyed in the manufacture.
次いで、本発明のセラミックス構造体の製造方法について説明する。本発明のセラミックス構造体の製造方法は、本発明のセラミックス成形体を乾燥させ、脱脂した後、焼成するものである。このセラミックス構造体の製造方法における好適な乾燥方法や脱脂条件や焼成条件は前述のとおりである。 Next, a method for producing the ceramic structure of the present invention will be described. In the method for producing a ceramic structure of the present invention, the ceramic molded body of the present invention is dried, degreased and then fired. Suitable drying methods, degreasing conditions, and firing conditions in the method for manufacturing the ceramic structure are as described above.
本発明のセラミックス構造体の製造方法は、本発明のセラミックス成形体を用いてセラミックス構造体を製造するものであるので、その実施に当たって、本発明のセラミックス成形体の前記効果を享受することができる。 Since the method for producing a ceramic structure of the present invention is to produce a ceramic structure using the ceramic molded body of the present invention, the effect of the ceramic molded body of the present invention can be enjoyed in the implementation. .
以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
[水溶液の調製]
電解質である酢酸マグネシウム、クエン酸、又は有機バインダーであるメチルセルロースを塗布物質(溶質)とし、それらを表1に示す配合量で水(溶媒)と配合して溶解させることにより、塗布物質の溶解濃度が同表に示す値となるような5種類の水溶液1〜5を調製した。
[Preparation of aqueous solution]
Dissolving concentration of the coating substance by using magnesium acetate as the electrolyte, citric acid, or methyl cellulose as the organic binder as the coating substance (solute) and mixing them with water (solvent) in the blending amounts shown in Table 1 Were prepared 5 types of aqueous solutions 1 to 5 having values shown in the table.
[坏土の調製]
タルク、カオリン、アルミナ、シリカ及びマグネシアの粉末を表2に示す割合で調合したセラミックス形成材料(コージェライト形成原料)に対し、有機バインダーとしてのメチルセルロース、無機バインダーとしてのモンモリロナイトを、それぞれ外配で同表に示す添加量となるよう添加し、これに坏土の硬度が20となるように所定量の水を加えて混練することにより、セラミックス形成材料中の疎水性原料の含有量が同表に示す値となるような6種類の坏土1〜6を得た。なお、前記坏土の硬度は、日本碍子(株)製のNGK硬度計を用いて測定した値である。また、タルク、カオリン、アルミナ、シリカ及びマグネシアの粉末の単位表面積当たりの水に対する浸漬熱は、表3に示すとおりである。
[Preparation of clay]
The ceramic forming material (cordierite forming raw material) prepared by blending talc, kaolin, alumina, silica and magnesia powder in the proportions shown in Table 2 has the same external arrangement of methylcellulose as the organic binder and montmorillonite as the inorganic binder. The amount of hydrophobic raw material contained in the ceramic forming material is added to the amount shown in the table, and a predetermined amount of water is added and kneaded so that the hardness of the clay becomes 20. Six types of clays 1 to 6 having the values shown were obtained. The hardness of the clay is a value measured using an NGK hardness meter manufactured by Nippon Choshi Co., Ltd. Table 3 shows the heat of immersion in water per unit surface area of talc, kaolin, alumina, silica, and magnesia powder.
(実施例1)
坏土1を用い、外形が直径40mmの円柱形で、隔壁厚さ12ミル(305μm)、セル密度300セル/平方インチ(46.5セル/cm2)、セル形状が正方形であるハニカム形状のセラミックス成形体(ハニカム成形体)を連続的に押出成形し、それを長さ60mmとなるように切断した。次に、切断後のハニカム成形体の表面に、水溶液1をスプレー塗布し、その塗布時の表面状態を目視観察して、変形が生じているかどうかを確認するとともに、手触りにて軟化が生じているかどうかを確認した。その後、このハニカム成形体について、強度を測定した。強度の測定は、図1に示すように、オートグラフにてハニカム成形体(試験片)1の径方向から圧縮荷重を負荷し、圧縮変位が3mmとなった時の圧縮荷重をハニカム成形体の強度とした。また、水溶液塗布後のハニカム成形体をシッピキ(切り糸)を用いて径方向から切断し、この切断時に変形が生じるかどうかを目視観察により調べた。更に、水溶液塗布後のハニカム成形体をマイクロ波乾燥及び熱風乾燥により乾燥させた後、大気中にて450℃で5時間かけて脱脂し、脱脂後のハニカム成形体について、その外観を目視観察することにより、脱脂切れの有無を調べた。なお、ここで言う「脱脂切れ」とは、脱脂後のハニカム成形体において、本来連続しているべき隔壁やセルが不連続になっている状態のことである。前記水溶液塗布時のハニカム成形体の表面状態の観察結果、ハニカム成形体の強度の測定結果、切断時のハニカム成形体の変形の有無の調査結果、及び脱脂後のハニカム成形体の脱脂切れの有無の調査結果を表4に示した。
Example 1
Using a clay 1, a honeycomb shape having a cylindrical shape with an outer diameter of 40 mm, a partition wall thickness of 12 mil (305 μm), a cell density of 300 cells / square inch (46.5 cells / cm 2 ), and a cell shape of square. A ceramic molded body (honeycomb molded body) was continuously extruded and cut to a length of 60 mm. Next, the aqueous solution 1 is spray-coated on the surface of the cut honeycomb formed body, and the surface state at the time of coating is visually observed to check whether deformation has occurred or not, and softening has occurred by touch. Checked whether or not. Thereafter, the strength of the honeycomb formed body was measured. As shown in FIG. 1, the strength is measured by applying a compressive load from the radial direction of the honeycomb molded body (test piece) 1 by an autograph, and the compressive load when the compressive displacement is 3 mm is applied to the honeycomb molded body. Strength. In addition, the honeycomb formed body after the application of the aqueous solution was cut from the radial direction using a scouring (cutting thread), and it was examined by visual observation whether deformation occurred during the cutting. Further, the honeycomb formed body after application of the aqueous solution is dried by microwave drying and hot air drying, and then degreased in the atmosphere at 450 ° C. for 5 hours, and the appearance of the degreased honeycomb formed body is visually observed. Thus, the presence or absence of degreasing was examined. The term “degreasing” here refers to a state where partition walls and cells that should originally be continuous are discontinuous in the honeycomb formed body after degreasing. Observation results of the surface state of the honeycomb molded body at the time of applying the aqueous solution, measurement results of the strength of the honeycomb molded body, investigation results of the presence or absence of deformation of the honeycomb molded body at the time of cutting, and presence or absence of degreasing of the honeycomb molded body after degreasing The results of the survey are shown in Table 4.
(実施例2)
水溶液1の代わりに水溶液2を用いた以外は、前記実施例1と同様にして、ハニカム成形体を得、水溶液塗布時のハニカム成形体の表面状態の観察、ハニカム成形体の強度の測定、切断時のハニカム成形体の変形の有無の調査、及び脱脂後のハニカム成形体の脱脂切れの有無の調査を行い、その結果を表4に示した。
(Example 2)
Except for using the aqueous solution 2 instead of the aqueous solution 1, a honeycomb formed body was obtained in the same manner as in Example 1 above, the surface state of the honeycomb formed body was observed during application of the aqueous solution, the strength of the honeycomb formed body was measured, and the cutting was performed. Investigation of the presence or absence of deformation of the honeycomb formed body at the time and the presence or absence of degreasing of the honeycomb formed body after degreasing were conducted, and the results are shown in Table 4.
(実施例3)
水溶液1の代わりに水溶液3を用いた以外は、前記実施例1と同様にして、ハニカム成形体を得、水溶液塗布時のハニカム成形体の表面状態の観察、ハニカム成形体の強度の測定、切断時のハニカム成形体の変形の有無の調査、及び脱脂後のハニカム成形体の脱脂切れの有無の調査を行い、その結果を表4に示した。
Example 3
Except for using the aqueous solution 3 instead of the aqueous solution 1, a honeycomb formed body was obtained in the same manner as in Example 1, observation of the surface state of the honeycomb formed body during application of the aqueous solution, measurement of the strength of the honeycomb formed body, cutting Investigation of the presence or absence of deformation of the honeycomb formed body at the time and the presence or absence of degreasing of the honeycomb formed body after degreasing were conducted, and the results are shown in Table 4.
(実施例4)
坏土1の代わりに坏土2を用いた以外は、前記実施例1と同様にして、ハニカム成形体を得、水溶液塗布時のハニカム成形体の表面状態の観察、ハニカム成形体の強度の測定、切断時のハニカム成形体の変形の有無の調査、及び脱脂後のハニカム成形体の脱脂切れの有無の調査を行い、その結果を表4に示した。
Example 4
Except that the clay 2 was used instead of the clay 1, a honeycomb formed body was obtained in the same manner as in Example 1, and the surface state of the honeycomb formed body was observed during application of the aqueous solution, and the strength of the honeycomb formed body was measured. Then, the presence or absence of deformation of the honeycomb formed body at the time of cutting and the presence or absence of degreasing of the honeycomb formed body after degreasing were investigated, and the results are shown in Table 4.
(実施例5)
坏土1の代わりに坏土3を用いた以外は、前記実施例1と同様にして、ハニカム成形体を得、水溶液塗布時のハニカム成形体の表面状態の観察、ハニカム成形体の強度の測定、切断時のハニカム成形体の変形の有無の調査、及び脱脂後のハニカム成形体の脱脂切れの有無の調査を行い、その結果を表4に示した。
(Example 5)
Except for using the clay 3 instead of the clay 1, a honeycomb molded body was obtained in the same manner as in Example 1, and the surface state of the honeycomb molded body was observed during application of the aqueous solution, and the strength of the honeycomb molded body was measured. Then, the presence or absence of deformation of the honeycomb formed body at the time of cutting and the presence or absence of degreasing of the honeycomb formed body after degreasing were investigated, and the results are shown in Table 4.
(実施例6)
坏土1の代わりに坏土5を用いた以外は、前記実施例1と同様にして、ハニカム成形体を得、水溶液塗布時のハニカム成形体の表面状態の観察、ハニカム成形体の強度の測定、切断時のハニカム成形体の変形の有無の調査、及び脱脂後のハニカム成形体の脱脂切れの有無の調査を行い、その結果を表4に示した。
(Example 6)
Except for using the clay 5 instead of the clay 1, a honeycomb formed body was obtained in the same manner as in Example 1, and the surface state of the honeycomb formed body was observed during application of the aqueous solution, and the strength of the honeycomb formed body was measured. Then, the presence or absence of deformation of the honeycomb formed body at the time of cutting and the presence or absence of degreasing of the honeycomb formed body after degreasing were investigated, and the results are shown in Table 4.
(比較例1)
水溶液1の代わりに水溶液4を用いた以外は、前記実施例1と同様にして、ハニカム成形体を得、水溶液塗布時のハニカム成形体の表面状態の観察、及び切断時のハニカム成形体の変形の有無の調査を行い、その結果を表4に示した。なお、この比較例1については、水溶液塗布時にハニカム成形体の表面が軟化し、切断時にハニカム成形体が変形したため、ハニカム成形体の強度の測定、及び脱脂後のハニカム成形体の脱脂切れの有無の調査は行わなかった。
(Comparative Example 1)
Except for using the aqueous solution 4 instead of the aqueous solution 1, a honeycomb formed body was obtained in the same manner as in Example 1 above, the surface state of the honeycomb formed body during application of the aqueous solution was observed, and the deformation of the honeycomb formed body during cutting was performed. The results are shown in Table 4. In Comparative Example 1, since the surface of the honeycomb formed body was softened during application of the aqueous solution and the honeycomb formed body was deformed during cutting, the strength of the honeycomb formed body was measured, and whether the honeycomb formed body was degreased after degreasing. No investigation was conducted.
(比較例2)
水溶液1の代わりに水溶液5を用いた以外は、前記実施例1と同様にして、ハニカム成形体を得、水溶液塗布時のハニカム成形体の表面状態の観察、及び切断時のハニカム成形体の変形の有無の調査を行い、その結果を表4に示した。なお、この比較例2については、水溶液塗布時にハニカム成形体の表面が軟化し、切断時にハニカム成形体が変形したため、ハニカム成形体の強度の測定、及び脱脂後のハニカム成形体の脱脂切れの有無の調査は行わなかった。
(Comparative Example 2)
Except that the aqueous solution 5 was used instead of the aqueous solution 1, a honeycomb formed body was obtained in the same manner as in Example 1, observation of the surface state of the honeycomb formed body during application of the aqueous solution, and deformation of the honeycomb formed body during cutting The results are shown in Table 4. In Comparative Example 2, since the surface of the honeycomb formed body was softened when the aqueous solution was applied and the honeycomb formed body was deformed during cutting, the honeycomb formed body was measured for strength, and whether the honeycomb formed body was degreased after degreasing. No investigation was conducted.
(比較例3)
何れの水溶液の塗布も行わなかった以外は、前記実施例1と同様にして、ハニカム成形体を得、ハニカム成形体の強度の測定、切断時のハニカム成形体の変形の有無の調査、及び脱脂後のハニカム成形体の脱脂切れの有無の調査を行い、その結果を表4に示した。
(Comparative Example 3)
Except that no aqueous solution was applied, a honeycomb formed body was obtained in the same manner as in Example 1 above, the strength of the honeycomb formed body was measured, the presence or absence of deformation of the honeycomb formed body during cutting, and degreasing The subsequent honeycomb formed body was examined for the absence of degreasing and the results are shown in Table 4.
(比較例4)
坏土1の代わりに坏土4を用いた以外は、前記実施例1と同様にして、ハニカム成形体を得、水溶液塗布時のハニカム成形体の表面状態の観察、ハニカム成形体の強度の測定、切断時のハニカム成形体の変形の有無の調査、及び脱脂後のハニカム成形体の脱脂切れの有無の調査を行い、その結果を表4に示した。
(Comparative Example 4)
Except for using the clay 4 instead of the clay 1, a honeycomb formed body was obtained in the same manner as in Example 1, and the surface state of the honeycomb formed body was observed during application of the aqueous solution, and the strength of the honeycomb formed body was measured. Then, the presence or absence of deformation of the honeycomb formed body at the time of cutting and the presence or absence of degreasing of the honeycomb formed body after degreasing were investigated, and the results are shown in Table 4.
(比較例5)
坏土1の代わりに坏土6を用いた以外は、前記実施例1と同様にして、ハニカム成形体を得、水溶液塗布時のハニカム成形体の表面状態の観察、及び切断時のハニカム成形体の変形の有無の調査を行い、その結果を表4に示した。なお、この比較例5については、水溶液塗布時にハニカム成形体の表面が軟化し、切断時にハニカム成形体が変形したため、ハニカム成形体の強度の測定、及び脱脂後のハニカム成形体の脱脂切れの有無の調査は行わなかった。
(Comparative Example 5)
A honeycomb molded body was obtained in the same manner as in Example 1 except that the clay 6 was used in place of the clay 1, and the surface state of the honeycomb molded body was observed during application of the aqueous solution, and the honeycomb molded body was cut. The presence or absence of deformation was investigated, and the results are shown in Table 4. For Comparative Example 5, since the surface of the honeycomb formed body was softened during application of the aqueous solution and the honeycomb formed body was deformed during cutting, the honeycomb formed body was measured for strength, and whether the honeycomb formed body was degreased after degreasing. No investigation was conducted.
表4に示すとおり、疎水性原料の含有量がセラミックス形成材料全体の20〜100質量%の範囲にあり、かつ、有機バインダーの添加量がセラミックス形成材料に対し外配で1〜10質量%の範囲内にある坏土(坏土1〜5)を用いるとともに、電解質の溶解濃度が50%以上である電解質水溶液(水溶液1〜3)を用いた実施例1〜6は、電解質水溶液の塗布を行っていない比較例3に比して、高い強度を示した。一方、電解質の溶解濃度が50%未満である電解質水溶液(水溶液4)を用いた比較例1と、電解質ではなく有機バインダーの水溶液(水溶液5)を用いた比較例2と、疎水性原料の含有量がセラミックス形成材料全体の20質量%未満である坏土(坏土6)を用いた比較例5は、水溶液の塗布時に表面が軟化し、切断時に変形が生じた。また、有機バインダーの添加量が、セラミックス形成材料に対し外配で10質量%を超える坏土(坏土4)を用いた比較例4は、高い強度を示したものの脱脂切れが発生した。 As shown in Table 4, the content of the hydrophobic raw material is in the range of 20 to 100% by mass of the entire ceramic forming material, and the addition amount of the organic binder is 1 to 10% by mass with respect to the ceramic forming material. Examples 1 to 6 using an aqueous electrolyte solution (aqueous solution 1 to 3) having a dissolution concentration of the electrolyte of 50% or more while using the clay in the range (kneaded soil 1 to 5) are applied with the aqueous electrolyte solution. Compared with comparative example 3 which was not performed, high intensity was shown. On the other hand, Comparative Example 1 using an aqueous electrolyte solution (aqueous solution 4) having an electrolyte dissolution concentration of less than 50%, Comparative Example 2 using an aqueous solution of an organic binder (aqueous solution 5) instead of an electrolyte, and inclusion of a hydrophobic raw material In Comparative Example 5 using the kneaded clay (kneaded clay 6) whose amount was less than 20% by mass of the entire ceramic-forming material, the surface was softened when the aqueous solution was applied, and deformation occurred during cutting. Moreover, although the addition amount of the organic binder showed the high intensity | strength in the comparative example 4 using the clay (kneaded soil 4) which exceeds 10 mass% by arrangement | positioning with respect to a ceramic formation material, the degreasing | braking was generated.
本発明のセラミックス成形体、セラミックス構造体及びセラミックス構造体の製造方法は、例えば、セラミックフィルター、触媒担体等の各種セラミック製品に用いられるセラミックス構造体やその製造に好適に利用することができる。 The ceramic molded body, the ceramic structure, and the method for producing the ceramic structure of the present invention can be suitably used for, for example, a ceramic structure used for various ceramic products such as a ceramic filter and a catalyst carrier and the production thereof.
1:ハニカム成形体(試験片) 1: Honeycomb molded body (test piece)
Claims (8)
前記有機バインダーの添加量が、前記セラミックス形成材料に対し外配で1〜10質量%であり、
前記セラミックス成形体の表面の少なくとも一部に、電解質の溶解濃度が50%以上である電解質水溶液を塗布したものであり、
前記電解質水溶液が、クエン酸イオン、酒石酸イオン及び酢酸イオンからなる群より選択される少なくとも1種の陰イオンと、アルカリ土類金属イオン(マグネシウムイオンを含む)、水素イオン及びアンモニウムイオンからなる群より選択される少なくとも1種の陽イオンとを含有するものであるセラミックス成形体。 A ceramic molded body formed by using a clay obtained by adding water to a ceramic forming material made of a hydrophobic raw material and kneaded by adding 20 to 100% by mass of an organic binder,
The addition amount of the organic binder is 1 to 10% by mass with respect to the ceramic forming material,
At least a portion of the surface of the ceramic molded body state, and are not dissolved concentration of the electrolyte was applied to the electrolyte solution is 50% or more,
The aqueous electrolyte solution includes at least one anion selected from the group consisting of citrate ions, tartrate ions and acetate ions, and a group consisting of alkaline earth metal ions (including magnesium ions), hydrogen ions and ammonium ions. at least one der Ru ceramic body which contains a cation selected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011067616A JP5658067B2 (en) | 2011-03-25 | 2011-03-25 | Ceramic molded body, ceramic structure, and method for manufacturing ceramic structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011067616A JP5658067B2 (en) | 2011-03-25 | 2011-03-25 | Ceramic molded body, ceramic structure, and method for manufacturing ceramic structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012200994A JP2012200994A (en) | 2012-10-22 |
JP5658067B2 true JP5658067B2 (en) | 2015-01-21 |
Family
ID=47182462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011067616A Active JP5658067B2 (en) | 2011-03-25 | 2011-03-25 | Ceramic molded body, ceramic structure, and method for manufacturing ceramic structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5658067B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10632701B2 (en) | 2016-02-26 | 2020-04-28 | Ngk Insulators, Ltd. | Manufacturing method of honeycomb structure |
US11492295B2 (en) | 2018-08-02 | 2022-11-08 | Ngk Insulators, Ltd. | Method for producing honeycomb structure |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6944833B2 (en) * | 2017-08-03 | 2021-10-06 | イビデン株式会社 | Manufacturing method of honeycomb structure |
CN114804808A (en) * | 2022-05-30 | 2022-07-29 | 南京赤博环保科技有限公司 | Ceramic fiber filter element and preparation process thereof |
CN115160013B (en) * | 2022-06-15 | 2023-04-07 | 东风汽车集团股份有限公司 | Preparation method and application of ceramic carrier with thin-wall honeycomb structure |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5458834A (en) * | 1993-10-07 | 1995-10-17 | Corning Incorporated | Extrusion of low viscosity batch |
DE10024038A1 (en) * | 2000-05-13 | 2001-11-22 | Dmc2 Degussa Metals Catalysts | Honeycomb body made of a ceramic material with improved radial pressure resistance |
JP4545383B2 (en) * | 2002-04-25 | 2010-09-15 | 日本碍子株式会社 | Ceramic honeycomb structure and manufacturing method thereof |
JP2004074593A (en) * | 2002-08-19 | 2004-03-11 | Ngk Insulators Ltd | Manufacturing method for honeycomb structure |
US7824602B2 (en) * | 2006-03-31 | 2010-11-02 | Massachusetts Institute Of Technology | Ceramic processing and shaped ceramic bodies |
EP2045009A4 (en) * | 2006-07-05 | 2012-12-05 | Cataler Corp | Catalyst for purifying exhaust gas and process for producing the same |
-
2011
- 2011-03-25 JP JP2011067616A patent/JP5658067B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10632701B2 (en) | 2016-02-26 | 2020-04-28 | Ngk Insulators, Ltd. | Manufacturing method of honeycomb structure |
DE112017001017B4 (en) | 2016-02-26 | 2021-11-11 | Ngk Insulators, Ltd. | Method of manufacturing a honeycomb structure |
US11492295B2 (en) | 2018-08-02 | 2022-11-08 | Ngk Insulators, Ltd. | Method for producing honeycomb structure |
Also Published As
Publication number | Publication date |
---|---|
JP2012200994A (en) | 2012-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5188779A (en) | Production of ceramic honeycomb structural bodies | |
US10953395B2 (en) | Honeycomb structure and production method for said honeycomb structure | |
JP5658067B2 (en) | Ceramic molded body, ceramic structure, and method for manufacturing ceramic structure | |
US8153073B2 (en) | Honeycomb filter, exhaust gas purifying apparatus and method for manufacturing honeycomb filter | |
US7470302B2 (en) | Honeycomb structure | |
US7544320B2 (en) | Method of manufacturing porous ceramic body | |
JP4358662B2 (en) | Method for producing cordierite honeycomb structure | |
JP4434050B2 (en) | Manufacturing method of honeycomb structure | |
US8101117B2 (en) | Controlled gas pore formers in extruded ware | |
JP5560081B2 (en) | Ceramic clay, ceramic molded body, ceramic structure and manufacturing method thereof | |
JPWO2008044497A1 (en) | Ceramic clay and its use | |
JP5282053B2 (en) | Manufacturing method of honeycomb structure | |
JP5647051B2 (en) | Ceramic dry body, ceramic structure, and method for manufacturing ceramic structure | |
JP5937381B2 (en) | Honeycomb structure | |
JP2009241343A (en) | Method for manufacturing honeycomb structure | |
JP2002326881A (en) | Manufacturing method of porous ceramic | |
JP4574693B2 (en) | Manufacturing method of honeycomb structure | |
WO2018008623A1 (en) | Honeycomb structure and method for producing honeycomb structure | |
JP4847339B2 (en) | Method for manufacturing honeycomb structure and honeycomb structure | |
JP2019147700A (en) | Method for producing honeycomb structure | |
JP2019147701A (en) | Method for producing honeycomb structure | |
JP6944833B2 (en) | Manufacturing method of honeycomb structure | |
JP2018122244A (en) | Production method of honeycomb structure, and honeycomb structure | |
JP2009280409A (en) | Method for manufacturing porous silicon carbide sintered compact | |
JP2018162180A (en) | Manufacturing method of honeycomb structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140617 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5658067 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |