[go: up one dir, main page]

JP5655356B2 - Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking - Google Patents

Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking Download PDF

Info

Publication number
JP5655356B2
JP5655356B2 JP2010085677A JP2010085677A JP5655356B2 JP 5655356 B2 JP5655356 B2 JP 5655356B2 JP 2010085677 A JP2010085677 A JP 2010085677A JP 2010085677 A JP2010085677 A JP 2010085677A JP 5655356 B2 JP5655356 B2 JP 5655356B2
Authority
JP
Japan
Prior art keywords
less
wear
resistant steel
steel plate
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010085677A
Other languages
Japanese (ja)
Other versions
JP2011214120A (en
Inventor
室田 康宏
康宏 室田
操 石川
操 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010085677A priority Critical patent/JP5655356B2/en
Publication of JP2011214120A publication Critical patent/JP2011214120A/en
Application granted granted Critical
Publication of JP5655356B2 publication Critical patent/JP5655356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建設、土木、鉱山等の分野で使用される、例えば、パワーショベル、ブルドーザー、ホッパー、バケットなどの産業機械や運搬機械等のうち、土砂との接触による摩耗が問題となるような部材用として好適な、耐摩耗鋼板に係り、特に厚鋼板における、ガス切断、プラズマ溶断等の熱溶断や、溶接による熱影響部の、耐低温焼戻脆化割れ性の改善に関する。
The present invention is used in the fields of construction, civil engineering, mining, for example, industrial machines such as power shovels, bulldozers, hoppers, buckets, etc., and wear caused by contact with earth and sand is a problem. suitable as a member, it relates to a wear-resistant steel plate, the steel plate in particular, gas cutting, heat fusing and plasma fusing etc., of the heat-affected zone by welding, to the improvement of low-temperature tempering embrittlement cracking resistance.

土、砂等による摩耗を受ける部材には、長寿命化のため、耐摩耗性に優れた鋼材が使用されている。従来から、鋼材の耐摩耗性は、高硬度化することにより、向上することが知られている。このため、耐摩耗性が要求される部材には、C量を高くし、Cr、Mo等の合金元素を大量に添加した鋼材に焼入れ処理や、焼入れ−低温焼戻処理を施し、高硬度化した鋼材が使用されてきた。   Steel members having excellent wear resistance are used for members subjected to wear due to soil, sand, and the like in order to extend the life. Conventionally, it is known that the wear resistance of a steel material is improved by increasing the hardness. For this reason, for parts that require wear resistance, the steel is hardened by increasing the C content and adding a large amount of alloying elements such as Cr and Mo, and quenching and low-temperature tempering to increase the hardness. Steel has been used.

一般に、このような高硬度化した鋼材は、低温焼戻脆化温度域に再加熱されると、常温に冷却後、遅れ破壊が発生する場合がある。この遅れ破壊は結晶粒界が脆弱化することにより起因し、破壊の形態は粒界破壊で、破面は粒界破面を呈する。このような遅れ破壊を回避するためには、鋼材を低温焼戻脆化温度域に再加熱することを避ければよいが、部材を加工する際に、溶断や、溶接などの加工は必須であり、溶断部や溶接部で、低温焼戻脆化温度域に鋼材が再加熱されるのを回避することは不可能である。そこで、低温焼戻脆化温度域に再加熱されても、遅れ破壊が抑制可能な、耐低温焼戻脆化割れ性に優れた耐摩耗鋼板が要望されている。   In general, when such a hardened steel material is reheated to a low temperature temper embrittlement temperature range, delayed fracture may occur after cooling to room temperature. This delayed fracture is caused by the brittleness of the crystal grain boundaries. The fracture mode is grain boundary fracture, and the fracture surface exhibits a grain boundary fracture surface. In order to avoid such delayed fracture, it is only necessary to avoid reheating the steel material to the low temperature temper embrittlement temperature range, but when cutting the member, processing such as fusing or welding is essential. It is impossible to avoid reheating the steel material in the low temperature temper embrittlement temperature region at the fusing part or the welded part. Therefore, there is a demand for a wear-resistant steel sheet having excellent low-temperature temper embrittlement cracking resistance that can suppress delayed fracture even when reheated to a low-temperature temper embrittlement temperature range.

このような要望に対し、例えば特許文献1には、質量%で、C:0.20〜0.30%、Si:0.05〜1.0%、Mn:0.45〜1.2%、Nb:0.005〜0.024%、Ti:0.005〜0.05%、B:0.0003〜0.0030%、Al:0.1%以下、P:0.010%以下、S:0.005%以下を含み、Mo:0.05〜1.0%、W:0.05〜1.0%のいずれか1種以上を含有し、更に、Cu:0.1〜1.0%、Ni:0.1〜2.0%、Cr:0.1〜1.0%、V:0.005〜0.10%の1種または2種以上を、Ceqが0.55%以下で、DI*値が45以上を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、旧オーステナイト粒径が30μm以下のマルテンサイト相を基地相とする、低温靭性および低温焼戻脆化割れ性に優れた耐摩耗鋼板が記載されている。   In response to such a request, for example, in Patent Document 1, in mass%, C: 0.20 to 0.30%, Si: 0.05 to 1.0%, Mn: 0.45 to 1.2%, Nb: 0.005 to 0.024%, Ti: 0.005 to 0.05%, B: 0.0003-0.0030%, Al: 0.1% or less, P: 0.010% or less, S: 0.005% or less, Mo: 0.05-1.0%, W: 0.05-1.0% In addition, Cu: 0.1 to 1.0%, Ni: 0.1 to 2.0%, Cr: 0.1 to 1.0%, V: 0.005 to 0.10%, Ceq is 0.55% or less, DI * Low-temperature toughness and low-temperature temper embrittlement cracking with a composition consisting of the balance Fe and unavoidable impurities and a martensite phase with a prior austenite grain size of 30 μm or less as the base phase. An excellent wear resistant steel sheet is described.

また、特許文献2には、質量%で、C:0.20〜0.35%、Si:0.05〜1.0%、Mn:0.45%未満、Ti:0.005〜0.05%、B:0.0003〜0.0030%、Al:0.1%以下、P:0.020%以下、S:0.005%以下を含み、Cu:0.1〜1.0%、Ni:0.1〜2.0%、Cr:0.1〜1.0%、Mo:0.05〜1.0%、V:0.005〜0.10%、W:0.05〜1.0%の1種または2種以上を、Ceqが0.55%以下で、DI*値が45以上を満足するように含有し、あるいはさらにNb:0.005〜0.024%を含み、残部Feおよび不可避的不純物からなる組成と、マルテンサイト相を基地相とする組織と、を有する低温靭性および低温焼戻脆化割れ性に優れた耐摩耗鋼板が記載されている。   Moreover, in patent document 2, C: 0.20-0.35%, Si: 0.05-1.0%, Mn: Less than 0.45%, Ti: 0.005-0.05%, B: 0.0003-0.0030%, Al: 0.1% by mass% Hereinafter, P: 0.020% or less, S: 0.005% or less, Cu: 0.1-1.0%, Ni: 0.1-2.0%, Cr: 0.1-1.0%, Mo: 0.05-1.0%, V: 0.005-0.10% , W: 0.05-1.0% of one or more kinds are contained so that Ceq is 0.55% or less and DI * value is 45 or more, or Nb: 0.005-0.024% is contained, and the balance Fe A wear-resistant steel sheet having a composition composed of inevitable impurities and a structure having a martensite phase as a base phase and excellent in low temperature toughness and low temperature temper embrittlement cracking is described.

また、特許文献3には、質量%で、C:0.20〜0.30%、Si:0.05〜1.0%、Mn:0.45〜1.2%、Nb:0.005〜0.024%、Ti:0.005〜0.05%、B:0.0003〜0.0030%、Al:0.1%以下、P:0.010%以下、S:0.005%以下、Mo:0.05%未満、W:0.05%未満を含有し、Cu:0.1〜1.0%、Ni:0.1〜2.0%、Cr:0.1〜1.0%、V:0.005〜0.10%の1種または2種以上を、Ceqが0.55%以下で、DI*値が45以上を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、旧オーステナイト粒径が30μm以下のマルテンサイト相を基地相とする組織を有し、ガス切断面性状および低温焼戻脆化割れ性に優れた耐摩耗鋼板が記載されている。   Further, in Patent Document 3, in mass%, C: 0.20 to 0.30%, Si: 0.05 to 1.0%, Mn: 0.45 to 1.2%, Nb: 0.005 to 0.024%, Ti: 0.005 to 0.05%, B: 0.0003 -0.0030%, Al: 0.1% or less, P: 0.010% or less, S: 0.005% or less, Mo: less than 0.05%, W: less than 0.05%, Cu: 0.1-1.0%, Ni: 0.1-2.0% , Cr: 0.1 to 1.0%, V: 0.005 to 0.10%, Ceq is 0.55% or less, DI * value is 45 or more, and the remainder Fe and inevitable impurities And a wear-resistant steel sheet having a structure in which a martensite phase having a prior austenite grain size of 30 μm or less as a base phase and excellent gas cut surface properties and low-temperature temper embrittlement cracking properties are described.

特開2009−30092号公報JP 2009-30092 特開2009−30093号公報JP 2009-30093 特開2009−30094号公報JP 2009-30094

最近では、部材の大型化に伴い、更なる厚肉の耐摩耗鋼板が要求されている。しかし、特許文献1〜3に記載された技術では、高々32 mm程度までの厚さの耐摩耗鋼板しか、製造できていない。
本発明は、かかる従来技術の問題を有利に解決し、好ましくは板厚32 mmを超える厚肉となっても、耐摩耗性に優れかつ耐低温焼戻脆化割れ性に優れた耐摩耗鋼板を提案することを目的とする。
Recently, with the increase in size of members, there is a demand for a thicker wear-resistant steel plate. However, with the techniques described in Patent Documents 1 to 3, only wear-resistant steel plates having a thickness of up to about 32 mm can be produced.
The present invention advantageously solves such problems of the prior art, and is preferably a wear-resistant steel plate having excellent wear resistance and low-temperature temper embrittlement cracking resistance even when the thickness exceeds 32 mm. The purpose is to propose.

本発明者らは、上記した目的を達成するために、耐摩耗性、耐低温焼戻脆化割れ性に及ぼす各種要因について、さらに鋭意考究した。その結果、C:0.25〜0.35%、Mn:0.80%以下、P:0.010%以下に限定し、炭素当量Ceqを0.55%超0.60%以下の範囲内に調整した組成とすることにより、板厚が薄い場合にはもちろん、板厚32 mmを超える厚肉の鋼板としても、優れた耐摩耗性を維持しつつ、耐低温焼戻脆化割れ性が著しく改善された耐摩耗鋼板とすることができることに想到した。   In order to achieve the above-described object, the present inventors have further studied diligently on various factors affecting wear resistance and low temperature temper embrittlement cracking resistance. As a result, C: 0.25 to 0.35%, Mn: 0.80% or less, P: 0.010% or less, and by adjusting the carbon equivalent Ceq within the range of more than 0.55% and 0.60% or less, the plate thickness is reduced. Of course, even if it is thin, it is possible to make a steel plate with a thickness of more than 32 mm, with excellent wear resistance, and with improved resistance to low temperature temper embrittlement cracking. I came up with it.

まず、本発明者らが行った基礎的実験について説明する。
mass%で、0.30%C−0.25%Si−0.6〜1.5%Mn−0.002〜0.030%P−0.015%Nb−0.020%Ti−0.0012%Bを含み、下記(1)式
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+W/10 ‥‥(1)
で定義されるCeqが0.60%に一定となるように、Ni、Cu、Mo、Wを適宜含有し、残部Feからなる組成の溶鋼を溶製し、鋼片としたのち、熱間圧延して板厚:40mmの鋼板とした。これら鋼板を、900℃に再加熱し、急冷した。得られた鋼板から試験材を採取し、T形隅肉溶接割れ試験を実施した。T形隅肉溶接割れ試験は、試験材を、図2に示すようなT形隅肉溶接割れ試験体に組み立て、試験溶接部(長さ:200mm)に、入熱13kJ/cmの炭酸ガス溶接で、3層6パスの隅肉溶接を行なった。溶接後、48時間経過したのち、試験溶接部について、遅れ割れ発生の有無を調査した。調査は試験体ビード部5断面を切断して観察することにより行った。
First, basic experiments conducted by the present inventors will be described.
mass%, 0.30% C-0.25% Si-0.6-1.5% Mn-0.002-0.030% P-0.015% Nb-0.020% Ti-0.0012% B, and the following (1) formula Ceq = C + Mn / 6 + (Cu + Ni ) / 15 + (Cr + Mo + V) / 5 + W / 10 (1)
In order to keep the Ceq defined by the above constant at 0.60%, Ni, Cu, Mo, W is appropriately contained, molten steel having the composition of the remainder Fe is melted to form a steel slab, and then hot rolled. Plate thickness: 40 mm steel plate. These steel plates were reheated to 900 ° C. and quenched. Test materials were collected from the obtained steel plates and subjected to a T-shaped fillet weld cracking test. In the T-type fillet weld cracking test, the test material is assembled into a T-shaped fillet weld crack specimen as shown in Fig. 2, and the test weld (length: 200 mm) is welded with carbon dioxide gas with a heat input of 13 kJ / cm. Then, fillet welding of three layers and six passes was performed. After 48 hours from welding, the test weld was examined for the occurrence of delayed cracking. The investigation was performed by cutting and observing the cross section of the test specimen bead portion 5.

得られた結果を、遅れ破壊(割れ)の発生に及ぼす、Mn含有量とP含有量との関係の影響で、図1に示す。図1から、Mnが0.80%超え、Pが0.010%を超えた領域で、割れが発生している。発生した割れの破面は粒界破壊であり、低温焼戻脆化割れであると断定した。図1から、Ceqを0.60%と高くした板厚:32mm超え厚鋼板用の組成としても、MnとPを、Mn:0.80%以下、P:0.010%以下に調整することにより、割れの発生がなく、耐低温焼戻脆化割れ性が改善するという知見を得た。   The obtained results are shown in FIG. 1 due to the influence of the relationship between the Mn content and the P content on the occurrence of delayed fracture (cracking). As shown in FIG. 1, cracks occur in a region where Mn exceeds 0.80% and P exceeds 0.010%. It was determined that the fracture surface of the generated crack was a grain boundary fracture and a low-temperature tempered embrittlement crack. From Fig. 1, even if the Ceq is increased to 0.60%, the thickness of the steel plate exceeds 32mm. By adjusting Mn and P to Mn: 0.80% or less and P: 0.010% or less, cracking occurs. And the knowledge that low temperature tempering embrittlement cracking resistance is improved was obtained.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)mass%で、C:0.31〜0.35%、Si:0.05〜1.0%、Mn:0.80%以下、P:0.010%以下、S:0.005%以下、Ti:0.005〜0.05%、Nb:0.005〜0.024%、B:0.0003〜0.0030%、Al:0.1%以下と、さらにCu:0.1〜1.0%、Ni:0.1〜2.0%、Cr:0.1〜1.0%、Mo:0.05〜1.0%、V:0.005〜0.10%、W:0.05〜1.0%のうちから選ばれた1種または2種以上を、次(1)式
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+W/10 ‥‥(1)
(ここで、 C、Si、Mn、Cu、Ni、Cr、Mo、V、W:各元素の含有量(mass%))
で定義されるCeqが0.55%超0.60%以下で、かつ次(2)式
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1) ……(2)
(ここで、 C、Si、Mn、Cu、Ni、Cr、Mo、V、W:各元素の含有量(mass%))
定義されるDI*値が45以上を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、基地相がマルテンサイト相を主体とする相である組織と、を有し、耐低温焼戻脆化割れ性に優れることを特徴とする耐摩耗鋼板。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.31 to 0.35%, Si: 0.05 to 1.0%, Mn: 0.80% or less, P: 0.010% or less, S: 0.005% or less, Ti: 0.005 to 0.05%, Nb: 0.005 to 0.024%, B: 0.0003 to 0.0030%, Al: 0.1% or less, further Cu: 0.1 to 1.0%, Ni: 0.1 to 2.0%, Cr: 0.1 to 1.0%, Mo: 0.05 to 1.0%, V: 0.005 to One or more selected from 0.10%, W: 0.05-1.0%, the following (1) formula Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 + W / 10 (1)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, W: content of each element (mass%))
The Ceq defined by is more than 0.55% and less than 0.60%, and the following equation (2)
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (2)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, W: content of each element (mass%))
The DI * value defined by the above is contained so as to satisfy 45 or more, and has a composition comprising the balance Fe and inevitable impurities, and a structure in which the matrix phase is a phase mainly composed of martensite phase, A wear-resistant steel sheet that is excellent in low temperature temper embrittlement cracking.

(2)(1)において、前記組成に加えてさらに、mass%で、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする耐摩耗鋼板。
(3)(1)または(2)において、前記組織が、旧オーステナイト粒径が15μm以下であることを特徴とする耐摩耗鋼板。
(2) In (1), in addition to the above composition, the composition further contains one or two kinds selected from mass: Ca: 0.0005 to 0.0050% and REM: 0.0005 to 0.0050%. Wear-resistant steel sheet characterized by.
(3) The wear-resistant steel sheet according to (1) or (2), wherein the structure has a prior austenite grain size of 15 μm or less.

(4)(1)ないし(3)のいずれかにおいて、表面硬さが、450 HBW10/3000以上であることを特徴とする耐摩耗鋼板。   (4) The wear-resistant steel sheet according to any one of (1) to (3), wherein the surface hardness is 450 HBW10 / 3000 or more.

本発明によれば、優れた耐摩耗性を有し、かつ溶断、溶接時の熱影響で低温焼戻脆化領域に加熱されても、遅れ割れ(遅れ破壊)の発生が防止され、優れた耐摩耗性と優れた耐低温焼戻脆化割れ性を兼備した、板厚32mmを超える厚肉の耐摩耗鋼板を安価に、しかも容易に製造でき、産業上格段の効果を奏する。   According to the present invention, it has excellent wear resistance, and even when heated to a low temperature temper embrittlement region due to thermal effects during fusing and welding, delayed cracking (delayed fracture) is prevented and excellent. A thick wear-resistant steel sheet with a thickness of more than 32mm, which combines wear resistance and excellent low-temperature temper embrittlement cracking resistance, can be manufactured at low cost and easily, and has a remarkable industrial effect.

遅れ破壊(割れ)の発生に及ぼす、Mn含有量とP含有量との関係の影響を示すグラフである。It is a graph which shows the influence of the relationship between Mn content and P content which has on the occurrence of delayed fracture (cracking). 実施例で使用したT形隅肉溶接割れ試験における試験体の形状寸法および試験溶接の寸法形状を、模式的に示す説明図である。It is explanatory drawing which shows typically the shape dimension of the test body in the T-shaped fillet weld cracking test used in the Example, and the dimension shape of test welding.

まず、本発明鋼板の組成限定理由について説明する。なお、以下、とくに断わらない限りmass%は、単に%で表す。
C:0.31〜0.35%
Cは、マトリクスの硬さを増加させ、耐摩耗性を著しく向上させる元素である。このような効果を得るためには、本発明では0.25%以上の含有を必要とする。一方、0.35%を超えて含有すると、溶接性が低下する。本発明において、Cは0.31〜0.35%の範囲に限定した
First, the reasons for limiting the composition of the steel sheet of the present invention will be described. In the following, mass% is simply expressed as% unless otherwise specified.
C: 0.31 to 0.35%
C is an element that increases the hardness of the matrix and significantly improves the wear resistance. In order to obtain such an effect, the present invention needs to contain 0.25% or more. On the other hand, when it contains exceeding 0.35%, weldability will fall. In the present invention , C is limited to the range of 0.31 to 0.35% .

Si:0.05〜1.0%
Siは、脱酸剤として作用する有効な元素であり、このような効果を得るためには0.05%以上の含有を必要とする。また、Siは、鋼に固溶して固溶強化により鋼板の高硬度化に寄与する有効な元素であるが、1.0%を超える含有は、延性、靭性を低下させ、さらに介在物量が増加するなどの問題を生じる。このため、Siは0.05〜1.0%の範囲に規定した。なお、好ましくは0.05〜0.40%である。
Si: 0.05-1.0%
Si is an effective element that acts as a deoxidizing agent, and in order to obtain such an effect, a content of 0.05% or more is required. Moreover, Si is an effective element that contributes to increasing the hardness of the steel sheet by solid solution strengthening by solid solution strengthening, but inclusion exceeding 1.0% decreases ductility and toughness, and further increases the amount of inclusions. Cause problems. For this reason, Si was specified in the range of 0.05 to 1.0%. In addition, Preferably it is 0.05 to 0.40%.

Mn:0.80%以下
Mnは、固溶強化により高硬度化に寄与する有効な元素であり、このような効果を得るためには、0.1%以上含有することが望ましいが、0.80%を超える含有は、Pの粒界偏析を助長し、遅れ破壊を発生しやすくする。このため、Mnは0.80%以下に規定した。なお、好ましくは0.60〜0.80%である。
Mn: 0.80% or less
Mn is an effective element that contributes to increasing the hardness by solid solution strengthening. In order to obtain such an effect, it is desirable to contain 0.1% or more, but if it exceeds 0.80%, the P grain boundary Promotes segregation and facilitates delayed fracture. For this reason, Mn was specified to 0.80% or less. In addition, Preferably it is 0.60 to 0.80%.

P:0.010%以下
Pは、粒界に偏析し、遅れ破壊の発生を助長する元素であり、本発明ではできるだけ低減することが好ましいが、過度の低減は溶製コストの高騰を招くため、0.010%を上限とした。なお、好ましくは0.007%以下である。
S:0.005%以下
Sは、鋼中でMnSを形成し、破壊発生の起点として作用し、靭性の著しい低下を招くため、本発明ではできるだけ低減することが望ましいが、過度の低減は溶製コストの高騰を招くため、0.005%を上限とした。なお、好ましくは0.003%以下である。
P: 0.010% or less P is an element that segregates at the grain boundary and promotes the occurrence of delayed fracture. In the present invention, P is preferably reduced as much as possible, but excessive reduction leads to an increase in melting cost. % Was the upper limit. In addition, Preferably it is 0.007% or less.
S: 0.005% or less S forms MnS in steel, acts as a starting point for fracture occurrence, and causes a significant decrease in toughness. Therefore, it is desirable to reduce it as much as possible in the present invention. The upper limit was made 0.005%. In addition, Preferably it is 0.003% or less.

Ti:0.005〜0.05%
Tiは、Nと結合しTiNを形成してNを固定し、BNの形成を抑制して、Bの焼入れ性向上効果を有効に作用させる効果を有する。このような効果を得るためには、0.005%以上の含有を必要とするが、0.05%を超えて含有すると、TiCが析出し母材靭性が低下する。このため、Tiは0.005〜0.05%の範囲に規定した。なお、好ましくは、0.005〜0.020%である。
Ti: 0.005-0.05%
Ti binds to N to form TiN to fix N, suppress the formation of BN, and has the effect of effectively improving the hardenability of B. In order to obtain such an effect, the content of 0.005% or more is required. However, if the content exceeds 0.05%, TiC precipitates and the base metal toughness decreases. For this reason, Ti was specified in the range of 0.005 to 0.05%. In addition, Preferably, it is 0.005-0.020%.

Nb:0.005〜0.024%
Nbは、炭窒化物あるいは炭化物を形成し、組織を微細化して遅れ破壊を抑制する作用を有する。このような効果を得るためには、0.005%以上の含有を必要とするが、0.024%を超える含有は、粗大な炭窒化物を析出させて、破壊の起点となるため、靭性が低下する。このため、Nbは0.005〜0.024%の範囲に限定した。なお、好ましくは、0.005〜0.018%である。
Nb: 0.005-0.024%
Nb has the action of forming carbonitrides or carbides and refining the structure to suppress delayed fracture. In order to obtain such an effect, a content of 0.005% or more is required. However, if the content exceeds 0.024%, coarse carbonitride is precipitated and becomes a starting point of fracture, so that the toughness is lowered. For this reason, Nb was limited to 0.005 to 0.024% of range. In addition, Preferably, it is 0.005-0.018%.

B:0.0003〜0.0030%
Bは、粒界に偏析し、微量含有で焼入れ性を著しく向上する元素である。このような効果を得るためには、0.0003%以上の含有を必要とする。一方、0.0030%を超える含有は、溶接性を低下させる。このため、Bは、0.0003〜0.0030%の範囲に規定した。なお、好ましくは、0.0005〜0.0015%である。
B: 0.0003-0.0030%
B is an element that segregates at the grain boundary and significantly improves the hardenability when contained in a small amount. In order to acquire such an effect, 0.0003% or more needs to be contained. On the other hand, the content exceeding 0.0030% reduces weldability. For this reason, B was specified in the range of 0.0003 to 0.0030%. In addition, Preferably, it is 0.0005 to 0.0015%.

Al:0.1%以下
Alは、脱酸剤として作用するとともに、Nと結合して結晶粒微細化に寄与する元素である。このような効果は、0.015%以上の含有で認められるが、0.1%を超える多量の含有は、鋼の清浄度を低下させる。このため、Alは0.1%以下に規定した。
Cu:0.1〜1.0%、Ni:0.1〜2.0%、Cr:0.1〜1.0%、Mo:0.05〜1.0%、V:0.005〜0.10%、W:0.05〜1.0%のうちから選ばれた1種または2種以上
Cu、Ni、Cr、Mo、V、Wはいずれも、鋼の焼入れ性を向上させる元素であり、本発明では選択して1種または2種以上を含有する。
Al: 0.1% or less
Al is an element that acts as a deoxidizer and contributes to crystal grain refinement by combining with N. Such an effect is recognized at a content of 0.015% or more, but a large content exceeding 0.1% lowers the cleanliness of the steel. For this reason, Al was specified to be 0.1% or less.
Cu: 0.1-1.0%, Ni: 0.1-2.0%, Cr: 0.1-1.0%, Mo: 0.05-1.0%, V: 0.005-0.10%, W: 0.05-1.0% 2 or more types
Cu, Ni, Cr, Mo, V, and W are all elements that improve the hardenability of steel, and in the present invention, they are selected to contain one or more.

Cu:0.1〜1.0%
Cuは、鋼中に固溶して鋼の焼入れ性を向上させる元素であり、このような効果を得るためには0.1%以上の含有を必要とする。一方、1.0%を超える含有は、熱間加工性を低下させる。このため、含有する場合には、Cuは0.1〜1.0%の範囲に規定した。なお、好ましくは0.1〜0.5%である。
Cu: 0.1-1.0%
Cu is an element that improves the hardenability of steel by solid solution in steel, and in order to obtain such an effect, it needs to be contained in an amount of 0.1% or more. On the other hand, the content exceeding 1.0% decreases the hot workability. For this reason, when contained, Cu is specified in the range of 0.1 to 1.0%. In addition, Preferably it is 0.1 to 0.5%.

Ni:0.1〜2.0%
Niは、鋼中に固溶して焼入れ性を向上させる元素であり、このような効果は0.1%以上の含有で顕著となる。一方、2.0%を超える含有は、材料コストを著しく上昇させる。このため、含有する場合には、Niは0.1〜2.0%の範囲に規定した。なお、好ましくは0.1〜1.0%である。
Ni: 0.1-2.0%
Ni is an element that improves the hardenability by forming a solid solution in steel, and such an effect becomes remarkable when the content is 0.1% or more. On the other hand, the content exceeding 2.0% significantly increases the material cost. For this reason, when Ni is contained, it is specified in the range of 0.1 to 2.0%. In addition, Preferably it is 0.1 to 1.0%.

Cr:0.1〜1.0%
Crは、焼入れ性を向上させる元素であり、このような効果を得るためには、0.1%以上の含有を必要とする。一方、1.0%を超える含有は、溶接性を低下させる。このため、含有する場合には、Crは0.1〜1.0%の範囲に規定した。なお、より好ましくは0.1〜0.40%である。
Cr: 0.1-1.0%
Cr is an element that improves hardenability, and in order to obtain such an effect, it needs to be contained in an amount of 0.1% or more. On the other hand, the content exceeding 1.0% lowers the weldability. For this reason, when contained, Cr is specified in the range of 0.1 to 1.0%. In addition, More preferably, it is 0.1 to 0.40%.

Mo:0.05〜1.0%
Moは、同様に、焼入れ性を向上させる元素であり、このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.0%を超える含有は、溶接性を低下させる。そのため、含有する場合には、Moは0.05〜1.0%の範囲に規定した。なお、好ましくは、0.05〜0.40%である。
Mo: 0.05-1.0%
Similarly, Mo is an element that improves the hardenability. In order to obtain such an effect, the content of 0.05% or more is necessary. On the other hand, the content exceeding 1.0% lowers the weldability. Therefore, when contained, Mo is specified in the range of 0.05 to 1.0%. In addition, Preferably, it is 0.05 to 0.40%.

V:0.005〜0.10%
Vは、焼入れ性を向上させる元素であり、このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.10%を超える含有は、靭性、溶接性を低下させる。そのため、含有する場合には、Vは0.005〜0.10%の範囲に規定した。なお、好ましくは、0.010〜0.090%である。
V: 0.005-0.10%
V is an element that improves hardenability, and in order to obtain such an effect, a content of 0.005% or more is required. On the other hand, the content exceeding 0.10% reduces toughness and weldability. Therefore, when contained, V is specified in the range of 0.005 to 0.10%. In addition, Preferably, it is 0.010 to 0.090%.

W:0.05〜1.0%
Wは、同様に、焼入れ性を向上させる元素であり、このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.0%を超える含有は、溶接性を低下させる。そのため、含有する場合には、Wは0.05〜1.0%の範囲に規定した。なお、好ましくは、0.05〜0.40%である。
W: 0.05-1.0%
Similarly, W is an element that improves the hardenability. In order to obtain such an effect, the content of 0.05% or more is required. On the other hand, the content exceeding 1.0% lowers the weldability. Therefore, when contained, W is specified in the range of 0.05 to 1.0%. In addition, Preferably, it is 0.05 to 0.40%.

本発明では、上記した成分を、上記した範囲で、かつ次(1)式
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+W/10 ‥‥(1)
(ここで、 C、Mn、Cu、Ni、Cr、Mo、V、W:各元素の含有量(mass%))
で定義されるCeqが0.55%超0.60%以下の範囲となるように、調整して含有する。なお、(1)式に記載された元素を含有しない場合には、その元素の含有量を零として計算するものとする。
In the present invention, the above-described components are contained in the above-mentioned range and the following formula (1): Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 + W / 10 (1)
(Here, C, Mn, Cu, Ni, Cr, Mo, V, W: content of each element (mass%))
The content of Ceq is adjusted so that it is in the range of more than 0.55% and not more than 0.60%. In addition, when not containing the element described in (1) Formula, the content of the element shall be calculated as zero.

Ceq:0.55%超0.60%以下
Ceqが0.55%以下では、合金元素の含有量が少なすぎて、板厚32mmを超える厚肉鋼板の板厚中央部までの強度確保が困難となり、耐摩耗性が低下する。一方、0.60%を超えて大きくなると、溶接性が劣化しすぎて、溶接構造物とすることができにくくなる。このため、Ceqは0.55%超0.60%以下の範囲に限定した。
Ceq: More than 0.55% and 0.60% or less When Ceq is 0.55% or less, the alloy element content is too small, making it difficult to secure the strength of the thick steel plate over 32mm thick and the wear resistance. descend. On the other hand, if it exceeds 0.60%, the weldability deteriorates too much and it becomes difficult to obtain a welded structure. For this reason, Ceq was limited to the range of more than 0.55% and not more than 0.60%.

また、本発明では、上記した成分を、上記した範囲で、さらに上記したCeqの範囲で、かつ次(2)式
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1) ……(2)
(ここで、 C、Si、Mn、Cu、Ni、Cr、Mo、V、W:各元素の含有量(mass%))
定義されるDI*値が45以上となるように調整して含有する。なお、(2)式に記載された元素を含有しない場合には、その元素の含有量を零として計算するものとする。
Further, in the present invention, the above components are contained in the above range, in the above Ceq range, and in the following formula (2):
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (2)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, W: content of each element (mass%))
DI * value contains adjusted to be 45 or more in defined. In addition, when not containing the element described in (2) Formula, the content of the element shall be calculated as zero.

DI*値:45以上
DI*値は、耐摩耗性に関連する値であり、45未満の場合には、鋼板表面からの焼入れ深さが10mm未満となり、耐摩耗性が低下し、部材が所望の耐摩耗寿命を確保できなくなる。このため、DI*値は45以上に限定した。なお、好ましくは60以上である。
上記した成分が基本の成分であるが、本発明では、これら基本の組成に加えてさらに、選択元素として、Ca、REMの1種または2種を含有してもよい。
DI * value: 45 or more
The DI * value is related to wear resistance. If it is less than 45, the quenching depth from the steel sheet surface will be less than 10 mm, the wear resistance will be reduced, and the material will have the desired wear life. become unable. For this reason, the DI * value was limited to 45 or more. In addition, Preferably it is 60 or more.
Although the above-mentioned components are basic components, in the present invention, in addition to these basic compositions, one or two of Ca and REM may be further contained as selective elements.

Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%の1種または2種
Ca、REMはいずれも、粗大なMnSの形成を抑制し、硫化物の形態を球状の形態とし、鋼の延性、靭性を向上させる作用を有する元素であり、必要に応じて含有できる。このような効果を得るためにはCa:0.0005%以上、REM:0.0005%以上含有することが好ましいが、Ca:0.0050%、REM:0.0050%をそれぞれ超えて含有すると、介在物が多くなりすぎて、鋼板の清浄度を低下させる。このため、含有する場合には、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%の範囲にそれぞれ限定することが好ましい。
One or two of Ca: 0.0005 to 0.0050%, REM: 0.0005 to 0.0050%
Both Ca and REM are elements having an action of suppressing the formation of coarse MnS, making the sulfide form into a spherical form, and improving the ductility and toughness of the steel, and can be contained as necessary. In order to obtain such an effect, it is preferable to contain Ca: 0.0005% or more, REM: 0.0005% or more, but if it contains more than Ca: 0.0050% and REM: 0.0050%, the inclusions will increase too much. Reduce the cleanliness of the steel sheet. For this reason, when it contains, it is preferable to limit to Ca: 0.0005-0.0050% and REM: 0.0005-0.0050%, respectively.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、N:0.010%以下が許容できる。
本発明鋼板は、上記した組成と、さらに、基地相がマルテンサイト相を主体とする相である組織と、を有し、好ましくはブリネル硬度で450 HBW10/3000以上の表面硬さを有する。表面硬さが450 HBW10/3000未満では、耐摩耗性の低下が著しくなる。
The balance other than the above components is Fe and inevitable impurities. Note that N: 0.010% or less is acceptable as an inevitable impurity.
The steel sheet according to the present invention has the above-described composition and a structure in which the matrix phase is mainly a martensite phase, and preferably has a surface hardness of 450 HBW10 / 3000 or more in terms of Brinell hardness. When the surface hardness is less than 450 HBW10 / 3000, the wear resistance is significantly reduced.

本発明鋼板の基地相は、マルテンサイト相を主体とする相である。ここでいうマルテンサイト相を主体とする相とは、マルテンサイト相単独、あるいは少量の第二相を含むマルテンサイトを意味する。基地相にマルテンサイト相以外の第二相が所定量を超えて生成されると、所望の耐摩耗性を確保できなくなる。第二相としては、ベイナイト相が挙げられるが、所望の耐摩耗性を確保するためには、第二相を、合計で、体積率で10%以下に限定することが好ましい。   The base phase of the steel sheet of the present invention is a phase mainly composed of a martensite phase. The phase mainly composed of the martensite phase here means martensite alone or a martensite containing a small amount of the second phase. When the second phase other than the martensite phase is generated in the base phase in excess of a predetermined amount, desired wear resistance cannot be ensured. Examples of the second phase include a bainite phase. In order to ensure desired wear resistance, the second phase is preferably limited to a total volume ratio of 10% or less.

また、本発明鋼板の基地相は、平均結晶粒径が15μm以下の旧オーステナイト粒(旧γ粒)を有する相とすることが好ましい。旧γ粒の平均結晶粒径が15μmを超えて大きくなると、本発明における組成範囲では、遅れ破壊の発生を抑制することが難しくなる場合がある。このため、基地相は、旧γ粒径が15μm以下であるマルテンサイト相を主体とする相とすることが好ましい。   The base phase of the steel sheet of the present invention is preferably a phase having prior austenite grains (old γ grains) having an average crystal grain size of 15 μm or less. When the average crystal grain size of the old γ grains exceeds 15 μm, it may be difficult to suppress the occurrence of delayed fracture in the composition range of the present invention. For this reason, the base phase is preferably a phase mainly composed of a martensite phase having an old γ particle size of 15 μm or less.

つぎに、本発明鋼板の好ましい製造方法について説明する。
本発明鋼板は、鋼素材に、熱間圧延を施し所定板厚の厚鋼板とする熱延工程と、該熱間圧延終了後直ちに、あるいは熱間圧延終了後空冷したのち再加熱して、該厚鋼板に、焼入れ処理を施す焼入れ処理工程と、を施して、製造される。
本発明の製造方法では、上記した組成の溶鋼を、公知の溶製方法で溶製し、連続鋳造法あるいは造塊−分塊圧延法により、所望寸法のスラブ等にした鋼素材を出発素材として使用することが好ましい。
Below, the preferable manufacturing method of this invention steel plate is demonstrated.
The steel sheet of the present invention is a hot rolling process in which a steel material is subjected to hot rolling to form a thick steel sheet, and immediately after completion of the hot rolling or after air cooling after completion of hot rolling, reheating, The thick steel plate is manufactured by subjecting it to a quenching treatment step for quenching.
In the production method of the present invention, a molten steel having the above composition is melted by a known melting method, and a steel material made into a slab having a desired size by a continuous casting method or an ingot-bundling rolling method is used as a starting material. It is preferable to use it.

ついで、鋼素材は、冷却されることなく直接、または冷却され950〜1250℃に再加熱されたのち、熱間圧延を施され、所望板厚の厚鋼板とされる熱延工程を施される。熱間圧延の条件は、所望の寸法形状の厚鋼板とすることができればよく、とくに限定されないが、圧延終了後、ただちに焼入れ処理を行う直接焼入れの場合には、圧延終了温度は800℃以上とすることが好ましい。圧延終了温度が800℃未満では、所望の基地相を確保できなくなる。   Next, the steel material is directly cooled without being cooled, or after being cooled and reheated to 950 to 1250 ° C., and then subjected to hot rolling to obtain a thick steel plate having a desired thickness. . The hot rolling condition is not particularly limited as long as it can be a thick steel plate having a desired size and shape. However, in the case of direct quenching in which a quenching process is performed immediately after completion of rolling, the rolling end temperature is 800 ° C. or higher. It is preferable to do. If the rolling end temperature is less than 800 ° C., a desired base phase cannot be secured.

熱間圧延終了後、厚鋼板は直ちに焼入れする、直接焼入れ処理を施す焼入れ処理工程を施される。あるいは、熱間圧延終了後、空冷したのち、再加熱し焼入れする再加熱焼入れ処理としてもよい。なお、再加熱焼入れ処理の場合には、加熱温度:850〜950℃とすることが好ましい。加熱温度が850℃未満では、十分な焼入れ処理を行うことができず、基地相を、マルテンサイト相を主体とする相とすることができない。一方、950℃を超えて再加熱温度が高温となると、オーステナイト粒が粗大化しすぎて、遅れ破壊の発生を抑制できにくくなる。このため、焼入れ処理のための再加熱温度は850〜950℃の範囲とすることが好ましい。   After the hot rolling is finished, the thick steel plate is immediately quenched, and is subjected to a quenching process for direct quenching. Or it is good also as a reheating quenching process which reheats and quenches after air-cooling after completion | finish of hot rolling. In addition, in the case of a reheating quenching process, it is preferable to set it as heating temperature: 850-950 degreeC. When the heating temperature is less than 850 ° C., sufficient quenching cannot be performed, and the base phase cannot be a phase mainly composed of the martensite phase. On the other hand, when the reheating temperature is higher than 950 ° C., the austenite grains become too coarse and it becomes difficult to suppress the occurrence of delayed fracture. For this reason, it is preferable to make the reheating temperature for a quenching process into the range of 850-950 degreeC.

なお、上記した焼入れ処理後に、300℃以下の焼戻処理を施してもなんら問題はない。
かくして得られた厚鋼板は、耐摩耗鋼板として、耐摩耗性に優れるうえ、溶断、溶接等の熱影響を伴う加工を施しても、低温焼戻脆化割れの発生も認められず、耐低温焼戻脆化割れ性に優れた鋼板として、使用可能である。
以下、実施例に基づいてさらに本発明を詳細に説明する。
Note that there is no problem even if a tempering treatment at 300 ° C. or lower is performed after the above-described quenching treatment.
The thick steel plate thus obtained has excellent wear resistance as a wear-resistant steel plate, and even when subjected to thermal effects such as fusing and welding, low temperature temper embrittlement cracking is not observed, It can be used as a steel plate excellent in temper embrittlement cracking.
Hereinafter, the present invention will be described in more detail based on examples.

表1に示す組成の溶鋼を、真空溶解炉で溶製し、小型鋼塊(150kg)(鋼素材)とした。これら鋼素材を、1050〜1250℃に加熱したのち、圧延終了温度が表2に示す熱間圧延を行う熱延工程を施し、熱間圧延終了後直ちに、焼入れる直接焼入れ処理(DQ)を施した。なお、一部の鋼板では、熱間圧延終了後、空冷したのち、900℃に再加熱し、焼入れる再加熱焼入れ処理(RQ)を施した。   Molten steel having the composition shown in Table 1 was melted in a vacuum melting furnace to obtain a small steel ingot (150 kg) (steel material). These steel materials are heated to 1050 to 1250 ° C and then subjected to a hot rolling process in which the rolling end temperature is as shown in Table 2 and subjected to a direct quenching process (DQ) immediately after the end of the hot rolling. did. Note that some steel plates were air-cooled after the hot rolling was completed, and then reheated to 900 ° C. and subjected to quenching reheating and quenching (RQ).

得られた厚鋼板から試験片を採取し、組織観察、表面硬さ試験、T形隅肉溶接割れ試験を実施した。試験方法は次のとおりとした。
(1)組織観察
得られた厚鋼板から組織観察用試験片を採取し、研磨し、ナイタール腐食して、板厚方向1/4位置について、光学顕微鏡(倍率:400倍)または走査型電子顕微鏡(倍率:1000倍)を用いて、基地相組織の種類、その組織分率を測定した。
Test pieces were collected from the obtained thick steel plates and subjected to structure observation, surface hardness test, and T-shaped fillet weld cracking test. The test method was as follows.
(1) Microstructure observation A specimen for microstructural observation is collected from the obtained thick steel plate, polished, and subjected to nital corrosion, and an optical microscope (magnification: 400 times) or scanning electron microscope is used for a 1/4 position in the thickness direction. (Magnification: 1000 times) was used to measure the type of base phase tissue and its tissue fraction.

また、採取した組織観察用試験片を研磨し、ピクリン酸腐食を施して、旧オーステナイト(γ)粒界を現出し、撮像して、画像解析装置を用いて、旧γ粒の平均粒径を測定した。旧γ粒の平均粒径は、各粒の面積を測定し、同面積から円相当直径を算出し、得られた円相当直径を算術平均し、その平均値をその鋼板の旧γ粒の平均結晶粒径とした。
(2)表面硬さ試験
得られた厚鋼板について、JIS Z 2243の規定に準拠して、ブリネル硬さ試験機(試験力:29.42kN)で、10mm径のタングステン硬球を使用し、鋼板表面の硬さHBW10/3000 を測定した。なお、測定位置は、ランダムに選んだ5点とし、5点の平均値を求め、その鋼板の表面硬さとした。
In addition, the collected specimens for structure observation are polished, subjected to picric acid corrosion, revealing old austenite (γ) grain boundaries, imaged, and using an image analyzer, the average particle diameter of the old γ grains is determined. It was measured. The average grain size of the old γ grains is determined by measuring the area of each grain, calculating the equivalent circle diameter from the same area, arithmetically averaging the obtained equivalent circle diameters, and calculating the average value of the old γ grains in the steel sheet. The crystal grain size was used.
(2) Surface hardness test Using the 10mm diameter tungsten hard ball with a Brinell hardness tester (test force: 29.42kN) in accordance with the provisions of JIS Z 2243 for the obtained thick steel plate, The hardness HBW10 / 3000 was measured. The measurement positions were 5 points selected at random, and the average value of the 5 points was determined as the surface hardness of the steel sheet.

(3)T形隅肉溶接割れ試験
得られた鋼板から試験材を採取し、T形隅肉溶接割れ試験を実施した。採取した試験材を、図2に示すようなT形隅肉溶接割れ試験体に組み立て、試験溶接部(長さ:200mm)に、予熱することなく、入熱13kJ/cmの炭酸ガス溶接で、3層6パスの隅肉溶接を行なった。溶接後、48時間経過したのち、試験溶接部近傍について、遅れ割れ発生の有無を試験体5断面を切断して調査した。
(3) T-shaped fillet weld crack test A test material was sampled from the obtained steel sheet, and a T-shaped fillet weld crack test was performed. The collected test material is assembled into a T-shaped fillet weld crack specimen as shown in Fig. 2, and the test weld (length: 200 mm) is welded with carbon dioxide gas with a heat input of 13 kJ / cm without preheating. Three-layer six-pass fillet welding was performed. After 48 hours from welding, the presence or absence of delayed cracking in the vicinity of the test weld was examined by cutting the cross section of the specimen 5.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0005655356
Figure 0005655356

Figure 0005655356
Figure 0005655356

Figure 0005655356
Figure 0005655356

本発明例(鋼板No.4,6,8,10)はいずれも、基地相がマルテンサイト相を主体とする相で、旧γ粒径が15μm以下である組織を有し、T形隅肉溶接割れ試験における割れ(遅れ破壊)の発生もなく、さらに表面硬さが450 HBW10/3000以上の高い表面硬さを有し、耐摩耗性に優れ、かつ耐低温焼戻脆化割れ性にも優れた鋼板となっている。
一方、本発明の範囲を外れる比較例(鋼板No.11〜No.15)は、表面硬さが450 HBW10/3000未満と低く耐摩耗性が低下しているか、あるいは、T形隅肉溶接割れ試験における割れ(遅れ破壊)が発生し、耐低温焼戻脆化割れ性が低下した鋼板となっている。
Examples of the present invention (steel plates No. 4, 6, 8, 10) are all phases in which the base phase is mainly a martensite phase, and the former γ grain size is 15 μm or less. No cracking (delayed fracture) occurs in the weld cracking test, and the surface hardness is higher than 450 HBW10 / 3000, providing excellent wear resistance and low temperature temper embrittlement cracking resistance. It is an excellent steel plate.
On the other hand, the comparative examples (steel plates No. 11 to No. 15) outside the scope of the present invention have a surface hardness of less than 450 HBW10 / 3000 and low wear resistance, or a T-shaped fillet weld crack. Cracking (delayed fracture) occurred in the test, and the steel sheet has low-temperature tempering embrittlement cracking resistance.

Claims (4)

mass%で、
C:0.31〜0.35%、 Si:0.05〜1.0%、
Mn:0.80%以下、 P:0.010%以下、
S:0.005%以下、 Ti:0.005〜0.05%、
Nb:0.005〜0.024%、 B:0.0003〜0.0030%、
Al:0.1%以下
と、さらにCu:0.1〜1.0%、Ni:0.1〜2.0%、Cr:0.1〜1.0%、Mo:0.05〜1.0%、V:0.005〜0.10%、W:0.05〜1.0%のうちから選ばれた1種または2種以上を、下記(1)式で定義されるCeqが0.55%超0.60%以下で、かつ下記(2)式定義されるDI*値が45以上を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、基地相がマルテンサイト相を主体とする相である組織と、を有することを特徴とする耐低温焼戻脆化割れ性に優れた耐摩耗鋼板。

Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5+W/10 ‥‥(1)
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1) ……(2)
ここで、 C、Si、Mn、Cu、Ni、Cr、Mo、V、W:各元素の含有量(mass%)
mass%
C: 0.31 to 0.35%, Si: 0.05 to 1.0%,
Mn: 0.80% or less, P: 0.010% or less,
S: 0.005% or less, Ti: 0.005-0.05%,
Nb: 0.005-0.024%, B: 0.0003-0.0030%,
Al: 0.1% or less, further Cu: 0.1-1.0%, Ni: 0.1-2.0%, Cr: 0.1-1.0%, Mo: 0.05-1.0%, V: 0.005-0.10%, W: 0.05-1.0% one or two or more species selected inner shell, the following (1) Ceq is less than or equal to 0.55% than 0.60%, which is defined by the equation, and the following (2) satisfies DI * value 45 or greater as defined in formula And having a composition comprising the balance Fe and inevitable impurities and a structure in which the matrix phase is mainly a martensite phase, and excellent in low-temperature tempering embrittlement cracking resistance Wear-resistant steel plate.
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 + W / 10 (1)
DI * = 33.85 × (0.1 × C) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo + 1) × (1.75 × V + 1) × (1.5 × W + 1) (2)
Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, W: Content of each element (mass%)
前記組成に加えてさらに、mass%で、Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%の1種または2種を含有する組成とすることを特徴とする請求項1に記載の耐摩耗鋼板。   The wear-resistant steel sheet according to claim 1, wherein in addition to the composition, the composition further includes one or two of mass%, Ca: 0.0005 to 0.0050%, and REM: 0.0005 to 0.0050%. . 前記組織が、旧オーステナイト粒径が15μm以下であることを特徴とする請求項1または2に記載の耐摩耗鋼板。   The wear-resistant steel sheet according to claim 1 or 2, wherein the structure has a prior austenite grain size of 15 µm or less. 表面硬さが、450 HBW10/3000以上であることを特徴とする請求項1ないし3のいずれかに記載の耐摩耗鋼板。
The wear-resistant steel sheet according to any one of claims 1 to 3, wherein the surface hardness is 450 HBW10 / 3000 or more.
JP2010085677A 2010-04-02 2010-04-02 Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking Active JP5655356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085677A JP5655356B2 (en) 2010-04-02 2010-04-02 Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085677A JP5655356B2 (en) 2010-04-02 2010-04-02 Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking

Publications (2)

Publication Number Publication Date
JP2011214120A JP2011214120A (en) 2011-10-27
JP5655356B2 true JP5655356B2 (en) 2015-01-21

Family

ID=44944158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085677A Active JP5655356B2 (en) 2010-04-02 2010-04-02 Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking

Country Status (1)

Country Link
JP (1) JP5655356B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560272B (en) * 2011-11-25 2014-01-22 宝山钢铁股份有限公司 Ultrahigh-strength abrasion-resistant steel plate and manufacturing method thereof
CN102653838A (en) * 2012-05-10 2012-09-05 林进丰 Method for preparing wear-resisting cast-steel bucket teeth
JP5966730B2 (en) * 2012-07-30 2016-08-10 Jfeスチール株式会社 Abrasion resistant steel plate with excellent impact wear resistance and method for producing the same
CN102876969B (en) 2012-07-31 2015-03-04 宝山钢铁股份有限公司 Super-strength high-toughness wear resistant steel plate and production method thereof
KR20150038590A (en) * 2012-09-19 2015-04-08 제이에프이 스틸 가부시키가이샤 Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
CN103060715B (en) 2013-01-22 2015-08-26 宝山钢铁股份有限公司 A kind of ultra-high strength and toughness steel plate and manufacture method thereof with low yielding ratio
EP3098331B1 (en) * 2014-01-28 2018-09-26 Jfe Steel Corporation Wear-resistant steel plate and process for producing same
JP6135697B2 (en) * 2014-03-04 2017-05-31 Jfeスチール株式会社 Abrasion-resistant steel sheet having excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties and method for producing the same
JP6554844B2 (en) * 2015-03-18 2019-08-07 日本製鉄株式会社 Manufacturing method of high-pressure hydrogen container
EP3446810B1 (en) * 2016-04-19 2020-06-10 JFE Steel Corporation Abrasion-resistant steel plate and method for producing abrasion-resistant steel plate
KR101899686B1 (en) * 2016-12-22 2018-10-04 주식회사 포스코 Wear resistant steel havinh high hardness and method for manufacturing the same
JP6607209B2 (en) * 2017-02-03 2019-11-20 Jfeスチール株式会社 Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP6729522B2 (en) * 2017-08-30 2020-07-22 Jfeスチール株式会社 Thick wear-resistant steel plate, method of manufacturing the same, and method of manufacturing wear-resistant member
CN108034886B (en) * 2017-11-15 2019-12-27 东北大学 Low-density light wear-resistant steel plate for dumper carriage and preparation method thereof
KR102031443B1 (en) 2017-12-22 2019-11-08 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR102175570B1 (en) * 2018-09-27 2020-11-06 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
WO2020250009A1 (en) * 2019-06-12 2020-12-17 Arcelormittal A cold rolled martensitic steel and a method of martensitic steel thereof
CN110343952A (en) * 2019-07-02 2019-10-18 唐山中厚板材有限公司 A kind of hardness is not less than the wear-resisting steel plate and its production method of 600HBW
CN110499456B (en) * 2019-07-31 2021-06-04 江阴兴澄特种钢铁有限公司 Wear-resistant steel with excellent surface quality and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172514A (en) * 1987-12-25 1989-07-07 Nippon Steel Corp Manufacture of high hardness, high ductility and wear resistant steel having excellent heat crack resistance
JPH0841535A (en) * 1994-07-29 1996-02-13 Nippon Steel Corp Method for producing high hardness wear resistant steel with excellent low temperature toughness
JP3273404B2 (en) * 1995-10-24 2002-04-08 新日本製鐵株式会社 Manufacturing method of thick high hardness and high toughness wear resistant steel
JP2003171730A (en) * 1999-12-08 2003-06-20 Nkk Corp Wear resistant steel having delayed fracture resistance, and production method therefor
JP4846308B2 (en) * 2005-09-09 2011-12-28 新日本製鐵株式会社 High tough wear-resistant steel with little change in hardness during use and method for producing the same
JP5369458B2 (en) * 2008-03-17 2013-12-18 Jfeスチール株式会社 High strength steel with excellent delayed fracture resistance

Also Published As

Publication number Publication date
JP2011214120A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5655356B2 (en) Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking
JP5866820B2 (en) Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance
JP5648769B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
JP6102072B2 (en) Abrasion resistant steel plate with excellent stress corrosion cracking resistance and method for producing the same
CN104508166B (en) Wear-resisting steel plate and manufacture method thereof
JP5145804B2 (en) Abrasion-resistant steel plate with excellent low-temperature tempering embrittlement cracking properties
JP5145805B2 (en) Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
WO2012133911A1 (en) Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
JP5145803B2 (en) Wear-resistant steel plate with excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties
JP6711434B2 (en) Abrasion resistant steel plate and manufacturing method thereof
JP4899874B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
KR20150038590A (en) Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
JP5683327B2 (en) Wear-resistant steel plate with excellent low-temperature toughness
KR20130025947A (en) Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
JP7226598B2 (en) Abrasion-resistant steel plate and manufacturing method thereof
JP4735167B2 (en) Method for producing wear-resistant steel sheet with excellent low-temperature toughness
KR20160113683A (en) Wear-resistant steel plate and process for producing same
JP4735191B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP6245220B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
JP7211530B2 (en) WEAR RESISTANT STEEL AND METHOD FOR MANUFACTURING WEAR RESISTANT STEEL
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP2007197813A (en) Wear-resistant steel plate with excellent bending workability
JP4894296B2 (en) Wear-resistant steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R150 Certificate of patent or registration of utility model

Ref document number: 5655356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250