JP5655313B2 - Thermoacoustic engine - Google Patents
Thermoacoustic engine Download PDFInfo
- Publication number
- JP5655313B2 JP5655313B2 JP2010014590A JP2010014590A JP5655313B2 JP 5655313 B2 JP5655313 B2 JP 5655313B2 JP 2010014590 A JP2010014590 A JP 2010014590A JP 2010014590 A JP2010014590 A JP 2010014590A JP 5655313 B2 JP5655313 B2 JP 5655313B2
- Authority
- JP
- Japan
- Prior art keywords
- sound field
- prime mover
- heater
- adjustment mechanism
- loop
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 claims description 91
- 230000003187 abdominal effect Effects 0.000 claims description 15
- 210000001015 abdomen Anatomy 0.000 claims description 4
- 230000001939 inductive effect Effects 0.000 claims 4
- 239000012530 fluid Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- 230000010355 oscillation Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 239000003570 air Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
Landscapes
- Exhaust Silencers (AREA)
Description
本発明は、ループ管に原動機と受動機が設けられた熱音響機関に係り、エネルギ変換効率が向上する熱音響機関に関する。 The present invention relates to a thermoacoustic engine in which a prime mover and a passive machine are provided in a loop tube, and relates to a thermoacoustic engine that improves energy conversion efficiency.
廃熱からエネルギを取り出すためにスターリングエンジンの開発研究が活発に行われている。スターリングエンジンの形式には、α型、β型、γ型、フリーピストン型などがある。これに対し、最近では、米国などにおいて、構造が単純でピストンやクランクで構成された可動部を有さない熱音響機関の開発研究が活発に行われるようになった。 In order to extract energy from waste heat, research and development of Stirling engines have been actively conducted. Stirling engine types include α type, β type, γ type, and free piston type. On the other hand, in recent years, research and development of thermoacoustic engines that have a simple structure and do not have moving parts composed of pistons and cranks have been actively conducted in the United States and the like.
熱音響機関は、管の軸方向に、高温熱源との熱交換を行う加熱器と、低温熱源との熱交換を行う冷却器と、これら加熱器と冷却器との間で温度勾配を保持する再生器とを配置して構成される。管内の作動流体をある場所で局部的に加熱し、別のある場所で冷却すると、熱エネルギの一部が力学的エネルギである音響エネルギに変換されて管内の作動流体が自励振動を起こし、管内に音響振動すなわち音波が発生する。この作用は、熱力学的には、プライムムーバ(原動機)と見ることができる。この原理で熱エネルギを力学的エネルギにエネルギ変換を行うものが熱音響機関である。 The thermoacoustic engine maintains a temperature gradient between the heater and the cooler in the axial direction of the tube, a heater that exchanges heat with the high-temperature heat source, a cooler that exchanges heat with the low-temperature heat source, and the like. A regenerator is arranged. When the working fluid in the tube is locally heated in one place and cooled in another, a part of the heat energy is converted into acoustic energy, which is mechanical energy, and the working fluid in the tube undergoes self-excited vibration, Acoustic vibration, that is, sound waves are generated in the tube. This action can be seen thermodynamically as a prime mover. A thermoacoustic engine converts energy from heat energy into mechanical energy based on this principle.
図4に示されるように、従来の熱音響機関41は、円筒管42からなるループ管43に、加熱器44と再生器45と冷却器46とが順に並べられた原動機47が設置されたものである。 As shown in FIG. 4, the conventional thermoacoustic engine 41 has a motor 47 in which a heater 44, a regenerator 45, and a cooler 46 are arranged in order on a loop tube 43 including a cylindrical tube 42. It is.
この熱音響機関41に、作動流体の振動を熱エネルギに変換する受動機(例えば、冷凍機、冷却機)を組み込むと、冷凍装置(冷却装置)が構成される。 When a passive machine (for example, a refrigerator or a cooler) that converts the vibration of the working fluid into heat energy is incorporated in the thermoacoustic engine 41, a refrigeration apparatus (cooling apparatus) is configured.
図5に示されるように、従来の熱音響機関51は、円筒管42からなるループ管43に、加熱器44と再生器45と冷却器46とが順に並べられた原動機47と、それとは別の加熱器54と再生器55と冷却器56とが原動機47と同じ周回方向に順に並べられた受動機57とが設置されたものである。 As shown in FIG. 5, the conventional thermoacoustic engine 51 includes a prime mover 47 in which a heater 44, a regenerator 45, and a cooler 46 are arranged in order on a loop tube 43 formed of a cylindrical tube 42. A passive machine 57 in which a heater 54, a regenerator 55, and a cooler 56 are sequentially arranged in the same circumferential direction as the prime mover 47 is installed.
このような熱音響機関51は、建造物や移動体において居室の冷房装置や物品の冷蔵・冷凍装置に応用される。例えば、自動車では、原動機47においてエンジンの廃熱を加熱器44に入力し、大気で冷却器46を冷却し、受動機57の加熱器54において大気と熱交換することで、受動機57の冷却器56から大気より低い温度の冷熱出力を取り出すことができる。つまり、廃熱を利用し、しかも可動部品のないクーラが実現される。 Such a thermoacoustic engine 51 is applied to a cooling device for a living room or a refrigeration / freezing device for articles in a building or a moving body. For example, in an automobile, the engine 47 heat is input to the heater 44 in the prime mover 47, the cooler 46 is cooled in the atmosphere, and the heater 54 of the passive machine 57 exchanges heat with the atmosphere, thereby cooling the passive machine 57. The cold output having a temperature lower than the atmosphere can be taken out from the vessel 56. That is, a cooler using waste heat and having no moving parts is realized.
ところで、本発明者らは、図4のようなループ管43に原動機47のみが設けられた熱音響機関41において、エネルギ変換効率を向上させて発振温度差(音響振動の発生に最低必要な加熱器と冷却器の温度差)を小さくするための構成を提案している。 By the way, in the thermoacoustic engine 41 in which only the prime mover 47 is provided in the loop tube 43 as shown in FIG. 4, the present inventors improve the energy conversion efficiency and increase the oscillation temperature difference (the minimum heating necessary for generating the acoustic vibration). Proposed a configuration for reducing the temperature difference between the condenser and the cooler.
すなわち、図6(a)に示される熱音響機関61は、ループ管43に原動機47のみが設けられた熱音響機関61において、ループ管43に拡大管62が設けられたものである。拡大管62とは、図4のループ管43が全長にわたり直径が一定、すなわち作動流体の流路断面積が一定であるのに対し、ループ管43の一部に円筒管42より直径が大きい円筒管63を挿入して、そこだけ作動流体の流路断面積を大きくしたものである。 That is, the thermoacoustic engine 61 shown in FIG. 6 (a) is a thermoacoustic engine 61 in which only the prime mover 47 is provided in the loop pipe 43, and the expansion pipe 62 is provided in the loop pipe 43. The expanded pipe 62 is a cylinder whose diameter is constant over the entire length of the loop pipe 43 in FIG. The pipe 63 is inserted, and the flow path cross-sectional area of the working fluid is increased accordingly.
図7(a)に示される熱音響機関71は、ループ管43に原動機47のみが設けられた熱音響機関71において、ループ管43に分岐管72が設けられたものである。分岐管72とは、図4のループ管43が一路に閉じているのに対し、ループ管43の一部において円筒管42と同じ直径の円筒管73を分岐させてから合流させたものである。 The thermoacoustic engine 71 shown in FIG. 7A is a thermoacoustic engine 71 in which only the prime mover 47 is provided in the loop pipe 43, and the branch pipe 72 is provided in the loop pipe 43. The branch pipe 72 is obtained by branching a cylindrical pipe 73 having the same diameter as that of the cylindrical pipe 42 in a part of the loop pipe 43 while the loop pipe 43 of FIG. .
図8(a)に示される熱音響機関81は、ループ管43に原動機47のみが設けられた熱音響機関81において、ループ管43に縮小管82が設けられたものである。縮小管82とは、図4のループ管が全長にわたり直径が一定、すなわち作動流体の流路断面積が一定であるのに対し、ループ管43の一部に円筒管42より直径が小さい円筒管83を挿入して、そこだけ作動流体の流路断面積を小さくしたものである。 A thermoacoustic engine 81 shown in FIG. 8A is a thermoacoustic engine 81 in which only the prime mover 47 is provided in the loop tube 43, and a reduction tube 82 is provided in the loop tube 43. The reduced tube 82 has a constant diameter over the entire length of the loop tube of FIG. 4, that is, a constant cross-sectional area of the flow path of the working fluid, whereas a cylindrical tube having a smaller diameter than the cylindrical tube 42 is part of the loop tube 43. 83 is inserted, and the flow passage cross-sectional area of the working fluid is reduced accordingly.
図9(a)に示される熱音響機関91は、ループ管43に原動機47のみが設けられた熱音響機関91において、ループ管43に共鳴管92が設けられたものである。共鳴管92とは、図4のループ管43が一路に閉じているのに対し、ループ管43の一部において円筒管42と同じ直径の円筒管93を分岐させて真っ直ぐ延ばしたものである。 A thermoacoustic engine 91 shown in FIG. 9A is a thermoacoustic engine 91 in which only the prime mover 47 is provided in the loop tube 43, and a resonance tube 92 is provided in the loop tube 43. The resonance tube 92 is a tube in which the loop tube 43 in FIG. 4 is closed in one path, but a cylindrical tube 93 having the same diameter as that of the cylindrical tube 42 is branched in a part of the loop tube 43 and straightly extended.
図10(a)に示される熱音響機関101は、ループ管43に原動機47のみが設けられた熱音響機関101において、ループ管43に作動流体の振動方向に振動自在に構成された振動子102が設けられたものである。振動子102とは、適宜な強さのバネで軸方向移動支持された適宜な質量の剛体、又は適宜な弾性を有する固定された弾性膜である。 The thermoacoustic engine 101 shown in FIG. 10A is a thermoacoustic engine 101 in which only the prime mover 47 is provided in the loop tube 43. The vibrator 102 is configured to vibrate freely in the vibration direction of the working fluid in the loop tube 43. Is provided. The vibrator 102 is a rigid body having an appropriate mass that is axially moved and supported by a spring having an appropriate strength, or a fixed elastic film having an appropriate elasticity.
図6(a)の熱音響機関61は、拡大管62の箇所において作動流体の流路断面積が他より大きくなっているために、作動流体の流速が下がり、拡大管62の箇所に流速の節(=音圧の腹)が生じる。この結果、熱交換器(加熱器、冷却器)が音圧の腹からはずれてエネルギ変換効率が向上し、発振開始温度が低下する。 In the thermoacoustic engine 61 of FIG. 6A, the flow rate of the working fluid is larger than the others at the location of the expansion tube 62, so the flow rate of the working fluid decreases, and the flow rate of the working fluid is reduced at the location of the expansion tube 62. A node (= belly of sound pressure) occurs. As a result, the heat exchanger (heater, cooler) is removed from the antinode of the sound pressure, the energy conversion efficiency is improved, and the oscillation start temperature is lowered.
図7(a)の熱音響機関71においても、分岐管72の箇所に音圧の腹が生じることから熱交換器が音圧の腹からはずれて、エネルギ変換効率が向上する。 Also in the thermoacoustic engine 71 of FIG. 7A, since the antinode of the sound pressure is generated at the branch pipe 72, the heat exchanger is detached from the antinode of the sound pressure, and the energy conversion efficiency is improved.
図10(a)の熱音響機関101においても、振動子102の箇所に音圧の腹が生じることから熱交換器が音圧の腹からはずれて、エネルギ変換効率が向上する。 Also in the thermoacoustic engine 101 of FIG. 10A, since the antinode of the sound pressure is generated at the position of the vibrator 102, the heat exchanger is detached from the antinode of the sound pressure, and the energy conversion efficiency is improved.
拡大管62と分岐管72と振動子102は、音圧の腹を誘引することにより、原動機47における定在波の位相を調整するという効果が同じであり、これらを総括して腹型音場調整機構と呼ぶことができる。 The expansion pipe 62, the branch pipe 72, and the vibrator 102 have the same effect of adjusting the phase of the standing wave in the prime mover 47 by attracting the antinodes of the sound pressure. It can be called an adjustment mechanism.
図6(b)、図7(b)、図10(b)に示されるように、腹型音場調整機構を設置する好適箇所には共通した所定の規則があり、図示された複数の区画A1,A2のいずれか1つに腹型音場調整機構を設置するとよい効果が得られる。 As shown in FIGS. 6 (b), 7 (b), and 10 (b), there is a common predetermined rule in a suitable place where the abdominal sound field adjusting mechanism is installed, and the plurality of illustrated sections A good effect can be obtained by installing an abdominal sound field adjusting mechanism in any one of A1 and A2.
一方、図8(a)の熱音響機関81は、縮小管82の箇所において作動流体の流路断面積が他より小さくなっているために、作動流体の流速が上がり、縮小管82の箇所に流速の腹(=音圧の節)が生じる。この結果、熱交換器(加熱器、冷却器)が音圧の腹からはずれてエネルギ変換効率が向上し、発振開始温度が低下する。 On the other hand, in the thermoacoustic engine 81 of FIG. 8A, since the flow passage cross-sectional area of the working fluid is smaller than the others at the location of the reduction tube 82, the flow velocity of the working fluid increases, and the location of the reduction tube 82 is increased. The belly of the flow velocity (= node of sound pressure) occurs. As a result, the heat exchanger (heater, cooler) is removed from the antinode of the sound pressure, the energy conversion efficiency is improved, and the oscillation start temperature is lowered.
図9(a)の熱音響機関91においても、共鳴管92の箇所に音圧の節が生じることから熱交換器が音圧の腹からはずれて、エネルギ変換効率が向上する。 Also in the thermoacoustic engine 91 of FIG. 9A, since a node of the sound pressure is generated at the location of the resonance tube 92, the heat exchanger is removed from the antinode of the sound pressure, and the energy conversion efficiency is improved.
縮小管82と共鳴管92は、音圧の節を誘引することにより、原動機47における定在波の位相を調整するという効果が同じであり、これらを総括して節型音場調整機構と呼ぶことができる。 The reduction tube 82 and the resonance tube 92 have the same effect of adjusting the phase of the standing wave in the prime mover 47 by attracting the nodes of the sound pressure. These are collectively referred to as a nodal sound field adjustment mechanism. be able to.
図8(b)、図9(b)に示されるように、節型音場調整機構を設置する好適箇所には共通した所定の規則があり、図示された複数の区画B1,B2のいずれか1つに腹型音場調整機構を設置すると効果が大である。 As shown in FIGS. 8 (b) and 9 (b), there is a predetermined rule common to a suitable location where the knot type sound field adjusting mechanism is installed, and one of the plurality of sections B1 and B2 shown in FIG. If one is provided with an abdominal sound field adjustment mechanism, the effect is great.
以上をまとめると、図4のようなループ管に原動機のみが設けられた熱音響機関では、熱交換器(加熱器、冷却器)が必ず音圧の腹に位置してしまい、音圧の腹では流体変位が微少であるため、大きな熱交換を行うことができない。これに対して、図6(a)〜図9(a)及び図10(a)のように、音場調整機構を1箇所に設けることで、擬似的に音圧の腹や節を形成して、音圧の腹を熱交換器からずらし、熱交換器における流体変位を大きく保つことができる。この結果、エネルギ変換効率が向上する。 In summary, in a thermoacoustic engine in which only a prime mover is provided in a loop pipe as shown in FIG. 4, the heat exchanger (heater, cooler) is always located at the antinode of the sound pressure. However, since the fluid displacement is very small, large heat exchange cannot be performed. On the other hand, as shown in FIGS. 6 (a) to 9 (a) and 10 (a), by providing the sound field adjustment mechanism at one place, a pseudo sound pressure antinode or node is formed. Thus, the antinode of the sound pressure can be shifted from the heat exchanger, and the fluid displacement in the heat exchanger can be kept large. As a result, energy conversion efficiency is improved.
これを踏まえ、次の段階として、本発明者らは、図5のようなループ管に原動機と受動機が設けられた熱音響機関に対しては、音場調整機構をどのように設けるとよいか検討を開始した。ところが、ループ管に原動機と受動機が設けられた熱音響機関では、音場調整機構を1箇所のみに設けただけでは、発振しないことが実験により確かめられた。これは、受動機が音場に与える影響が大きいために、音場調整機構による音場調整が十分でなくなるためと考えられる。 Based on this, as a next step, the present inventors should provide a sound field adjustment mechanism for a thermoacoustic engine in which a prime mover and a passive machine are provided in a loop tube as shown in FIG. I started to study. However, in a thermoacoustic engine in which a prime mover and a passive machine are provided in a loop tube, it has been experimentally confirmed that oscillation does not occur if the sound field adjusting mechanism is provided only in one place. This is presumably because the sound field adjustment by the sound field adjustment mechanism is not sufficient because the influence of the passive device on the sound field is large.
そこで、本発明の目的は、上記課題を解決し、エネルギ変換効率が向上する熱音響機関を提供することにある。 Then, the objective of this invention is providing the thermoacoustic engine which solves the said subject and energy conversion efficiency improves.
上記目的を達成するための本発明は、ループ管に加熱器と再生器と冷却器とが順に並べられた原動機と別の加熱器と再生器と冷却器とが順に並べられた受動機とが設置された熱音響機関において、前記原動機から前記ループ管の全長の50%の位置に前記受動機が配置され、前記原動機から前記加熱器の方向に前記受動機までの間で、且つ前記ループ管の全長を20等分してなる区画の一つの箇所であって、音圧の腹又は音圧の節を前記原動機からずらす位置に第1の音場調整機構が配置され、前記受動機から前記別の加熱器の方向に前記原動機までの間で、且つ前記ループ管の全長を20等分してなる区画のもう一つの箇所であって、音圧の腹又は音圧の節を前記受動機からずらす位置に第2の音場調整機構が配置され、前記第1の音場調整機構として、前記原動機から前記加熱器の方向に前記ループ管の全長の5〜10%の位置に音圧の腹を誘引する腹型音場調整機構が配置され、前記第2の音場調整機構として、前記原動機から前記加熱器の方向に前記ループ管の全長の55〜60%の位置に音圧の腹を誘引する腹型音場調整機構が配置された熱音響機関である。 In order to achieve the above object, the present invention includes a prime mover in which a heater, a regenerator, and a cooler are arranged in order on a loop tube, and a passive machine in which another heater, a regenerator, and a cooler are arranged in order. In the installed thermoacoustic engine, the passive machine is arranged at a position of 50% of the total length of the loop pipe from the prime mover, between the prime mover and the passive machine in the direction of the heater, and the loop pipe The first sound field adjustment mechanism is disposed at a position where the antinode of the sound pressure or the node of the sound pressure is displaced from the prime mover, and is located at one position of the section formed by dividing the total length of the Another part of the section formed by dividing the entire length of the loop tube into 20 parts in the direction of another heater and up to the prime mover, wherein the antinode of the sound pressure or the node of the sound pressure is connected to the passive machine. second sound field adjustment mechanism is arranged at a position shifted from the first sound field adjustment As the mechanism, an abdominal sound field adjustment mechanism for attracting a belly of sound pressure to a position of 5 to 10% of the total length of the loop tube from the prime mover toward the heater is disposed, and the second sound field adjustment mechanism In the thermoacoustic engine, an abdominal sound field adjusting mechanism for attracting an antinode of sound pressure to a position of 55 to 60% of the entire length of the loop tube from the prime mover toward the heater .
また、本発明は、ループ管に加熱器と再生器と冷却器とが順に並べられた原動機と別の加熱器と再生器と冷却器とが順に並べられた受動機とが設置された熱音響機関において、前記原動機から前記ループ管の全長の50%の位置に前記受動機が配置され、前記原動機から前記加熱器の方向に前記受動機までの間で、且つ前記ループ管の全長を20等分してなる区画の一つの箇所であって、音圧の腹又は音圧の節を前記原動機からずらす位置に第1の音場調整機構が配置され、前記受動機から前記別の加熱器の方向に前記原動機までの間で、且つ前記ループ管の全長を20等分してなる区画のもう一つの箇所であって、音圧の腹又は音圧の節を前記受動機からずらす位置に第2の音場調整機構が配置され、前記第1の音場調整機構として、前記原動機から前記加熱器の方向に前記ループ管の全長の30〜35%の位置に音圧の節を誘引する節型音場調整機構が配置され、前記第2の音場調整機構として、前記原動機から前記加熱器の方向に前記ループ管の全長の80〜85%の位置に音圧の節を誘引する節型音場調整機構が配置された熱音響機関である。In addition, the present invention provides a thermoacoustic in which a prime mover in which a heater, a regenerator, and a cooler are arranged in order on a loop tube, and a passive machine in which another heater, a regenerator, and a cooler are arranged in sequence are installed. In the engine, the passive machine is disposed at a position of 50% of the total length of the loop pipe from the prime mover, and the total length of the loop pipe is 20 etc. between the prime mover and the passive machine in the direction of the heater. A first sound field adjustment mechanism is disposed at a position where the antinode of the sound pressure or the node of the sound pressure is shifted from the prime mover, and from the passive device to the other heater. In another direction in the section formed by dividing the entire length of the loop pipe into 20 parts in the direction up to the prime mover, and at a position where the antinode of the sound pressure or the node of the sound pressure is shifted from the passive machine. 2 sound field adjustment mechanisms are arranged, and as the first sound field adjustment mechanism, A nodal type sound field adjusting mechanism for attracting a node of sound pressure is arranged at a position of 30 to 35% of the entire length of the loop tube in the direction from the motive to the heater, and the prime mover is used as the second sound field adjusting mechanism. To a heater in which a nodal type sound field adjusting mechanism for attracting a node of sound pressure is arranged at a position of 80 to 85% of the total length of the loop tube.
また、本発明は、ループ管に加熱器と再生器と冷却器とが順に並べられた原動機と別の加熱器と再生器と冷却器とが順に並べられた受動機とが設置された熱音響機関において、前記原動機から前記ループ管の全長の50%の位置に前記受動機が配置され、前記原動機から前記加熱器の方向に前記受動機までの間で、且つ前記ループ管の全長を20等分してなる区画の一つの箇所であって、音圧の腹又は音圧の節を前記原動機からずらす位置に第1の音場調整機構が配置され、前記受動機から前記別の加熱器の方向に前記原動機までの間で、且つ前記ループ管の全長を20等分してなる区画のもう一つの箇所であって、音圧の腹又は音圧の節を前記受動機からずらす位置に第2の音場調整機構が配置され、前記第1の音場調整機構として、前記原動機から前記加熱器の方向に前記ループ管の全長の5〜10%の位置に音圧の腹を誘引する腹型音場調整機構が配置され、前記第2の音場調整機構として、前記原動機から前記加熱器の方向に前記ループ管の全長の80〜85%の位置に音圧の節を誘引する節型音場調整機構が配置された熱音響機関である。In addition, the present invention provides a thermoacoustic in which a prime mover in which a heater, a regenerator, and a cooler are arranged in order on a loop tube, and a passive machine in which another heater, a regenerator, and a cooler are arranged in sequence are installed. In the engine, the passive machine is disposed at a position of 50% of the total length of the loop pipe from the prime mover, and the total length of the loop pipe is 20 etc. between the prime mover and the passive machine in the direction of the heater. A first sound field adjustment mechanism is disposed at a position where the antinode of the sound pressure or the node of the sound pressure is shifted from the prime mover, and from the passive device to the other heater. In another direction in the section formed by dividing the entire length of the loop pipe into 20 parts in the direction up to the prime mover, and at a position where the antinode of the sound pressure or the node of the sound pressure is shifted from the passive machine. 2 sound field adjustment mechanisms are arranged, and as the first sound field adjustment mechanism, An abdominal sound field adjustment mechanism for attracting a sound pressure antinode to a position of 5 to 10% of the entire length of the loop tube from the motive to the heater is disposed, and the prime mover is used as the second sound field adjustment mechanism. To a heater in which a nodal type sound field adjusting mechanism for attracting a node of sound pressure is arranged at a position of 80 to 85% of the total length of the loop tube.
前記腹型音場調整機構は、拡大管、分岐管、振動子のいずれかであってもよい。 The abdominal sound field adjustment mechanism may be any one of an expansion tube, a branch tube, and a vibrator.
前記節型音場調整機構は、縮小管、共鳴管のいずれかであってもよい。 The nodal sound field adjustment mechanism may be either a reduction tube or a resonance tube.
本発明は次の如き優れた効果を発揮する。 The present invention exhibits the following excellent effects.
(1)エネルギ変換効率が向上する。 (1) Energy conversion efficiency is improved.
以下、本発明の一実施形態を添付図面に基づいて詳述する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
図1に示されるように、本発明に係る熱音響機関1は、ループ管2に加熱器3と再生器4と冷却器5とが順に並べられた原動機6と別の加熱器7と再生器8と冷却器9とが順に並べられた受動機10とが設置された熱音響機関1において、原動機6からループ管2の全長の50%の位置に受動機10が配置され、原動機6から加熱器3の方向に受動機10までの間に第1の音場調整機構11が配置され、受動機10から別の加熱器7の方向に原動機6までの間に第2の音場調整機構12が配置されたものである。 As shown in FIG. 1, a thermoacoustic engine 1 according to the present invention includes a motor 6 in which a heater 3, a regenerator 4, and a cooler 5 are arranged in order on a loop tube 2, another heater 7 and a regenerator. In the thermoacoustic engine 1 in which the passive machine 10 in which the cooler 9 and the cooler 9 are arranged in order is installed, the passive machine 10 is arranged at a position of 50% of the total length of the loop pipe 2 from the prime mover 6 and heated from the prime mover 6. A first sound field adjusting mechanism 11 is arranged between the passive device 10 in the direction of the device 3 and a second sound field adjusting mechanism 12 between the passive device 10 and the motor 6 in the direction of another heater 7. Are arranged.
図1の熱音響機関は、本発明の第1実施形態に係り、第1の音場調整機構11と第2の音場調整機構12に腹型音場調整機構が用いられている。腹型音場調整機構は、拡大管、分岐管、振動子のいずれであってもよい。 The thermoacoustic engine of FIG. 1 relates to the first embodiment of the present invention, and an abdominal sound field adjustment mechanism is used for the first sound field adjustment mechanism 11 and the second sound field adjustment mechanism 12. The abdominal sound field adjustment mechanism may be any of an expansion tube, a branch tube, and a vibrator.
ループ管2は、円筒管がループ状に閉じられたものであり、内部に作動流体が充填される。作動流体には、空気、ヘリウム、窒素、アルゴンなどの気体を用いるのが好ましい。 The loop tube 2 is a cylindrical tube closed in a loop shape, and is filled with a working fluid. The working fluid is preferably a gas such as air, helium, nitrogen, or argon.
これにより、原動機6にて熱エネルギが音響エネルギに変換されて作動流体の振動、すなわち音波となり、受動機10にて音響エネルギが熱エネルギに変換される。 As a result, the heat energy is converted into acoustic energy by the prime mover 6 to generate vibration of the working fluid, that is, sound waves, and the acoustic energy is converted into thermal energy by the passive device 10.
加熱器3,7は、円筒管の内部に複数の内部フィン(図示せず)が配置され、円筒管の周囲に複数の外部フィン(図示せず)が配置されてなる。加熱器3,7から軸方向に適宜な距離を隔てた箇所に冷却器5,9が設けられる。冷却器5,9は、加熱器3,7と同様に、円筒管の内部に複数の内部フィンが配置され、円筒管の周囲に複数の外部フィンが配置されてなる。加熱器3,7と冷却器5,9との間には、複数の金網を軸方向に積層したもの、あるいは多孔質セラミックスなどからなる再生器4,8が設けられる。 The heaters 3 and 7 are configured such that a plurality of internal fins (not shown) are arranged inside the cylindrical tube, and a plurality of external fins (not shown) are arranged around the cylindrical tube. Coolers 5 and 9 are provided at locations separated from the heaters 3 and 7 by an appropriate distance in the axial direction. Similarly to the heaters 3 and 7, the coolers 5 and 9 include a plurality of internal fins disposed inside the cylindrical tube and a plurality of external fins disposed around the cylindrical tube. Between the heaters 3 and 7 and the coolers 5 and 9, regenerators 4 and 8 made of a plurality of metal meshes laminated in the axial direction or porous ceramics are provided.
以下、図1(a)の熱音響機関の作用効果を説明する。 Hereinafter, the function and effect of the thermoacoustic engine shown in FIG.
すでに述べたように、ループ管2に原動機6と受動機10が設けられた熱音響機関1では、音場調整機構を1箇所のみに設けただけでは、発振しないことが本発明者らの実験により確かめられた。そこで、本発明者らは、音場調整機構を複数箇所に置くものとし、複数の音場調整機構をどこに配置するとよいか、また、どの型の音場調整機構を使用するとよいか検討することにした。 As described above, in the thermoacoustic engine 1 in which the prime mover 6 and the passive device 10 are provided in the loop tube 2, it is the experiment of the present inventors that oscillation does not occur if the sound field adjustment mechanism is provided only in one place. It was confirmed by. Therefore, the present inventors shall place the sound field adjustment mechanisms at a plurality of locations, and examine where to place the plurality of sound field adjustment mechanisms and what type of sound field adjustment mechanism should be used. I made it.
ここでは、原動機6と受動機10をループ管の対称な位置に配置するものとした。すなわち、原動機6の中心(再生器4の中心)を基準に定め、受動機10の中心(再生器8の中心)が基準からループ管全長の50%の位置となるように受動機10を配置した。このように原動機6と受動機10をループ管2の対称な位置に配置したものにおいて、ループ管全長を20等分してなる20の区画の2箇所に、各型の基準音場調整機構を次々と配置換えして発振温度差を調べた。発振温度差が小さい区画が音場調整機構の配置に好ましい区画となり、最も発振温度差が小さい2箇所の区画を見いだせばそれが最適の配置を示すこととなる。音場調整機構の位置は、音場調整機構の中心の位置で表す。 Here, the prime mover 6 and the passive device 10 are arranged at symmetrical positions of the loop tube. That is, the center of the prime mover 6 (the center of the regenerator 4) is determined as a reference, and the passive device 10 is arranged so that the center of the passive machine 10 (the center of the regenerator 8) is 50% of the total length of the loop pipe from the reference. did. In this way, the prime mover 6 and the passive machine 10 are arranged at symmetrical positions of the loop pipe 2, and the reference sound field adjusting mechanism of each type is provided at two locations of 20 sections obtained by dividing the entire length of the loop pipe into 20 equal parts. The oscillation temperature difference was examined by rearranging one after another. A section having a small oscillation temperature difference is a preferable section for the arrangement of the sound field adjustment mechanism, and if two sections having the smallest oscillation temperature difference are found, this indicates an optimum arrangement. The position of the sound field adjustment mechanism is represented by the center position of the sound field adjustment mechanism.
調査の結果、図1(b)に示されるように、第1の音場調整機構11は、区画A1(1/20〜2/20)、すなわち基準からループ管の全長の5〜10%の位置に腹型音場調整機構を配置し、第2の音場調整機構12は、区画A2(11/20〜12/20)、すなわち基準からループ管の全長の55〜60%の位置に腹型音場調整機構を配置するのが最適であることが分かった。 As a result of the investigation, as shown in FIG. 1 (b), the first sound field adjustment mechanism 11 has a section A1 (1/20 to 2/20), that is, 5 to 10% of the total length of the loop tube from the reference. An abdominal sound field adjustment mechanism is disposed at the position, and the second sound field adjustment mechanism 12 is located at the section A2 (11/20 to 12/20), that is, at a position of 55 to 60% of the total length of the loop tube from the reference. It has been found that it is optimal to arrange the type sound field adjustment mechanism.
以上のように、本発明に係る熱音響機関1は、原動機6からループ管2の全長の50%の位置に受動機10が配置され、原動機6から加熱器3の方向に受動機10までの間に第1の音場調整機構11が配置され、受動機10から別の加熱器7の方向に原動機6までの間に第2の音場調整機構12が配置されたので、原動機6と受動機10のそれぞれの熱交換器(加熱器3,7及び冷却器5,9)に対して音圧の腹をずらすことができ、これによって高効率の熱交換が促進され、エネルギ変換効率が向上する。 As described above, in the thermoacoustic engine 1 according to the present invention, the passive machine 10 is disposed at a position of 50% of the total length of the loop pipe 2 from the prime mover 6, and from the prime mover 6 to the passive machine 10 in the direction of the heater 3. Since the first sound field adjusting mechanism 11 is disposed between them and the second sound field adjusting mechanism 12 is disposed between the passive device 10 and the motor 6 in the direction of another heater 7, Sound pressure can be shifted with respect to each heat exchanger (heaters 3 and 7 and coolers 5 and 9) of the motive 10, thereby promoting high-efficiency heat exchange and improving energy conversion efficiency. To do.
次に、本発明の他の実施形態を説明する。 Next, another embodiment of the present invention will be described.
図2(a)の熱音響機関21は、本発明の第2実施形態に係り、第1の音場調整機構11と第2の音場調整機構12に節型音場調整機構が用いられている。この場合、上記の調査の結果、図2(b)に示されるように、第1の音場調整機構11は、区画B1(6/20〜7/20)、すなわち基準からループ管の全長の30〜35%の位置に節型音場調整機構を配置し、第2の音場調整機構12は、区画B2(16/20〜17/20)、すなわち基準からループ管の全長の80〜85%の位置に節型音場調整機構を配置するのが最適であることが分かった。 The thermoacoustic engine 21 of FIG. 2A is related to the second embodiment of the present invention, and a knot type sound field adjusting mechanism is used for the first sound field adjusting mechanism 11 and the second sound field adjusting mechanism 12. Yes. In this case, as a result of the above investigation, as shown in FIG. 2 (b), the first sound field adjusting mechanism 11 is divided into the section B1 (6/20 to 7/20), that is, the total length of the loop tube from the reference. The nodal sound field adjusting mechanism is disposed at a position of 30 to 35%, and the second sound field adjusting mechanism 12 is a section B2 (16/20 to 17/20), that is, 80 to 85 of the entire length of the loop tube from the reference. It was found that it is optimal to arrange the knot type sound field adjusting mechanism at the position of%.
図3の熱音響機関31は、本発明の第3実施形態に係り、第1の音場調整機構11に腹型音場調整機構が用いられ、第1の音場調整機構11は区画A1に配置され、第2の音場調整機構12に節型音場調整機構が用いられ、第2の音場調整機構12は区画B2に配置されている。このように、型の異なる2つの音場調整機構を組み合わせて、それぞれ最適位置に配置しても本発明は実施できる。 The thermoacoustic engine 31 of FIG. 3 relates to the third embodiment of the present invention, and an abdominal sound field adjustment mechanism is used as the first sound field adjustment mechanism 11, and the first sound field adjustment mechanism 11 is located in the section A1. The knot type sound field adjusting mechanism is used as the second sound field adjusting mechanism 12, and the second sound field adjusting mechanism 12 is arranged in the section B2. As described above, the present invention can be implemented even if two sound field adjusting mechanisms having different types are combined and arranged at the optimum positions.
ここまでの実施形態では、腹型音場調整機構として、拡大管、分岐管、振動子を例示し、節型音場調整機構として、縮小管、共鳴管を例示したが、これら以外の形態であっても、各型の音場調整機構を前述した所定の位置に設置すれば、本発明の効果を得ることができる。 In the embodiments so far, as the abdominal sound field adjustment mechanism, the expansion tube, the branch tube, and the vibrator are exemplified, and as the nodal sound field adjustment mechanism, the reduction tube and the resonance tube are exemplified, but in other forms Even if it exists, the effect of this invention can be acquired if each type of sound field adjustment mechanism is installed in the predetermined position mentioned above.
以上説明したように、本発明によれば、原動機6から受動機10までの間に第1の音場調整機構11が配置され、受動機10から原動機6までの間に第2の音場調整機構12が配置されることで、エネルギ変換効率が向上するので、従来に比べて発振開始温度が低くなるという効果が得られる。従来では、例えば、原動機6において冷却器5が常温であるとすると常温よりかなり高い温度の加熱器3を必要としたのに対し、本発明では、冷却器5が常温であるならば常温よりそれほど高くない温度の加熱器3が利用できる。 As described above, according to the present invention, the first sound field adjusting mechanism 11 is disposed between the prime mover 6 and the passive machine 10, and the second sound field adjustment is performed between the passive machine 10 and the prime mover 6. The arrangement of the mechanism 12 improves the energy conversion efficiency, so that the effect of lowering the oscillation start temperature can be obtained compared to the conventional case. Conventionally, for example, when the cooler 5 in the prime mover 6 is at a normal temperature, the heater 3 having a temperature considerably higher than the normal temperature is required, whereas in the present invention, if the cooler 5 is at a normal temperature, it is much less than the normal temperature. A heater 3 with a low temperature can be used.
また、本発明によれば、エネルギ変換効率が向上するので、従来より大きな音響強度が得られる。 In addition, according to the present invention, the energy conversion efficiency is improved, so that a greater acoustic intensity can be obtained than before.
また、本発明によれば、エネルギ変換効率が向上するので、従来より少ない投入エネルギ量で発振が可能となる。 In addition, according to the present invention, since the energy conversion efficiency is improved, it is possible to oscillate with a smaller amount of input energy than before.
また、本発明によれば、少ない投入エネルギ量で発振が可能になるため、小型化が可能となる。小型化により、熱音響機関1,21,31の体積を従来より小さくすることができる。 In addition, according to the present invention, it is possible to oscillate with a small amount of input energy, and thus it is possible to reduce the size. By miniaturization, the volume of the thermoacoustic engines 1, 21, 31 can be made smaller than before.
また、本発明によれば、エネルギ変換効率が向上するので、受動機10として冷凍機、冷却機を組み込んで冷凍装置、冷却装置を構成した場合、従来と比較して、冷凍・冷却性能を飛躍的に向上させることができる。 In addition, according to the present invention, since the energy conversion efficiency is improved, when a refrigeration unit and a cooling unit are incorporated as the passive unit 10 to configure a refrigeration unit and a cooling unit, the refrigeration / cooling performance is greatly improved compared to the conventional case. Can be improved.
1,21,31 熱音響機関
2 ループ管
3 原動機の加熱器
4 原動機の再生器
5 原動機の冷却器
6 原動機
7 受動機の加熱器
8 受動機の再生器
9 受動機の冷却器
10 受動機
11 第1の音場調整機構
12 第2の音場調整機構
1,21,31 Thermoacoustic engine 2 Loop pipe 3 Motor heater 4 Motor generator regenerator 5 Motor cooler 6 Motor 7 Passive machine heater 8 Passive machine regenerator 9 Passive machine cooler 10 Passive machine 11 First sound field adjustment mechanism 12 Second sound field adjustment mechanism
Claims (5)
前記原動機から前記ループ管の全長の50%の位置に前記受動機が配置され、
前記原動機から前記加熱器の方向に前記受動機までの間で、且つ前記ループ管の全長を20等分してなる区画の一つの箇所であって、音圧の腹又は音圧の節を前記原動機からずらす位置に第1の音場調整機構が配置され、
前記受動機から前記別の加熱器の方向に前記原動機までの間で、且つ前記ループ管の全長を20等分してなる区画のもう一つの箇所であって、音圧の腹又は音圧の節を前記受動機からずらす位置に第2の音場調整機構が配置され、
前記第1の音場調整機構として、前記原動機から前記加熱器の方向に前記ループ管の全長の5〜10%の位置に音圧の腹を誘引する腹型音場調整機構が配置され、
前記第2の音場調整機構として、前記原動機から前記加熱器の方向に前記ループ管の全長の55〜60%の位置に音圧の腹を誘引する腹型音場調整機構が配置されたことを特徴とする熱音響機関。 In a thermoacoustic engine in which a prime mover in which a heater, a regenerator, and a cooler are arranged in order on a loop tube, and a passive machine in which another heater, a regenerator, and a cooler are arranged in order, are installed.
The passive machine is arranged at a position of 50% of the total length of the loop pipe from the prime mover,
One part of a section formed by dividing the entire length of the loop tube from the prime mover to the passive device in the direction of the heater and by dividing the entire length of the loop tube into 20 parts, The first sound field adjustment mechanism is arranged at a position shifted from the prime mover,
Another part of the section formed by dividing the entire length of the loop pipe into 20 parts from the passive machine to the prime mover in the direction of the other heater, A second sound field adjustment mechanism is disposed at a position where the node is displaced from the passive device ;
As the first sound field adjustment mechanism, an abdominal sound field adjustment mechanism for inducing a sound pressure antinode at a position of 5 to 10% of the total length of the loop tube from the prime mover toward the heater is disposed,
As the second sound field adjustment mechanism, an abdominal sound field adjustment mechanism for inducing a sound pressure belly at a position of 55 to 60% of the total length of the loop tube from the prime mover toward the heater. A thermoacoustic engine.
前記原動機から前記ループ管の全長の50%の位置に前記受動機が配置され、
前記原動機から前記加熱器の方向に前記受動機までの間で、且つ前記ループ管の全長を20等分してなる区画の一つの箇所であって、音圧の腹又は音圧の節を前記原動機からずらす位置に第1の音場調整機構が配置され、
前記受動機から前記別の加熱器の方向に前記原動機までの間で、且つ前記ループ管の全長を20等分してなる区画のもう一つの箇所であって、音圧の腹又は音圧の節を前記受動機からずらす位置に第2の音場調整機構が配置され、
前記第1の音場調整機構として、前記原動機から前記加熱器の方向に前記ループ管の全長の30〜35%の位置に音圧の節を誘引する節型音場調整機構が配置され、
前記第2の音場調整機構として、前記原動機から前記加熱器の方向に前記ループ管の全長の80〜85%の位置に音圧の節を誘引する節型音場調整機構が配置されたことを特徴とする熱音響機関。 In a thermoacoustic engine in which a prime mover in which a heater, a regenerator, and a cooler are arranged in order on a loop tube, and a passive machine in which another heater, a regenerator, and a cooler are arranged in order, are installed.
The passive machine is arranged at a position of 50% of the total length of the loop pipe from the prime mover,
One part of a section formed by dividing the entire length of the loop tube from the prime mover to the passive device in the direction of the heater and by dividing the entire length of the loop tube into 20 parts, The first sound field adjustment mechanism is arranged at a position shifted from the prime mover,
Another part of the section formed by dividing the entire length of the loop pipe into 20 parts from the passive machine to the prime mover in the direction of the other heater, A second sound field adjustment mechanism is disposed at a position where the node is displaced from the passive device;
As the first sound field adjustment mechanism, a nodal type sound field adjustment mechanism for inducing a sound pressure node at a position of 30 to 35% of the total length of the loop pipe in the direction from the motor to the heater,
As the second sound field adjusting mechanism, a knot type sound field adjusting mechanism for attracting a node of sound pressure at a position of 80 to 85% of the total length of the loop pipe in the direction from the motor to the heater is disposed. A thermoacoustic engine .
前記原動機から前記ループ管の全長の50%の位置に前記受動機が配置され、
前記原動機から前記加熱器の方向に前記受動機までの間で、且つ前記ループ管の全長を20等分してなる区画の一つの箇所であって、音圧の腹又は音圧の節を前記原動機からずらす位置に第1の音場調整機構が配置され、
前記受動機から前記別の加熱器の方向に前記原動機までの間で、且つ前記ループ管の全長を20等分してなる区画のもう一つの箇所であって、音圧の腹又は音圧の節を前記受動機からずらす位置に第2の音場調整機構が配置され、
前記第1の音場調整機構として、前記原動機から前記加熱器の方向に前記ループ管の全長の5〜10%の位置に音圧の腹を誘引する腹型音場調整機構が配置され、
前記第2の音場調整機構として、前記原動機から前記加熱器の方向に前記ループ管の全長の80〜85%の位置に音圧の節を誘引する節型音場調整機構が配置されたことを特徴とする熱音響機関。 In a thermoacoustic engine in which a prime mover in which a heater, a regenerator, and a cooler are arranged in order on a loop tube, and a passive machine in which another heater, a regenerator, and a cooler are arranged in order, are installed.
The passive machine is arranged at a position of 50% of the total length of the loop pipe from the prime mover,
One part of a section formed by dividing the entire length of the loop tube from the prime mover to the passive device in the direction of the heater and by dividing the entire length of the loop tube into 20 parts, The first sound field adjustment mechanism is arranged at a position shifted from the prime mover,
Another part of the section formed by dividing the entire length of the loop pipe into 20 parts from the passive machine to the prime mover in the direction of the other heater, A second sound field adjustment mechanism is disposed at a position where the node is displaced from the passive device;
As the first sound field adjustment mechanism, an abdominal sound field adjustment mechanism for inducing a sound pressure antinode at a position of 5 to 10% of the total length of the loop tube from the prime mover toward the heater is disposed,
As the second sound field adjusting mechanism, a knot type sound field adjusting mechanism for attracting a node of sound pressure at a position of 80 to 85% of the total length of the loop pipe in the direction from the motor to the heater is disposed. A thermoacoustic engine .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010014590A JP5655313B2 (en) | 2010-01-26 | 2010-01-26 | Thermoacoustic engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010014590A JP5655313B2 (en) | 2010-01-26 | 2010-01-26 | Thermoacoustic engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011153742A JP2011153742A (en) | 2011-08-11 |
JP5655313B2 true JP5655313B2 (en) | 2015-01-21 |
Family
ID=44539847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010014590A Active JP5655313B2 (en) | 2010-01-26 | 2010-01-26 | Thermoacoustic engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5655313B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5799780B2 (en) * | 2011-12-01 | 2015-10-28 | いすゞ自動車株式会社 | Thermoacoustic refrigeration equipment |
CN104315748B (en) * | 2014-10-09 | 2017-02-08 | 浙江大学 | Heat energy driven looped traveling-wave thermo-acoustic heat pump with flow guiders |
JP6781899B2 (en) * | 2016-10-18 | 2020-11-11 | 株式会社ジェイテクト | Thermoacoustic device |
JP7292631B2 (en) * | 2019-05-09 | 2023-06-19 | 株式会社ジェイテクト | thermoacoustic device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3015786B1 (en) * | 1998-07-17 | 2000-03-06 | 株式会社移動体通信先端技術研究所 | Loop tube air column acoustic wave refrigerator |
JP3050543B1 (en) * | 1999-01-08 | 2000-06-12 | 株式会社移動体通信先端技術研究所 | Cooling and refrigeration facilities using air column resonance wave refrigeration |
US6032464A (en) * | 1999-01-20 | 2000-03-07 | Regents Of The University Of California | Traveling-wave device with mass flux suppression |
JP2005188846A (en) * | 2003-12-26 | 2005-07-14 | Hitachi Ltd | Thermoacoustic heat pump water heater |
JP2006118728A (en) * | 2004-10-19 | 2006-05-11 | Daikin Ind Ltd | Thermoacoustic refrigerator |
JP4652822B2 (en) * | 2005-01-07 | 2011-03-16 | 学校法人同志社 | Thermoacoustic device |
JP2007237020A (en) * | 2006-03-06 | 2007-09-20 | Denso Corp | Thermoacoustic device |
JP2007315680A (en) * | 2006-05-25 | 2007-12-06 | Toyota Motor Corp | Thermoacoustic Stirling engine |
GB2454429B (en) * | 2006-09-02 | 2011-03-23 | Doshisha | Thermoacoustic Apparatus |
CN101236025B (en) * | 2008-03-04 | 2012-03-07 | 武汉工程大学 | Double-drive stirling travelling wave refrigerating device |
-
2010
- 2010-01-26 JP JP2010014590A patent/JP5655313B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011153742A (en) | 2011-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5970737B2 (en) | Thermoacoustic engine | |
JP5423531B2 (en) | Thermoacoustic engine | |
CN100371657C (en) | Pulse tube refrigerator | |
US6560970B1 (en) | Oscillating side-branch enhancements of thermoacoustic heat exchangers | |
JP2011127870A (en) | Thermoacoustic engine | |
JP2007237020A (en) | Thermoacoustic device | |
CN109312964B (en) | Thermoacoustic engine and design method thereof | |
JP5655313B2 (en) | Thermoacoustic engine | |
JP2003324932A (en) | Thermoacoustic generator | |
JP6717527B2 (en) | Thermoacoustic heat pump | |
JP5453950B2 (en) | Thermoacoustic engine | |
JP2005253240A (en) | Thermoacoustic power generator | |
JP2007530911A (en) | Cryogenic cooler system with frequency-converting mechanical resonator | |
JP5434680B2 (en) | Thermoacoustic engine | |
JP5768688B2 (en) | Thermoacoustic refrigeration equipment | |
JP5532959B2 (en) | Thermoacoustic engine | |
JP5310287B2 (en) | Thermoacoustic engine | |
JP2010261687A (en) | Thermoacoustic engine | |
JP5526600B2 (en) | Thermoacoustic engine | |
JP2009074734A (en) | Thermoacoustic engine | |
JP5453954B2 (en) | Thermoacoustic engine | |
JP2007154792A (en) | Energy recovery device for internal combustion engine | |
JP5463745B2 (en) | Thermoacoustic engine | |
JP5299107B2 (en) | Thermoacoustic engine | |
JP5768687B2 (en) | Thermoacoustic refrigeration equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131008 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140430 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141028 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5655313 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |