JP5622424B2 - Electrolyte for secondary battery - Google Patents
Electrolyte for secondary battery Download PDFInfo
- Publication number
- JP5622424B2 JP5622424B2 JP2010092713A JP2010092713A JP5622424B2 JP 5622424 B2 JP5622424 B2 JP 5622424B2 JP 2010092713 A JP2010092713 A JP 2010092713A JP 2010092713 A JP2010092713 A JP 2010092713A JP 5622424 B2 JP5622424 B2 JP 5622424B2
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- secondary battery
- group
- electrolyte
- boron compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003792 electrolyte Substances 0.000 title claims description 19
- 229910052731 fluorine Inorganic materials 0.000 claims description 73
- 239000011737 fluorine Substances 0.000 claims description 57
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 52
- 239000008151 electrolyte solution Substances 0.000 claims description 52
- 239000003063 flame retardant Substances 0.000 claims description 34
- 150000001639 boron compounds Chemical class 0.000 claims description 29
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 28
- 125000000217 alkyl group Chemical group 0.000 claims description 24
- -1 phosphate ester Chemical class 0.000 claims description 24
- 125000001153 fluoro group Chemical group F* 0.000 claims description 21
- 125000004432 carbon atom Chemical group C* 0.000 claims description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical group [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 9
- 229910001416 lithium ion Inorganic materials 0.000 claims description 9
- 229910019142 PO4 Inorganic materials 0.000 claims description 7
- 125000003545 alkoxy group Chemical group 0.000 claims description 7
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical compound CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 claims description 6
- 239000010452 phosphate Substances 0.000 claims description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 5
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 150000005678 chain carbonates Chemical class 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims 3
- DIEXQJFSUBBIRP-UHFFFAOYSA-N tris(2,2,2-trifluoroethyl) borate Chemical compound FC(F)(F)COB(OCC(F)(F)F)OCC(F)(F)F DIEXQJFSUBBIRP-UHFFFAOYSA-N 0.000 claims 1
- 239000007983 Tris buffer Substances 0.000 description 14
- 239000011255 nonaqueous electrolyte Substances 0.000 description 14
- 230000006866 deterioration Effects 0.000 description 12
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 9
- 101000837841 Homo sapiens Transcription factor EB Proteins 0.000 description 6
- 102100028502 Transcription factor EB Human genes 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical class OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 5
- 239000004327 boric acid Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- OBAJXDYVZBHCGT-UHFFFAOYSA-N tris(pentafluorophenyl)borane Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1B(C=1C(=C(F)C(F)=C(F)C=1F)F)C1=C(F)C(F)=C(F)C(F)=C1F OBAJXDYVZBHCGT-UHFFFAOYSA-N 0.000 description 4
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical group O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical group O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 2
- AOBBDXYJJKBZJY-UHFFFAOYSA-N 2,2,3,3-tetrafluorobutane-1,4-diamine Chemical compound NCC(F)(F)C(F)(F)CN AOBBDXYJJKBZJY-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical group C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 239000011491 glass wool Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- AJSTXXYNEIHPMD-UHFFFAOYSA-N triethyl borate Chemical compound CCOB(OCC)OCC AJSTXXYNEIHPMD-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- CAQYAZNFWDDMIT-UHFFFAOYSA-N 1-ethoxy-2-methoxyethane Chemical compound CCOCCOC CAQYAZNFWDDMIT-UHFFFAOYSA-N 0.000 description 1
- XBVURNWWURAQSY-UHFFFAOYSA-N 2,2,2-trifluoroethoxyboronic acid Chemical compound OB(O)OCC(F)(F)F XBVURNWWURAQSY-UHFFFAOYSA-N 0.000 description 1
- 125000004778 2,2-difluoroethyl group Chemical group [H]C([H])(*)C([H])(F)F 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- PQSVBHAFZKMFSO-UHFFFAOYSA-N B(O)(O)OCCC(CCC)(CCC)CCC Chemical compound B(O)(O)OCCC(CCC)(CCC)CCC PQSVBHAFZKMFSO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- VEZXCJBBBCKRPI-UHFFFAOYSA-N beta-propiolactone Chemical compound O=C1CCO1 VEZXCJBBBCKRPI-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- XBUGKDHALPQOTH-UHFFFAOYSA-N bis(2,2,2-trifluoroethyl) hydrogen phosphate Chemical compound FC(F)(F)COP(=O)(O)OCC(F)(F)F XBUGKDHALPQOTH-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 125000006001 difluoroethyl group Chemical group 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000005246 nonafluorobutyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 229960000380 propiolactone Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920003222 semicrystalline poly(phosphazene) Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 125000006337 tetrafluoro ethyl group Chemical group 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- LGQXXHMEBUOXRP-UHFFFAOYSA-N tributyl borate Chemical compound CCCCOB(OCCCC)OCCCC LGQXXHMEBUOXRP-UHFFFAOYSA-N 0.000 description 1
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- IRKHIJIMXUBALO-UHFFFAOYSA-N triheptyl borate Chemical compound CCCCCCCOB(OCCCCCCC)OCCCCCCC IRKHIJIMXUBALO-UHFFFAOYSA-N 0.000 description 1
- KDQYHGMMZKMQAA-UHFFFAOYSA-N trihexyl borate Chemical compound CCCCCCOB(OCCCCCC)OCCCCCC KDQYHGMMZKMQAA-UHFFFAOYSA-N 0.000 description 1
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 1
- AZLXEMARTGQBEN-UHFFFAOYSA-N trinonyl borate Chemical compound CCCCCCCCCOB(OCCCCCCCCC)OCCCCCCCCC AZLXEMARTGQBEN-UHFFFAOYSA-N 0.000 description 1
- JLPJTCGUKOBWRJ-UHFFFAOYSA-N tripentyl borate Chemical compound CCCCCOB(OCCCCC)OCCCCC JLPJTCGUKOBWRJ-UHFFFAOYSA-N 0.000 description 1
- NHDIQVFFNDKAQU-UHFFFAOYSA-N tripropan-2-yl borate Chemical compound CC(C)OB(OC(C)C)OC(C)C NHDIQVFFNDKAQU-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- JLEXUIVKURIPFI-UHFFFAOYSA-N tris phosphate Chemical compound OP(O)(O)=O.OCC(N)(CO)CO JLEXUIVKURIPFI-UHFFFAOYSA-N 0.000 description 1
- ZMQDTYVODWKHNT-UHFFFAOYSA-N tris(2,2,2-trifluoroethyl) phosphate Chemical compound FC(F)(F)COP(=O)(OCC(F)(F)F)OCC(F)(F)F ZMQDTYVODWKHNT-UHFFFAOYSA-N 0.000 description 1
- YZQXAGZTJRSUJT-UHFFFAOYSA-N tris(2,2,3,3-tetrafluoropropyl) phosphate Chemical compound FC(F)C(F)(F)COP(=O)(OCC(F)(F)C(F)F)OCC(F)(F)C(F)F YZQXAGZTJRSUJT-UHFFFAOYSA-N 0.000 description 1
- WAXLMVCEFHKADZ-UHFFFAOYSA-N tris-decyl borate Chemical compound CCCCCCCCCCOB(OCCCCCCCCCC)OCCCCCCCCCC WAXLMVCEFHKADZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Description
本発明は、安全性と電池性能を高めた非水系の二次電池用電解液、例えばリチウムイオン二次電池用電解液に関する。詳しくは、難燃性能を有する化合物の共存により低下する電池のサイクル特性をホウ素系化合物を共存させて改善した電解液に関する。 The present invention relates to an electrolyte for a non-aqueous secondary battery with improved safety and battery performance, for example, an electrolyte for a lithium ion secondary battery. More specifically, the present invention relates to an electrolytic solution that improves the cycle characteristics of a battery, which is deteriorated by the coexistence of a compound having flame retardancy, by coexisting a boron compound.
非水系の電解液を用いた二次電池、特にリチウムイオン二次電池はその高い駆動電圧、高エネルギー密度という特長により、ノートブック型パソコン、携帯電話などの携帯用機器の蓄電装置として利用され、電動自動車や自然エネルギーの電力貯蔵など大型蓄電用途へ展開する技術が注目されている。 Secondary batteries using non-aqueous electrolytes, especially lithium ion secondary batteries, are used as power storage devices for portable devices such as notebook computers and mobile phones due to their high drive voltage and high energy density. Technologies that can be applied to large-scale power storage applications such as electric vehicles and natural energy storage are drawing attention.
これらのリチウム系の電池ではその高い作動電圧のために、基本的には水溶液は使用できず、電気化学的に安定な電位範囲(電位窓)が広い非水溶媒が使用されている。
これら非水系蓄電装置の電解液には揮発性・引火性の有機溶媒が使用されており、製造時の不具合や過度な充放電により発火するなどの危険性を有している。
In these lithium-based batteries, due to the high operating voltage, an aqueous solution cannot be used basically, and a nonaqueous solvent having a wide electrochemically stable potential range (potential window) is used.
Volatile and flammable organic solvents are used for the electrolytes of these non-aqueous power storage devices, and there is a risk that they may ignite due to defects during production or excessive charge / discharge.
このような非水系電解液の本質的安全性を向上する方法として、電解液の難燃化・不燃化に関する研究が活発に行われている。例えば、樹脂材料等の難燃化剤に使用されているリン酸エステルを電解液に共存させる方法(例えば特許文献1、非特許文献1、2参照)では、引火点を有さず、且つ高い導電率を有する非水系電解液が提案されている。 As a method for improving the intrinsic safety of such a non-aqueous electrolyte solution, research on making the electrolyte solution flame-retardant and non-flammable has been actively conducted. For example, in a method in which a phosphate ester used in a flame retardant such as a resin material coexists in an electrolytic solution (see, for example, Patent Document 1 and Non-Patent Documents 1 and 2), it has no flash point and is high. Nonaqueous electrolytes having electrical conductivity have been proposed.
また、側鎖にフッ素原子を有するホスファゼン化合物や含フッ素リン酸エステル、含フッ素カーボネート、含フッ素エーテルなどの難燃溶媒を添加することで、リチウム二次電池の高い出力密度と優れた難燃性能を示すことが記されている(例えば特許文献2、3、非特許文献3参照)。
しかし、これらのフッ素原子を有する難燃剤を含む非水電解液二次電池は、難燃剤を加えない場合に較べてサイクル特性等の電池性能が低下することが知られており、更なる改善が求められていた。
In addition, by adding flame retardant solvents such as phosphazene compounds having fluorine atoms in the side chain, fluorine-containing phosphate esters, fluorine-containing carbonates, and fluorine-containing ethers, high output density and excellent flame resistance performance of lithium secondary batteries (For example, refer to Patent Documents 2 and 3 and Non-Patent Document 3).
However, it is known that the non-aqueous electrolyte secondary battery containing a flame retardant having these fluorine atoms is deteriorated in battery performance such as cycle characteristics as compared with the case where the flame retardant is not added. It was sought after.
一方、難燃性ではなく高い電池性能を得る目的でホウ素系の化合物を添加する提案がなされている。 On the other hand, proposals have been made to add boron-based compounds for the purpose of obtaining high battery performance rather than flame retardancy.
例えば、大電流充放電特性、大電流サイクル特性を向上する目的で、トリス(ペンタフルオロフェニル)ボランもしくはホウ酸トリス(2H−ヘキサフルオロイソプロピル)をフルオロエチレンカーボネートもしくはジフルオロエチレンカーボネートと共存して添加することでリチウムイオン二次電池の大電流充放電特性を改善する方法が提案されている(例えば、特許文献4参照)。 For example, for the purpose of improving large current charge / discharge characteristics and large current cycle characteristics, tris (pentafluorophenyl) borane or tris borate (2H-hexafluoroisopropyl) is added together with fluoroethylene carbonate or difluoroethylene carbonate. Thus, a method for improving the large current charge / discharge characteristics of the lithium ion secondary battery has been proposed (see, for example, Patent Document 4).
一方、トリス(ペンタフルオロフェニル)ボランは電解質(LiPF6)中のLiFを捕捉する事でPF5を生成することが知られている。このPF5は非常に反応性が高いために電解液溶媒と反応し、結果的に電解液を劣化させる可能性があることも記載されている(例えば、非特許文献4)。 On the other hand, tris (pentafluorophenyl) borane is known to generate PF5 by capturing LiF in the electrolyte (LiPF6). It is also described that PF5 has a very high reactivity and thus reacts with the electrolyte solvent, and as a result, the electrolyte may be deteriorated (for example, Non-Patent Document 4).
電解液の難燃剤として提案されているフッ素原子を側鎖に持つ難燃剤(以下、フッ素系難燃剤)は燃焼時にフッ素が遊離し、酸素を捕捉することで、燃焼を抑制するが、これらのフッ素系難燃剤を非水系二次電池の電解液に混合した場合、サイクル特性などの電池性能が低下する課題がある。この機構は定かではないが、電極上で一部のフッ素系難燃剤の分解反応が進行することに起因するのではないかと考えられる。
一方、電池性能を向上させる効果のある添加剤としては、ホウ素化合物のほかにビニレンカーボネートやビニルエチレンカーボネート、プロパンスルトン類、フルオロエチレンカーボネート等、多数の化合物群が提案されている。
しかしながら、ホウ素化合物を除く上記の添加剤をフッ素系難燃剤と共に添加しても、難燃性と電池性能の両性能の向上を同時に達成することはできないことが判明した。
Flame retardants with fluorine atoms in the side chain (hereinafter referred to as fluorinated flame retardants), which are proposed as electrolyte flame retardants, release fluorine during combustion and suppress oxygen by capturing oxygen. When a fluorine-based flame retardant is mixed in an electrolyte solution of a non-aqueous secondary battery, there is a problem that battery performance such as cycle characteristics deteriorates. Although this mechanism is not clear, it is thought that this mechanism is caused by the progress of the decomposition reaction of some of the fluorinated flame retardants on the electrode.
On the other hand, as an additive having an effect of improving battery performance, a number of compound groups such as vinylene carbonate, vinyl ethylene carbonate, propane sultone, and fluoroethylene carbonate have been proposed in addition to boron compounds.
However, it has been found that even when the above-mentioned additives excluding a boron compound are added together with a fluorine-based flame retardant, it is impossible to achieve both improvement in flame retardancy and battery performance.
本発明者らは、電池性能の向上について鋭意検討した結果、ホウ素化合物については、フッ素系難燃剤との共存下においても安全性と電池特性の両方を満足する非水電解液が得られることを確認した。
ホウ素化合物の添加によりサイクル特性等の電池性能が向上した機構も定かではないが、下記に示した二つの効果のいずれか、またはその両方の効果が発現し、サイクル特性が向上したものと考えられる。
(1)ホウ素化合物が電極上で優先的に分解され、良好な皮膜を形成し、フッ素系難燃剤の分解が抑制された。
(2)電極上でフッ素系難燃剤が分解した際に副生する分解物を、ホウ素系化合物が効率的に捕捉した。
ホウ素化合物のほかにビニレンカーボネートやビニルエチレンカーボネート、プロパンスルトン類、フルオロエチレンカーボネート等、多数の化合物群が提案されているが、ホウ素化合物を用いた場合にのみフッ素系難燃剤との共存添加効果(安全性と電池性能の両立)が確認できたことは驚くべき効果であり、容易に類推することは難しい。
As a result of intensive studies on improving battery performance, the present inventors have found that a non-aqueous electrolyte that satisfies both safety and battery characteristics can be obtained for boron compounds even in the presence of a fluorine-based flame retardant. confirmed.
The mechanism by which the battery performance such as cycle characteristics is improved by the addition of the boron compound is not clear, but it is thought that one or both of the two effects shown below are manifested and the cycle characteristics are improved. .
(1) The boron compound was preferentially decomposed on the electrode to form a good film, and the decomposition of the fluorine-based flame retardant was suppressed.
(2) The boron-based compound efficiently captures decomposition products by-produced when the fluorine-based flame retardant decomposes on the electrode.
In addition to boron compounds, many compound groups such as vinylene carbonate, vinyl ethylene carbonate, propane sultone, and fluoroethylene carbonate have been proposed, but only when boron compounds are used, the effect of coexistence with fluorine-based flame retardants ( The fact that both safety and battery performance have been confirmed is a surprising effect, and it is difficult to analogize easily.
即ち、本発明に係る二次電池用電解液はフッ素系難燃剤とホウ素化合物を共存添加した非水系の電解液である。 That is, the electrolyte solution for secondary batteries according to the present invention is a non-aqueous electrolyte solution in which a fluorine-based flame retardant and a boron compound are added together.
前記ホウ素化合物としては下記の一般式化(1)で示されるものが考えられる。
(式中、R1、R2、R3は同一または異なって水素、ハロゲン、アルキル基、アリール基、アルコキシ基、含フッ素アルキル基、含フッ素アリール基、含フッ素アルコキシ基を示す)
As the boron compound, one represented by the following general formula (1) can be considered.
(Wherein R 1 , R 2 and R 3 are the same or different and each represents hydrogen, halogen, alkyl group, aryl group, alkoxy group, fluorine-containing alkyl group, fluorine-containing aryl group or fluorine-containing alkoxy group)
前記ホウ素化合物としては下記の一般式化(2)で示されるものが考えられる。
(式中、R4、R5、R6は同一もしくは異なる炭素数1〜10の直鎖、または分岐した含フッ素アルキル基を示す)
アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基を挙げることができる。
含フッ素アルキル基としては、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、モノフルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチル基、オクタフルオロブチル基、ノナフルオロブチル基、ドデカフルオロヘキシル基、トリデカフルオロヘキシル基、ヘキサデカフルオロオクチル基、ヘプタデカフルオロオクチル基、エイコサフルオロデシル基等の炭素数1〜10の含フッ素アルキル基を挙げることができる。
このようなホウ酸エステルの例としては、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリイソプロピル、ホウ酸トリノルマルプロピル、ホウ酸トリノルマルブチル、ホウ酸トリペンチル、ホウ酸トリヘキシル、ホウ酸トリヘプチル、ホウ酸トリオクチル、ホウ酸トリノニル、ホウ酸トリデシル等を挙げることができる。
また、含フッ素ホウ酸エステルの例としては、ホウ酸トリス(2−モノフルオロエチル)、ホウ酸トリス(2,2−ジフオロエチル)、ホウ酸トリス(2,2,2−トリフオロエチル)、ホウ酸トリス(2,2,3,3−テトラフルオロプロピル)、ホウ酸トリス(2,2,3,3,3−ペンタフルオロプロピル)、ホウ酸トリス(ヘキサフルオロイソプロピル)、ホウ酸トリス(2,2,3,3,4,4,5,5−オクタフルオロペンチル)、ホウ酸トリス(2,2,2,3,3,4,4,5,5−ノナフルオロペンチル)、ホウ酸トリス(2,2,3,3,4,4,5,5,6,6,7,7−ドデカフルオロヘプチル)、ホウ酸トリス(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9−ヘキサデカフルオロノニル)、ホウ酸トリス(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11−エイコサデカフルオロウンデシル)等を挙げることができる。
As the boron compound, one represented by the following general formula (2) can be considered.
(In the formula, R 4 , R 5 and R 6 are the same or different C 1-10 linear or branched fluorine-containing alkyl groups)
Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, and decyl group.
As the fluorine-containing alkyl group, monofluoromethyl group, difluoromethyl group, trifluoromethyl group, monofluoroethyl group, difluoroethyl group, trifluoroethyl group, tetrafluoroethyl group, pentafluoroethyl group, octafluorobutyl group, Mention may be made of fluorine-containing alkyl groups having 1 to 10 carbon atoms such as nonafluorobutyl group, dodecafluorohexyl group, tridecafluorohexyl group, hexadecafluorooctyl group, heptadecafluorooctyl group, eicosafluorodecyl group, etc. .
Examples of such boric acid esters include trimethyl borate, triethyl borate, triisopropyl borate, tripropylpropyl borate, trinormal butyl borate, tripentyl borate, trihexyl borate, triheptyl borate, boric acid Examples include trioctyl, trinonyl borate, tridecyl borate and the like.
Examples of the fluorine-containing boric acid ester include tris borate (2-monofluoroethyl), tris borate (2,2-difluoroethyl), tris borate (2,2,2-trifluoroethyl), boron Acid tris (2,2,3,3-tetrafluoropropyl), boric acid tris (2,2,3,3,3-pentafluoropropyl), boric acid tris (hexafluoroisopropyl), boric acid tris (2, 2,3,3,4,4,5,5-octafluoropentyl), tris borate (2,2,2,3,3,4,4,5,5-nonafluoropentyl), tris borate ( 2,2,3,3,4,5,5,6,6,7,7-dodecafluoroheptyl), tris borate (2,2,3,3,4,4,5,5,6) , 6,7,7,8,8,9,9-hexadecafluorononyl) Tris borate (2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11-eicosadecafluoroundecyl And the like.
前記ホウ素化合物としては下記の一般式化(3)で示されるものが考えられる。
(式中、X1~X15は各々同一または異なって水素原子またはフッ素原子を示す)これらのアリールホウ素化合物のなかで、好ましくは、全てがフッ素により置換された、トリス(ペンタフルオロフェニル)ボランである。
As said boron compound, what is shown by following General formula (3) can be considered.
(Wherein X 1 to X 15 are the same or different and each represents a hydrogen atom or a fluorine atom) Among these arylboron compounds, tris (pentafluorophenyl) borane, preferably all substituted with fluorine It is.
本発明において、非水電解液二次電池の電池性能を良好なものとするため、非水系電解液におけるホウ素化合物の濃度は0.1〜50重量%、好ましくは10〜30重量%である。その理由として、50重量%を超える量を添加した場合は電解液の粘度上昇等により電気伝導度が低下する。もしくは電解質の溶解性の低下により、電池性能が低下する可能性がある。一方、0.1%未満にした場合でも効果は認められるが、その効果は少ない。 In the present invention, in order to improve the battery performance of the non-aqueous electrolyte secondary battery, the concentration of the boron compound in the non-aqueous electrolyte is 0.1 to 50% by weight, preferably 10 to 30% by weight. The reason for this is that when an amount exceeding 50% by weight is added, the electrical conductivity decreases due to an increase in the viscosity of the electrolytic solution. Alternatively, battery performance may be reduced due to a decrease in electrolyte solubility. On the other hand, even when the content is less than 0.1%, the effect is recognized, but the effect is small.
また本発明において使用するフッ素原子を側鎖に持つ難燃剤としては、含フッ素リン酸エステルや含フッ素ホスファゼン化合物、含フッ素エーテル、含フッ素カーボネート及び含フッ素エステルなどを例示することが出来る。 Examples of the flame retardant having a fluorine atom in the side chain used in the present invention include a fluorine-containing phosphate ester, a fluorine-containing phosphazene compound, a fluorine-containing ether, a fluorine-containing carbonate and a fluorine-containing ester.
含フッ素リン酸エステルとしては、例えば下記一般式化(4)
含フッ素カーボネートとしては、例えば一般式化(5)
(式中、R10、R11は同一もしくは非同一の炭素数1〜10のアルキル基またはフッ素原子で置換された炭素数1〜10のアルキル基を示し、R10、R11の内、少なくとも1つはフッ素原子で置換されたアルキル基である。)で示される鎖状フッ素化カーボネートを挙げることができる。
As a fluorine-containing carbonate, for example, the general formula (5)
(In the formula, R 10 and R 11 represent the same or non-identical alkyl group having 1 to 10 carbon atoms or an alkyl group having 1 to 10 carbon atoms substituted with a fluorine atom, and at least of R 10 and R 11 , One is an alkyl group substituted with a fluorine atom.).
含フッ素エーテルとしては、例えば一般式化(6)
(式中、R12、R13は同一もしくは非同一の炭素数2〜6のアルキル基、炭素数2〜10のアルコキシアルキル基、フッ素原子で置換された炭素数2〜6のアルキル基またはフッ素原子で置換された炭素数2〜10のアルコキシアルキル基を示し、R12、R13の内、少なくとも1つはフッ素原子を有するアルキル基またはフッ素原子で置換されたアルコキシアルキル基である。)で示されるフッ素化エーテルを挙げることができる。
As fluorine-containing ether, for example, the general formula (6)
(Wherein R 12 and R 13 are the same or non-identical alkyl group having 2 to 6 carbon atoms, alkoxyalkyl group having 2 to 10 carbon atoms, alkyl group having 2 to 6 carbon atoms substituted with a fluorine atom, or fluorine. An alkoxyalkyl group having 2 to 10 carbon atoms substituted with an atom, and at least one of R 12 and R 13 is an alkyl group having a fluorine atom or an alkoxyalkyl group substituted with a fluorine atom. Mention may be made of the fluorinated ethers indicated.
含フッ素エステルとしては例えば一般式化(7)
(式中、R14、R15は同一もしくは非同一の炭素数2〜6のアルキル基またはフッ素原子で置換された炭素数2〜6のアルキル基を示し、R14、R15の内、少なくとも1つはフッ素原子で置換されたアルキル基である。)で示されるフッ素化エステルを挙げることができる。
As fluorine-containing ester, for example, the general formula (7)
(In the formula, R 14 and R 15 represent the same or non-identical alkyl group having 2 to 6 carbon atoms or an alkyl group having 2 to 6 carbon atoms substituted with a fluorine atom, and among R 14 and R 15 , at least One is an alkyl group substituted with a fluorine atom.).
含フッ素ホスファゼンとしては、例えば一般式化(8)
(式中、R16〜R21は、同一もしくは非同一の水素原子、ハロゲン原子、炭素数1〜10の直鎖または分岐アルキル基、フッ素原子で置換された炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、フッ素原子で置換された炭素数1〜10のアルコキシ基を示し、R16〜R21の内、少なくとも一つがフッ素原子、フッ素原子で置換されたアルキル基またはフッ素原子で置換されたアルコキシ基のいずれかである。)で示される含フッ素ホスファゼンを挙げることができる。
As the fluorine-containing phosphazene, for example, the general formula (8)
(Wherein R 16 to R 21 are the same or non-identical hydrogen atom, halogen atom, linear or branched alkyl group having 1 to 10 carbon atoms, alkyl group having 1 to 10 carbon atoms substituted with a fluorine atom, 1 represents an alkoxy group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms substituted with a fluorine atom, and at least one of R 16 to R 21 is a fluorine atom, an alkyl group substituted with a fluorine atom, or fluorine And any one of alkoxy groups substituted with an atom).
上記に示した含フッ素難燃剤の中でも、特に含フッ素リン酸エステル、含フッ素ホスファゼン化合物が難燃性および電池性能の点で好ましい。 Among the fluorine-containing flame retardants described above, fluorine-containing phosphates and fluorine-containing phosphazene compounds are particularly preferable in terms of flame retardancy and battery performance.
本発明において、非水電解液二次電池の難燃性を良好なものとするため、非水系電解液における含フッ素難燃剤の添加量は多いほど好ましいが、電池性能とのバランスを考慮した場合、5重量%以上、50重量%以下とすることが望ましく、さらには10重量%以上、50重量%以下であることが好ましい。その理由として、5重量%以下では充分な難燃性能を発揮することが出来ない。また50重量%以上では電解液の粘度の上昇により電気伝導度が低下する。もしくは電解質の溶解性を低下させることがある。 In the present invention, in order to improve the flame retardancy of the non-aqueous electrolyte secondary battery, the amount of the fluorine-containing flame retardant added in the non-aqueous electrolyte is preferably as much as possible, but when considering the balance with the battery performance Desirably, the content is 5% by weight or more and 50% by weight or less, and more preferably 10% by weight or more and 50% by weight or less. The reason is that sufficient flame retardancy cannot be exhibited at 5 wt% or less. On the other hand, if it is 50% by weight or more, the electrical conductivity decreases due to an increase in the viscosity of the electrolytic solution. Or the solubility of the electrolyte may be reduced.
次に本発明の非水系電解液について説明する。
非水電解液として通常用いられる有機溶媒として代表的なものは、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート等の環状カーボネート、γ−ブチロラクトン、γ−バレロラクトン、プロピオラクトン等の環状エステル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジフェニルカーボネート等の鎖状カーボネート、酢酸メチル、酪酸メチル等の鎖状エステル、テトラヒドロフラン、1,3−ジオキサン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、メチルジグライム等のエーテル類、アセトニトリル、ベンゾニトリル等のニトリル類、ジオキソラン又はその誘導体等の単独又はそれら2種以上の混合物等を挙げることができる。
Next, the non-aqueous electrolyte solution of the present invention will be described.
Representative examples of organic solvents that are usually used as non-aqueous electrolytes include, for example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, and chloroethylene carbonate, γ-butyrolactone, γ-valerolactone, and propiolactone. Cyclic esters, chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, diphenyl carbonate, chain esters such as methyl acetate, methyl butyrate, tetrahydrofuran, 1,3-dioxane, dimethoxyethane, diethoxyethane, methoxyethoxyethane , Ethers such as methyl diglyme, nitriles such as acetonitrile and benzonitrile, dioxolane or a derivative thereof alone or a mixture of two or more thereof. Yes.
非水系電解液を構成する電解質塩としては、非水系二次電池に使用される広電位領域において安定であるリチウム塩が使用できる。このような電解質塩として、例えば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiC(CF3SO2)3等が挙げられる。これらは単独で用いてもよく、2種以上混合して用いてもよい。なお、電池の高率充放電特性を良好なものとするため、非水系電解液における電解質塩の濃度は0.1〜2.5mol/L、特に好ましくは0.5〜1.5mol/Lの範囲とすることが望ましい。 As the electrolyte salt constituting the non-aqueous electrolyte solution, a lithium salt that is stable in a wide potential region used in a non-aqueous secondary battery can be used. Examples of such electrolyte salts include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3 etc. are mentioned. These may be used alone or in combination of two or more. In order to improve the high rate charge / discharge characteristics of the battery, the concentration of the electrolyte salt in the non-aqueous electrolyte is 0.1 to 2.5 mol / L, particularly preferably 0.5 to 1.5 mol / L. A range is desirable.
本発明に係る二次電池用電解液は、安全性(難燃性)と電池特性(大電流充放電特性、大電流サイクル特性など)の両方を満足する。 The electrolyte solution for secondary batteries according to the present invention satisfies both safety (flame retardancy) and battery characteristics (such as large current charge / discharge characteristics and large current cycle characteristics).
以下、本発明を実施例にて説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.
1.電解液の調製
電解液溶媒としてエチレンカーボネート(以下ECと略す)、ジメチルカーボネート(以下DMCと略す)を体積比1:1の割合で混合した溶媒を用い、これに難燃剤とホウ素化合物を所定量混合したものに、電解質として六フッ化リン酸リチウム(LiPF6)を1.0mol/L溶解させたものを電解液として用いた。
1. Preparation of electrolyte solution As a solvent for an electrolyte solution, a solvent in which ethylene carbonate (hereinafter abbreviated as EC) and dimethyl carbonate (hereinafter abbreviated as DMC) are mixed at a volume ratio of 1: 1 is used, and a predetermined amount of flame retardant and boron compound are added thereto. What mixed 1.0 mol / L of lithium hexafluorophosphate (LiPF6) as electrolyte was used as electrolyte solution in what was mixed.
2.非水系リチウムイオン二次電池の作成
正極活物質としてコバルト酸リチウム(LiCoO2)を用い、これに導電助剤としてカーボンブラック、バインダーとしてポリフッ化ビニリデン(PVDF)をLiCoO2:カーボンブラック:PVDF=85:7:8となるように配合し、1−メチル−2−ピロリドンを用いてスラリー化したものをアルミニウム集電体上に一定の膜厚で塗布し、乾燥させて正極を得た。
負極活物質としてはリチウム金属箔を用い、銅集電体に圧着して負極を得た。
セパレータとしてはグラスフィルターを用いた。
2. Preparation of non-aqueous lithium ion secondary battery Lithium cobaltate (LiCoO 2 ) was used as a positive electrode active material, carbon black as a conductive auxiliary agent, and polyvinylidene fluoride (PVDF) as a binder, LiCoO 2 : carbon black: PVDF = 85 : 7: 8 The slurry was mixed with 1-methyl-2-pyrrolidone and applied to the aluminum current collector with a certain film thickness and dried to obtain a positive electrode.
A lithium metal foil was used as the negative electrode active material, and a negative electrode was obtained by pressure bonding to a copper current collector.
A glass filter was used as the separator.
以上の構成要素を用いて、図1に示した構造のラミネートパッケージを用いたリチウムイオン二次電池を作成した。リチウムイオン二次電池はセパレータ4を挟んで正極3および負極5を対向配置し、これら正極3、セパレータ4および負極5からなる積層体をラミネートパケージ6内に収納し、充電・放電はラミネートパケージ6に設けた正極リード1および負極リード2を介して行う。 Using the above components, a lithium ion secondary battery using a laminate package having the structure shown in FIG. 1 was produced. In the lithium ion secondary battery, the positive electrode 3 and the negative electrode 5 are arranged opposite to each other with the separator 4 interposed therebetween, and a laminate composed of the positive electrode 3, the separator 4 and the negative electrode 5 is accommodated in the laminate package 6. This is carried out via the positive electrode lead 1 and the negative electrode lead 2 provided in FIG.
3.充放電試験
この様に作成した電池を25℃の恒温条件下、0.1Cの充電電流で上限電圧を4.2Vとして充電し、続いて0.1Cの放電電流で3.0Vとなるまで放電した。この操作を行った後に55℃の恒温条件下、1Cの充電電流で4.2Vの定電流定電圧充電を行い、1Cの放電電流で終止電圧3.0Vまで定電流放電を行った。このときの放電容量を初期放電容量とし、この操作を50回繰り返した際の放電容量を測定し、50サイクル後の放電容量/初期放電容量比を劣化率として比較を行った。
3. Charging / discharging test The battery thus prepared was charged at a constant temperature of 25 ° C. with a charging current of 0.1 C and an upper limit voltage of 4.2 V, and then discharged to 3.0 V with a discharging current of 0.1 C. did. After this operation, a constant current / constant voltage charge of 4.2 V was performed with a charging current of 1 C under a constant temperature of 55 ° C., and a constant current discharge was performed up to a final voltage of 3.0 V with a discharging current of 1 C. The discharge capacity at this time was defined as the initial discharge capacity, the discharge capacity when this operation was repeated 50 times was measured, and the comparison was performed using the discharge capacity / initial discharge capacity ratio after 50 cycles as the deterioration rate.
4.難燃性(自己消火性)試験
0.25gのグラスウールに電解液0.5gを約2cmの円状に滴下した。この電解液を浸漬したグラスウールを炎にさらして引火させ、引火の有無、さらに引火した場合は消火するまでの時間を測定した。この試験を5回測定し、5回のうち上下2点を除いた、3点の平均値を1g当りの消火時間(SET、sec/g)として比較した。
4). Flame retardancy (self-extinguishing) test 0.5 g of electrolyte solution was dropped into 0.25 g of glass wool in a circular shape of about 2 cm. The glass wool in which this electrolyte solution was immersed was exposed to flame and ignited, and the presence or absence of ignition and the time until extinguishing when ignited were measured. This test was measured 5 times, and the average value of 3 points, excluding the upper and lower 2 points out of 5 times, was compared as the fire extinguishing time per 1 g (SET, sec / g).
実施例1
難燃剤として、リン酸トリス(2,2,2−トリフルオロエチル)(以下、TFEPと略記)を15重量%混合し、ホウ酸トリス(2,2,2−トリフルオロエチル)(以下、TFEBと略記)を5重量%混合した電解液を調製した。この電解液を用いて、上記2の非水系リチウムイオン二次電池を作成し、電池の理論容量にしたがって0.1Cの充放電を4回繰り返した後に、1Cの充放電を行った。その際の電池の放電容量は131mAh/gであった。
Example 1
As a flame retardant, 15% by weight of tris phosphate (2,2,2-trifluoroethyl) (hereinafter abbreviated as TFEP) is mixed and tris (2,2,2-trifluoroethyl borate) (hereinafter referred to as TFEB). And an electrolyte solution in which 5 wt% was mixed. Using this electrolytic solution, the above-mentioned non-aqueous lithium ion secondary battery 2 was prepared, and 0.1 C charge / discharge was repeated 4 times according to the theoretical capacity of the battery, followed by 1 C charge / discharge. At that time, the discharge capacity of the battery was 131 mAh / g.
さらに、この電池を用いて、55℃の温度条件下、1Cにおいて50回の充放電試験を実施した。その結果、電池の放電容量は118mAh/gで、50サイクル後のサイクル劣化率は90%であった。 また、この電解液を用いて上記4の難燃性試験を実施した。その結果、1g当たりの自己消火時間(SET)は10秒であった。
結果を表1に記す。
Furthermore, using this battery, a charge / discharge test was performed 50 times at 1C under a temperature condition of 55 ° C. As a result, the discharge capacity of the battery was 118 mAh / g, and the cycle deterioration rate after 50 cycles was 90%. In addition, the flame retardancy test of 4 above was performed using this electrolytic solution. As a result, the self-extinguishing time (SET) per 1 g was 10 seconds.
The results are shown in Table 1.
比較例1
ホウ素化合物および難燃剤の共存しない電解液を調製した。この電解液を用いて、実施例1と同様に電池を作成し、充放電試験および難燃性試験を実施した。その結果、初期の放電容量は135mAh/gを示し、55℃、50サイクル後の放電容量は120mAh/gであった。この電池の劣化率は89%であった。また、この電解液を用いた難燃性試験結果は128秒/gであった。
Comparative Example 1
An electrolyte solution containing no boron compound and flame retardant was prepared. Using this electrolytic solution, a battery was prepared in the same manner as in Example 1, and a charge / discharge test and a flame retardancy test were performed. As a result, the initial discharge capacity was 135 mAh / g, and the discharge capacity after 50 cycles at 55 ° C. was 120 mAh / g. The deterioration rate of this battery was 89%. Moreover, the flame retardance test result using this electrolyte solution was 128 seconds / g.
比較例2
ホウ素化合物を共存せず、難燃剤として、TFEPを15重量%混合した電解液を調製した。この電解液を用いて、実施例1と同様に電池を作成し、充放電試験を実施した。
その結果、初期の放電容量は132mAh/gを示し、55℃、50サイクル後の放電容量は66mAh/gであった。この電池の劣化率は50%であった。また、この電解液を用いた難燃性試験結果は32秒/gであった。
Comparative Example 2
An electrolytic solution in which 15% by weight of TFEP was mixed as a flame retardant without using a boron compound was prepared. Using this electrolytic solution, a battery was prepared in the same manner as in Example 1, and a charge / discharge test was performed.
As a result, the initial discharge capacity was 132 mAh / g, and the discharge capacity after 50 cycles at 55 ° C. was 66 mAh / g. The deterioration rate of this battery was 50%. Moreover, the flame retardance test result using this electrolyte solution was 32 seconds / g.
実施例2
難燃剤として、リン酸トリス(2,2,2−トリフルオロエチル)(TFEPと略記)を15重量%混合し、ホウ素化合物としてホウ素化合物としてトリス(ペンタフルオロフェニル)ボラン(以下FABと略記)を5重量%混合した電解液を調製した。この電解液を用いて実施例1と同様に電池を作成し、充放電試験を行った。その結果、初期の放電容量は126mAh/gを示し、55℃、50サイクル後の放電容量は115mAh/gであった。この電池はほとんど劣化しておらず、劣化率は91%であった。また、この電解液を用いた難燃性試験結果は12秒/gであった。
Example 2
As a flame retardant, 15% by weight of tris (2,2,2-trifluoroethyl) phosphate (abbreviated as TFEP) was mixed, and tris (pentafluorophenyl) borane (hereinafter abbreviated as FAB) as a boron compound as a boron compound. An electrolyte solution mixed with 5% by weight was prepared. A battery was prepared using this electrolytic solution in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 126 mAh / g, and the discharge capacity after 50 cycles at 55 ° C. was 115 mAh / g. This battery was hardly deteriorated, and the deterioration rate was 91%. Moreover, the flame retardance test result using this electrolyte solution was 12 seconds / g.
実施例3
難燃剤として、リン酸トリス(2,2,3,3−テトラフルオロプロピル)(TFPPと略記)を15重量%混合し、ホウ素化合物としてホウ酸トリス(2H−ヘキサフルオロイソプロピル)(以下HFPBと略記)を5重量%混合した電解液を調製した。この電解液を用いて実施例1に準じて電池を作成し、充放電試験を実施した。その結果、初期の放電容量は130mAh/gを示し、55℃、50サイクル後の放電容量は117mAh/gであった。この電池の劣化率は90%であった。また、この電解液を用いた難燃性試験結果は9秒/gであった。
Example 3
As a flame retardant, tris (2,2,3,3-tetrafluoropropyl) phosphate (abbreviated as TFPP) is mixed in an amount of 15% by weight. As a boron compound, tris (2H-hexafluoroisopropyl) borate (hereinafter abbreviated as HFPB) is mixed. ) Was mixed with 5 wt% to prepare an electrolyte solution. Using this electrolytic solution, a battery was prepared according to Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 130 mAh / g, and the discharge capacity after 50 cycles at 55 ° C. was 117 mAh / g. The deterioration rate of this battery was 90%. Moreover, the flame retardance test result using this electrolyte solution was 9 seconds / g.
実施例4
難燃剤として、リン酸ビス(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロプロピル)(E2PPと略記)を15重量%混合し、ホウ素化合物としてホウ酸トリエチル(以下、TEBと略記)を5重量%混合した電解液を調製した。この電解液を用いて実施例1に準じて電池を作成し、充放電試験を実施した。その結果、初期の放電容量は132mAh/gを示し、55℃、50サイクル後の放電容量は106mAh/gであった。この電池の劣化率は80%であった。また、この電解液を用いた難燃性試験結果は32秒/gであった。
Example 4
As a flame retardant, 15% by weight of bis (2,2,2-trifluoroethyl) phosphate (2,2,3,3-tetrafluoropropyl) (abbreviated as E2PP) was mixed, and triethyl borate ( Hereinafter, an electrolytic solution in which 5% by weight of TEB) was mixed was prepared. Using this electrolytic solution, a battery was prepared according to Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 132 mAh / g, and the discharge capacity after 50 cycles at 55 ° C. was 106 mAh / g. The deterioration rate of this battery was 80%. Moreover, the flame retardance test result using this electrolyte solution was 32 seconds / g.
実施例5
難燃剤として、TFEPを15重量%混合し、ホウ素化合物としてTFEBを1重量%混合した電解液を調製した。この電解液を用いて実施例1と同様に電池を作成し、充放電試験を行った。その結果、初期の放電容量は132mAh/gを示し、55℃、50サイクル後の放電容量は104mAh/gであった。この電池の劣化率は79%であった。また、この電解液を用いた難燃性試験結果は18秒/gであった。
Example 5
An electrolyte solution was prepared by mixing 15% by weight of TFEP as a flame retardant and 1% by weight of TFEB as a boron compound. A battery was prepared using this electrolytic solution in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 132 mAh / g, and the discharge capacity after 50 cycles at 55 ° C. was 104 mAh / g. The deterioration rate of this battery was 79%. Moreover, the flame retardance test result using this electrolyte solution was 18 seconds / g.
実施例6
難燃剤として、TFEPを30重量%混合し、ホウ素化合物としてTFEBを11重量%混合した電解液を調製した。この電解液を用いて実施例1と同様に電池を作成し、充放電試験を行った。その結果、初期の放電容量は121mAh/gを示し、55℃、50サイクル後の放電容量は115mAh/gであった。この電池の劣化率は95%であった。また、この電解液を用いた難燃性試験では全ての試験で引火しなかった。
Example 6
An electrolyte solution was prepared by mixing 30% by weight of TFEP as a flame retardant and 11% by weight of TFEB as a boron compound. A battery was prepared using this electrolytic solution in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 121 mAh / g, and the discharge capacity after 50 cycles at 55 ° C. was 115 mAh / g. The deterioration rate of this battery was 95%. Moreover, in the flame retardancy test using this electrolyte solution, it did not ignite in all the tests.
実施例7
難燃剤として、TFEPを40重量%混合し、ホウ素化合物としてTFEBを15重量%混合した電解液を調製した。この電解液を用いて実施例1と同様に電池を作成し、充放電試験を行った。その結果、初期の放電容量は115mAh/gを示し、55℃、50サイクル後の放電容量は113mAh/gであった。この電池の劣化率は98%であった。また、この電解液を用いた難燃性試験では全ての試験で引火しなかった。
Example 7
An electrolyte solution was prepared by mixing 40% by weight of TFEP as a flame retardant and 15% by weight of TFEB as a boron compound. A battery was prepared using this electrolytic solution in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 115 mAh / g, and the discharge capacity after 50 cycles at 55 ° C. was 113 mAh / g. The deterioration rate of this battery was 98%. Moreover, in the flame retardancy test using this electrolyte solution, it did not ignite in all the tests.
実施例8
難燃剤として、TFPPを10重量%混合し、ホウ素化合物としてTFEBを30重量%混合した電解液を調製した。この電解液を用いて実施例1と同様に電池を作成し、充放電試験を行った。その結果、初期の放電容量は129mAh/gを示し、55℃、50サイクル後の放電容量は125mAh/gであった。この電池の劣化率は97%であった。また、この電解液を用いた難燃性試験結果は13秒/gであった。
Example 8
An electrolyte solution was prepared by mixing 10% by weight of TFPP as a flame retardant and 30% by weight of TFEB as a boron compound. A battery was prepared using this electrolytic solution in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 129 mAh / g, and the discharge capacity after 50 cycles at 55 ° C. was 125 mAh / g. The deterioration rate of this battery was 97%. Moreover, the flame retardance test result using this electrolyte solution was 13 seconds / g.
実施例9
難燃剤として、2−エトキシ−2,4,4,6,6−ペンタフルオロ−1,3,5,2λ5,4λ5,6λ5−トリアザトリホスフィニン(以下、PFPN)を10重量%混合し、ホウ素化合物としてTFEBを5重量%混合した電解液を調製した。この電解液を用いて実施例1と同様に電池を作成し、充放電試験を行った。その結果、初期の放電容量は120mAh/gを示し、55℃、50サイクル後の放電容量は110mAh/gであった。この電池の劣化率は92%であった。また、この電解液を用いた難燃性試験結果は35秒/gであった。
Example 9
As a flame retardant, 10% by weight of 2-ethoxy-2,4,4,6,6-pentafluoro-1,3,5,2λ 5 , 4λ 5 , 6λ 5 -triazatriphosphine (hereinafter referred to as PFPN) An electrolytic solution in which 5% by weight of TFEB was mixed as a boron compound was prepared. A battery was prepared using this electrolytic solution in the same manner as in Example 1, and a charge / discharge test was performed. As a result, the initial discharge capacity was 120 mAh / g, and the discharge capacity after 50 cycles at 55 ° C. was 110 mAh / g. The deterioration rate of this battery was 92%. Moreover, the flame retardance test result using this electrolyte solution was 35 seconds / g.
1 正極リード
2 負極リード
3 正極
4 セパレータ
5 負極
6 ラミネートパッケージ
DESCRIPTION OF SYMBOLS 1 Positive electrode lead 2 Negative electrode lead 3 Positive electrode 4 Separator 5 Negative electrode 6 Laminated package
Claims (5)
(式中、R1、R2、R3は同一または異なって水素、ハロゲン、アルキル基、アリール基、アルコキシ基、含フッ素アルキル基、含フッ素アリール基、含フッ素アルコキシ基を示す)で示されるホウ素化合物である請求項1に記載の二次電池用電解液。 Nonaqueous secondary battery electrolyte that uses a combination of positive and negative electrodes capable of occluding and releasing ions, including fluorine-containing phosphate ester, fluorine-containing phosphazene, fluorine-containing ether, fluorine-containing chain carbonate and An electrolyte solution for a secondary battery, wherein at least one fluorine-based flame retardant selected from the group consisting of fluorine carboxylates and a boron compound represented by the following general formula (1) are coexistingly added.
Wherein R 1 , R 2 and R 3 are the same or different and each represents hydrogen, halogen, alkyl group, aryl group, alkoxy group, fluorine-containing alkyl group, fluorine-containing aryl group or fluorine-containing alkoxy group. The electrolyte solution for a secondary battery according to claim 1, which is a boron compound.
(式中、R4、R5、R6は同一もしくは異なる炭素数1〜10の直鎖、または分岐した含フッ素アルキル基を示す)で示される含フッ素ホウ酸エステルである請求項1記載の二次電池用電解液。 Nonaqueous secondary battery electrolyte that uses a combination of positive and negative electrodes capable of occluding and releasing ions, including fluorine-containing phosphate ester, fluorine-containing phosphazene, fluorine-containing ether, fluorine-containing chain carbonate and An electrolytic solution for a secondary battery, wherein at least one fluorine-based flame retardant selected from the group consisting of fluorine carboxylates and a boron compound represented by the following general formula (2) are coexistingly added.
The fluorinated boric acid ester represented by the formula (wherein R 4 , R 5 and R 6 represent the same or different linear or branched fluorine-containing alkyl group having 1 to 10 carbon atoms): Secondary battery electrolyte.
(式中、X1〜X15は各々同一もしくは異なる水素原子またはフッ素原子を示す)で示されるアリールボランである請求項1記載の二次電池用電解液。 Nonaqueous secondary battery electrolyte that uses a combination of positive and negative electrodes capable of occluding and releasing ions, including fluorine-containing phosphate ester, fluorine-containing phosphazene, fluorine-containing ether, fluorine-containing chain carbonate and An electrolytic solution for a secondary battery, wherein at least one fluorine-based flame retardant selected from the group consisting of fluorine carboxylates and a boron compound represented by the following general formula (3) are coexistingly added.
The electrolyte solution for a secondary battery according to claim 1, which is an arylborane represented by the formula (wherein X 1 to X 15 each represent the same or different hydrogen atom or fluorine atom).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010092713A JP5622424B2 (en) | 2010-04-14 | 2010-04-14 | Electrolyte for secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010092713A JP5622424B2 (en) | 2010-04-14 | 2010-04-14 | Electrolyte for secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011222431A JP2011222431A (en) | 2011-11-04 |
JP5622424B2 true JP5622424B2 (en) | 2014-11-12 |
Family
ID=45039132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010092713A Active JP5622424B2 (en) | 2010-04-14 | 2010-04-14 | Electrolyte for secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5622424B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2697453B1 (en) * | 2011-04-11 | 2018-10-10 | Shenzhen Capchem Technology Co. Ltd. | Non-aqueous electrolytic solutions and electrochemical cells comprising the same |
JP5477346B2 (en) * | 2011-08-03 | 2014-04-23 | 株式会社Gsユアサ | Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery |
KR101299666B1 (en) * | 2011-12-09 | 2013-08-26 | 국립대학법인 울산과학기술대학교 산학협력단 | Electrolyte for lithium air rechargeable battery and lithium air rechargeable battery using the same |
JP5704066B2 (en) * | 2011-12-20 | 2015-04-22 | 新神戸電機株式会社 | Non-aqueous electrolyte and lithium ion secondary battery using the same |
JP6696211B2 (en) * | 2016-02-19 | 2020-05-20 | 住友電気工業株式会社 | Lithium ion secondary battery |
JP6735030B2 (en) * | 2016-12-27 | 2020-08-05 | トヨタ自動車株式会社 | Lithium ion secondary battery |
EP3605706A4 (en) * | 2017-11-13 | 2020-07-01 | LG Chem, Ltd. | COMPOSITION FOR GELPOLYMER ELECTROLYTE, GELPOLYMER ELECTROLYTE MADE THEREOF AND LITHIUM SECONDARY BATTERY, INCLUDING THE SAME |
CN109935903B (en) * | 2017-12-19 | 2021-05-14 | 成都大超科技有限公司 | Solid electrolyte, lithium battery cell and lithium battery |
CN108091935A (en) * | 2017-12-20 | 2018-05-29 | 中南大学 | A kind of high voltage electrolyte of lithium ion battery and its preparation and application |
CN111029651B (en) * | 2019-12-20 | 2022-08-02 | 中国电子科技集团公司第十八研究所 | In-situ negative electrode surface treatment method for lithium metal battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4984022B2 (en) * | 2005-10-28 | 2012-07-25 | ソニー株式会社 | Secondary battery |
JP2009043597A (en) * | 2007-08-09 | 2009-02-26 | Sony Corp | Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using the same |
JP2009176534A (en) * | 2008-01-23 | 2009-08-06 | Sanyo Electric Co Ltd | Non-aqueous electrolyte secondary battery |
-
2010
- 2010-04-14 JP JP2010092713A patent/JP5622424B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011222431A (en) | 2011-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5622424B2 (en) | Electrolyte for secondary battery | |
JP5145367B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
WO2018164124A1 (en) | Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device | |
KR101947059B1 (en) | Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte lithium battery | |
JP6216715B2 (en) | LiPF6 stabilization method, electrolyte solution for non-aqueous secondary battery excellent in thermal stability, and non-aqueous secondary battery excellent in thermal stability | |
JP5738011B2 (en) | Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JP5708244B2 (en) | Non-aqueous electrolyte and lithium ion secondary battery using the same | |
WO2018016195A1 (en) | Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device | |
JP5484078B2 (en) | Nonaqueous electrolyte containing fluorine-containing phosphoric ester amide | |
CN102742064A (en) | Nonaqueous electrolyte solution, and lithium ion secondary battery using same | |
WO2012147566A1 (en) | Non-aqueous electrolyte solution for secondary cell, and non-aqueous electrolyte secondary cell | |
JPWO2012090855A1 (en) | Gel electrolyte for lithium ion secondary battery and lithium ion secondary battery | |
JP5983370B2 (en) | Lithium ion secondary battery, secondary battery system using the same, and non-aqueous electrolyte for lithium ion secondary battery | |
JP5819653B2 (en) | Non-flammable electrolyte | |
JP5811361B2 (en) | Secondary battery | |
WO2020063882A1 (en) | Non-aqueous electrolyte, lithium-ion battery, battery module, battery pack, and device | |
WO2020063885A1 (en) | Non-aqueous electrolyte, lithium ion battery, battery module, battery pack and apparatus | |
WO2013094602A1 (en) | Organic electrolyte, and organic electrolyte storage battery | |
WO2020063883A1 (en) | Non-aqueous electrolyte, lithium ion battery, battery module, battery pack, and device | |
CN117691190A (en) | Electrolyte for lithium-rich manganese-based positive electrode high-voltage lithium ion battery and lithium ion battery | |
JP5966896B2 (en) | Lithium ion secondary battery, secondary battery system using the same, and non-aqueous electrolyte for lithium ion secondary battery | |
JP5421803B2 (en) | Additive for lithium ion secondary battery electrolyte | |
JP2013069512A (en) | Nonaqueous electrolytic solution, lithium ion secondary battery, and module | |
WO2020063884A1 (en) | Lithium ion battery, battery module, battery pack, and apparatus | |
CN112713309A (en) | Safety lithium ion battery electrolyte and lithium ion battery thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130311 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140909 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140922 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5622424 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |