[go: up one dir, main page]

JP5621352B2 - Thrust roller bearing - Google Patents

Thrust roller bearing Download PDF

Info

Publication number
JP5621352B2
JP5621352B2 JP2010146106A JP2010146106A JP5621352B2 JP 5621352 B2 JP5621352 B2 JP 5621352B2 JP 2010146106 A JP2010146106 A JP 2010146106A JP 2010146106 A JP2010146106 A JP 2010146106A JP 5621352 B2 JP5621352 B2 JP 5621352B2
Authority
JP
Japan
Prior art keywords
rollers
cage
diameter side
race
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010146106A
Other languages
Japanese (ja)
Other versions
JP2012007709A (en
Inventor
亮輔 山田
亮輔 山田
高橋 明
明 高橋
武村 浩道
浩道 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010146106A priority Critical patent/JP5621352B2/en
Publication of JP2012007709A publication Critical patent/JP2012007709A/en
Application granted granted Critical
Publication of JP5621352B2 publication Critical patent/JP5621352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/30Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/54Cages for rollers or needles made from wire, strips, or sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、例えば自動車用変速機(手動及び自動)、トランスファ、或はカークーラ用コンプレッサ等の電装品の回転部分に装着して、この回転部分に加わるスラスト荷重を支承するスラストころ軸受の改良に関する。具体的には、運転時に作用する回転抵抗(動トルク)の低減を図る事により、スラストころ軸受を組み込んだ各種機械装置の性能向上を図るものである。尚、本発明の対象となるスラストころ軸受には、転動体である各ころとして、軸方向寸法(長さ)に対する直径(太さ)が大きな、一般的なころを使用するものに限らず、軸方向寸法に対して直径が小さなニードルを使用する、所謂ニードル軸受も含む。   The present invention relates to an improvement in a thrust roller bearing which is mounted on a rotating part of an electrical component such as an automobile transmission (manual and automatic), a transfer, or a car cooler compressor and supports a thrust load applied to the rotating part. . Specifically, by reducing the rotational resistance (dynamic torque) acting during operation, the performance of various mechanical devices incorporating thrust roller bearings is improved. The thrust roller bearing that is the subject of the present invention is not limited to one that uses a general roller having a large diameter (thickness) with respect to the axial dimension (length) as each roller that is a rolling element, Also included are so-called needle bearings that use needles with a small diameter relative to the axial dimension.

変速機やカークーラ用コンプレッサの回転部分に加わるスラスト荷重を支承する為にスラストころ軸受が広く使用されている。先ず、この様なスラストころ軸受の従来構造の第1例に就いて、図9により説明する。このスラストころ軸受は、複数個のころ1と、1対のレース2a、2bと、1個の保持器3とを備える。このうちの各ころ1は、放射方向に配列されている。又、前記両レース2a、2bは、それぞれが金属板により円輪状に形成されたもので、互いに同心に配置されている。そして、互いに対向する面を、前記各ころ1の転動面を転がり接触させる為の軌道面4a、4bとしている。図示の例では、前記レース2a、2bの外周縁又は内周縁から、互いに対向するレース2b、2aに向けほぼ直角に折れ曲がったフランジ部5a、5bを形成している。又、前記保持器3は、第一、第二の保持器素子6、7を組み合わせて成る。これら両保持器素子6、7は、それぞれが金属板を折り曲げ形成し、断面コ字形で全体を円輪状としている。これら両保持器素子6、7は、それぞれに放射方向に形成した矩形の透孔8、8の位相を互いに一致させた状態で嵌合組み合わせ、これら各透孔8、8を形成した部分を、前記各ころ1を転動自在に保持する為のポケット9としている。   Thrust roller bearings are widely used to support the thrust load applied to the rotating parts of transmissions and compressors for car coolers. First, a first example of the conventional structure of such a thrust roller bearing will be described with reference to FIG. The thrust roller bearing includes a plurality of rollers 1, a pair of races 2 a and 2 b, and a cage 3. Each of these rollers 1 is arranged in a radial direction. The races 2a and 2b are each formed in an annular shape from a metal plate, and are arranged concentrically with each other. The surfaces facing each other are used as raceway surfaces 4a and 4b for rolling contact with the rolling surfaces of the rollers 1. In the illustrated example, flange portions 5a and 5b are formed that are bent at substantially right angles from the outer peripheral edge or the inner peripheral edge of the races 2a and 2b toward the opposite races 2b and 2a. The cage 3 is composed of a combination of first and second cage elements 6 and 7. Each of the cage elements 6 and 7 is formed by bending a metal plate, and has a U-shaped cross section and is formed into an annular shape as a whole. Both of these cage elements 6 and 7 are fitted and combined in a state in which the phases of the rectangular through holes 8 and 8 formed in the radial direction are matched with each other, and the portions where these through holes 8 and 8 are formed are A pocket 9 is provided for holding the rollers 1 in a rollable manner.

それぞれが上述の様な形状を有する、前記各ころ1と、前記両レース2a、2bと、前記保持器3とは、図9の(B)に示す様に、この保持器3のポケット9内に前記各ころ1を保持すると共に、これら各ころ1を、互いに同心に配置した前記両レース2a、2bによりサンドイッチ状に挟んだ状態に組み合わせる。この状態で、これら両レース2a、2b同士の相対回転が可能になる。そこで、例えば一方のレース2aをケーシング等の固定部分に、他方のレース2bをギヤ等の回転部材に、それぞれ添設させれば、この固定部分に対しこの回転部材を、この回転部材に加わるスラスト荷重を支承しつつ、回転自在に支持できる。   Each of the rollers 1, the races 2a, 2b, and the retainer 3 each having the shape as described above are arranged in a pocket 9 of the retainer 3 as shown in FIG. The rollers 1 are held together and the rollers 1 are combined in a sandwiched state between the races 2a and 2b arranged concentrically with each other. In this state, the races 2a and 2b can be rotated relative to each other. Therefore, for example, if one race 2a is attached to a fixed part such as a casing and the other race 2b is attached to a rotating member such as a gear, the thrust member that adds the rotating member to the rotating member with respect to the fixed part is provided. It can be supported rotatably while supporting the load.

スラストころ軸受の基本構成は上述の通りであるが、スラストころ軸受は、それぞれが放射方向に配置された各ころ1の転動面と両レース2a、2bの軌道面4a、4bとの間で差動滑りが生じ、この差動滑りに基づいて、回転抵抗(動トルク)が大きくなる事が避けられない。一方、近年に於ける省資源化の流れ等により、各種機械装置の回転支持部の回転抵抗を低くする事が要求されており、前記スラストころ軸受に関しても、回転抵抗を低減する事が要求されている。スラストころ軸受の回転抵抗を大きくする要因は各種存在するが、そのうちの大きな要因としては、次の(1) 〜(3) に示す要因が挙げられる。
(1) 各ころの転動面と、この転動面と転がり接触する1対の軌道面との間の、差動滑りに基づく摩擦。
(2) これら両軌道面の径方向に関して、前記各ころの軸方向外端面と、これら各ころを転動自在に保持しているポケットの内面との摩擦。
(3) 前記各ころを保持する保持器と相手面との間に作用する摩擦。
The basic configuration of the thrust roller bearing is as described above, but the thrust roller bearing is provided between the rolling surface of each roller 1 and the raceway surfaces 4a and 4b of both races 2a and 2b. A differential slip occurs, and it is inevitable that the rotational resistance (dynamic torque) increases based on the differential slip. On the other hand, due to the recent trend of resource saving, etc., it is required to reduce the rotational resistance of the rotation support part of various mechanical devices, and the thrust resistance of the thrust roller bearing is also required to be reduced. ing. There are various factors that increase the rotational resistance of thrust roller bearings, but the major factors include the following factors (1) to (3).
(1) Friction based on differential slip between the rolling surface of each roller and a pair of raceway surfaces in rolling contact with the rolling surface.
(2) With respect to the radial direction of both the raceway surfaces, friction between the axial outer end surfaces of the rollers and the inner surfaces of pockets holding the rollers so as to roll freely.
(3) Friction acting between the cage that holds the rollers and the mating surface.

上述した(1)〜(3)の要因のうち、(1)の要因に基づく摩擦を低減する為に、各ころの転動面と軌道面と転がり接触部の面圧を、これら各転動面の軸方向中央部(ピッチ円上及びその近傍部分)で高く、両端部に向かう程低くする事が考えられる。この様な面圧分布は、差動滑りが無いか、あっても小さい、各転動面の軸方向中央部の面圧に比べて、差動滑りが大きくなる各転動面の軸方向両端部の面圧を低くする事を意味する為、前記(1) の要因に基づく摩擦を低減できる。又、この様な面圧分布を実現できる構造として、例えば特許文献1〜3に記載されている様に、各軌道面の断面形状を、径方向中間部が各ころに向けて膨らんだ凸円弧形にする事が考えられる。   Among the factors (1) to (3) described above, in order to reduce the friction based on the factor (1), the rolling contact surface of each roller, the raceway surface, and the surface pressure of the rolling contact portion are changed to the respective rolling force. It is conceivable that the height is higher in the axial center of the surface (on the pitch circle and in the vicinity thereof) and lower toward both ends. Such a surface pressure distribution is such that there is no differential slip, or even if it is small, both axial ends of each rolling surface where the differential slip is larger than the surface pressure at the axial center of each rolling surface. This means that the surface pressure of the part is lowered, so that friction based on the factor (1) can be reduced. Further, as a structure capable of realizing such a surface pressure distribution, for example, as described in Patent Documents 1 to 3, the cross-sectional shape of each raceway surface is a convex circle in which the radial intermediate portion swells toward each roller. It can be considered to have an arc shape.

図10の(A)(B)は、このうちの特許文献1に記載された、従来構造の2例を示している。これら両従来構造の場合には、レース2a′、2b′、2a″、2b″の幅方向(径方向)中間部を湾曲させる事により、各軌道面4a′、4b′、4a″、4b″の断面形状を凸円弧状としている。又、図示は省略するが、特許文献2には、各レースの幅方向(径方向)中間部の厚さを両端部の厚さよりも大きくする事で、各軌道面の断面形状を凸円弧状とする構造が記載されている。この様な構造を採用する事により、各転動面の軸方向中央部の面圧に比べて軸方向両端部の面圧を低くできる。   10A and 10B show two examples of the conventional structure described in Patent Document 1 among them. In the case of these two conventional structures, the raceway surfaces 4a ′, 4b ′, 4a ″, 4b ″ are obtained by curving the intermediate portions in the width direction (radial direction) of the races 2a ′, 2b ′, 2a ″, 2b ″. The cross-sectional shape is a convex arc shape. Although not shown, Patent Document 2 discloses that the cross-sectional shape of each raceway surface is a convex arc shape by making the thickness of the intermediate portion in the width direction (radial direction) of each race larger than the thickness of both end portions. Is described. By adopting such a structure, the surface pressure at both axial ends can be made lower than the surface pressure at the axially central portion of each rolling surface.

或いは、特許文献4〜5に記載されている様に、各ころの転動面にクラウニングを施す事が考えられる。即ち、図11に示す様に、ころ1aの転動面10の母線形状を凸円弧として、このころ1aの外径を、軸方向中央部で大きく、軸方向両端部に向かうに従って漸次小さくなる様にしている。この様な構造によっても、各転動面の軸方向中央部の面圧に比べて軸方向両端部の面圧を低くできる。
上述した特許文献1〜5に記載された構造は、転がり接触部の面圧分布を改善して、各転動面及び軌道面の転がり疲れ寿命の改善を図る事を目的としたものであるが、前記凸円弧形の曲率半径やクラウニングの落ち量を適正に規制する事により、上述の様な機構で、前記(1) の要因に基づく摩擦を低減できる。
Alternatively, as described in Patent Documents 4 to 5, it is conceivable to crown the rolling surfaces of each roller. In other words, as shown in FIG. 11, the generatrix of the rolling surface 10 of the roller 1a is a convex arc, and the outer diameter of the roller 1a is large at the center in the axial direction and gradually decreases toward both ends in the axial direction. I have to. Even with such a structure, the surface pressure at both axial ends can be made lower than the surface pressure at the axial center of each rolling surface.
The structures described in Patent Documents 1 to 5 described above are intended to improve the surface pressure distribution of the rolling contact portion and to improve the rolling fatigue life of each rolling surface and raceway surface. By properly regulating the radius of curvature of the convex arc shape and the amount of falling crowning, the friction based on the factor (1) can be reduced by the mechanism as described above.

又、前記(2)の要因に基づく摩擦を低減する為に、各ころの軸方向端面を、これら各ころの径方向中央部が軸方向に突出した凸面とする事が考えられる。即ち、前記(2)の要因に基づく摩擦は、前記各ころの公転運動に基づく遠心力により、これら各ころの軸方向両端面のうちで、保持器の径方向に関して外端面が、これら各ころを保持した各ポケットのうちで、この径方向外端部内面に押し付けられた状態で擦れ合う事により生じる。この擦れ合いは、前記各ころの自転運動に基づくものと、公転運動に基づくものとがある。これら各ころの軸方向端面を前記凸面とする事により、このうちの自転運動に基づく擦れ合いの半径を小さくして、前記(2)の要因に基づく摩擦を低減できる。この様にして摩擦を低減できる構造として、特許文献1、6に示す様に、各ころの軸方向端面を部分球面状の凸面とする構造が知られている。   In order to reduce the friction based on the factor (2), it is conceivable that the axial end surface of each roller is a convex surface in which the central portion in the radial direction of each roller protrudes in the axial direction. That is, the friction based on the factor (2) is caused by the centrifugal force based on the revolving motion of each roller. This is caused by rubbing against each other in a state of being pressed against the inner surface of the radially outer end portion in each of the pockets that hold the surface. This rubbing may be based on the rotational motion of each roller or based on a revolving motion. By making the end surfaces in the axial direction of these rollers convex, it is possible to reduce the friction radius based on the rotation of these rollers and reduce the friction based on the factor (2). As a structure capable of reducing the friction in this way, as shown in Patent Documents 1 and 6, a structure in which the axial end surface of each roller is a partially spherical convex surface is known.

更に、前記(3)の要因に基づく摩擦を低減する為に、保持器の軸方向に関する位置決めを、各ポケットの周方向両側縁と各ころの転動面との係合に基づいて図る、ころ案内構造とする事が考えられる。前記(3)の要因に基づく摩擦が大きくなる態様としては、保持器の軸方向片面と何れかの軌道面とが油膜を介して擦れ合い、この油膜に作用する大きな剪断抵抗に基づいて前記保持器が回転する事に対する抵抗が大きくなる事が考えられる。これに対して、例えば特許文献6、7に記載されている様に、保持器の軸方向に関する位置決めを、ころ案内構造により図れば、前記(3)の要因に基づく摩擦を低減できる。   Further, in order to reduce friction based on the factor (3), the positioning in the axial direction of the cage is based on the engagement between the circumferential side edges of each pocket and the rolling surface of each roller. A guide structure can be considered. As an aspect in which the friction based on the factor (3) is increased, one side of the cage in the axial direction and one of the raceway surfaces rub against each other through an oil film, and the holding is performed based on a large shear resistance acting on the oil film. It can be considered that resistance against the rotation of the vessel increases. On the other hand, as described in, for example, Patent Documents 6 and 7, if the positioning of the cage in the axial direction is achieved by the roller guide structure, the friction based on the factor (3) can be reduced.

上述の様に、特許文献1〜7に記載された発明の構造は、何れも、前記(1)〜(3)のうちの何れかの要因に基づく、スラストころ軸受の回転抵抗の増大を抑えられる。但し、これら(1)〜(3)の要因を総て低減できる構造ではなく、この回転抵抗を、必ずしも十分には低減できない。又、単に前記(1)〜(3)の要因を解消してスラストころ軸受の回転抵抗を低減する事のみを考慮して、前記特許文献1〜7に記載された発明の構造を組み合わせても、各ころの姿勢が不安定になる(自転軸が保持器の径方向からずれ易くなる)等により、却って前記スラストころ軸受の回転抵抗が大きくなる可能性がある。即ち、前記(1)の要因に基づく回転抵抗を低減すべく、軌道面の断面形状を凸円弧形とすると共に、各ころの軸方向端面を部分球面状の凸面とした場合、これら各ころの姿勢が不安定になり、必ずしも前記スラストころ軸受の回転抵抗を低減できない。   As described above, the structures of the inventions described in Patent Documents 1 to 7 all suppress the increase in rotational resistance of the thrust roller bearing based on any one of the above (1) to (3). It is done. However, this is not a structure that can reduce all of the factors (1) to (3), and this rotational resistance cannot be reduced sufficiently. In addition, considering only the fact that the factors (1) to (3) are eliminated and the rotational resistance of the thrust roller bearing is reduced, the structures of the inventions described in Patent Documents 1 to 7 may be combined. If the posture of each roller becomes unstable (the rotation shaft is easily displaced from the radial direction of the cage), the rotational resistance of the thrust roller bearing may increase. That is, in order to reduce the rotational resistance based on the factor (1), when the cross-sectional shape of the raceway surface is a convex arc shape and the axial end surface of each roller is a partial spherical convex surface, The posture of the roller becomes unstable, and the rotational resistance of the thrust roller bearing cannot always be reduced.

特開平7−119740号公報Japanese Patent Laid-Open No. 7-119740 特開2007−16810号公報JP 2007-16810 A 特開2007−170447号公報JP 2007-170447 A 特開2001−65574号公報JP 2001-65574 A 特開2007−327596号公報JP 2007-327596 A 特開2008−240750号公報JP 2008-240750 A 特開2004−156738号公報JP 2004-156738 A

本発明は、上述の様な事情に鑑みて、各ころの姿勢を不安定にする事なく、前述した(1)〜(3)の様な総ての要因に基づく摩擦を低減して、回転抵抗を安定して低く抑えられるころ軸受の構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention reduces the friction based on all the factors such as (1) to (3) described above without causing the posture of each roller to be unstable. The invention was invented to realize a roller bearing structure in which the resistance can be stably kept low.

本発明のスラストころ軸受は、前述した従来から知られているスラストころ軸受と同様に、複数のころと、少なくとも1枚のレースと、保持器とを備える。
このうちの各ころは、放射方向に配列されている。
又、前記レースは、軸受鋼板、肌焼鋼板等の硬質で、厚さTの金属板により円輪状に形成されて、これら各ころの転動面を転がり接触させる軌道面を有する。
又、前記保持器は、円輪状の主部、及び、この主部の径方向中間部に放射方向に形成されて、それぞれの内側に前記各ころを転動自在に保持する複数のポケットを有する。
The thrust roller bearing of the present invention includes a plurality of rollers, at least one race, and a cage, like the conventionally known thrust roller bearing.
Each of these rollers is arranged in a radial direction.
The race is formed of a hard metal plate having a thickness T, such as a bearing steel plate or a case-hardened steel plate, and has a raceway surface that makes the rolling contact surfaces of these rollers contact each other.
The retainer has a ring-shaped main portion and a plurality of pockets that are radially formed in a radially intermediate portion of the main portion and hold the rollers in a freely rolling manner. .

特に、本発明のスラストころ軸受に於いては、前記レースを構成する金属板の厚さTが、0.5〜1.5mmである。
又、前記レースの軌道面のうち、このレースの径方向に関する中間部分がスラスト荷重を負荷する事により弾性変形可能な、前記各ころの転動面側に突出する断面凸形状である。この場合に、前記中間部分の断面形状を、例えば、中央部が前記各ころの転動面側に突出する凸円弧状とする。
又、前記レースの軌道面のうち、前記中間部分である断面凸形状部分の突出高さをHとした場合に、前記厚さTが0.5〜1mmの範囲では、前記突出高さHを5〜40μmとし、前記厚さTが1〜1.5mmの範囲では、前記突出高さHを5〜30μmとする。
又、前記保持器の軸方向に関する位置決めが、前記各ポケットの周方向両側縁と前記各ころの転動面との係合に基づいて図られるころ案内構造である。
更に、前記各ころの軸方向端面のうち、これら各ころの径方向に関する中央部が、これら各ころの中心軸に対し直交する方向に存在する平坦面であり、同じく径方向に関する外寄り部分が、直径方向外側に向かうに従って前記各ころの軸方向中央部に向かう方向に傾斜した傾斜面である。
尚、前記平坦面の直径は、好ましくは、請求項2に記載した発明の様に、前記各ころの直径の20〜80%とする。尚、この値は、より好ましくは、40〜75%、最も好ましくは50〜70%とする。
In particular, in the thrust roller bearing of the present invention, the metal plate constituting the race has a thickness T of 0.5 to 1.5 mm.
Further, an intermediate portion of the raceway raceway surface in the radial direction of the race has a convex cross section projecting toward the rolling surface of each of the rollers, which can be elastically deformed by applying a thrust load . In this case, the cross-sectional shape of the intermediate portion is, for example, a convex arc shape whose central portion protrudes toward the rolling surface of each roller.
Further, assuming that the protrusion height of the convex section of the cross section, which is the intermediate portion, of the raceway surface of the race is H, the protrusion height H is set in the range where the thickness T is 0.5 to 1 mm. When the thickness T is in the range of 1 to 1.5 mm, the protruding height H is 5 to 30 μm.
Further, in the roller guide structure, positioning of the cage in the axial direction is achieved based on engagement between both circumferential edges of the pockets and rolling surfaces of the rollers.
Further, of the axial end surfaces of the rollers, the central portion in the radial direction of the rollers is a flat surface that exists in a direction perpendicular to the central axis of the rollers, and the outer portion in the radial direction is also the same. The inclined surface is inclined in the direction toward the axial center of each roller as it goes outward in the diameter direction.
The diameter of the flat surface is preferably 20 to 80% of the diameter of each roller as in the invention described in claim 2. This value is more preferably 40 to 75%, and most preferably 50 to 70%.

上述の様に構成する本発明のスラストころ軸受を実施する場合に、例えば請求項3に記載した発明の様に、前記保持器を、それぞれが金属板を折り曲げ形成した第一、第二の保持器素子を組み合わせて成る組み合わせ保持器とする。この場合に、これら第一、第二の保持器素子はそれぞれ、ポケットを形成する為の矩形の透孔を円周方向複数個所に形成した円輪状の平板部の内外両周縁部を軸方向に関して同じ側に折り曲げる事により、内径側、外径側両円筒部を形成して成るものとする。そして、前記第一、第二の保持器素子の前記平板部を軸方向に関して互いに逆側に配置すると共に、これら両平板部に形成した前記各透孔の円周方向に関する位相を一致させた状態で、前記第一の保持器素子の内径側円筒部を前記第二の保持器素子の内径側円筒部に外嵌する。同時に、この第一の保持器素子の外径側円筒部をこの第二の保持器素子の外径側円筒部に内嵌させる。又、これら各保持器素子の円周方向に関する前記各透孔の幅は、各ころの外径よりも小さくする。そして、これら各透孔の周方向両側縁とこれら各ころの転動面との係合に基づき、これら各ころに対する前記保持器の軸方向に関する位置決めを図る。   When carrying out the thrust roller bearing of the present invention configured as described above, for example, as in the invention described in claim 3, the retainer is first and second holding each formed by bending a metal plate. A combination holder is formed by combining container elements. In this case, each of the first and second cage elements has both inner and outer peripheral edges of an annular flat plate portion in which a plurality of rectangular through holes for forming pockets are formed in the circumferential direction with respect to the axial direction. It is assumed that both the inner diameter side and outer diameter side cylindrical portions are formed by bending the same side. The flat plate portions of the first and second cage elements are arranged opposite to each other with respect to the axial direction, and the phases in the circumferential direction of the through holes formed in both the flat plate portions are matched. Then, the inner diameter side cylindrical portion of the first cage element is externally fitted to the inner diameter side cylindrical portion of the second cage element. At the same time, the outer diameter side cylindrical portion of the first cage element is fitted into the outer diameter side cylindrical portion of the second cage element. Further, the width of each through hole in the circumferential direction of each cage element is made smaller than the outer diameter of each roller. Then, based on the engagement between both circumferential edges of each through hole and the rolling surface of each roller, positioning in the axial direction of the cage with respect to each roller is achieved.

或いは、請求項4に記載した発明の様に、前記保持器を、1枚の金属板を、径方向に関する断面形状をクランク形に曲げ形成する事により造られたものとする。具体的には、前記保持器を、この保持器の軸方向一端寄り部分に配置された内径側平板部と、同じく軸方向他端寄り部分に配置された中間平板部と、同じく軸方向一端寄り部分に配置された外径側平板部とを備え、各ポケットを、前記内径側平板部からこの外径側平板部に亙って形成したものとする。そして、これら各ポケットの周方向両側縁のうちで、これら内径側、外径側両平板部に対応する部分と各ころの転動面との係合に基づき、前記保持器がこれら各ころに対して軸方向他端側に変位する事を阻止し、同じく前記中間平板部に対応する部分とこれら各ころの転動面との係合に基づき、前記保持器がこれら各ころに対して軸方向一端側に変位する事を阻止する事により、これら各ころに対する前記保持器の軸方向に関する位置決めを図る。   Or like the invention described in Claim 4, the said retainer shall be produced by bending and forming the cross-sectional shape regarding radial direction in the crank shape of one metal plate. Specifically, the retainer is arranged near the one end portion in the axial direction of the retainer, on the inner side flat plate portion disposed in the portion near the other end in the axial direction, and near one end in the axial direction. It is assumed that each pocket is formed so as to extend from the inner diameter side flat plate portion to the outer diameter side flat plate portion. Of the circumferential edges of each pocket, the retainer is attached to each of the rollers based on the engagement between the portions corresponding to both the inner diameter side and outer diameter side flat plate portions and the rolling surfaces of the rollers. On the other hand, the cage is prevented from displacing to the other end side in the axial direction, and based on the engagement between the portion corresponding to the intermediate flat plate portion and the rolling surface of these rollers, the cage is By preventing displacement to one end side in the direction, positioning in the axial direction of the cage with respect to each of these rollers is achieved.

上述の様に構成する本発明のスラストころ軸受によれば、前述した(1)〜(3)の様な要因に基づく摩擦を低減して、回転抵抗を安定して低く抑えられる。
先ず、レースの軌道面の径方向中間部分の断面形状を、例えば凸円弧状等の凸形状としている為、この軌道面と各ころの転動面との転がり接触部での差動滑りが大きくなる、これら各ころの軸方向両端部分の面圧を低く抑えられる。この為、この差動滑りに基づく回転抵抗の増大を抑えられる。
According to the thrust roller bearing of the present invention configured as described above, friction based on the factors (1) to (3) described above can be reduced, and the rotational resistance can be stably kept low.
First, since the cross-sectional shape of the radial intermediate portion of the raceway surface of the race is a convex shape such as a convex arc shape, the differential slip at the rolling contact portion between this raceway surface and the rolling surface of each roller is large. Thus, the surface pressure at both end portions in the axial direction of these rollers can be kept low. For this reason, an increase in rotational resistance based on this differential slip can be suppressed.

但し、前記差動滑りに基づく回転抵抗の増大を抑える為に、前記転がり接触部の面圧を、軸方向中央部で高く、軸方向両端部で低くすると、そのままでは、前記各ころの姿勢が不安定になり、これら各ころの中心軸の方向と、保持器の直径方向とがずれ易くなる。言い換えれば、これら各ころの公転方向に一致する、この保持器の周方向と、これら各ころが転がろうとする方向(各ころの中心軸に対し直角な方向)とがずれ易くなる。そして、ずれた場合には、そのずれの大きさに応じて、前記転がり接触部で発生する滑りが大きくなり、前記回転抵抗が大きくなる。これに対して本発明の場合には、前記各ころの軸方向端面のうち、これら各ころの径方向に関する中央部を、これら各ころの中心軸に対し直交する方向に存在する平坦面としている為、この平坦面とポケットの内面との係合により、前記各ころの中心軸と前記保持器の直径方向とがずれる事を抑えられて、このずれに基づいて前記転がり接触部で発生する滑りを抑えられる。この場合でも、前記各ころの軸方向端面のうちの径方向に関する外寄り部分を傾斜面としている為、これら各ころの自転に基づく、これら各ころの軸方向端面と前記ポケットの内面との擦れ合い部の回転半径を小さく抑えられて、この擦れ合い部での摩擦抵抗を抑えられる。   However, in order to suppress an increase in rotational resistance due to the differential slip, if the surface pressure of the rolling contact portion is high at the central portion in the axial direction and low at both end portions in the axial direction, the postures of the rollers are not changed as they are. It becomes unstable, and the direction of the central axis of each roller and the diameter direction of the cage are likely to be shifted. In other words, the circumferential direction of the cage, which coincides with the revolution direction of each roller, and the direction in which each roller tries to roll (direction perpendicular to the central axis of each roller) are likely to be shifted. And when it shift | deviates, according to the magnitude | size of the shift | offset | difference, the slip which generate | occur | produces in the said rolling contact part becomes large, and the said rotational resistance becomes large. On the other hand, in the case of the present invention, among the axial end faces of the rollers, the central portion in the radial direction of the rollers is a flat surface that exists in a direction orthogonal to the central axis of the rollers. Therefore, the engagement between the flat surface and the inner surface of the pocket prevents the center axis of each roller from deviating from the diametrical direction of the cage, and the slip that occurs at the rolling contact portion based on this deviation. Can be suppressed. Even in this case, since the radially outward portion of the axial end surfaces of the rollers is an inclined surface, the friction between the axial end surfaces of the rollers and the inner surfaces of the pockets based on the rotation of the rollers. The turning radius of the mating portion can be kept small, and the frictional resistance at the rubbing portion can be suppressed.

更に、本発明の場合には、前記保持器の軸方向に関する位置決めを、ころ案内構造で図っている為、この保持器の軸方向両側面と、前記各ころの転動面が転がり接触する1対の軌道面とを十分に離隔させる事ができる。この為、互いに対向するこれら両軌道面と前記保持器の軸方向両側面との間には、何れの側に関しても、この保持器の回転抵抗を増大させる様な(互いに対向する面同士の間に掛け渡される様な)油膜が形成される事はない。この為、前記保持器の回転抵抗の低減を図る事でも、スラストころ軸受の動トルクの低減を図れる。
しかも、本発明のスラストころ軸受の場合には、前述した各構成要件を適切に組み合わせる事により、負荷容量を低減する事なく、動トルクを低減できる。言い換えれば、動トルクを同じとした場合には、負荷容量の増大を図れる。
Further, in the case of the present invention, since the positioning of the cage in the axial direction is achieved by a roller guide structure, both the axial side surfaces of the cage and the rolling surfaces of the rollers are in rolling contact with each other. A pair of raceway surfaces can be sufficiently separated. For this reason, between these two raceway surfaces facing each other and both axial side surfaces of the cage, the rotational resistance of the cage is increased on either side (between the surfaces facing each other). Oil film is not formed. For this reason, the dynamic torque of the thrust roller bearing can also be reduced by reducing the rotational resistance of the cage.
Moreover, in the case of the thrust roller bearing of the present invention, the dynamic torque can be reduced without reducing the load capacity by appropriately combining the above-described constituent elements. In other words, when the dynamic torque is the same, the load capacity can be increased.

本発明の実施の形態の第1例を示す、一方のレースのみを省略して示す部分切断斜視図(A)、両方のレースを省略して示す部分断面図(B)、一方のレース及び保持器を省略して示す部分切断斜視図(C)。The partial cutaway perspective view (A) which omits only one race which shows the 1st example of an embodiment of the invention, and shows a partial section view (B) which omits both races, one race and holding Partially cut perspective view (C) showing the container omitted. レースの断面形状の5例を示す、部分断面図(A)〜(D)及び軌道面の母線を示す線図(E)。Partial sectional drawing (A)-(D) which shows five examples of the cross-sectional shape of a race, and the diagram (E) which shows the bus-line of a track surface. ころの端面形状に関して、(A)は本発明に属する形状を、(B)(C)は本発明から外れる形状を、それぞれ示す部分側面図。(A) is a partial side view showing a shape belonging to the present invention and (B) and (C) are shapes deviating from the present invention with respect to the end face shape of the roller. 本発明の技術的範囲から外れる比較例の構造を示す、図1と同様の図。The figure similar to FIG. 1 which shows the structure of the comparative example which remove | deviates from the technical scope of this invention. 本発明の実施の形態の第2例を示す、ころ及び保持器を取り出した状態で示す断面図(A)、(A)のP部を拡大して示す斜視図(B)。Sectional drawing (A) which shows the 2nd example of embodiment of this invention in the state which took out the roller and the holder, and the perspective view (B) which expands and shows the P section of (A). レースの軌道面の凸曲面部の有無がスラストころ軸受の動トルクに及ぼす影響を知る為に行った実験のうち、アキシアル荷重が500Nの場合の結果を示す線図。The diagram which shows the result in case an axial load is 500 N among the experiments conducted in order to know the influence which the presence or absence of the convex curve part of the raceway surface has on the dynamic torque of a thrust roller bearing. 同じく1000Nの場合の結果を示す線図。The diagram which similarly shows the result in the case of 1000N. 本発明の実施に使用できるレースの形状の別の3例を示す断面図。Sectional drawing which shows another 3 examples of the shape of the race which can be used for implementation of this invention. 従来から知られているころ軸受の第1例を、組み立て前の状態(A)と組み立て後の状態(B)とで示す部分断面図。The fragmentary sectional view which shows the 1st example of the roller bearing conventionally known by the state (A) before an assembly, and the state (B) after an assembly. 同第2〜3例を示す部分断面図。The fragmentary sectional view which shows the 2nd-3rd example. クラウニングを施したころの1例を示す側面図。The side view which shows an example of the roller which gave crowning.

[実施の形態の第1例]
図1〜4を参照しつつ、請求項1、2、4に対応する、本発明の実施の形態の第1例に就いて説明する。本例のスラストころ軸受は、複数のころ1b、1bと、1対のレース2Aと、1個の保持器3aとを備える。尚、図面には、これら各ころ1b、1b及び保持器3aを明りょうに示す為、1対のレースのうちの一方のレース2Aのみを描き、他方のレースは省略している。
[First example of embodiment]
A first example of an embodiment of the present invention corresponding to claims 1, 2, and 4 will be described with reference to FIGS. The thrust roller bearing of this example includes a plurality of rollers 1b and 1b, a pair of races 2A, and one cage 3a. In the drawing, in order to clearly show these rollers 1b and 1b and the cage 3a, only one race 2A of a pair of races is drawn, and the other race is omitted.

前記各ころ1b、1bは、前記レース2Aの片面に形成した軌道面4Aに沿って、放射方向に配列されている。即ち、前記各ころ1b、1bの中心軸を、前記レース2Aの径方向に配置している。本例の場合、これら各ころ1b、1bとして、それぞれの転動面10にクラウニングを施したものを使用している。尚、これら各ころ1b、1bの転動面10のクラウニングに関しては、明りょう化の為に、誇張して(曲率半径を実際の場合よりも小さくして)示している。本発明を実施する場合、前記転動面10のクラウニングは必須ではなく、省略する事もできる。更に、本例のスラストころ軸受の場合には、前記各ころ1b、1bの軸方向両端面のうち、これら各ころ1b、1bの径方向に関する中央部に、それぞれ平坦面11、11を形成している。これら各平坦面11、11の方向は、前記各ころ1b、1bの中心軸に対し直交する方向である。   The rollers 1b and 1b are arranged in a radial direction along a raceway surface 4A formed on one side of the race 2A. That is, the central axes of the rollers 1b and 1b are arranged in the radial direction of the race 2A. In the case of this example, as these rollers 1b and 1b, those in which the respective rolling surfaces 10 are crowned are used. Note that the crowning of the rolling surface 10 of each of the rollers 1b and 1b is exaggerated (with a smaller radius of curvature than the actual case) for clarity. When practicing the present invention, the crowning of the rolling surface 10 is not essential and can be omitted. Further, in the case of the thrust roller bearing of the present example, flat surfaces 11 and 11 are formed at the center portions in the radial direction of the rollers 1b and 1b among the axial end surfaces of the rollers 1b and 1b, respectively. ing. The directions of the flat surfaces 11 and 11 are directions orthogonal to the central axes of the rollers 1b and 1b.

又、前記各ころ1b、1bの軸方向両端面のうちで径方向に関する外寄り部分に、図3の(A)に示す様に、直径方向外側に向かうに従ってこれら各ころ1b、1bの軸方向中央部に向かう方向に傾斜した、傾斜面12を形成している。尚、これら各ころ1b、1bの中心軸の方向に対する、この傾斜面12の傾斜角度は、図3の(C)に示す様な、一般的な面取りとして形成される傾斜面12aの傾斜角度よりも大きく(90度に近く)している。この構成により、前記傾斜面12の軸方向寸法Lを大きくする事なく、この傾斜面12の径方向に関する幅寸法W12を確保して、前記平坦面11の直径dを適正寸法にできる様にしている。即ち、この平坦面11の直径dを、前記各ころ1b、1bの直径Dの20〜80%{d=(0.2〜0.8)D}としている。 Further, as shown in FIG. 3 (A), the axial direction of each of the rollers 1b and 1b is increased toward the outer side in the radial direction, as shown in FIG. An inclined surface 12 is formed that is inclined in a direction toward the center. Note that the inclination angle of the inclined surface 12 with respect to the direction of the central axis of each of the rollers 1b and 1b is greater than the inclination angle of the inclined surface 12a formed as a general chamfer as shown in FIG. Is also large (close to 90 degrees). With this configuration, the width dimension W12 in the radial direction of the inclined surface 12 can be secured without increasing the axial dimension L of the inclined surface 12, and the diameter d of the flat surface 11 can be made an appropriate dimension. ing. That is, the diameter d of the flat surface 11 is set to 20 to 80% {d = (0.2 to 0.8) D} of the diameter D of the rollers 1b and 1b.

又、前記両レース2Aは、後述する様な硬質の金属板に、プレスによる打ち抜き、折り曲げ等の加工を施す事により、断面L字形で全体を円輪状に形成している。このうちの円輪部13の片面を前記軌道面4Aとすると共に、内周縁部に、円筒状のフランジ部5bを形成している。そして、この軌道面4Aのうち、前記レース2Aの径方向に関する中間部分を、この軌道面4Aの全周に亙り連続する凸曲面部14としている。この構成により、本例のスラストころ軸受に負荷(スラスト荷重)が加わらない状態で、前記軌道面4Aと前記各ころ1b、1bの転動面10とが、この転動面10の軸方向中間部でのみ当接し、軸方向両端部では当接しない様にしている。そして、負荷が加わった状態では、前記軌道面4Aと前記各ころ1b、1bの転動面10とが、この転動面10の軸方向全長に亙って転がり接触するが、接触部の当接圧が、この転動面10の軸方向中間部で高く、軸方向両端部で低くなる様にしている。 Further, both the races 2A are formed in an annular shape with an L-shaped cross section by subjecting a hard metal plate, which will be described later, to processing such as punching and bending with a press. Of these, one side of the ring portion 13 is used as the raceway surface 4A, and a cylindrical flange portion 5b is formed on the inner peripheral edge. In the raceway surface 4A, an intermediate portion in the radial direction of the race 2A is a convex curved surface portion 14 that is continuous over the entire circumference of the raceway surface 4A. With this configuration, in the state where no load (thrust load) is applied to the thrust roller bearing of this example, the raceway surface 4A and the rolling surface 10 of each of the rollers 1b and 1b are intermediate in the axial direction of the rolling surface 10. It is made to contact | abut only by a part, and it is made not to contact | abut at both ends of an axial direction. In a state where a load is applied, the raceway surface 4A and the rolling surfaces 10 of the rollers 1b and 1b are in rolling contact over the entire axial length of the rolling surface 10 , but the contact portion is not touched. The contact pressure is high at the intermediate portion in the axial direction of the rolling surface 10 and low at both end portions in the axial direction.

前記凸曲面部14を含む、前記レース2Aの断面形状は、使用形態に応じて設計的に規制するが、例えば図2の(A)〜(E)に示す様な形状を採用できる。このうちの(A)に示した断面形状は、比較的曲率半径を大きくする事により、前記凸曲面部14の幅寸法Wを大きく(前記各ころ1b、1bの軸方向に関する長さ寸法に近く)し、且つ、この凸曲面部14を円輪部13の幅方向(径方向)中央部に設置したものである。これに対して(B)に示した断面形状は、比較的曲率半径を小さくする事により、前記凸曲面部14の幅寸法wを小さく(前記各ころ1b、1bの軸方向に関する長さ寸法よりも十分に短く)すると共に、設置位置を円輪部13の径方向外側に偏らせたものである。図2の(B)の場合、この様に前記凸曲面部14の設置位置を偏らせ、前記円輪部13のうちでこの凸曲面部14よりも径方向に関して外側部分に存在する外径側平面部15の幅寸法aを、同じく内側部分に存在する内径側平面部16の幅寸法bよりも小さく(a<b)している。   The cross-sectional shape of the race 2A including the convex curved surface portion 14 is restricted in design according to the usage pattern, but for example, shapes as shown in FIGS. 2A to 2E can be adopted. Of these, the cross-sectional shape shown in (A) increases the width W of the convex curved surface portion 14 by making the radius of curvature relatively large (close to the length of the rollers 1b and 1b in the axial direction). In addition, the convex curved surface portion 14 is installed in the central portion in the width direction (radial direction) of the annular ring portion 13. On the other hand, the cross-sectional shape shown in (B) makes the width dimension w of the convex curved surface portion 14 smaller by making the radius of curvature relatively small (than the length dimension in the axial direction of the rollers 1b and 1b). Is also sufficiently short) and the installation position is biased radially outward of the annular ring portion 13. In the case of FIG. 2B, the installation position of the convex curved surface portion 14 is biased in this way, and the outer diameter side of the annular portion 13 that is present in the outer portion with respect to the radial direction than the convex curved surface portion 14. The width dimension a of the plane portion 15 is made smaller (a <b) than the width dimension b of the inner diameter side plane portion 16 that also exists in the inner portion.

前記(B)に示した断面形状を採用する事により、前記幅寸法wが小さな凸曲面部14を採用した場合にも、スラストころ軸受がスラスト荷重を支承する際に、この凸曲面部14が滑らかに押し潰される様にしている。この理由は、次の通りである。前記スラストころ軸受がスラスト荷重を支承する際には、前記凸曲面部14が押し潰される結果、この凸曲面部14の径方向に関する幅寸法が拡がる。この様に凸曲面部14の幅寸法が拡がる際には、外径側平面部15の外径が拡がるか、又は前記内径側平面部16の内径が縮まるかして、前記幅寸法の拡張分を吸収する必要がある。前記(B)に示した断面形状によれば、前記外径側平面部15の幅寸法aを小さくして、この外径側平面部15の外径が拡がり易くして、前記凸曲面部14が滑らかに押し潰される様にしている。   By adopting the cross-sectional shape shown in (B) above, even when the convex curved surface portion 14 having a small width dimension w is employed, when the thrust roller bearing supports the thrust load, the convex curved surface portion 14 It is crushed smoothly. The reason for this is as follows. When the thrust roller bearing supports a thrust load, the convex curved surface portion 14 is crushed, and as a result, the width dimension of the convex curved surface portion 14 in the radial direction increases. In this way, when the width dimension of the convex curved surface portion 14 is expanded, the outer diameter of the outer diameter side plane portion 15 is increased, or the inner diameter of the inner diameter side plane portion 16 is reduced, so that the extension of the width dimension is increased. Need to absorb. According to the cross-sectional shape shown in (B), the width dimension a of the outer-diameter side plane portion 15 is reduced, and the outer diameter of the outer-diameter side plane portion 15 is easily increased. Is crushed smoothly.

尚、前記(B)に示した断面形状とは異なり、凸曲面部14を円輪部13の径方向内側に偏らせ、内径側平面部16の幅寸法を小さくしても、この円輪部13の内周縁部のフランジ部5bの存在により、この内径側平面部16の内径が縮まる事に対する抵抗を十分に小さくはできない。従って、前述の図9の上側のレース2aの様に、フランジ部5aが外径側に存在する場合には、凸曲面部14を円輪部13の径方向内側に偏らせ、内径側平面部16の幅寸法を小さくする事が好ましい。何れにしても、前記外径側、内径側両平面部15、16は、前記レース2Aをバックアップする何れかの面(例えば、ケーシング等の固定部分又はギヤ等の回転部材の一部に存在する平面)に当接させた状態で互いに同一平面上に位置させて、前記スラスト荷重を支承する際に、前記凸曲面部14の弾性変形が円滑に行われる様にする。   Unlike the cross-sectional shape shown in the above (B), even if the convex curved surface portion 14 is biased radially inward of the annular ring portion 13 and the width dimension of the inner diameter side flat surface portion 16 is reduced, this annular ring portion is reduced. Due to the presence of the flange portion 5b at the inner peripheral edge portion 13, the resistance against the reduction of the inner diameter of the inner diameter side plane portion 16 cannot be made sufficiently small. Accordingly, when the flange portion 5a is present on the outer diameter side as in the above-described upper race 2a in FIG. 9, the convex curved surface portion 14 is biased radially inward of the annular portion 13, and the inner diameter side plane portion. It is preferable to reduce the width dimension of 16. In any case, both the outer diameter side and inner diameter side flat surface portions 15 and 16 exist on any surface (for example, a fixed portion such as a casing or a part of a rotating member such as a gear) that backs up the race 2A. When the thrust load is supported, the elastic deformation of the convex curved surface portion 14 is performed smoothly.

上述の様に、スラストころ軸受がスラスト荷重を負荷して凸曲面部14が押し潰される際には、円輪部13の内外両周縁のうちで、フランジ部を設けていない側の端縁の直径が拡がるか、又は縮まる。この際、この端縁のうちで、前記レース2Aをバックアップする前記何れかの面と擦れ合う部分が尖っていると、当該部分がこの面に食い込んで(この面に引っ掛かりやかじりを生じて)、前記凸曲面部14が押し潰される事に対する抵抗が大きくなる可能性がある。そこで、この様な原因による抵抗の増大を防止する為に、図2の(C)(D)に示す様に、前記端縁のうちで前記何れかの面と擦れ合う部分を凸曲面とする事が好ましい。このうちの(C)に示した構造は、円輪部13の外周縁部全体を前記何れかの面から離れる方向に湾曲させて凸曲面17aを形成したもの、(D)に示した構造は、円輪部13の外周縁部のうちで前記何れかの面と対向する部分に凸曲面17bを形成したものである。   As described above, when the thrust roller bearing applies a thrust load and the convex curved surface portion 14 is crushed, of the inner and outer peripheral edges of the annular portion 13, The diameter increases or decreases. At this time, if a portion of this edge that rubs against any of the surfaces backing up the race 2A is sharp, the portion bites into this surface (causes this surface to be caught or galling), There is a possibility that the resistance against the crushing of the convex curved surface portion 14 is increased. Therefore, in order to prevent an increase in resistance due to such a cause, as shown in FIGS. 2C and 2D, a portion of the edge that rubs against one of the surfaces should be a convex curved surface. Is preferred. Of these, the structure shown in (C) is a curved surface 17a formed by curving the entire outer peripheral edge of the annular ring portion 13 in a direction away from any of the surfaces, and the structure shown in (D) is A convex curved surface 17b is formed at a portion of the outer peripheral edge portion of the annular ring portion 13 that opposes any one of the surfaces.

何れの構造によっても、前記凸曲面部14が押し潰されて、その幅寸法が拡がる際に、前記端縁が前記何れかの面に食い込む事を防止して、前記凸曲面部14が押し潰される事に対する抵抗を、安定して低く抑えられる。又、前記凸曲面17a、17bの存在により、前記円輪部13と前記何れかの面との擦れ合い部に潤滑油が入り込み易くなり、前記凸曲面部14の幅寸法の拡縮に伴って、この擦れ合い部にフレッチング摩耗等の損傷が発生する事を抑えられる。同様に、前記凸曲面部14と反対側に存在する凹曲面の幅方向(径方向)両端縁部と平坦面部との連続部にも凸曲面17c、17dを形成して、これら各連続部と前記何れかの面とが強く擦れ合わない様にしたり、擦れ合い部に潤滑油が入り込み易くする事が好ましい。前記(C)に示した凸曲面17aは、レース2Aの一部を塑性変形する事により形成するが、前記(C)(D)に示した凸曲面17b〜17dは、塑性加工の他、バレル加工やショット加工により形成する事もできる。   Regardless of the structure, when the convex curved surface portion 14 is crushed and its width dimension is expanded, the edge is prevented from biting into any of the surfaces, and the convex curved surface portion 14 is crushed. It is possible to stably keep the resistance against being low. In addition, the presence of the convex curved surfaces 17a and 17b makes it easy for lubricating oil to enter the rubbing portion between the ring portion 13 and the one of the surfaces, and along with the expansion and contraction of the width of the convex curved portion 14, It is possible to suppress the occurrence of damage such as fretting wear in the rubbing portion. Similarly, convex curved surfaces 17c and 17d are also formed on the continuous portion between the width direction (radial direction) both ends of the concave curved surface existing on the opposite side of the convex curved surface portion 14 and the flat surface portion, It is preferable to prevent any of the surfaces from rubbing strongly, or to make the lubricating oil easily enter the rubbing portion. The convex curved surface 17a shown in (C) is formed by plastic deformation of a part of the race 2A. The convex curved surfaces 17b to 17d shown in (C) and (D) are not only plastic working but also barrels. It can also be formed by processing or shot processing.

又、レース2Aに形成する凸曲面部14の断面形状は、図2の(A)〜(C)に示す様に、途中で曲率半径が変化しない単一円弧としても、或いは、(D)に示す様に、互いに曲率半径が異なる複数の円弧を滑らかに連続させた複合円弧としても良い。複合円弧とする場合に好ましくは、径方向外側部分の曲率半径を大きく、同じく内側部分の曲率半径を小さくする。この理由は、スラストころ軸受の運転時に各ころ10、10は、遠心力により径方向外方に変位し、前記凸曲面部14のうちで径方向外寄り部分に転がり接触する為、径方向外側部分の曲率半径を大きくする事が、前記各ころ10、10の姿勢を安定化させる面から有利な為である。
又、凸曲面部14の断面形状は、正弦波曲線形状、放物線形状、正規分布形状等も採用可能である。このうちの正弦波曲線形状の1例を、図2の(E)に示す。この正弦波曲線形状は、例えばy=K・sinθで表される。更には、特許文献4記載されている様な、対数クラウニング形状する事もできる。
前記何れかの面と対向する部分に凸曲面17b〜17dを形成する事は、凸曲面部14の断面形状の相違に関係なく、同じである。
Moreover, as shown in FIGS. 2A to 2C, the cross-sectional shape of the convex curved surface portion 14 formed in the race 2A may be a single arc whose curvature radius does not change in the middle, or (D). As shown, it may be a composite arc in which a plurality of arcs having different curvature radii are smoothly connected. In the case of a compound arc, the radius of curvature of the radially outer portion is preferably increased, and the radius of curvature of the inner portion is also decreased. This is because the rollers 10 and 10 are displaced radially outward by centrifugal force during the operation of the thrust roller bearing and are in rolling contact with the radially outward portion of the convex curved surface portion 14. This is because increasing the radius of curvature of the portion is advantageous in terms of stabilizing the posture of the rollers 10 and 10.
Further, as the cross-sectional shape of the convex curved surface portion 14, a sinusoidal curve shape, a parabolic shape, a normal distribution shape, or the like can be adopted. One example of the sinusoidal curve shape is shown in FIG. The sinusoidal curve shape is expressed by, for example, y = K · sin θ. Furthermore, a logarithmic crowning shape as described in Patent Document 4 can also be used.
The formation of the convex curved surfaces 17b to 17d in the portion facing any one of the surfaces is the same regardless of the difference in the cross-sectional shape of the convex curved surface portion 14.

又、前記レース2Aの径方向に関する、前記凸曲面部14の位置は、前記保持器3aのポケット9a、9a内に保持された前記各ころ1b、1bの位置との関係で適切に規制する。具体的には、前記レース2Aの径方向に関する、前記凸曲面部14の中心を、前記各ころ1b、1bの長さ方向のほぼ中央位置にする。言い換えれば、この凸曲面部14の幅方向中央位置の直径と、前記各ころ1b、1bのピッチ円直径(PCD)とをほぼ同じとする。但し、この凸曲面部14の径方向位置は、この凸曲面部14の断面形状や前記各ころ1b、1bの転動面10の母線形状(クラウニングが存在するか否か)、円筒ころ軸受の使用状態(円筒ころ軸受全体が公転するか否か)等に応じて適宜設定する。   Further, the position of the convex curved surface portion 14 with respect to the radial direction of the race 2A is appropriately restricted in relation to the positions of the rollers 1b and 1b held in the pockets 9a and 9a of the cage 3a. Specifically, the center of the convex curved surface portion 14 with respect to the radial direction of the race 2A is set to a substantially central position in the length direction of the rollers 1b and 1b. In other words, the diameter at the center in the width direction of the convex curved surface portion 14 and the pitch circle diameter (PCD) of each of the rollers 1b and 1b are substantially the same. However, the radial direction position of the convex curved surface portion 14 depends on the cross-sectional shape of the convex curved surface portion 14 and the generatrix shape of the rolling surface 10 of each of the rollers 1b and 1b (whether or not crowning exists). It is set as appropriate according to the state of use (whether or not the entire cylindrical roller bearing revolves).

何れの場合でも、前記レース2Aを構成する金属板の厚さ寸法T、前記凸曲面部14の高さHは、前記スラストころ軸受の寸法、負荷容量等の仕様に応じて設計的に定める。例えば、前記厚さ寸法Tは、0.1〜3mmの範囲とする。本例のスラストころ軸受は、使用状態で前記レース2Aを、スラスト方向に互いに対向する1対の面のうちの何れかの面に当接させ、当該面によりバックアップした状態で使用する。従って、この面の剛性さえ十分に高ければ、スラスト荷重を支承する面からは、前記厚さ寸法が小さくても問題を生じにくい。但し、本例のスラストころ軸受の場合、スラスト荷重を負荷する際に、前記凸曲面部14を弾性変形させつつ、前述した様な(軸方向中間部で高く、軸方向両端部で低くなる)面圧分布を実現する。この様な面圧分布を実現する際、前記凸曲面部14を、適切に弾性変形させて、前記転がり接触部の軸方向全長に亙り、偏荷重や過大な荷重が加わらない様にする(偏荷重を吸収し、部分的に過大な荷重が加わる事を防止する)必要がある。この様な点を考慮した場合、前記厚さ寸法Tが0.1mm以下では、前記偏荷重を吸収する能力が乏しくなり(極く小さな偏荷重でも前記凸曲面部14が変形してしまい)、偏荷重に基づいて部分的に過大な面圧が加わる事を防止できない。これに対して、前記厚さ寸法Tが3mmを超えると、スラスト荷重に基づいて弾性変形し難しくなり、偏荷重が加わった場合にこれを吸収しにくくなるだけでなく、過大なスラスト荷重が加わった場合に、割れ等の損傷が発生する可能性を生じる。   In any case, the thickness dimension T of the metal plate constituting the race 2A and the height H of the convex curved surface portion 14 are determined by design according to specifications such as the dimensions of the thrust roller bearing and the load capacity. For example, the thickness dimension T is in the range of 0.1 to 3 mm. The thrust roller bearing of this example is used in a state where the race 2A is brought into contact with any one of a pair of surfaces facing each other in the thrust direction and backed up by the surface. Therefore, as long as the rigidity of this surface is sufficiently high, it is difficult to cause a problem even if the thickness dimension is small from the surface that supports the thrust load. However, in the case of the thrust roller bearing of this example, when the thrust load is applied, the convex curved surface portion 14 is elastically deformed as described above (high in the intermediate portion in the axial direction and low in both end portions in the axial direction). Realize surface pressure distribution. When realizing such a surface pressure distribution, the convex curved surface portion 14 is appropriately elastically deformed over the entire axial length of the rolling contact portion so that an uneven load or an excessive load is not applied (biased). It is necessary to absorb the load and prevent an excessive load from being applied partially). In consideration of such points, when the thickness dimension T is 0.1 mm or less, the ability to absorb the uneven load becomes poor (the convex curved surface portion 14 is deformed even with a very small uneven load), It is not possible to prevent an excessive surface pressure from being partially applied based on the uneven load. On the other hand, if the thickness dimension T exceeds 3 mm, it becomes difficult to elastically deform based on the thrust load, and not only is this difficult to absorb when an offset load is applied, but an excessive thrust load is added. In such a case, there is a possibility that damage such as cracking may occur.

又、前記レース2Aを構成する硬質金属板の材質としては、SUJ2等の軸受鋼、SK5等のSK鋼、浸炭鋼等が好ましく、一般的には、これらを所定の形状に加工した後、熱処理により硬化したものを使用する。この様な条件で造られた前記レース2Aの表面硬度は、一般的には、Hv600を超える。この様な高い硬度を有するレース2Aの場合、板厚が大きくなると、前記凸曲面部14部分を、押し潰し方向に弾性変形させる事が困難になる。硬質金属板の材質によっては、上述した様に、前記厚さ寸法Tを0.1〜3mmの範囲で選択可能であるが、前記硬質金属板が、SUJ2等の軸受鋼、SK5等のSK鋼(炭素工具鋼)、浸炭鋼の何れかである場合には、前記厚さ寸法を、好ましくは0.5〜2mmの範囲に、より好ましくは0.7〜1mmの範囲に規制する。   Further, the material of the hard metal plate constituting the race 2A is preferably bearing steel such as SUJ2, SK steel such as SK5, carburized steel, etc., and generally, after these are processed into a predetermined shape, heat treatment is performed. Use one cured by The surface hardness of the race 2A manufactured under such conditions generally exceeds Hv600. In the case of the race 2A having such a high hardness, if the plate thickness increases, it becomes difficult to elastically deform the convex curved surface portion 14 in the crushing direction. Depending on the material of the hard metal plate, as described above, the thickness dimension T can be selected in the range of 0.1 to 3 mm. However, the hard metal plate is made of bearing steel such as SUJ2 or SK steel such as SK5. In the case of (carbon tool steel) or carburized steel, the thickness dimension is preferably regulated to a range of 0.5 to 2 mm, more preferably 0.7 to 1 mm.

又、前記凸曲面部14の高さHは、前記スラストころ軸受の使用時に加わるスラスト荷重の大きさ(負荷容量)や前記厚さ寸法Tを含む、各種使用条件等を考慮して適宜決定する。一般的には、前記高さHを、凡そ1〜100μmの範囲に規制する事が好ましい。この高さHが1μm未満の場合には、前記凸曲面部14の弾性変形に基づく面圧分布の調節による、前記差動滑りの摩擦低減効果を殆ど得られない。これに対して、前記高さHが100μmを超えると、通常の使用状態で前記凸曲面部14が十分に押し潰されず、前記各ころ1b、1bと前記軌道面4Aとの転がり接触部の面積を十分に確保できなくなり、この転がり接触部の面圧が過大になって、前記各ころ1b、1bの転動面10や前記軌道面4Aの転がり疲れ寿命を確保しにくくなる。そこで、前記高さHを凡そ1〜100μm、好ましくは5〜50μm、より好ましくは5〜40μmの範囲に規制する。より具体的には、前記厚さTとの関係で、次の様に規制する事が好ましい。
厚さTが0.5〜1mmの場合 : 高さHを5〜40μm
厚さTが1〜1.5mmの場合 : 高さHを5〜30μm
厚さTが2mm以上の場合 : 高さHを5〜20μm
即ち、この厚さTが大きくなる程、前記凸曲面部14が押し潰されにくくなる為、上述の様に高さHの最大値を小さく抑える。そして、この凸曲面部14が十分に押し潰される様にして、この凸曲面部14と前記各ころ1b、1bの転動面10との転がり接触部の当接面積を確保して、この転がり接触部の面圧が過大になる事を防止し、スラストころ軸受の耐久性を確保する。
Further, the height H of the convex curved surface portion 14 is appropriately determined in consideration of various use conditions including the magnitude of the thrust load (load capacity) applied when the thrust roller bearing is used and the thickness dimension T. . Generally, it is preferable to regulate the height H to a range of about 1 to 100 μm. When the height H is less than 1 μm, the effect of reducing the friction of the differential slip by adjusting the surface pressure distribution based on the elastic deformation of the convex curved surface portion 14 is hardly obtained. On the other hand, when the height H exceeds 100 μm, the convex curved surface portion 14 is not sufficiently crushed in a normal use state, and the area of the rolling contact portion between the rollers 1b and 1b and the raceway surface 4A. Cannot be secured sufficiently, and the surface pressure of the rolling contact portion becomes excessive, and it becomes difficult to secure the rolling fatigue life of the rolling surface 10 of each of the rollers 1b and 1b and the raceway surface 4A. Therefore, the height H is restricted to a range of about 1 to 100 μm, preferably 5 to 50 μm, more preferably 5 to 40 μm. More specifically, it is preferable to regulate as follows in relation to the thickness T.
When the thickness T is 0.5 to 1 mm: the height H is 5 to 40 μm
When thickness T is 1 to 1.5 mm: Height H is 5 to 30 μm
When thickness T is 2 mm or more: Height H is 5 to 20 μm
That is, as the thickness T is increased, the convex curved surface portion 14 is less likely to be crushed, so that the maximum value of the height H is kept small as described above. The convex curved surface portion 14 is sufficiently crushed to secure a contact area of the rolling contact portion between the convex curved surface portion 14 and the rolling surface 10 of each of the rollers 1b and 1b. Prevents contact surface pressure from becoming excessive and ensures the durability of thrust roller bearings.

尚、前記凸曲面部14の高さHは、前記レース2Aを構成する金属板の厚さTに対する比で規制する事もできる。例えば、上述の範囲と一部重複するが、この厚さTが、例えば0.8mm程度(0.7〜1mm)である場合には、前記高さHを、この厚さTの1/200〜1/20(4〜40μm)とする事が好ましい。より好ましくは、前記高さHを、前記厚さTの1/200〜1/50(4〜16μm)の範囲に規制する。この高さHをこの範囲に規制すれば、前記スラストころ軸受にスラスト荷重が負荷された際に、前記凸曲面部14を適切に弾性変形させて、このスラスト荷重が偏荷重や過大な大きさであった場合にも、前記転がり接触部の面圧が部分的に上昇する事を抑えられる効果に加えて、衝撃荷重を和らげる等の付加的な効果も顕著なものとなる為、好ましい。   In addition, the height H of the convex curved surface portion 14 can be regulated by a ratio to the thickness T of the metal plate constituting the race 2A. For example, although partially overlapping with the above-described range, when the thickness T is, for example, about 0.8 mm (0.7 to 1 mm), the height H is set to 1/200 of the thickness T. It is preferable to set to 1/20 (4-40 micrometers). More preferably, the height H is restricted to a range of 1/200 to 1/50 (4 to 16 μm) of the thickness T. If this height H is regulated within this range, when a thrust load is applied to the thrust roller bearing, the convex curved surface portion 14 is appropriately elastically deformed so that the thrust load is offset or excessively large. Also in this case, in addition to the effect of suppressing the partial increase in the surface pressure of the rolling contact portion, an additional effect such as reducing the impact load becomes remarkable, which is preferable.

更に、これらの効果を得る為に、前記凸曲面部14の径方向に関する幅寸法Wに就いても、適切に規制する。具体的には、この幅Wを、前記高さHの100倍以上(W≧100H)とする事が好ましく、より好ましくは、200倍以上(W≧200H)とする。但し、前記幅Wは、前記円輪部13の幅{図2の(B)の、a+w+b}の70%以下{W≦0.7(a+w+b)}とする。   Furthermore, in order to obtain these effects, the width dimension W in the radial direction of the convex curved surface portion 14 is appropriately regulated. Specifically, the width W is preferably 100 times or more (W ≧ 100H) of the height H, and more preferably 200 times or more (W ≧ 200H). However, the width W is 70% or less {W ≦ 0.7 (a + w + b)} of the width of the annular portion 13 (a + w + b in FIG. 2B).

以上に述べた、前記レース2Aに関する好ましい仕様をまとめると、次の様になる。
先ず、材質は、SK材(JIS G 4401の炭素工具鋼)が最も好ましい。
又、前記厚さ寸法Tは、0.7〜1mmの範囲に規制する事が最も好ましい。
又、前記高さHは、前記厚さTの1/200〜1/50(3.5〜20μm)の範囲に規制する事が、最も好ましい。
更に、前記幅Wは、前記高さHの200倍以上(0.7mm以上)、前記円輪部13の幅の70%以下に規制する事が、最も好ましい。
The preferable specifications related to the race 2A described above are summarized as follows.
First, the material is most preferably SK material (carbon tool steel of JIS G 4401).
The thickness dimension T is most preferably limited to a range of 0.7 to 1 mm.
The height H is most preferably regulated to a range of 1/200 to 1/50 (3.5 to 20 μm) of the thickness T.
Furthermore, it is most preferable that the width W is regulated to 200 times or more (0.7 mm or more) of the height H and 70% or less of the width of the annular portion 13.

次に、前記保持器3aは、鋼板、ステンレス鋼板等の1枚の金属板を、径方向に関する断面形状をクランク型に曲げ形成する事により、一体に構成している。具体的には、前記保持器3aは、内径側から外径側に向けて順番に、ガイド円筒部18と、ガイド円輪部19と、内径側円筒部20と、内径側平板部21と、内径側段部22と、中間平板部23と、外径側段部24と、外径側平板部25と、外径側円筒部26とを備える。このうちのガイド円筒部18の内径は、前記レース2Aの内周縁部に形成したフランジ部5bの外径よりも僅かに大きくして、このフランジ部5bに前記ガイド円筒部18を、回転自在に外嵌可能としている。本例の場合、前記保持器3aのうち、前記各ころ1b、1bを転動自在に保持する為の本体部分は、前記各部18〜26のうちの、内径側円筒部20と、内径側平板部21と、内径側段部22と、中間平板部23と、外径側段部24と、外径側平板部25と、外径側円筒部26とが構成している。前記ガイド円輪部19は、この様な保持器2Aの本体部分を、前記フランジ部5bの周囲に、このフランジ部5bと同心に配置する役目を有する。   Next, the cage 3a is integrally formed by bending a metal plate such as a steel plate or a stainless steel plate into a crank shape with a cross-sectional shape in the radial direction. Specifically, the cage 3a includes, in order from the inner diameter side to the outer diameter side, a guide cylindrical portion 18, a guide ring portion 19, an inner diameter side cylindrical portion 20, an inner diameter side flat plate portion 21, The inner diameter side step part 22, the intermediate | middle flat plate part 23, the outer diameter side step part 24, the outer diameter side flat plate part 25, and the outer diameter side cylindrical part 26 are provided. Of these, the inner diameter of the guide cylindrical portion 18 is slightly larger than the outer diameter of the flange portion 5b formed on the inner peripheral edge of the race 2A, and the guide cylindrical portion 18 can be rotated on the flange portion 5b. It can be fitted externally. In the case of this example, in the cage 3a, the main body part for holding the rollers 1b and 1b in a rollable manner is the inner diameter side cylindrical portion 20 and the inner diameter side flat plate of the respective portions 18 to 26. The portion 21, the inner diameter side step portion 22, the intermediate flat plate portion 23, the outer diameter side step portion 24, the outer diameter side flat plate portion 25, and the outer diameter side cylindrical portion 26 are configured. The guide ring portion 19 has a function of arranging the main body portion of such a cage 2A around the flange portion 5b and concentrically with the flange portion 5b.

前記保持器2Aの本体部分は、この保持器2Aの軸方向一端(図1の上端)寄り部分に配置された前記内径側平板部21の外周縁と、同じく軸方向他端(図1の下端)寄り部分に配置された前記中間平板部23の内外両周縁と、同じく軸方向一端寄り部分に配置された前記外径側平板部25の内周縁とを、それぞれ前記内径側、外径側両段部22、24により連続させると共に、前記内径側平板部21の内周縁から前記内径側円筒部20を、前記外径側平板部25の外周縁から前記外径側円筒部26を、それぞれ連続させて成る。前記各ポケット9a、9aは、それぞれ、前記各平板部21、23、25及び前記両段部22、24を打ち抜く状態で、前記内径側、外径側両円筒部20、26同士の間部分に、放射状に設けている。   The main body portion of the retainer 2A has an outer peripheral edge of the inner diameter side flat plate portion 21 disposed at a portion closer to one axial end (the upper end in FIG. 1) of the retainer 2A, and the other axial end (the lower end in FIG. 1). ) Both the inner and outer peripheral edges of the intermediate flat plate portion 23 arranged at the near portion and the inner peripheral edge of the outer diameter side flat plate portion 25 also arranged at the portion near the one end in the axial direction are both the inner diameter side and the outer diameter side. The step portions 22 and 24 are made continuous, and the inner diameter side cylindrical portion 20 is continued from the inner peripheral edge of the inner diameter side flat plate portion 21, and the outer diameter side cylindrical portion 26 is continued from the outer peripheral edge of the outer diameter side flat plate portion 25. Let me. The pockets 9a and 9a are respectively formed between the cylindrical portions 20 and 26 on the inner diameter side and the outer diameter side in a state of punching the flat plate portions 21, 23 and 25 and the stepped portions 22 and 24, respectively. , Provided radially.

前記各平板部21、23、25の周方向両端縁部には、それぞれ係止突片27a、27b、27cを、前記各ポケット9a、9a内に突出する状態で形成している。これら各ポケット9a、9aの周方向両端部に互いに対向する状態で配置されて互いに対となる係止突片27a、27b、27cの先端同士の間隔は、前記各ころ1b、1bのうちで当該係止突片27a、27b、27cに整合する部分の外径よりも僅かに小さくしている。前記各ポケット9a、9a内に前記各ころ1b、1bを保持する際には、前記互いに対となる係止突片27a、27b、27cの先端同士の間隔を弾性的に拡げつつ、前記各ころ1b、1bを前記各ポケット9a、9a内に押し込む。この押し込みを完了した状態で、前記各係止突片27a、27b、27cの先端縁部と前記各ころ1b、1bの転動面との係合に基づき、前記保持器2Aがこれら各ころ1b、1bに対して軸方向に変位する事を抑える。即ち、これら各ころ1b、1bを前記各ポケット9a、9a内に転動自在に保持した状態で、所謂ころ案内の構造により、前記各ころ1b、1bに対する前記保持器2Aの軸方向に関する位置決めを図る。
又、上述の様に前記各ころ1b、1bを前記各ポケット9a、9a内に保持した状態で、これら各ころ1b、1bの軸方向端面の中央部に形成した前記平坦面11が、前記外径側円筒部26の内周面に対向する。
Engagement protrusions 27a, 27b, 27c are formed at both end edges in the circumferential direction of the flat plate portions 21, 23, 25 so as to protrude into the pockets 9a, 9a, respectively. The intervals between the tips of the locking protrusions 27a, 27b, 27c, which are arranged in a state of being opposed to each other in the circumferential ends of each of the pockets 9a, 9a, are the same among the rollers 1b, 1b. It is slightly smaller than the outer diameter of the portion aligned with the locking protrusions 27a, 27b, 27c. When the rollers 1b, 1b are held in the pockets 9a, 9a, the rollers are elastically expanded with the gaps between the tips of the locking projections 27a, 27b, 27c paired with each other. 1b and 1b are pushed into the pockets 9a and 9a. In a state where the pushing is completed, the retainer 2A is engaged with the rollers 1b based on the engagement between the tip edge portions of the locking protrusions 27a, 27b, 27c and the rolling surfaces of the rollers 1b, 1b. 1 to suppress displacement in the axial direction. In other words, with the rollers 1b and 1b held in the pockets 9a and 9a so as to freely roll, the roller 2b and 1b are positioned in the axial direction of the retainer 2A with a so-called roller guide structure. Plan.
Further, the flat surface 11 formed at the center of the axial end surface of each of the rollers 1b and 1b in the state where the rollers 1b and 1b are held in the pockets 9a and 9a as described above, It faces the inner peripheral surface of the radial cylindrical portion 26.

上述の様に構成する本例のスラストころ軸受によれば、前述した様な理由により、前記各ころ1b、1bの表面と相手面との接触部に作用する摩擦を低減して、回転抵抗を安定して低く抑えられる。
先ず、前記レース2Aの軌道面4Aの径方向中間部分に前記凸曲面部14を形成すると共に、前記各ころ1b、1bの転動面にクラウニングを施している為、差動滑りに基づく回転抵抗の増大を抑えられる。即ち、前記軌道面4Aと前記各ころ1b、1bの転動面10との転がり接触部のうち、これら各ころ1b、1bのピッチ円から径方向に外れた部分(前記軌道面4Aの外径寄り部分及び内径寄り部分=前記転動面10の軸方向両端寄り部分)では、これら各ころ1b、1bに関する、前記転動面10の周速と公転速度とに差が生じ、この差分だけの滑り(前記差動滑り)が発生する。これに対して本例の構造によれば、前記凸曲面部14及び前記クラウニングの存在に基づき、前記差動滑りが大きくなる、前記各ころ1b、1bの軸方向両端部分の面圧を低く抑えられる。そして、この面圧を低くできる分だけ、前記差動滑りに基づく回転抵抗の増大を抑えられる。
According to the thrust roller bearing of the present example configured as described above, for the reasons described above, the friction acting on the contact portion between the surface of each of the rollers 1b and 1b and the mating surface is reduced, and the rotational resistance is reduced. Stable and low.
First, the convex curved surface portion 14 is formed at the radial intermediate portion of the raceway surface 4A of the race 2A, and the rolling surfaces of the rollers 1b and 1b are crowned, so that rotational resistance based on differential slip The increase of can be suppressed. That is, of the rolling contact portion between the raceway surface 4A and the rolling surface 10 of each of the rollers 1b and 1b, a portion that deviates radially from the pitch circle of each of the rollers 1b and 1b (the outer diameter of the raceway surface 4A). In the near part and the part near the inner diameter = the part near the both ends in the axial direction of the rolling surface 10), there is a difference between the peripheral speed and the revolution speed of the rolling surface 10 with respect to each of the rollers 1b and 1b. Slip (the differential slip) occurs. On the other hand, according to the structure of this example, the surface pressure at both end portions in the axial direction of the rollers 1b and 1b, where the differential slip increases, is suppressed based on the presence of the convex curved surface portion 14 and the crowning. It is done. The increase in rotational resistance based on the differential slip can be suppressed by the amount that the surface pressure can be lowered.

尚、上述の様な、差動滑りに基づく回転抵抗を低減する為には、前記各ころ1b、1bの転動面には、必ずしもクラウニングを施す必要はない。前記レース2Aの軌道面4Aの径方向中間部分に前記凸曲面部14を形成するのみで、前記各ころ1b、1bとして、転動面が単なる円筒状の、一般的なものを使用しても良い。何れにしても、本例の構造によれば、前記差動滑りに基づく回転抵抗の増大を抑えられる事に加えて、スラストころ軸受が偏荷重を受ける等により、前記各ころ1b、1bの中心軸と前記レース2Aの基準面(外径側、内径側両平面部15、16)とが非平行になった場合でも、前記凸曲面部14が前記転動面10の変位に伴って弾性変形し、前記転動面10の軸方向端縁と前記軌道面4Aとの接触によるエッジロードの発生防止を図れる。そして、これら転動面10や軌道面4Aに、早期剥離等の損傷が発生する事を防止できて、スラストころ軸受の寿命向上を図れる。   In order to reduce the rotational resistance based on differential slip as described above, it is not always necessary to crown the rolling surfaces of the rollers 1b and 1b. Even if the convex curved surface portion 14 is only formed in the radial direction intermediate portion of the raceway surface 4A of the race 2A, a general rolling surface having a simple cylindrical shape may be used as each of the rollers 1b and 1b. good. In any case, according to the structure of this example, in addition to suppressing an increase in rotational resistance due to the differential slip, the thrust roller bearing receives an eccentric load, etc., so that the centers of the rollers 1b and 1b Even when the shaft and the reference surface of the race 2A (outer diameter side and inner diameter side flat surface portions 15 and 16) are not parallel, the convex curved surface portion 14 is elastically deformed as the rolling surface 10 is displaced. In addition, it is possible to prevent the occurrence of edge load due to the contact between the axial end edge of the rolling surface 10 and the raceway surface 4A. In addition, it is possible to prevent the rolling surface 10 and the raceway surface 4A from being damaged such as early separation, thereby improving the life of the thrust roller bearing.

上述の様に、何れの形状のころ1b、1bを使用した場合でも、前記凸曲面部14を設ける事により、前記差動滑りに基づく回転抵抗を抑えられ、スラストころ軸受の寿命延長を図れるが、そのままでは、前記各ころ1b、1bの姿勢が不安定になる。即ち、前記転がり接触部の面圧を、前記転動面10の軸方向中央部で高く、軸方向両端部で低くすると、そのままでは、前記各ころ1b、1bの姿勢が不安定になり、これら各ころ1b、1bの中心軸の方向と、前記保持器2Aの直径方向とがずれ易くなる。言い換えれば、これら各ころ1b、1bの公転方向に一致する、前記保持器2Aの周方向と、これら各ころ1b、1bが転がろうとする方向とがずれ易くなる。そして、ずれた場合には、そのずれの大きさに応じて、前記転がり接触部で発生する滑りが大きくなり、前記回転抵抗が大きくなる。   As described above, regardless of the shape of the rollers 1b and 1b, by providing the convex curved surface portion 14, the rotational resistance based on the differential slip can be suppressed, and the life of the thrust roller bearing can be extended. As it is, the postures of the rollers 1b and 1b become unstable. That is, if the surface pressure of the rolling contact portion is high at the axial center portion of the rolling surface 10 and low at both axial end portions, the postures of the rollers 1b and 1b become unstable as they are. The direction of the central axis of each roller 1b, 1b and the diameter direction of the cage 2A are likely to be displaced. In other words, the circumferential direction of the cage 2A, which coincides with the revolution direction of the rollers 1b and 1b, and the direction in which the rollers 1b and 1b try to roll easily deviate. And when it shift | deviates, according to the magnitude | size of the shift | offset | difference, the slip which generate | occur | produces in the said rolling contact part becomes large, and the said rotational resistance becomes large.

これに対して本例のスラストころ軸受の場合には、前記各ころ1b、1bの軸方向端面の中央部に前記平坦面11を形成し、前記スラストころ軸受の運転時に、この平坦面11を前記保持器3aの外径側円筒部26の内周面に係合させる様にしている。即ち、本例のスラストころ軸受の運転時に前記各ころ1b、1bは、公転運動に基づく遠心力により、前記ポケット9a、9a内で、前記保持器3aの径方向外側に変位し、その結果、前記平坦面11が前記外径側円筒部26の内周面に当接する。この平坦面11の直径dは、前記各ころ1b、1bの直径Dの20%以上確保している為、この平坦面11と前記外径側円筒部26の内周面との係合(当接)により、前記各ころ1b、1bの中心軸と前記保持器3aの直径方向とがずれる事を抑えられて、このずれに基づいて前記転がり接触部で発生する滑りを抑えられる。一方、前記平坦面11の直径dは、各ころ1b、1bの直径の80%以下に抑えている為、これら各ころ1b、1bの自転に基づく、これら各ころ1b、1bの軸方向端面と前記外径側円筒部26の内周面との擦れ合い部の回転半径を小さく抑えられて、この擦れ合い部での摩擦抵抗を抑えられる。   On the other hand, in the case of the thrust roller bearing of this example, the flat surface 11 is formed at the center of the axial end surface of each of the rollers 1b and 1b, and this flat surface 11 is used during the operation of the thrust roller bearing. It is made to engage with the inner peripheral surface of the outer diameter side cylindrical portion 26 of the cage 3a. That is, during operation of the thrust roller bearing of this example, the rollers 1b and 1b are displaced radially outward of the cage 3a within the pockets 9a and 9a due to centrifugal force based on revolving motion, The flat surface 11 abuts on the inner peripheral surface of the outer diameter side cylindrical portion 26. Since the diameter d of the flat surface 11 is 20% or more of the diameter D of each of the rollers 1b and 1b, the engagement between the flat surface 11 and the inner peripheral surface of the outer diameter side cylindrical portion 26 Contact) prevents the center axis of each of the rollers 1b and 1b from deviating from the diameter direction of the cage 3a, and prevents slippage occurring at the rolling contact portion based on this deviation. On the other hand, since the diameter d of the flat surface 11 is suppressed to 80% or less of the diameters of the rollers 1b and 1b, the axial end surfaces of the rollers 1b and 1b are based on the rotation of the rollers 1b and 1b. The rotational radius of the rubbing portion with the inner peripheral surface of the outer diameter side cylindrical portion 26 can be suppressed to be small, and the frictional resistance at the rubbing portion can be suppressed.

尚、上述の様な、前記平坦面11を形成する事による効果を得る為には、この平坦面11の直径dを、前記各ころ1b、1bの直径Dの20〜80%の範囲に規制する必要がある。この値が20%未満の場合には、これら各ころ1b、1bの姿勢が不安定になり易く、これら各ころ1b、1bの自転方向と公転方向とのずれに基づく摩擦抵抗が大きくなり易くなる。例えば、図3の(A)に示す様な本例の構造に対して、図3の(B)に示す様な、軸方向端面を部分球状凸面とした構造の場合には、ころの姿勢が不安定になる。これに対して、前記値が80%を超えると、前記平坦面11と前記外径側円筒部26の内周面との摩擦が大きくなり、スラストころ軸受の動トルクの低減効果を十分に図れなくなる。例えば、図3の(C)に示す様に、軸方向端面の平坦面の直径を大きくした構造の場合には、ころの自転に基づくこの軸方向端面と相手面との摩擦が大きくなり、動トルクの低減を十分に図れなくなる。これらの点を考慮して、前記平坦面11の直径dを前記各ころ1b、1bの直径Dの20〜80%の範囲に規制するが、より好ましくは、この値を40〜75%、最も好ましくは50〜70%の範囲に規制する。   In order to obtain the effect obtained by forming the flat surface 11 as described above, the diameter d of the flat surface 11 is restricted to a range of 20 to 80% of the diameter D of the rollers 1b and 1b. There is a need to. When this value is less than 20%, the postures of the rollers 1b and 1b are likely to be unstable, and the frictional resistance based on the deviation between the rotation direction and the revolution direction of the rollers 1b and 1b is likely to increase. . For example, in the case of a structure in which the axial end face is a partially spherical convex surface as shown in FIG. 3B in contrast to the structure of this example as shown in FIG. It becomes unstable. On the other hand, when the value exceeds 80%, friction between the flat surface 11 and the inner peripheral surface of the outer diameter side cylindrical portion 26 increases, and the effect of reducing the dynamic torque of the thrust roller bearing can be sufficiently achieved. Disappear. For example, as shown in FIG. 3C, in the case of a structure in which the diameter of the flat surface of the axial end surface is increased, the friction between the axial end surface and the mating surface due to the rotation of the roller increases, The torque cannot be reduced sufficiently. Considering these points, the diameter d of the flat surface 11 is restricted to a range of 20 to 80% of the diameter D of the rollers 1b and 1b. More preferably, this value is 40 to 75%, Preferably, it is regulated within a range of 50 to 70%.

又、前記平坦面11の直径dを適切に規制する事による、摩擦抵抗の低減効果は、特に、高速運転時のスラストころ軸受の動トルクを低減する面から、顕著に得られる。低速でも効果はあるが、ころのピッチ円直径とスラストころ軸受の軸受回転速度(min-1)との積(dmn値)が40万を超える様な高速での運転時に、ころの安定性確保と摺接部の油膜形成の効果(ころが安定するから油膜が形成され易く、又、高速になると油膜が形成され易い)との相乗作用により、より顕著なトルク低減効果を示す。尚、この油膜形成が効果的に行われる様にする為には、前記ころ1bの転動面10と平坦面11とを連続させる部分を、前述した様に、このころ1bの中心軸に対する傾斜角度が大きな、前記傾斜面12とするか、曲率半径の大きな面取り(凸曲面状の傾斜面)とする。好ましくは、曲率半径の大きな面取りとし、面取り部の軸方向長さをできるだけ短くして、ころ1bの転動面10の有効長さを確保し、且つ、この転動面10から前記平坦面11までの部分に、バリやカエリの発生を抑制する。この様な傾斜面12や面取りを形成して、前記転動面10の有効長さを確保すれば、スラストころ軸受の定格荷重が低下する事がなく、このスラストころ軸受の耐久性が低下する事もない。 Further, the effect of reducing the frictional resistance by appropriately regulating the diameter d of the flat surface 11 can be obtained notably from the surface of reducing the dynamic torque of the thrust roller bearing during high speed operation. Although effective even at low speeds, ensuring the stability of the rollers during high-speed operation where the product (dmn value) of the roller pitch circle diameter and the thrust roller bearing rotation speed (min -1 ) exceeds 400,000 And the effect of forming an oil film at the sliding contact portion (the oil film is easily formed because the rollers are stable, and the oil film is easily formed at a high speed). In order to effectively perform the oil film formation, the portion where the rolling surface 10 and the flat surface 11 of the roller 1b are continuous is inclined with respect to the central axis of the roller 1b as described above. The inclined surface 12 has a large angle or is chamfered with a large curvature radius (an inclined surface having a convex curved surface). Preferably, the chamfer has a large radius of curvature, the axial length of the chamfered portion is made as short as possible to ensure the effective length of the rolling surface 10 of the roller 1b, and the flat surface 11 extends from the rolling surface 10 to the flat surface 11. Suppresses the occurrence of burrs and burrs in the area up to. If such an inclined surface 12 or chamfer is formed and the effective length of the rolling surface 10 is ensured, the rated load of the thrust roller bearing does not decrease, and the durability of the thrust roller bearing decreases. There is nothing.

更に、本例のスラストころ軸受の場合には、前記保持器3aの軸方向に関する位置決めを、ころ案内構造で図っている。即ち、前記各ポケット9a、9aの円周方向両端縁からこのポケット内に突出させた各係止突片27a、27b、27cの先端縁と前記各ころ1b、1bの転動面10、10との係合により、これら各ころ1b、1bに対して前記保持器3aが、この保持器3aの軸方向に変位する事を防止している。この為、図1の(A)(B)から分かる様に、この保持器3aの軸方向両側面と、前記各ころ1b、1bの転動面が転がり接触する1対の軌道面4Aとを十分に離隔させる事ができる。この為、互いに対向するこれら両軌道面4Aと前記保持器3aの軸方向両側面との間には、何れの側に関しても、この保持器3aの回転抵抗を増大させる様な(互いに対向する面同士の間に掛け渡される様な)油膜が形成される事はない。又、潤滑油の量が少なく、この様な油膜が形成されない状況下でも、前記両軌道面4Aと前記保持器3aの軸方向両側面との擦れ合いを防止して、この保持器3aの回転抵抗の増大を抑えられる。   Further, in the case of the thrust roller bearing of this example, the positioning of the cage 3a in the axial direction is achieved by a roller guide structure. That is, the front end edges of the locking projections 27a, 27b, 27c that protrude into the pockets from both circumferential edges of the pockets 9a, 9a and the rolling surfaces 10, 10 of the rollers 1b, 1b, By this engagement, the retainer 3a is prevented from being displaced in the axial direction of the retainer 3a with respect to the rollers 1b and 1b. Therefore, as can be seen from FIGS. 1A and 1B, both the axial side surfaces of the cage 3a and a pair of raceway surfaces 4A with which the rolling surfaces of the rollers 1b and 1b come into rolling contact are provided. Can be separated sufficiently. For this reason, between these two raceway surfaces 4A facing each other and both axial side surfaces of the cage 3a, the rotational resistance of the cage 3a is increased on either side (surfaces facing each other). No oil film is formed between them. Further, even in a situation where the amount of lubricating oil is small and such an oil film is not formed, the friction between the both raceway surfaces 4A and both side surfaces in the axial direction of the cage 3a is prevented, and the rotation of the cage 3a is prevented. Increase in resistance can be suppressed.

即ち、図4に示す様な、本発明の技術的範囲から外れる比較例の構造の様に、保持器3bの軸方向片面とレース2Bの軌道面4Bとの係合(当接)により図る構造の場合には、これら保持器3bの軸方向片面とレース2Bの軌道面4Bとの間に油膜が形成され、この油膜が、これら保持器3bとレース2Bとの相対回転に対する抵抗になる。或いは、前記両面が直接擦れ合って、この抵抗が大きくなる。これに対して本例の場合には、この様な油膜が形成されたり、前記両面が直接擦れ合う事を防止して、前記保持器3aの回転抵抗の低減を図れ、スラストころ軸受の動トルクの低減を図れる。尚、この効果を確実に得る為に、前記保持器3aの軸方向に関する厚さtは、前記各ころ1b、1bの直径Dの55〜85%{t=(0.55〜0.85)D}とする事が好ましい。より好ましくは、65〜85%{t=(0.65〜0.85)D}とする。
以上の様に、本例のスラストころ軸受の場合には、前述した各構成要件を適切に組み合わせる事により、負荷容量を低減する事なく、動トルクを低減できる。言い換えれば、動トルクを同じとした場合には、負荷容量の増大を図れる。
That is, as shown in FIG. 4, as in the structure of a comparative example that deviates from the technical scope of the present invention, the structure to be achieved by the engagement (contact) between one axial surface of the cage 3b and the raceway surface 4B of the race 2B. In this case, an oil film is formed between one axial surface of the cage 3b and the raceway surface 4B of the race 2B, and this oil film becomes a resistance to relative rotation between the cage 3b and the race 2B. Alternatively, the resistance increases as the two surfaces rub against each other directly. On the other hand, in the case of this example, such an oil film is formed or the two surfaces are prevented from directly rubbing to reduce the rotational resistance of the cage 3a, and the dynamic torque of the thrust roller bearing can be reduced. Reduction can be achieved. In order to obtain this effect with certainty, the thickness t in the axial direction of the cage 3a is 55 to 85% of the diameter D of the rollers 1b and 1b {t = (0.55 to 0.85). D} is preferable. More preferably, it is 65 to 85% {t = (0.65 to 0.85) D}.
As described above, in the case of the thrust roller bearing of this example, the dynamic torque can be reduced without reducing the load capacity by appropriately combining the above-described constituent elements. In other words, when the dynamic torque is the same, the load capacity can be increased.

[実施の形態の第2例]
図5は、請求項1〜3に対応する、本発明の実施の形態の第2例を示している。本例の場合には、保持器3cとして、第一、第二の保持器素子6a、7aを組み合わせたものを使用している。この様な保持器3cの基本的構造に就いては、前述の図9〜10に示した従来構造の保持器3の場合と同様である。特に、本例のスラストころ軸受の場合には、前記保持器3cの軸方向に関する位置決めを、上述した実施の形態の第1例の場合と同様に、ころ案内により図り、前記保持器3cの軸方向両側面と相手面との間に、回転抵抗の増大に繋がるほどの油膜が形成されない様に、十分な隙間が形成される様にしている。又、本例の構造の場合には、ころ1c、1cとして、転動面10を単純な円筒形としたものを使用している。その他の部分の構造及び作用は、上述した実施の形態の第1例の場合と同様であるから、同等部分に関する図示並びに説明は省略する。
[Second Example of Embodiment]
FIG. 5 shows a second example of an embodiment of the present invention corresponding to claims 1 to 3. In the case of this example, a combination of the first and second cage elements 6a and 7a is used as the cage 3c. The basic structure of the cage 3c is the same as that of the cage 3 having the conventional structure shown in FIGS. In particular, in the case of the thrust roller bearing of this example, the positioning of the cage 3c in the axial direction is achieved by roller guides as in the case of the first example of the above-described embodiment, and the shaft of the cage 3c. A sufficient gap is formed between the both side surfaces in the direction and the mating surface so as not to form an oil film enough to increase the rotational resistance. Further, in the case of the structure of this example, the rollers 1c and 1c are used in which the rolling surface 10 has a simple cylindrical shape. Since the structure and operation of the other parts are the same as in the case of the first example of the embodiment described above, illustration and description regarding the equivalent parts are omitted.

本発明の効果を確認する為に行った実験に就いて説明する。先ず、レースの軌道面の凸曲面部(中凸)の有無がスラストころ軸受の動トルクに及ぼす影響を知る為に行った実験に就いて、図6〜7を参照しつつ説明する。尚、これら図6〜7のうちの図6はスラスト荷重が500Nの場合に就いて、図7は同じく1000Nの場合に就いて、それぞれ示している。この様な図6〜7に示す様に、各ころの転動面と転がり接触する1対の軌道面の何れにも凸曲面部を設けない場合(両方中凸無し)と、駆動側(回転側)の軌道面にのみ凸曲面部を設ける場合(回転側のみ中凸)と、被駆動側(つれ回り側)の軌道面にのみ凸曲面部を設ける場合(つれ回り側のみ中凸)と、両方の軌道面に凸曲面部を設ける場合(両方中凸有り)とのそれぞれに就いて、スラストころ軸受の動トルクを測定した。潤滑油の供給量を1000ml/minと500ml/minとの2段階に、スラスト荷重を500Nと1000Nとの2段階に、それぞれ変化させた。潤滑油の種類は、オートマチックフルード(ATF)とし、油温は80℃とした。この様な実験の結果を表す図6〜7から分かる様に、前記スラストころ軸受の動トルクは、1対の軌道面の両方に凸曲面部を設ける場合に最も低くなり、次いでつれ回り側のみ設ける場合、回転側のみ設ける場合の順で低く、何れの軌道面にも凸曲面部を設けない場合に、最も動トルクが大きくなる。   An experiment conducted for confirming the effect of the present invention will be described. First, an experiment conducted in order to know the influence of the presence or absence of the convex curved surface portion (center convex) on the raceway surface of the race on the dynamic torque of the thrust roller bearing will be described with reference to FIGS. Of these FIGS. 6 to 7, FIG. 6 shows a case where the thrust load is 500 N, and FIG. 7 shows a case where the thrust load is 1000 N. As shown in FIGS. 6 to 7, when a convex curved surface portion is not provided on any of the pair of raceway surfaces that are in rolling contact with the rolling surface of each roller (both are not convex in the middle), the drive side (rotation) When the convex curved surface is provided only on the raceway surface (side), and when the convex curved surface is provided only on the driven side (spinning side), the middle side is only convex. The dynamic torque of the thrust roller bearing was measured for each of the cases in which convex curved surface portions were provided on both raceway surfaces (both had middle convexity). The supply amount of the lubricating oil was changed to two stages of 1000 ml / min and 500 ml / min, and the thrust load was changed to two stages of 500 N and 1000 N, respectively. The type of lubricating oil was automatic fluid (ATF), and the oil temperature was 80 ° C. As can be seen from FIGS. 6 to 7 showing the results of such an experiment, the dynamic torque of the thrust roller bearing is the lowest when the convex curved surface portions are provided on both of the pair of raceway surfaces, and then only on the swirling side. When provided, the dynamic torque is the lowest in the order in which only the rotation side is provided, and the maximum dynamic torque is obtained when no convex curved surface portion is provided on any of the raceway surfaces.

次に、軌道面の凸曲面部と、ころの軸方向端面の中央部の平坦面と、ころによる保持器の位置決めとを総て組み合わせる事が、スラストころ軸受の低トルク化に及ぼす影響を知る為に行った実験に就いて説明する。
実験条件は、次の通りである。
軸受サイズ(内径×外径×ころ径) : 22×38×2.5(単位mm)
レースの軌道輪材質 : SK5
レースの厚さ : 0.8mm
回転速度 : 5000min-1
スラスト荷重 : 500N
潤滑油 : オートマチックフルード(ATF)
油温 : 100℃
凸曲面部の高さ : 10μm
ころの端面中央部の平坦面の直径 : 1.5mm
保持器の軸方向厚さ : 1.8mm
以上は、実施例1、2に関する条件で、実施例1の保持器は図5に示した構造のものであり、実施例2の保持器は図1に示した構造のものである。
又、比較例1として、軌道面に凸曲面部を設けているが、各ころの端面を、図3の(B)に示す様な部分球面状の凸曲面としたものを使用した。又、比較例2として、図5に示した構造の保持器を軌道輪案内としたものを、比較例3として、図1に示した構造の保持器を軌道輪案内としたものを、比較例4として、図1に示した構造で、軌道面に凸曲面部を備え、且つ、保持器の位置決めをころ案内としているが、ころの端面を部分球面状の凸曲面としたものを、それぞれ使用した。他の条件は、実施例1、2の場合と同様である。
Next, know the effect of the combination of the convex curved surface of the raceway surface, the flat surface at the center of the end surface in the axial direction of the roller, and the positioning of the cage by the roller on the torque reduction of the thrust roller bearing. I will explain the experiments I did.
The experimental conditions are as follows.
Bearing size (inner diameter x outer diameter x roller diameter): 22 x 38 x 2.5 (unit: mm)
Race ring material: SK5
Race thickness: 0.8mm
Rotational speed: 5000min -1
Thrust load: 500N
Lubricating oil: Automatic fluid (ATF)
Oil temperature: 100 ° C
Height of convex curved surface part: 10 μm
Diameter of the flat surface at the center of the roller end face: 1.5 mm
Thickness in the axial direction of the cage: 1.8mm
The above are the conditions regarding Examples 1 and 2, and the cage of Example 1 has the structure shown in FIG. 5, and the cage of Example 2 has the structure shown in FIG.
Further, as Comparative Example 1, a convex curved surface portion is provided on the raceway surface, but the end surface of each roller is a partial spherical convex curved surface as shown in FIG. Further, as Comparative Example 2, a cage having the structure shown in FIG. 5 is used as a bearing ring guide, and as Comparative Example 3, a cage having the structure shown in FIG. 4, the structure shown in FIG. 1 is provided with a convex curved surface portion on the raceway surface, and the cage is positioned as a roller guide, but the roller end surface is a partially spherical convex curved surface. did. Other conditions are the same as those in the first and second embodiments.

そして、これら、実施例1、2、比較例1〜4のそれぞれに就いて、上述した運転条件下での動トルクを測定した。動トルクの値は、比較例1の値を1000とし、それとの比較で、それぞれ以下に示す。
実施例1 : 749
実施例2 : 793
比較例1 : 1000
比較例2 : 946
比較例3 : 952
比較例4 : 971
以上に述べた実験の結果から明らかな通り、軌道面の凸曲面部と、ころの軸方向端面の中央部の平坦面と、ころによる保持器の位置決めとの総ての要素を組み合わせる事により、スラストころ軸受に関して、これら各要素による個々の効果を足し合わせた以上の効果を得る事ができる。
And about each of these Examples 1 and 2 and Comparative Examples 1-4, the dynamic torque under the driving | running condition mentioned above was measured. The value of the dynamic torque is set to 1000 in Comparative Example 1, and is shown below in comparison with the value.
Example 1: 749
Example 2: 793
Comparative Example 1: 1000
Comparative Example 2: 946
Comparative Example 3: 952
Comparative Example 4: 971
As is clear from the results of the experiment described above, by combining all the elements of the convex curved surface portion of the raceway surface, the flat surface of the central portion of the axial end surface of the roller, and the positioning of the cage by the roller, With regard to the thrust roller bearing, it is possible to obtain an effect more than the sum of the individual effects of these elements.

本発明を実施する場合に、前述の図10の(B)に示す様な、フランジ部を持たない、平板状のレースを使用する事もできる。この場合に、レースの組み付け方向を識別できる様にする必要がある。この場合に於いて、特許文献2に記載されている様な、両面に凸曲面部を形成したレースを使用すれば、組み付け方向の識別が不要な構造で、軌道面に凸曲面を設ける事に伴う作用・効果を得られる。又、前述した実施例1の実験結果から分かる様に、凸曲面部は、1対のレースの両方に形成する事が好ましいが、周辺構造の制限等に応じて、片側のレースにのみ凸曲面部を設けても、或る程度の効果を得られる。但し、その場合には凸曲面部を設けるレースを、停止又は回転速度が低い側のレースとする事が好ましい。   When the present invention is carried out, a flat race having no flange portion as shown in FIG. 10B can be used. In this case, it is necessary to identify the assembly direction of the race. In this case, if a race having convex curved surface portions formed on both sides as described in Patent Document 2 is used, a convex curved surface is provided on the raceway surface with a structure that does not require identification of the assembly direction. Accompanied effects can be obtained. Further, as can be seen from the experimental results of Example 1 described above, the convex curved surface portion is preferably formed on both of the pair of races. However, the convex curved surface is formed only on one side of the race depending on the limitation of the peripheral structure. Even if the portion is provided, a certain degree of effect can be obtained. However, in that case, it is preferable that the race provided with the convex curved surface portion is a race on the side where the stop or rotation speed is low.

又、本発明を実施する場合に使用するレースとしては、前述の図2の(A)〜(D)に示した様な、円輪部13に単一凸円弧状の凸曲面部14を形成したものに限らず、図8の(A)〜(C)に示す形状の凸曲面部14を形成したものも採用できる。このうちの(A)に示したレース2Cは、二重の同心円状の凸曲面部14を形成したもの、(B)に示したレース2Dは、角部を丸めた(曲面とした)三角状の凸曲面部14を形成したもの、(C)に示したレース2Eは、角部を丸めた(曲面とした)台形状の凸曲面部14を形成したものである。何れの形状を有するレース2C〜2Eを採用した場合でも、前述した(1)〜(3)の様な要因に基づく摩擦を低減して、回転抵抗を安定して低く抑えられる。尚、図8の(A)に示したレース2Cを採用する場合には、前述の(1)に示した差動滑りに基づく摩擦を低減する為には、内径側の凸部と外径側の凸部との距離を短くする事が好ましい。   In addition, as a race used when the present invention is implemented, a convex curved surface portion 14 having a single convex arc shape is formed on the annular portion 13 as shown in FIGS. 2 (A) to (D). Not only what was done, but what formed the convex curve part 14 of the shape shown to (A)-(C) of Drawing 8 is also employable. Of these, the race 2C shown in (A) is a double concentric convex curved surface portion 14, and the race 2D shown in (B) is a triangular shape with rounded corners (curved). A lace 2E shown in FIG. 2C is formed by forming a trapezoidal convex curved surface portion 14 with rounded corners (curved surfaces). Even when the races 2C to 2E having any shape are adopted, the friction based on the factors (1) to (3) described above is reduced, and the rotational resistance can be stably kept low. When the race 2C shown in FIG. 8A is adopted, in order to reduce the friction based on the differential slip shown in the above-mentioned (1), the convex portion on the inner diameter side and the outer diameter side are used. It is preferable to shorten the distance from the convex portion.

1、1a、1b、1c ころ
2a、2b、2a′、2b′、2a″、2b″、2A、2B、2C、2D、2E
レース
3、3a、3b、3c 保持器
4a、4b、4a′、4b′、4a″、4b″、4A、4B 軌道面
5a、5b フランジ部
6、6a 第一の保持器素子
7、6b 第二の保持器素子
8、8a 透孔
9、9a、9b ポケット
10 転動面
11 平坦面
12、12a 傾斜面
13 円輪部
14 凸曲面部
15 外径側平面部
16 内径側平面部
17、17a、17b、17c 凸曲面
18 ガイド円筒部
19 ガイド円輪部
20 内径側円筒部
21 内径側平板部
22 内径側段部
23 中間平板部
24 外径側段部
25 外径側平板部
26 外径側円筒部
27a、27b、27c 係止突片
1, 1a, 1b, 1c roller 2a, 2b, 2a ′, 2b ′, 2a ″, 2b ″, 2A, 2B, 2C, 2D, 2E
Race 3, 3a, 3b, 3c Cage 4a, 4b, 4a ', 4b', 4a ", 4b", 4A, 4B Track surface 5a, 5b Flange part 6, 6a First cage element 7, 6b Second Retainer element 8, 8a Through-hole 9, 9a, 9b Pocket 10 Rolling surface 11 Flat surface 12, 12a Inclined surface 13 Annular portion 14 Convex surface portion 15 Outer diameter side plane portion 16 Inner diameter side plane portion 17, 17a, 17b, 17c Convex surface 18 Guide cylindrical portion 19 Guide annular portion 20 Inner diameter side cylindrical portion 21 Inner diameter side flat plate portion 22 Inner diameter side step portion 23 Intermediate flat plate portion 24 Outer diameter side step portion 25 Outer diameter side flat plate portion 26 Outer diameter side cylinder 27a, 27b, 27c Locking protrusion

Claims (4)

放射方向に配列された複数のころと、
厚さTの金属板により円輪状に形成されて、これら各ころの転動面を転がり接触させる軌道面を有する、少なくとも1枚のレースと、
円輪状の主部、及び、この主部の径方向中間部に放射方向に形成されて、それぞれの内側に前記各ころを転動自在に保持する複数のポケットを有する保持器とを備えたスラストころ軸受に於いて、
前記レースを構成する金属板の厚さTが0.5〜1.5mmであり、
このレースの軌道面のうち、このレースの径方向に関する中間部分が、スラスト荷重を負荷する事により弾性変形可能な、前記各ころの転動面側に突出する断面凸形状であり、
前記レースの軌道面のうち、前記中間部分である断面凸形状部分の突出高さをHとした場合に、
前記厚さTが0.5〜1mmの範囲では、前記突出高さHが5〜40μmであり、
前記厚さTが1〜1.5mmの範囲では、前記突出高さHが5〜30μmであり、
前記保持器の軸方向に関する位置決めが、前記各ポケットの周方向両側縁と前記各ころの転動面との係合に基づいて図られるころ案内構造であり、
前記各ころの軸方向端面のうち、これら各ころの径方向に関する中央部が、これら各ころの中心軸に対し直交する方向に存在する平坦面であり、同じく径方向に関する外寄り部分が、直径方向外側に向かうに従って前記各ころの軸方向中央部に向かう方向に傾斜した傾斜面である事を特徴とするスラストころ軸受。
A plurality of rollers arranged in a radial direction;
At least one race having a raceway surface that is formed into an annular shape from a metal plate having a thickness T and that makes the rolling contact surfaces of these rollers contact each other;
Thrust provided with an annular main portion and a cage formed in a radial direction at a radially intermediate portion of the main portion and having a plurality of pockets inside each of the rollers so as to be capable of rolling. In roller bearings,
The thickness T of the metal plate constituting the race is 0.5 to 1.5 mm,
Of raceway surface of the race, an intermediate portion in the radial direction of the race, which elastically deformable by loading the thrust load, a convex section which protrudes said to the raceway side of the rollers,
Of the raceway surface of the race, when the projecting height of the convex portion of the cross section that is the intermediate portion is H,
When the thickness T is in the range of 0.5 to 1 mm, the protruding height H is 5 to 40 μm,
In the range where the thickness T is 1 to 1.5 mm, the protruding height H is 5 to 30 μm,
The roller guide structure in which positioning in the axial direction of the cage is achieved based on engagement between both circumferential edges of the pockets and rolling surfaces of the rollers,
Of the axial end faces of the rollers, the central portion in the radial direction of the rollers is a flat surface that exists in a direction orthogonal to the central axis of the rollers, and the outer portion in the radial direction is the diameter. A thrust roller bearing, wherein the thrust roller bearing is an inclined surface that is inclined in a direction toward an axial center portion of each of the rollers toward the outer side in the direction.
各ころの軸方向端面の中央部に存在する平坦面の直径が、これら各ころの直径の20〜80%である、請求項1に記載したスラストころ軸受。   The thrust roller bearing according to claim 1, wherein a diameter of a flat surface existing at a central portion of an axial end surface of each roller is 20 to 80% of a diameter of each roller. 保持器が、それぞれが金属板を折り曲げ形成した第一、第二の保持器素子を組み合わせて成る組み合わせ保持器であり、これら第一、第二の保持器素子はそれぞれ、ポケットを形成する為の矩形の透孔を円周方向複数個所に形成した円輪状の平板部の内外両周縁部を軸方向に関して同じ側に折り曲げる事で、内径側、外径側両円筒部を形成して成るものであり、前記保持器は、前記第一、第二の保持器素子の前記平板部を軸方向に関して互いに逆側に配置すると共に、これら両平板部に形成した前記各透孔の円周方向に関する位相を一致させた状態で、前記第一の保持器素子の内径側円筒部を前記第二の保持器素子の内径側円筒部に外嵌すると共に、この第一の保持器素子の外径側円筒部をこの第二の保持器素子の外径側円筒部に内嵌させており、これら各保持器素子の円周方向に関する前記各透孔の幅は、各ころの外径よりも小さく、これら各透孔の周方向両側縁とこれら各ころの転動面との係合に基づき、これら各ころに対する前記保持器の軸方向に関する位置決めを図っている、請求項1〜2のうちの何れか1項に記載したスラストころ軸受。   The cage is a combination cage formed by combining first and second cage elements each formed by bending a metal plate, and each of the first and second cage elements is used to form a pocket. The inner and outer peripheral edge portions of the annular flat plate portion having rectangular through holes formed at a plurality of locations in the circumferential direction are bent to the same side in the axial direction to form both the inner diameter side and outer diameter side cylindrical portions. The retainer has the flat plate portions of the first and second retainer elements arranged on opposite sides with respect to the axial direction, and a phase in the circumferential direction of the through holes formed in both the flat plate portions. With the inner diameter side cylindrical portion of the first retainer element fitted on the inner diameter side cylindrical portion of the second retainer element, and the outer diameter side cylinder of the first retainer element. Part is fitted into the outer cylindrical part of the second cage element. The width of each through hole in the circumferential direction of each cage element is smaller than the outer diameter of each roller, and the engagement between both circumferential edges of each through hole and the rolling surface of each roller The thrust roller bearing according to any one of claims 1 to 2, wherein positioning in the axial direction of the cage with respect to each of the rollers is achieved. 保持器が、1枚の金属板を、径方向に関する断面形状をクランク形に曲げ形成する事により造られて、この保持器の軸方向一端寄り部分に配置された内径側平板部と、同じく軸方向他端寄り部分に配置された中間平板部と、同じく軸方向一端寄り部分に配置された外径側平板部とを備え、各ポケットを、前記内径側平板部からこの外径側平板部に亙って形成したものであり、これら各ポケットの周方向両側縁のうちで、これら内径側、外径側両平板部に対応する部分と各ころの転動面との係合に基づき、前記保持器がこれら各ころに対して軸方向他端側に変位する事を阻止し、同じく前記中間平板部に対応する部分とこれら各ころの転動面との係合に基づき、前記保持器がこれら各ころに対して軸方向一端側に変位する事を阻止する事により、これら各ころに対する前記保持器の軸方向に関する位置決めを図っている、請求項1〜2のうちの何れか1項に記載したスラストころ軸受。   The cage is made by bending a single metal plate into a crank shape with a cross-sectional shape in the radial direction, and an inner diameter side flat plate portion disposed near one end in the axial direction of the cage. An intermediate flat plate portion disposed at a portion near the other end in the direction and an outer diameter side flat plate portion disposed at a portion near the one end in the axial direction, and each pocket from the inner diameter side flat plate portion to the outer diameter side flat plate portion. Of the two circumferential edges of each pocket in the circumferential direction, based on the engagement between the portions corresponding to both the inner diameter side and outer diameter side flat plate portions and the rolling surface of each roller, The cage is prevented from displacing to the other end in the axial direction with respect to each of the rollers, and the cage is also based on the engagement between the portion corresponding to the intermediate flat plate portion and the rolling surface of each of the rollers. By preventing displacement of these rollers toward one end in the axial direction Thereby achieving the positioning in the axial direction of the cage with respect to each of these rollers, a thrust roller bearing according to any one of claims 1-2.
JP2010146106A 2010-06-28 2010-06-28 Thrust roller bearing Active JP5621352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010146106A JP5621352B2 (en) 2010-06-28 2010-06-28 Thrust roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010146106A JP5621352B2 (en) 2010-06-28 2010-06-28 Thrust roller bearing

Publications (2)

Publication Number Publication Date
JP2012007709A JP2012007709A (en) 2012-01-12
JP5621352B2 true JP5621352B2 (en) 2014-11-12

Family

ID=45538482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010146106A Active JP5621352B2 (en) 2010-06-28 2010-06-28 Thrust roller bearing

Country Status (1)

Country Link
JP (1) JP5621352B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11378127B2 (en) 2018-06-25 2022-07-05 Schaeffler Technologies AG & Co. KG Axial rolling bearing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104271970B (en) * 2012-02-07 2018-03-23 Imo控股有限责任公司 For the device for the part that can be rotated each other for supporting energy unit
JP2014066335A (en) * 2012-09-27 2014-04-17 Nsk Ltd Thrust roller bearing
JP6991823B2 (en) * 2016-12-26 2022-01-13 Ntn株式会社 Track wheels for thrust roller bearings and thrust roller bearings
WO2018123397A1 (en) * 2016-12-26 2018-07-05 Ntn株式会社 Thrust roller bearing and raceway rings for thrust roller bearing
DE102019115309A1 (en) 2018-06-25 2020-01-02 Schaeffler Technologies AG & Co. KG Bearing washer for an axial roller bearing
DE102021113825A1 (en) * 2021-05-28 2022-12-01 Schaeffler Technologies AG & Co. KG thrust washer assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3628033B2 (en) * 1993-10-21 2005-03-09 日本精工株式会社 Thrust roller bearing with race
JP2006170371A (en) * 2004-12-17 2006-06-29 Jtekt Corp Thrust roller bearing
JP4548354B2 (en) * 2006-02-02 2010-09-22 日本精工株式会社 Thrust roller bearing
JP2008038987A (en) * 2006-08-03 2008-02-21 Nsk Ltd Thrust needle bearing
JP2008261476A (en) * 2007-03-19 2008-10-30 Nsk Ltd Thrust needle roller bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11378127B2 (en) 2018-06-25 2022-07-05 Schaeffler Technologies AG & Co. KG Axial rolling bearing

Also Published As

Publication number Publication date
JP2012007709A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5621352B2 (en) Thrust roller bearing
US8961029B2 (en) Roller thrust bearing
US8322931B2 (en) Rotation support apparatus
JP6497833B2 (en) Needle roller with cage
EP2952763A1 (en) Multipoint contact ball bearing
JP3477835B2 (en) Spherical roller bearing with cage
KR20160074626A (en) Cylindrical roller bearing and bearing device for transmission
US9011018B2 (en) Roller bearing
WO2006093235A1 (en) Cylindrical roller thrust bearing
JP4636035B2 (en) Rolling bearing
JP2018105500A (en) Thrust roller bearing and thrust ring for thrust roller bearing
US7934873B2 (en) Tapered roller bearing
JP2008002503A (en) Thrust roller bearing
JP2001090751A (en) One-way clutch, and pulley unit using same
JP2007239929A (en) Roller bearing
JP2006071076A (en) Mounting structure of thrust needle roller bearing
JP2007187207A (en) Thrust roller bearing
JPH11336772A (en) Rolling bearing
JP5233563B2 (en) Roller bearing cage
JP2006214533A (en) Thrust cylindrical roller bearing
JP5810627B2 (en) Tandem angular ball bearings and outer ring side assemblies for tandem angular ball bearings
JP2009162261A (en) Deep groove ball bearing
JP2007100775A (en) Thrust cylindrical roller bearing
JP2005098415A (en) Thrust roller bearing for swash plate compressor
JP2007255554A (en) Thrust roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350