[go: up one dir, main page]

JP5623243B2 - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP5623243B2
JP5623243B2 JP2010248643A JP2010248643A JP5623243B2 JP 5623243 B2 JP5623243 B2 JP 5623243B2 JP 2010248643 A JP2010248643 A JP 2010248643A JP 2010248643 A JP2010248643 A JP 2010248643A JP 5623243 B2 JP5623243 B2 JP 5623243B2
Authority
JP
Japan
Prior art keywords
spline
shaft
constant velocity
velocity universal
universal joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010248643A
Other languages
Japanese (ja)
Other versions
JP2012097889A (en
Inventor
輝明 藤尾
輝明 藤尾
達朗 杉山
達朗 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2010248643A priority Critical patent/JP5623243B2/en
Publication of JP2012097889A publication Critical patent/JP2012097889A/en
Application granted granted Critical
Publication of JP5623243B2 publication Critical patent/JP5623243B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

この発明は、継手の内方部材がシャフトとスプライン嵌合した等速自在継手に関する。   The present invention relates to a constant velocity universal joint in which an inner member of a joint is spline-fitted with a shaft.

例えば、自動車のエンジンから車輪に回転力を等速で伝達するドライブシャフトやプロペラシャフト等に組み込まれる等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これらの等速自在継手は、駆動側と従動側の二軸を連結して、その二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。   For example, there are two types of constant velocity universal joints, such as fixed constant velocity universal joints and sliding constant velocity universal joints, that are built into drive shafts and propeller shafts that transmit rotational force from automobile engines to wheels at constant speed. is there. These constant velocity universal joints have a structure in which two shafts on the driving side and the driven side are connected and the rotational torque can be transmitted at a constant speed even if the two shafts have an operating angle.

自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトは、デフと車輪との相対的な位置関係の変化による角度変位と軸方向変位に対応する必要があるため、一般的にデフ側(インボード側)に角度変位と軸方向変位に対応できる摺動式等速自在継手を、駆動車輪側(アウトボード側)に大きな作動角が取れる固定式等速自在継手をそれぞれ装着し、両等速自在継手をシャフトで連結した構造を有する。この等速自在継手の内方部材とシャフトの連結構造として、スプライン結合(セレーション結合も含む。以下、同じ)が使用されている。   The drive shaft that transmits power from the engine of the automobile to the drive wheel must cope with the angular displacement and axial displacement caused by the change in the relative positional relationship between the differential and the wheel. Side) is equipped with a sliding type constant velocity universal joint that can handle angular displacement and axial displacement, and a fixed constant velocity universal joint with a large operating angle on the drive wheel side (outboard side). It has a structure in which joints are connected by a shaft. As a connection structure between the inner member of the constant velocity universal joint and the shaft, spline coupling (including serration coupling; the same applies hereinafter) is used.

ところで、近年の自動車においては、騒音、振動等のNVH(Noise Vibration Harshness)対策として、また、自動車の走行応答性の観点から、動力伝達系の各結合部の円周方向ガタを詰めることが重要視されている。そのため、ドライブシャフトにおいては、等速自在継手の内方部材とシャフトとのスプライン嵌合部は締め代とすることが望ましい。ところが、締め代が大きくなり過ぎると、スプライン嵌合時の圧入力の増大、スプライン部のむしれや過大な応力集中が発生し、軸強度、軸寿命の低下を招く恐れがある。   By the way, in recent automobiles, it is important to reduce the backlash in the circumferential direction of each coupling portion of the power transmission system as a countermeasure against NVH (Noise Vibration Harshness) such as noise and vibration and from the viewpoint of driving responsiveness of the automobile. Is being viewed. Therefore, in the drive shaft, it is desirable that the spline fitting portion between the inner member of the constant velocity universal joint and the shaft is used as a fastening allowance. However, if the tightening allowance is too large, the pressure input during spline fitting increases, the spline part may flutter and excessive stress concentration occurs, and the shaft strength and shaft life may be reduced.

そこで、シャフトのスプライン部に捩れを設けて、スプラインの嵌合締め代を確保しながら、圧入力を増大させない工夫がなされている。しかし、回転方向によりシャフト端部の応力が高くなり、かえって軸強度の低下、軸寿命の低下を招く恐れがある(特許文献1参照)。   In view of this, a device has been devised in which the pressure input is not increased while twisting the spline portion of the shaft so as to secure a fitting tightening allowance of the spline. However, the stress at the end of the shaft increases depending on the rotation direction, which may cause a decrease in shaft strength and a decrease in shaft life (see Patent Document 1).

上記の従来技術の問題について図17〜図22に基づいて説明する。図17、図18に固定式等速自在継手であるツェッパ型等速自在継手101を示す。この等速自在継手101は、外側継手部材103、内側継手部材102、ボール104およびケージ105からなる。外側継手部材103の球状内周面106には複数のトラック溝107が円周方向等間隔に、かつ軸方向に沿って形成されている。内側継手部材102の球状外周面108には、外側継手部材103のトラック溝107と対向するトラック溝109が円周方向等間隔に、かつ軸方向に沿って形成されている。外側継手部材103のトラック溝107と内側継手部材102のトラック溝109との間にトルクを伝達する複数のボール104が介在されている。外側継手部材103の球状内周面106と内側継手部材102の球状外周面108の間に、ボール104を保持するケージ105が配置されている。外側継手部材103の外周と、内側継手部材102にスプライン嵌合されたシャフト110の外周とをブーツ111で覆い、継手内部には、潤滑剤としてグリースが封入されている。   The problems of the above prior art will be described with reference to FIGS. 17 and 18 show a Rzeppa constant velocity universal joint 101 which is a fixed type constant velocity universal joint. The constant velocity universal joint 101 includes an outer joint member 103, an inner joint member 102, a ball 104 and a cage 105. A plurality of track grooves 107 are formed in the spherical inner peripheral surface 106 of the outer joint member 103 at equal intervals in the circumferential direction and along the axial direction. Track grooves 109 facing the track grooves 107 of the outer joint member 103 are formed on the spherical outer peripheral surface 108 of the inner joint member 102 at equal intervals in the circumferential direction and along the axial direction. A plurality of balls 104 that transmit torque are interposed between the track grooves 107 of the outer joint member 103 and the track grooves 109 of the inner joint member 102. A cage 105 that holds the ball 104 is disposed between the spherical inner peripheral surface 106 of the outer joint member 103 and the spherical outer peripheral surface 108 of the inner joint member 102. The outer periphery of the outer joint member 103 and the outer periphery of the shaft 110 that is spline-fitted to the inner joint member 102 are covered with a boot 111, and grease is enclosed as a lubricant inside the joint.

図17に示すように、外側継手部材103の球状内周面106と内側継手部材102の球状外周面108の曲率中心は、いずれも、継手の中心Oに形成されている。これに対して、外側継手部材103のトラック溝107の曲率中心Aと、内側継手部材102のトラック溝109の曲率中心Bとは、継手の中心Oに対して軸方向に等距離オフセットされている。これにより、継手が作動角をとった場合、外側継手部材103と内側継手部材102の両軸線がなす角度を二等分する平面上にボール104が常に案内され、二軸間で等速に回転トルクが伝達されることになる。   As shown in FIG. 17, the centers of curvature of the spherical inner peripheral surface 106 of the outer joint member 103 and the spherical outer peripheral surface 108 of the inner joint member 102 are both formed at the center O of the joint. On the other hand, the center of curvature A of the track groove 107 of the outer joint member 103 and the center of curvature B of the track groove 109 of the inner joint member 102 are offset by an equal distance in the axial direction with respect to the center O of the joint. . As a result, when the joint takes an operating angle, the ball 104 is always guided on a plane that bisects the angle formed by the two axes of the outer joint member 103 and the inner joint member 102 and rotates at a constant speed between the two axes. Torque is transmitted.

図19は、内側継手部材102を拡大した正面図である。内側継手部材102の内径孔112に雌スプライン113が形成されている。また、図20に示すようにシャフト110の軸端部114に雄スプライン115が形成されている。雄スプライン115と雌スプライン113はいずれもスプラインのピッチ円が真円形状である。図22にスプライン嵌合部を拡大した横断面を示す。この図に示すように、シャフト110に形成された雄スプライン115と内側継手部材102に形成された雌スプライン113は同じピッチ円直径PCDを有する。内側継手部材102の内径孔112に形成された雌スプライン113は、軸線に平行に延び、一方、シャフト110の軸端部114に形成された雄スプライン115は、軸線に対して捩れ角γ(図21参照)を有する。この捩れ角γの値は10分程度である。したがって、図21に示すように、シャフト110の雄スプライン115(破線で図示)を内側継手部材102の雌スプライン113(実線で図示)に圧入したとき、雄スプライン115の歯面115aと雌スプライン113の歯面113aの間でハッチングした部分が締め代部となり圧縮応力が生じ、その圧縮応力は内側継手部材102の両端102aで大きくなる。シャフト110と内側継手部材102間に回転トルクがかかると、上記の圧縮応力に加えて回転トルクが加わるので、内側継手部材102の両端102aでの応力が高くなり、軸強度の低下、軸寿命の低下を招く恐れがある。   FIG. 19 is an enlarged front view of the inner joint member 102. A female spline 113 is formed in the inner diameter hole 112 of the inner joint member 102. Further, as shown in FIG. 20, a male spline 115 is formed at the shaft end portion 114 of the shaft 110. In both the male spline 115 and the female spline 113, the pitch circle of the spline is a perfect circle. FIG. 22 shows an enlarged cross section of the spline fitting portion. As shown in this figure, the male spline 115 formed on the shaft 110 and the female spline 113 formed on the inner joint member 102 have the same pitch circle diameter PCD. The female spline 113 formed in the inner diameter hole 112 of the inner joint member 102 extends parallel to the axis, while the male spline 115 formed at the shaft end 114 of the shaft 110 has a twist angle γ (see FIG. 21). The value of the twist angle γ is about 10 minutes. Therefore, as shown in FIG. 21, when the male spline 115 (shown by a broken line) of the shaft 110 is press-fitted into the female spline 113 (shown by a solid line) of the inner joint member 102, the tooth surface 115a of the male spline 115 and the female spline 113 are shown. The portion hatched between the tooth surfaces 113 a becomes a tightening margin and compressive stress is generated, and the compressive stress increases at both ends 102 a of the inner joint member 102. When a rotational torque is applied between the shaft 110 and the inner joint member 102, a rotational torque is applied in addition to the above compressive stress. Therefore, the stress at both ends 102a of the inner joint member 102 is increased, the shaft strength is reduced, and the shaft life is reduced. There is a risk of lowering.

また、特許文献2〜4には、シャフト強度を確保しつつ、高いガタ詰め効果が得られる形状が提案されているが、形状が複雑であり、加工性が著しく低下することが考えられる。   Further, Patent Documents 2 to 4 propose a shape that can provide a high backlash effect while securing the shaft strength, but the shape is complicated and the workability may be significantly reduced.

実公平6−33220号公報Japanese Utility Model Publication No. 6-33220 特開2007−247771号公報JP 2007-247771 A 特開2007−247770号公報JP 2007-247770 A 特開2007−247769号公報JP 2007-247769 A

本発明は、前述の問題点に鑑みて提案されたもので、その目的とするところは、従来からある加工方法を取りながら、高いガタ詰め効果が得られる内方部材とシャフトのスプライン嵌合部を有する等速自在継手を提供することにある。   The present invention has been proposed in view of the above-described problems, and the object of the present invention is to provide a spline fitting portion between an inner member and a shaft that provides a high backlash effect while taking a conventional processing method. It is providing the constant velocity universal joint which has this.

本発明者らは、上記の目的を達成するために種々検討した結果、基本的に内方部材の全体的な弾性変形を利用してガタ詰めを行うという新規な手段を着想した。   As a result of various studies to achieve the above-mentioned object, the present inventors have conceived a novel means of basically performing backlashing using the entire elastic deformation of the inner member.

以上の目的を達成するため、本発明は、継手の内方部材がシャフトとスプライン嵌合し軸方向に位置決め固定された等速自在継手において、前記内方部材およびシャフトの少なくとも一方のスプラインのピッチ円が、丸型スプラインのピッチ円に対して異形形状に形成され、当該一方のスプラインのピッチ円直径と他方のスプラインのピッチ円直径との半径差により、スプライン嵌合部の円周方向の複数箇所に部分的に締め代を有し、この締め代部が前記内方部材の軸方向幅の全長にわたって形成されていることを特徴とする。具体的には、締め代は0.01mm〜0.03mm程度である。 In order to achieve the above object, the present invention provides a constant velocity universal joint in which an inner member of a joint is spline-fitted with a shaft and is positioned and fixed in the axial direction, and the pitch of at least one of the inner member and the shaft is splined. A circle is formed in an irregular shape with respect to the pitch circle of the round spline, and a plurality of circumferential splines of the spline fitting portion are formed by a radial difference between the pitch circle diameter of the one spline and the pitch circle diameter of the other spline. portion partially has a tightening margin to, characterized in Rukoto this interference portion is formed over the entire length of the axial width of the inner member. Specifically, the tightening margin is about 0.01 mm to 0.03 mm.

上記の構成により、基本的に内方部材の全体的な弾性変形を利用して、スプライン嵌合部の締め代部が円周方向の複数箇所に部分的に形成されるので、シャフトと内方部材の組付け時の圧入力を低く抑えることができ、円周方向ガタを確実に抑制することができる。また、スプライン嵌合部の締め代部が内方部材の軸方向幅の全長にわたって形成されるので、円周方向ガタを確実に抑制することができる。   With the above configuration, the overall elastic deformation of the inner member is basically used, and the fastening margins of the spline fitting portion are partially formed at a plurality of locations in the circumferential direction. The pressure input at the time of assembling the members can be kept low, and the circumferential play can be reliably suppressed. Moreover, since the fastening margin part of a spline fitting part is formed over the full length of the axial direction width | variety of an inner member, the circumferential play can be suppressed reliably.

具体的には、前記異形形状のスプラインが内方部材に形成され、前記シャフトには丸型スプラインが形成されている。これとは逆に、前記異形形状のスプラインがシャフトに形成され、前記内方部材には丸型スプラインが形成されている。丸型スプラインとはスプラインのピッチ円が真円形状のものと定義する。上記構成により、スプライン加工において、内方部材側はブローチ加工を施すことができ、一方、シャフト側は、丸型スプラインの場合は転造加工を施し、三角形状や多角形状などの異形形状の場合はプレス加工を施すことができ、いずれも、通常用いる加工方法により、容易に製造することができる。   Specifically, the spline having the irregular shape is formed on the inner member, and a round spline is formed on the shaft. On the contrary, the irregularly shaped spline is formed on the shaft, and the inner member is formed with a round spline. A round spline is defined as one in which the pitch circle of the spline is a perfect circle. With the above configuration, in the spline processing, the inner member side can be broached, while the shaft side is subjected to rolling processing in the case of a round spline, and in the case of an irregular shape such as a triangular shape or a polygonal shape Can be pressed, and both can be easily manufactured by a commonly used processing method.

さらに、前記異形形状のスプラインが前記内方部材とシャフトのいずれにも形成され、両部材の異形形状の頂部を周方向で互いにずらせて嵌合したことを特徴とする。   Further, the irregularly shaped splines are formed on both the inner member and the shaft, and the irregularly shaped tops of both members are fitted to each other while being shifted from each other in the circumferential direction.

前記異形形状が三角形状あるいは多角形状であることを特徴とする。雄スプラインのピッチ円直径と雌スプラインのピッチ円直径の半径差は0.01mm〜0.03mm程度である。特に好ましいのは、0.01mm〜0.02mm程度である。スプライン嵌合部の円周方向の複数箇所に部分的に締め代部が生じる構成のため、スプライン嵌合時の圧入力を抑制することができるので、上記半径差を最大0.04mm程度まで可能にできる。これにより、円周方向ガタを確実に抑制することができる。また、上記の構成により、従来と同様の材料や熱処理でも、シャフトと内方部材のスプライン嵌合時の圧入力を低く抑えることができ、円周方向ガタを確実に抑制することができる。   The irregular shape is a triangular shape or a polygonal shape. The radius difference between the pitch circle diameter of the male spline and the pitch circle diameter of the female spline is about 0.01 mm to 0.03 mm. Particularly preferred is about 0.01 mm to 0.02 mm. Because of the configuration in which tightening margins are generated partially at multiple locations in the circumferential direction of the spline fitting part, pressure input during spline fitting can be suppressed, so the above radius difference can be up to about 0.04 mm. Can be. Thereby, circumferential backlash can be reliably suppressed. In addition, with the above configuration, even when the same material and heat treatment as in the past are used, the pressure input when the shaft and the inner member are spline-fitted can be kept low, and circumferential play can be reliably suppressed.

前記シャフトのスプラインが軸方向に捩れ角を有することを特徴とする。これにより、スプライン嵌合時の圧入力をさらに抑制することができる。   The spline of the shaft has a twist angle in the axial direction. Thereby, the pressure input at the time of spline fitting can further be suppressed.

前記内方部材は、ボールを有する等速自在継手の内側継手部材や、トリポード型等速自在継手のトリポード部材である。   The inner member is an inner joint member of a constant velocity universal joint having a ball or a tripod member of a tripod type constant velocity universal joint.

本発明によれば、基本的に内方部材の全体的な弾性変形を利用して、スプライン嵌合部の締め代部が円周方向の複数箇所に部分的に形成されるので、シャフトと内方部材の組付け時の圧入力を低く抑えることができ、円周方向ガタを確実に抑制することができる。さらに、スプライン嵌合部の締め代部が内方部材の軸方向幅の全長にわたって形成されるので、円周方向ガタを一層抑制することができる。   According to the present invention, basically, the overall elastic deformation of the inner member is utilized, and the tightening margins of the spline fitting portion are partially formed at a plurality of locations in the circumferential direction. The pressure input at the time of assembling the direction member can be kept low, and the circumferential play can be reliably suppressed. Furthermore, since the fastening allowance portion of the spline fitting portion is formed over the entire length in the axial direction of the inner member, the circumferential play can be further suppressed.

また、スプライン加工において、内方部材側はブローチ加工を施すことができ、一方、シャフト側は、丸型スプラインの場合は転造加工を施し、三角形状や多角形状などの異形形状の場合はプレス加工を施すことができ、いずれも、通常用いる加工方法により、容易に製造することができる。さらに、従来と同様の材料や熱処理でも、シャフトと内方部材のスプライン嵌合時の圧入力を低く抑えることができ、円周方向ガタを確実に抑制することができる。   In spline processing, the inner member side can be broached, while the shaft side is rolled for round splines and pressed for irregular shapes such as triangles and polygons. Processing can be performed, and both can be easily manufactured by the processing method used normally. Furthermore, even with the same material and heat treatment as in the prior art, the pressure input during the spline fitting of the shaft and the inner member can be kept low, and the circumferential play can be reliably suppressed.

本発明の第1の実施形態の等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the constant velocity universal joint of the 1st Embodiment of this invention. 本発明の第1の実施形態の等速自在継手の正面図である。It is a front view of the constant velocity universal joint of the 1st Embodiment of this invention. 内側継手部材を拡大した正面図である。It is the front view which expanded the inner side coupling member. シャフトを拡大した図である。It is the figure which expanded the shaft. 第1の実施形態のスプラインの嵌合状態を示す図である。It is a figure which shows the fitting state of the spline of 1st Embodiment. 第2の実施形態のスプラインの嵌合状態を示す図である。It is a figure which shows the fitting state of the spline of 2nd Embodiment. 第3の実施形態のスプラインの嵌合状態を示す図である。It is a figure which shows the fitting state of the spline of 3rd Embodiment. 第4の実施形態のスプラインの嵌合状態を示す図である。It is a figure which shows the fitting state of the spline of 4th Embodiment. 第5の実施形態の等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the constant velocity universal joint of 5th Embodiment. トリポード部材を拡大した正面図である。It is the front view which expanded the tripod member. シャフトを拡大した図である。It is the figure which expanded the shaft. 第5の実施形態のスプラインの嵌合状態を示す図である。It is a figure which shows the fitting state of the spline of 5th Embodiment. 第6の実施形態のスプラインの嵌合状態を示す図である。It is a figure which shows the fitting state of the spline of 6th Embodiment. 第7の実施形態のスプラインの嵌合状態を示す図である。It is a figure which shows the fitting state of the spline of 7th Embodiment. 第8の実施形態のスプラインの嵌合状態を示す図である。It is a figure which shows the fitting state of the spline of 8th Embodiment. トリポード部材の熱処理変形を示す図である。It is a figure which shows the heat processing deformation | transformation of a tripod member. 従来の等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the conventional constant velocity universal joint. 従来の等速自在継手の正面図である。It is a front view of the conventional constant velocity universal joint. 従来の等速自在継手の内側継手部材を拡大した正面図である。It is the front view which expanded the inner joint member of the conventional constant velocity universal joint. 従来の等速自在継手のシャフトを拡大した図である。It is the figure which expanded the shaft of the conventional constant velocity universal joint. 従来のスプラインの嵌合状態を示す説明図である。It is explanatory drawing which shows the fitting state of the conventional spline. 従来のスプラインの嵌合状態を示す横断面図である。It is a cross-sectional view which shows the fitting state of the conventional spline.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の第1の実施形態を図1〜図5に基づいて説明する。本実施形態の等速自在継手1は固定式等速自在継手であるツェッパ型等速自在継手である。図1および図2に示すように、等速自在継手1は、外側継手部材3、内方部材としての内側継手部材2、ボール4およびケージ5からなる。外側継手部材3の球状内周面6には6本のトラック溝7が円周方向等間隔に、かつ軸方向に沿って形成されている。内側継手部材2の球状外周面8には、外側継手部材3のトラック溝7と対向するトラック溝9が円周方向等間隔に、かつ軸方向に沿って形成されている。外側継手部材3のトラック溝7と内側継手部材2のトラック溝9との間にトルクを伝達する6個のボール4が介在されている。外側継手部材3の球状内周面6と内側継手部材2の球状外周面8の間に、ボール4を保持するケージ5が配置されている。外側継手部材3の外周と、内側継手部材2にスプライン連結されたシャフト10の外周とをブーツ11で覆い、継手内部には、潤滑剤としてグリースが封入されている。   A first embodiment of the present invention will be described with reference to FIGS. The constant velocity universal joint 1 of this embodiment is a Rzeppa type constant velocity universal joint which is a fixed type constant velocity universal joint. As shown in FIGS. 1 and 2, the constant velocity universal joint 1 includes an outer joint member 3, an inner joint member 2 as an inner member, a ball 4, and a cage 5. Six track grooves 7 are formed on the spherical inner peripheral surface 6 of the outer joint member 3 at equal intervals in the circumferential direction and along the axial direction. Track grooves 9 facing the track grooves 7 of the outer joint member 3 are formed in the spherical outer peripheral surface 8 of the inner joint member 2 at equal intervals in the circumferential direction and along the axial direction. Six balls 4 for transmitting torque are interposed between the track grooves 7 of the outer joint member 3 and the track grooves 9 of the inner joint member 2. A cage 5 that holds the ball 4 is disposed between the spherical inner peripheral surface 6 of the outer joint member 3 and the spherical outer peripheral surface 8 of the inner joint member 2. The outer periphery of the outer joint member 3 and the outer periphery of the shaft 10 splined to the inner joint member 2 are covered with a boot 11, and grease is enclosed as a lubricant inside the joint.

図1に示すように、外側継手部材3の球状内周面6と内側継手部材2の球状外周面8の曲率中心は、いずれも、継手の中心Oに形成されている。これに対して、外側継手部材3のトラック溝7の曲率中心Aと、内側継手部材2のトラック溝9の曲率中心Bとは、継手の中心Oに対して軸方向に等距離オフセットされている。これにより、継手が作動角をとった場合、外側継手部材3と内側継手部材2の両軸線がなす角度を二等分する平面上にボール4が常に案内され、二軸間で等速に回転トルクが伝達されることになる。   As shown in FIG. 1, the centers of curvature of the spherical inner peripheral surface 6 of the outer joint member 3 and the spherical outer peripheral surface 8 of the inner joint member 2 are both formed at the center O of the joint. On the other hand, the center of curvature A of the track groove 7 of the outer joint member 3 and the center of curvature B of the track groove 9 of the inner joint member 2 are offset by an equal distance in the axial direction with respect to the center O of the joint. . As a result, when the joint takes an operating angle, the ball 4 is always guided on a plane that bisects the angle formed by the two axes of the outer joint member 3 and the inner joint member 2, and rotates at a constant speed between the two axes. Torque is transmitted.

図3は、内側継手部材2を拡大した正面図である。内側継手部材2の内径孔12に雌スプライン13が形成されている。丸型スプラインのピッチ円に対して異形形状のピッチ円を有するスプラインとして、雌スプライン13のピッチ円は、頂部13bを有する微少な径差の三角形状(おむすび形状)に形成され、頂部13bと、頂部13b、13b間の中間部の半径差は0.01mm〜0.03mm程度となっている。内側継手部材2の雌スプライン13は、上記のような三角形状のピッチ円形状で、軸線に平行に延びている。   FIG. 3 is an enlarged front view of the inner joint member 2. A female spline 13 is formed in the inner diameter hole 12 of the inner joint member 2. As a spline having an irregularly shaped pitch circle with respect to the pitch circle of the round spline, the pitch circle of the female spline 13 is formed in a triangular shape having a small diameter difference (a rice ball shape) having a top portion 13b, and the top portion 13b. The radius difference of the intermediate part between the top parts 13b and 13b is about 0.01 mm-0.03 mm. The female spline 13 of the inner joint member 2 has a triangular pitch circle shape as described above, and extends parallel to the axis.

図4にシャフト10を示す。シャフト10の軸端部14に雄スプライン15が形成されている。雄スプライン15は、丸型スプラインで、軸線に平行に延びている。   FIG. 4 shows the shaft 10. A male spline 15 is formed at the shaft end 14 of the shaft 10. The male spline 15 is a round spline and extends parallel to the axis.

図5に内側継手部材2の雌スプライン13(歯面の図示省略、他の実施形態も同じ)にシャフト10の雄スプライン15(歯面の図示省略、他の実施形態も同じ)を圧入した状態を示す。内側継手部材2の雌スプライン13のピッチ円直径PCDiを実線で示し、シャフト10の雄スプライン15のピッチ円直径PCDsを破線で示す。内側継手部材2の雌スプライン13のピッチ円直径PCDiは、前述したように頂部13bを有する微少な径差の三角形状(おむすび形状)に形成され、頂部13bと、頂部13b、13b間の中間部の半径差は0.01mm〜0.03mm程度となっている。本実施形態や後述する他の実施形態において説明を分かりやすくするため、雌スプライン13の三角形状は誇張して示している。この実施形態では、各頂部13bはトラック溝9の溝底に配置されている。内側継手部材2の三角形状の雌スプライン13は、従来と同様、ブローチ加工により、容易に製造することができる。一方、シャフト10の雄スプライン15は丸型スプラインである。丸型スプラインであるので、従来と同様、転造加工により、容易に製造することができる。   FIG. 5 shows a state in which a male spline 15 of the shaft 10 (illustration of the tooth surface is omitted and the other embodiments are the same) is press-fitted into the female spline 13 of the inner joint member 2 (the tooth surface is not illustrated and the other embodiments are the same) Indicates. The pitch circle diameter PCDi of the female spline 13 of the inner joint member 2 is indicated by a solid line, and the pitch circle diameter PCDs of the male spline 15 of the shaft 10 is indicated by a broken line. As described above, the pitch circle diameter PCDi of the female spline 13 of the inner joint member 2 is formed into a slight diameter difference triangular shape (summary shape) having the top portion 13b, and the top portion 13b and the intermediate portion between the top portions 13b and 13b. The radius difference is about 0.01 mm to 0.03 mm. The triangle shape of the female spline 13 is exaggerated for easy understanding of the present embodiment and other embodiments described later. In this embodiment, each top portion 13 b is disposed at the groove bottom of the track groove 9. The triangular female spline 13 of the inner joint member 2 can be easily manufactured by broaching as in the prior art. On the other hand, the male spline 15 of the shaft 10 is a round spline. Since it is a round spline, it can be easily manufactured by rolling as in the prior art.

シャフト10の雄スプライン15を内側継手部材2の雌スプライン13に圧入したとき、雄スプライン15のピッチ円直径PCDsと雌スプライン13のピッチ円直径PCDiの半径差δにより、基本的に内側継手部材2が全体的に弾性変形し、円周方向の3箇所に部分的に締め代部16(ハッチングで図示)が生じる。雄スプライン15のピッチ円直径PCDsと雌スプライン13のピッチ円直径PCDiの半径差は0.01mm〜0.03mm程度となっている。特に好ましいのは、0.01mm〜0.02mm程度である。本実施形態では、雌スプライン13のピッチ円の頂部13bにおいて、雄スプライン15のピッチ円直径PCDsより雌スプライン13のピッチ円直径PCDiが大きく、隙間嵌合としている。しかし、この頂部13bにおいて軽微な締め代を付与することも可能であり、後述する他の実施形態においても同様である。スプライン嵌合部の円周方向の3箇所に部分的に締め代部16が生じる構成のため、スプライン嵌合時の圧入力を抑制することができるので、雄スプライン15のピッチ円直径PCDsと雌スプライン13のピッチ円直径PCDiの半径差を最大0.04mm程度まで可能にできる。これにより、円周方向ガタを確実に抑制することができる。また、締め代部16は、内側継手部材2の軸方向幅の全長にわたって形成されるので、スプライン嵌合時の圧入力の増大、スプライン部のむしれや過大な応力集中が回避でき、軸強度および軸寿命を高めることができる。   When the male spline 15 of the shaft 10 is press-fitted into the female spline 13 of the inner joint member 2, the inner joint member 2 is basically based on the radial difference δ between the pitch circle diameter PCDs of the male spline 15 and the pitch circle diameter PCDi of the female spline 13. Is elastically deformed as a whole, and fastening margins 16 (illustrated by hatching) are partially generated at three locations in the circumferential direction. The radius difference between the pitch circle diameter PCDs of the male spline 15 and the pitch circle diameter PCDi of the female spline 13 is about 0.01 mm to 0.03 mm. Particularly preferred is about 0.01 mm to 0.02 mm. In the present embodiment, the pitch circle diameter PCDi of the female spline 13 is larger than the pitch circle diameter PCDs of the male spline 15 at the top portion 13b of the pitch circle of the female spline 13, and the gap is fitted. However, it is also possible to give a slight tightening margin at the top portion 13b, and the same applies to other embodiments described later. Since the interference margins 16 are partially generated at three locations in the circumferential direction of the spline fitting portion, pressure input during the spline fitting can be suppressed. Therefore, the pitch circle diameter PCDs of the male spline 15 and the female The radius difference of the pitch circle diameter PCDi of the spline 13 can be made up to about 0.04 mm. Thereby, circumferential backlash can be reliably suppressed. In addition, since the tightening allowance 16 is formed over the entire length of the inner joint member 2 in the axial direction, it is possible to avoid an increase in pressure input when the spline is engaged, spattering of the spline, and excessive stress concentration. And can increase the shaft life.

本実施形態では、シャフト10の雄スプライン15を丸型スプラインで軸線に平行に延びるものを示したが、雄スプライン15に軸方向に捩れ角を付与してもよい。この場合の捩れ角は、従来技術である図15に示す捩れ角γ(10分程度)より小さくすることが望ましい。雄スプライン15に軸方向に捩れ角を付与することにより、スプライン嵌合時の圧入力をさらに抑制することができる。また、捩れ角を有する丸型スプラインは、従来と同様、転造加工により、容易に製造することができる。   In the present embodiment, the male spline 15 of the shaft 10 is a round spline extending in parallel to the axis, but the male spline 15 may be given a twist angle in the axial direction. The twist angle in this case is desirably smaller than the twist angle γ (about 10 minutes) shown in FIG. By applying a twist angle to the male spline 15 in the axial direction, it is possible to further suppress the pressure input when the spline is fitted. In addition, a round spline having a twist angle can be easily manufactured by rolling as in the conventional case.

次に、本発明の第2の実施形態を図6に基づいて説明する。本実施形態および後述する第3、第4の実施形態では、前述した第1の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment and third and fourth embodiments to be described later, portions having the same functions as those of the first embodiment described above are denoted by the same reference numerals, and redundant description is omitted.

この実施形態は、第1の実施形態と比較して、丸型スプラインが内側継手部材2側に形成され、三角形状のスプラインがシャフト10側に形成されるところが異なる。内側継手部材2の雌スプライン13のピッチ円直径PCDiを実線で示し、シャフト10の雄スプライン15のピッチ円直径PCDsを破線で示す。内側継手部材2の雌スプライン13のピッチ円は真円形状で、丸型スプラインである。シャフト10の雄スプライン15のピッチ円は頂部15bを有する微少な径差の三角形状(おむすび形状)に形成され、頂部15bと、頂部15b、15b間の中間部の半径差は0.01mm〜0.03mm程度となっている。各頂部15bはトラック溝9の溝底に配置されている。この実施形態においても、締め代部16は、内側継手部材2の軸方向幅の全長にわたって形成されるので、スプライン嵌合時の圧入力の増大、スプライン部のむしれや過大な応力集中が回避でき、軸強度および軸寿命を高めることができる。   This embodiment is different from the first embodiment in that a round spline is formed on the inner joint member 2 side and a triangular spline is formed on the shaft 10 side. The pitch circle diameter PCDi of the female spline 13 of the inner joint member 2 is indicated by a solid line, and the pitch circle diameter PCDs of the male spline 15 of the shaft 10 is indicated by a broken line. The pitch circle of the female spline 13 of the inner joint member 2 is a perfect circle and is a round spline. The pitch circle of the male spline 15 of the shaft 10 is formed in a triangular shape having a small diameter difference (a rice ball shape) having a top portion 15b, and the radius difference between the top portion 15b and the middle portion between the top portions 15b and 15b is 0.01 mm to 0 mm. 0.03 mm. Each top portion 15 b is disposed at the groove bottom of the track groove 9. Also in this embodiment, the fastening margin portion 16 is formed over the entire length of the inner joint member 2 in the axial direction, thereby avoiding an increase in pressure input when the spline is fitted, spatter of the spline portion, and excessive stress concentration. It is possible to increase the shaft strength and the shaft life.

シャフト10の三角形状のピッチ円を有する雄スプライン15の加工は、転造加工ではなく、プレス加工により容易に製造することができる。このプレス加工は、従来より実施されている加工方法で、三角形状の雄スプライン15に対応する成形面を有する金型に振動を与えながらプレス加工するものである。   The processing of the male spline 15 having the triangular pitch circle of the shaft 10 can be easily manufactured not by rolling but by pressing. This pressing is performed by a conventional processing method while applying vibration to a mold having a molding surface corresponding to the triangular male spline 15.

本発明の第3の実施形態を図7に基づいて説明する。この実施形態は、第1の実施形態に対して、丸型スプラインのピッチ円に対して異形形状のピッチ円を有するスプラインとして、内側継手部材2に形成された雌スプライン13が微少径差の五角形状であることが異なる。内側継手部材2の雌スプライン13のピッチ円直径PCDiは、頂部13bを有する微少な径差の五角形状に形成され、頂部13bと、頂部13b、13b間の中間部の半径差は0.01mm〜0.03mmとなっている。前述した実施形態と同様に、シャフト10の雄スプライン15を内側継手部材2の雌スプライン13に圧入したとき、雄スプライン15のピッチ円直径PCDsと雌スプライン13のピッチ円直径PCDiの半径差により、内側継手部材2が全体的に弾性変形し、円周方向の5箇所に締め代部16(ハッチングで図示)が生じる。締め代部16は、内側継手部材2の軸方向幅の全長にわたって形成されるので、スプライン嵌合時の圧入力の増大、スプライン部のむしれや過大な応力集中が回避でき、軸強度および軸寿命を高めることができる。   A third embodiment of the present invention will be described with reference to FIG. This embodiment is different from the first embodiment in that the female spline 13 formed on the inner joint member 2 is a pentagon having a slight diameter difference as a spline having a deformed pitch circle with respect to the pitch circle of the round spline. The shape is different. The pitch circle diameter PCDi of the female spline 13 of the inner joint member 2 is formed in a pentagonal shape having a slight diameter difference having a top portion 13b, and the radius difference between the top portion 13b and the middle portion between the top portions 13b and 13b is 0.01 mm to It is 0.03 mm. Similar to the above-described embodiment, when the male spline 15 of the shaft 10 is press-fitted into the female spline 13 of the inner joint member 2, due to the radial difference between the pitch circle diameter PCDs of the male spline 15 and the pitch circle diameter PCDi of the female spline 13, The inner joint member 2 is elastically deformed as a whole, and fastening margins 16 (shown by hatching) are generated at five locations in the circumferential direction. Since the tightening margin 16 is formed over the entire length of the inner joint member 2 in the axial direction, it is possible to avoid an increase in pressure input at the time of spline fitting, spattering of the spline part, and excessive stress concentration. The lifetime can be increased.

本発明の第4の実施形態を図8に基づいて説明する。この実施形態は、第1の実施形態に対して、シャフト10の雄スプライン15も三角形状(おむすび形状)に形成し、この三角形状の雄スプライン15のピッチ円の頂部15bと、内側継手部材2の三角形状の雌スプライン13のピッチ円の頂部13bとを円周方向に互いにずらせて圧入したことが異なる。シャフト10の三角形状の雄スプライン15のピッチ円直径PCDsの頂部15bと、頂部15b、15b間の中間部の半径差および内側継手部材2の三角形状の雌スプライン13のピッチ円直径PCDiの頂部13bと、頂部13b、13b間の中間部の半径差は、いずれも0.01mm〜0.03mm程度となっている。シャフト10の雄スプライン15を内側継手部材2の雌スプライン13に圧入したとき、雄スプライン15のピッチ円直径PCDsと雌スプライン13のピッチ円直径PCDiの径差により、内側継手部材2が全体的に弾性変形し、円周方向の6箇所に締め代部16(ハッチングで図示)が生じる。   A fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, the male spline 15 of the shaft 10 is also formed in a triangular shape (a rice ball shape) as compared with the first embodiment, and the top 15b of the pitch circle of the triangular male spline 15 and the inner joint member 2 are formed. The tops 13b of the pitch circles of the triangular female splines 13 are press-fitted with being shifted from each other in the circumferential direction. The apex 15b of the pitch circle diameter PCDs of the triangular male spline 15 of the shaft 10 and the radius difference between the intermediate portions between the apexes 15b and 15b and the apex 13b of the pitch circle diameter PCDi of the triangular female spline 13 of the inner joint member 2 And the radius difference of the intermediate part between the top parts 13b and 13b is about 0.01 mm-0.03 mm in all. When the male spline 15 of the shaft 10 is press-fitted into the female spline 13 of the inner joint member 2, the inner joint member 2 as a whole is caused by the difference in the pitch circle diameter PCDs of the male spline 15 and the pitch circle diameter PCDi of the female spline 13. Elastic deformation occurs, and fastening margins 16 (illustrated by hatching) are generated at six locations in the circumferential direction.

本発明の第5の実施形態を図9および図12に基づいて説明する。この実施形態はトリポード型等速自在継手に適用したものである。この等速自在継手21は、外側継手部材23、内方部材としてのトリポード部材22、転動体24および球面ローラ25とからなる。外側継手部材23の内周部に軸方向の三本のトラック溝26が形成され、各トラック溝26の両側にそれぞれ軸方向のローラ案内面27が形成されている。トリポード部材22は、そのボス部22aより三本の脚軸22bが放射状に形成されている。脚軸22bに多数の転動体24を介して球面ローラ25が嵌合され、転動体24の両端にワッシャ28、29を介させ、ワッシャ29は止め輪30により位置決めされている。これにより、転動体24の列が脚軸22b上で案内されると共に、球面ローラ25は、転動体24上で回転自在であると共に、脚軸22bの軸線方向に移動可能となっている。球面ローラ25は、外側継手部材23のローラ案内面27に回転自在に収容されている。   A fifth embodiment of the present invention will be described with reference to FIGS. This embodiment is applied to a tripod type constant velocity universal joint. The constant velocity universal joint 21 includes an outer joint member 23, a tripod member 22 as an inward member, a rolling element 24, and a spherical roller 25. Three track grooves 26 in the axial direction are formed on the inner peripheral portion of the outer joint member 23, and roller guide surfaces 27 in the axial direction are formed on both sides of each track groove 26. The tripod member 22 has three leg shafts 22b formed radially from its boss portion 22a. A spherical roller 25 is fitted to the leg shaft 22 b via a large number of rolling elements 24, and washers 28 and 29 are interposed at both ends of the rolling element 24, and the washer 29 is positioned by a retaining ring 30. Thus, the row of rolling elements 24 is guided on the leg shaft 22b, and the spherical roller 25 is rotatable on the rolling element 24 and is movable in the axial direction of the leg shaft 22b. The spherical roller 25 is rotatably accommodated on the roller guide surface 27 of the outer joint member 23.

このように、外側継手部材23のローラ案内面27とトリポード部材22の三本の脚軸22bとが球面ローラ25を介して回転方向に係合することにより、駆動側から従動側へ回転トルクが等速で伝達される。また、各球面ローラ25が脚軸22bに対して回転しながらローラ案内面27上を転動することにより、外側継手部材23とトリポード部材22との間の相対的な軸方向変位や角度変位が吸収される。   As described above, when the roller guide surface 27 of the outer joint member 23 and the three leg shafts 22b of the tripod member 22 are engaged with each other in the rotational direction via the spherical roller 25, rotational torque is generated from the driving side to the driven side. It is transmitted at a constant speed. Further, each spherical roller 25 rolls on the roller guide surface 27 while rotating with respect to the leg shaft 22b, so that relative axial displacement and angular displacement between the outer joint member 23 and the tripod member 22 are reduced. Absorbed.

図9に示すように、トリポード部材22のボス部22aの内径孔32に雌スプライン33が形成されている。この雌スプライン33とシャフト31の雄スプライン35が嵌合される。   As shown in FIG. 9, a female spline 33 is formed in the inner diameter hole 32 of the boss portion 22 a of the tripod member 22. The female spline 33 and the male spline 35 of the shaft 31 are fitted.

図10は、トリポード部材22を拡大した正面図である。トリポード部材22の内径孔32に雌スプライン33が形成されている。丸型スプラインのピッチ円に対して異形形状のピッチ円を有するスプラインとして、雌スプライン33のピッチ円は、頂部33bを有する微少な径差の三角形状(おむすび形状)に形成され、頂部33bと、頂部33b、33b間の中間部の半径差は0.01mm〜0.03mm程度となっている。トリポード部材22の雌スプライン33は、上記のような三角形状のピッチ円形状で、軸線に平行に延びている。   FIG. 10 is an enlarged front view of the tripod member 22. A female spline 33 is formed in the inner diameter hole 32 of the tripod member 22. As a spline having a deformed pitch circle with respect to the pitch circle of the round spline, the pitch circle of the female spline 33 is formed in a triangular shape having a small diameter difference (a rice ball shape) having a top portion 33b, and the top portion 33b. The radius difference of the intermediate part between the top parts 33b and 33b is about 0.01 mm-0.03 mm. The female spline 33 of the tripod member 22 has a triangular pitch circle shape as described above, and extends parallel to the axis.

図11にシャフト31を示す。シャフト31の軸端部34に雄スプライン35が形成されている。雄スプライン35は、丸型スプラインで、軸線に平行に延びている。   FIG. 11 shows the shaft 31. A male spline 35 is formed at the shaft end 34 of the shaft 31. The male spline 35 is a round spline and extends parallel to the axis.

図12に、トリポード部材22の雌スプライン33のピッチ円直径PCDtを実線で示し、シャフト31の雄スプライン35のピッチ円直径PCDsを破線で示す。雌スプライン33のPCDtは、頂部33bを有する微少な径差の三角形状(おむすび形状)に形成され、頂部33bと、頂部33b、33b間の中間部の半径差は0.01mm〜0.03mm程度となっている。トリポード部材22の雌スプライン33は、第1の実施形態と同様、三角形状のPCDtで、軸線に平行に延びている。この実施形態では、各頂部33bは脚軸22bの中心位置のボス部22aに配置されている。シャフト31の雄スプライン35は丸型スプラインで、軸方向に平行に延びている。   In FIG. 12, the pitch circle diameter PCDt of the female spline 33 of the tripod member 22 is indicated by a solid line, and the pitch circle diameter PCDs of the male spline 35 of the shaft 31 is indicated by a broken line. The PCDt of the female spline 33 is formed in a triangular shape with a small diameter difference (a rice ball shape) having a top portion 33b, and the radius difference between the top portion 33b and the middle portion between the top portions 33b and 33b is about 0.01 mm to 0.03 mm. It has become. Similar to the first embodiment, the female spline 33 of the tripod member 22 is a triangular PCDt and extends parallel to the axis. In this embodiment, each top part 33b is arrange | positioned at the boss | hub part 22a of the center position of the leg axis | shaft 22b. The male spline 35 of the shaft 31 is a round spline and extends parallel to the axial direction.

本実施形態では、シャフト31の雄スプライン35を丸型スプラインで軸線に平行に延びるものを示したが、雄スプライン35に軸方向に捩れ角を付与してもよい。この場合の捩れ角は、図15に示す捩れ角γ(10分程度)より小さくすることが望ましい。雄スプライン35に軸方向に捩れ角を付与することにより、スプライン嵌合時の圧入力をさらに抑制することができる。また、捩れ角を有する丸型スプラインは、従来と同様、転造加工により、容易に製造することができる。   In the present embodiment, the male spline 35 of the shaft 31 is a round spline extending in parallel to the axis, but the male spline 35 may be provided with a twist angle in the axial direction. In this case, the twist angle is desirably smaller than the twist angle γ (about 10 minutes) shown in FIG. By applying a twist angle to the male spline 35 in the axial direction, it is possible to further suppress the pressure input during the spline fitting. In addition, a round spline having a twist angle can be easily manufactured by rolling as in the conventional case.

シャフト31の雄スプライン35をトリポード部材22の雌スプライン33に圧入したとき、雄スプライン35のピッチ円直径PCDsと雌スプライン33のピッチ円直径PCDtの半径差により、トリポード部材22のボス部22aが全体的に弾性変形し、円周方向の3箇所に締め代部36(ハッチングで図示)が生じる。締め代部36は、トリポード部材22の軸方向幅の全長にわたって形成されるので、スプライン嵌合時の圧入力の増大、スプライン部のむしれや過大な応力集中が回避でき、軸強度および軸寿命を高めることができる。   When the male spline 35 of the shaft 31 is press-fitted into the female spline 33 of the tripod member 22, the boss portion 22 a of the tripod member 22 is entirely formed due to the radial difference between the pitch circle diameter PCDs of the male spline 35 and the pitch circle diameter PCDt of the female spline 33. Elastically deformed, and fastening margins 36 (illustrated by hatching) are generated at three locations in the circumferential direction. Since the tightening margin 36 is formed over the entire length of the tripod member 22 in the axial direction, an increase in pressure input at the time of spline fitting, spattering of the spline part and excessive stress concentration can be avoided, and the shaft strength and shaft life can be avoided. Can be increased.

トリポード部材22は、非常に変肉の大きい形状であるため、熱処理後に雌スプライン33が三角形状(おむすび形状)の変形が伴う。その変形を図16に示す。熱処理前の雌スプライン33のピッチ円直径PCDt(1)を破線で示し、熱処理後の雌スプライン33のピッチ円直径PCDt(2)を実線で示す。本実施形態では、トリポード部材22のこの特性を生かして、シャフト31の丸型スプラインとの嵌合が円周方向の3箇所で0.01mm〜0.03mm程度の締め代となるように設定することができる。この実施形態では、トリポード部材22の変形特性を生かして、雌スプライン33の各頂部33bを脚軸22bの中心位置のボス部22aに配置させている。また、トリポード部材22の雌スプライン33の熱処理後の形状を、四角形状、五角形状、六角形状などになるように予め設定することができる。   Since the tripod member 22 has a very large shape, the female spline 33 is deformed into a triangular shape (rice ball shape) after the heat treatment. The modification is shown in FIG. The pitch circle diameter PCDt (1) of the female spline 33 before heat treatment is indicated by a broken line, and the pitch circle diameter PCDt (2) of the female spline 33 after heat treatment is indicated by a solid line. In the present embodiment, by making use of this characteristic of the tripod member 22, the fitting with the round spline of the shaft 31 is set so as to have a tightening margin of about 0.01 mm to 0.03 mm at three locations in the circumferential direction. be able to. In this embodiment, taking advantage of the deformation characteristics of the tripod member 22, each top 33b of the female spline 33 is disposed on the boss 22a at the center position of the leg shaft 22b. In addition, the shape of the female spline 33 of the tripod member 22 after the heat treatment can be set in advance so as to be a quadrangular shape, a pentagonal shape, a hexagonal shape, or the like.

図13に本発明の第6の実施形態を示す。本実施形態および後述する第7、第8の実施形態では、前述した第5の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明を省略する。   FIG. 13 shows a sixth embodiment of the present invention. In this embodiment and the seventh and eighth embodiments described later, portions having the same functions as those of the fifth embodiment described above are denoted by the same reference numerals, and redundant description is omitted.

第6の実施形態は、雌スプライン33と雄スプライン35の関係については、第2の実施形態と同じである。丸型スプラインがトリポード部材22に形成され、三角形状のスプラインがシャフト31側に形成されている。トリポード部材22の雌スプライン33のピッチ円直径PCDtを実線で示し、シャフト31の雄スプライン35のピッチ円直径PCDsを破線で示す。シャフト31の雄スプライン35のピッチ円は頂部35bを有する微少な径差の三角形状(おむすび形状)に形成され、頂部35bと、頂部35b、35b間の中間部の半径差は0.01mm〜0.03mm程度となっている。各頂部35bは脚軸22bの中心位置のボス部22aに配置されている。この実施形態においても、締め代部36は、トリポード部材22のボス部22aの円周方向の部分的に生じ、かつトリポード部材22の軸方向幅の全長にわたって形成されるので、スプライン嵌合時の圧入力の増大、スプライン部のむしれや過大な応力集中が回避でき、軸強度および軸寿命を高めることができる。   In the sixth embodiment, the relationship between the female spline 33 and the male spline 35 is the same as that of the second embodiment. A round spline is formed on the tripod member 22, and a triangular spline is formed on the shaft 31 side. The pitch circle diameter PCDt of the female spline 33 of the tripod member 22 is indicated by a solid line, and the pitch circle diameter PCDs of the male spline 35 of the shaft 31 is indicated by a broken line. The pitch circle of the male spline 35 of the shaft 31 is formed in a triangular shape having a small diameter difference (a rice ball shape) having a top portion 35b, and the radius difference between the top portion 35b and the middle portion between the top portions 35b and 35b is 0.01 mm to 0 mm. 0.03 mm. Each top portion 35b is disposed on the boss portion 22a at the center position of the leg shaft 22b. Also in this embodiment, the tightening allowance 36 is partially formed in the circumferential direction of the boss 22a of the tripod member 22 and formed over the entire length of the tripod member 22 in the axial direction. Increase in pressure input, spline parting and excessive stress concentration can be avoided, and shaft strength and shaft life can be increased.

図14に本発明の第7の実施形態を示す。この実施形態は、雌スプライン33と雄スプライン35の関係については、第3の実施形態と同じである。この実施形態は、丸型スプラインのピッチ円に対して異形形状のピッチ円を有するスプラインとして、トリポード部材22に形成された雌スプライン33が微少径差の五角形状である。トリポード部材22の雌スプライン33のピッチ円直径PCDtは、頂部33bを有する微少な径差の五角形状に形成され、頂部33bと、頂部33b、33b間の中間部の半径差は0.01mm〜0.03mmとなっている。前述した実施形態と同様に、シャフト31の雄スプライン35をトリポード部材22の雌スプライン33に圧入したとき、雄スプライン35のピッチ円直径PCDsと雌スプライン33のピッチ円直径PCDtの半径差により、トリポード部材22が全体的に弾性変形し、円周方向の5箇所に締め代部36(ハッチングで図示)が生じる。締め代部36は、トリポード部材22のボス部22aの円周方向の部分的に生じ、かつトリポード部材22の軸方向幅の全長にわたって形成されるので、スプライン嵌合時の圧入力の増大、スプライン部のむしれや過大な応力集中が回避でき、軸強度および軸寿命を高めることができる。   FIG. 14 shows a seventh embodiment of the present invention. In this embodiment, the relationship between the female spline 33 and the male spline 35 is the same as that of the third embodiment. In this embodiment, the female spline 33 formed on the tripod member 22 has a pentagonal shape with a slight difference in diameter as a spline having a deformed pitch circle with respect to the pitch circle of the round spline. The pitch circle diameter PCDt of the female spline 33 of the tripod member 22 is formed in a pentagonal shape having a slight diameter difference having a top portion 33b, and the radius difference between the top portion 33b and the middle portion between the top portions 33b and 33b is 0.01 mm to 0 mm. 0.03 mm. Similar to the above-described embodiment, when the male spline 35 of the shaft 31 is press-fitted into the female spline 33 of the tripod member 22, the tripod is separated by the radial difference between the pitch circle diameter PCDs of the male spline 35 and the pitch circle diameter PCDt of the female spline 33. The member 22 is elastically deformed as a whole, and fastening margins 36 (shown by hatching) are generated at five locations in the circumferential direction. The fastening margin portion 36 is partially formed in the circumferential direction of the boss portion 22a of the tripod member 22 and is formed over the entire length in the axial direction of the tripod member 22. Therefore, an increase in pressure input during spline fitting, spline It is possible to avoid flaking of parts and excessive stress concentration, and to increase shaft strength and shaft life.

図15に本発明の第8の実施形態を示す。この実施形態は、雌スプライン33と雄スプライン35の関係については、第4の実施形態と同じである。この実施形態は、シャフト31の雄スプライン35も三角形状(おむすび形状)に形成し、この三角形状の雄スプライン35のピッチ円の頂部35bと、トリポード部材22の三角形状の雌スプライン33のピッチ円の頂部33bとを円周方向に互いにずらせて圧入したものである。シャフト31の三角形状の雄スプライン35のピッチ円直径PCDsの頂部35bと、頂部35b、35b間の中間部の半径差およびトリポード部材22の三角形状の雌スプライン33のピッチ円直径PCDiの頂部33bと、頂部33b、33b間の中間部の半径差は、いずれも0.01mm〜0.03mm程度となっている。シャフト31の雄スプライン35をトリポード部材22の雌スプライン33に圧入したとき、雄スプライン35のピッチ円直径PCDsと雌スプライン33のピッチ円直径PCDiの径差により、トリポード部材22が全体的に弾性変形し、円周方向の6箇所に締め代部36(ハッチングで図示)が生じる。   FIG. 15 shows an eighth embodiment of the present invention. In this embodiment, the relationship between the female spline 33 and the male spline 35 is the same as that of the fourth embodiment. In this embodiment, the male spline 35 of the shaft 31 is also formed in a triangular shape (a rice ball shape), and the top 35b of the pitch circle of the triangular male spline 35 and the pitch circle of the triangular female spline 33 of the tripod member 22 are formed. The top portion 33b of the steel plate is press-fitted while being shifted from each other in the circumferential direction. The apex 35b of the pitch circle diameter PCDs of the triangular male spline 35 of the shaft 31, the radius difference between the intermediate portions between the apexes 35b and 35b, and the apex 33b of the pitch circle diameter PCDi of the triangular female spline 33 of the tripod member 22 The radius difference between the top portions 33b and 33b is about 0.01 mm to 0.03 mm. When the male spline 35 of the shaft 31 is press-fitted into the female spline 33 of the tripod member 22, the tripod member 22 is elastically deformed as a whole due to the difference in pitch circle diameter PCDs of the male spline 35 and the pitch circle diameter PCDi of the female spline 33. Then, tightening margins 36 (illustrated by hatching) are generated at six locations in the circumferential direction.

以上の実施形態では、丸型スプラインのピッチ円に対して異形形状のピッチ円を有するスプラインとして、微少な径差の三角形状(おむすび形状)、五角形状を示したが、これに限られるものではなく、四角形状、六角形状やなだらかな曲線で構成された多角形状でも適宜実施することができる。要は、基本的に内方部材の全体的な弾性変形を利用して、スプライン嵌合部の締め代部が、円周方向の複数箇所に部分的に形成される形状であれば、どのような形状であってもよい。また、いずれの実施形態でも、異形形状スプラインのピッチ円の頂部において、雄スプラインのピッチ円直径と雌スプラインのピッチ円直径との寸法関係は、隙間にすることも、軽微な締め代を付与することも可能である。   In the above embodiments, the spline having a deformed pitch circle with respect to the pitch circle of the round spline has been shown a triangular shape with a slight difference in diameter (a rice ball shape) or a pentagonal shape, but is not limited to this. Alternatively, a rectangular shape, a hexagonal shape, or a polygonal shape constituted by a gentle curve can be appropriately implemented. In short, what is essential is that the fastening allowance of the spline fitting portion is basically formed at a plurality of locations in the circumferential direction by utilizing the overall elastic deformation of the inner member. It may be a simple shape. In any of the embodiments, the dimensional relationship between the pitch circle diameter of the male spline and the pitch circle diameter of the female spline at the top of the pitch circle of the odd-shaped spline can be a gap or provide a slight tightening allowance. It is also possible.

また、以上の実施形態ではツェッパ型等速自在継手とトリポード型等速自在継手を示したが、これに限ることなく、ダブルオフセット型等速自在継手、クロスグルーブ型等速自在継手をはじめ他の等速自在継手にも適用することができる。さらに、ボールの個数も6個に限ることなく、8個や他の個数の等速自在継手にも同様に適用することができる。   In the above embodiment, the Rzeppa type constant velocity universal joint and the tripod type constant velocity universal joint are shown. However, the present invention is not limited to this, and other types such as a double offset type constant velocity universal joint and a cross groove type constant velocity universal joint are also shown. It can also be applied to constant velocity universal joints. Further, the number of balls is not limited to six, and can be similarly applied to eight or other constant velocity universal joints.

1 等速自在継手
2 内側継手部材
3 外側継手部材
4 ボール
5 ケージ
6 球状内周面
7 トラック溝
8 球状外周面
9 トラック溝
10 シャフト
12 内径孔
13 雌スプライン
13b 頂部
15b 頂部
21 等速自在継手
22 トリポード部材
23 外側継手部材
24 転動体
25 球面ローラ
31 シャフト
33 雌スプライン
35 雄スプライン
A、B トラック溝の曲率中心
O 継手の中心
δ 半径差
PCD スプラインのピッチ円直径
DESCRIPTION OF SYMBOLS 1 Constant velocity universal joint 2 Inner joint member 3 Outer joint member 4 Ball 5 Cage 6 Spherical inner peripheral surface 7 Track groove 8 Spherical outer peripheral surface 9 Track groove 10 Shaft 12 Inner diameter hole 13 Female spline 13b Top 15b Top 21 Constant velocity universal joint 22 Tripod member 23 Outer joint member 24 Rolling element 25 Spherical roller 31 Shaft 33 Female spline 35 Male spline A, B Track groove curvature center O Joint center δ Radius difference PCD Spline pitch circle diameter

Claims (10)

継手の内方部材がシャフトとスプライン嵌合し軸方向に位置決め固定された等速自在継手において、前記内方部材およびシャフトの少なくとも一方のスプラインのピッチ円が、丸型スプラインのピッチ円に対して異形形状に形成され、当該一方のスプラインのピッチ円直径と他方のスプラインのピッチ円直径との半径差により、スプライン嵌合部の円周方向の複数箇所に部分的に締め代を有し、この締め代部が前記内方部材の軸方向幅の全長にわたって形成されていることを特徴とする等速自在継手。 In the constant velocity universal joint in which the inner member of the joint is splined to the shaft and positioned and fixed in the axial direction, the pitch circle of at least one of the inner member and the shaft is smaller than the pitch circle of the round spline. is formed in a deformed shape, the radius difference between the pitch circle diameter of the pitch circle diameter and the other splines of that one of the splines, partially have an interference to a plurality of positions in the circumferential direction of the spline fitting portion, the constant velocity universal joint interference unit is characterized that you have been formed over the entire length of the axial width of the inner member. 前記締め代が0.01mm乃至0.03mmであることを特徴とする請求項1に記載の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the tightening margin is 0.01 mm to 0.03 mm. 前記異形形状のスプラインが内方部材に形成され、前記シャフトには丸型スプラインが形成されていることを特徴とする請求項1又は請求項2に記載の等速自在継手。   3. The constant velocity universal joint according to claim 1, wherein the irregularly shaped spline is formed on an inner member, and the shaft is formed with a round spline. 4. 前記異形形状のスプラインがシャフトに形成され、前記内方部材には丸型スプラインが形成されていることを特徴とする請求項1又は請求項2に記載の等速自在継手。   3. The constant velocity universal joint according to claim 1, wherein the deformed spline is formed on a shaft, and the inner member is formed with a round spline. 4. 前記異形形状のスプラインが前記内方部材とシャフトのいずれにも形成され、両部材の異形形状の頂部を周方向で互いにずらせて嵌合したことを特徴とする請求項1又は請求項2に記載の等速自在継手。   3. The deformed spline is formed on either the inner member or the shaft, and the deformed tops of the two members are fitted to each other while being shifted from each other in the circumferential direction. Constant velocity universal joint. 前記異形形状が三角形状であることを特徴とする請求項1〜5項のいずれか1項に記載の等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 5, wherein the deformed shape is a triangular shape. 前記異形形状が多角形状であることを特徴とする請求項1〜5項のいずれか1項に記載の等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 5, wherein the deformed shape is a polygonal shape. 前記シャフトのスプラインが軸方向に捩れ角を有することを特徴とする請求項1又は請求項3に記載の等速自在継手。   4. The constant velocity universal joint according to claim 1, wherein the spline of the shaft has a twist angle in the axial direction. 前記内方部材がボールを有する等速自在継手の内側継手部材であることを特徴とする請求項1〜8項のいずれか1項に記載の等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 8, wherein the inner member is an inner joint member of a constant velocity universal joint having a ball. 前記内方部材がトリポード型等速自在継手のトリポード部材であることを特徴とする請求項1〜8項のいずれか1項に記載の等速自在継手。
The constant velocity universal joint according to any one of claims 1 to 8, wherein the inner member is a tripod member of a tripod type constant velocity universal joint.
JP2010248643A 2010-11-05 2010-11-05 Constant velocity universal joint Expired - Fee Related JP5623243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248643A JP5623243B2 (en) 2010-11-05 2010-11-05 Constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248643A JP5623243B2 (en) 2010-11-05 2010-11-05 Constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2012097889A JP2012097889A (en) 2012-05-24
JP5623243B2 true JP5623243B2 (en) 2014-11-12

Family

ID=46390016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248643A Expired - Fee Related JP5623243B2 (en) 2010-11-05 2010-11-05 Constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP5623243B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106641001A (en) * 2016-12-14 2017-05-10 河钢股份有限公司承德分公司 Universal shaft coupler with adjustable circumferential direction and adjustment method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633220Y2 (en) * 1986-09-04 1994-08-31 エヌティエヌ株式会社 Vehicle driving force transmission structure
JP3168841B2 (en) * 1994-09-22 2001-05-21 日本精工株式会社 Manufacturing method of shock absorbing steering shaft
JP4319208B2 (en) * 1998-08-26 2009-08-26 Ntn株式会社 Method for manufacturing drive wheel bearing unit
JP4029761B2 (en) * 2003-04-17 2008-01-09 株式会社ジェイテクト Telescopic shaft and manufacturing method thereof
JP2007247770A (en) * 2006-03-15 2007-09-27 Ntn Corp Torque-transmitting mechanism
JP4640405B2 (en) * 2007-11-26 2011-03-02 株式会社ジェイテクト Coupling structure of rotating shaft for automobile steering system

Also Published As

Publication number Publication date
JP2012097889A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP4193344B2 (en) Wheel drive unit
JP4198242B2 (en) Wheel bearing unit
JP2007331556A5 (en)
JP5214336B2 (en) Fixed constant velocity universal joint
JP4245106B2 (en) Manufacturing method and fitting structure of spline shaft for constant velocity joint
US8342971B2 (en) Fixed type constant velocity universal joint
JP5283832B2 (en) Constant velocity universal joint
JP5623243B2 (en) Constant velocity universal joint
EP2136094B1 (en) Universal joint
EP2532909B1 (en) Sliding ball type constant velocity joint for vehicle
JP7292008B2 (en) Sliding constant velocity universal joint for rear wheel drive shaft
KR102391537B1 (en) An axle assembly for a driving wheel of vehicle
JP2008256180A (en) Fixed type constant velocity universal joint and its assembling method
JP2005289255A (en) Drive wheel hub unit for vehicles
EP2133582B1 (en) Constant velocity universal joint
JP2001246903A (en) Hub unit
KR101696907B1 (en) Wheel bearing and manufacturing method of the same
JP2007333049A (en) Spline connection structure
JP2007247771A (en) Torque-transmitting mechanism
JP2007247769A (en) Torque-transmitting mechanism
JP2020051542A (en) Drive shaft
JP7224107B2 (en) Sliding constant velocity universal joint for rear wheel drive shaft
WO2023026826A1 (en) Sliding constant-velocity universal joint
JP2007247770A (en) Torque-transmitting mechanism
JP5154199B2 (en) Tripod type constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5623243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees