[go: up one dir, main page]

JP5619366B2 - Aging treatment parts and method for manufacturing the same - Google Patents

Aging treatment parts and method for manufacturing the same Download PDF

Info

Publication number
JP5619366B2
JP5619366B2 JP2009066045A JP2009066045A JP5619366B2 JP 5619366 B2 JP5619366 B2 JP 5619366B2 JP 2009066045 A JP2009066045 A JP 2009066045A JP 2009066045 A JP2009066045 A JP 2009066045A JP 5619366 B2 JP5619366 B2 JP 5619366B2
Authority
JP
Japan
Prior art keywords
aging
less
aging treatment
bainite
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009066045A
Other languages
Japanese (ja)
Other versions
JP2010215986A (en
Inventor
大森 靖浩
靖浩 大森
福岡 和明
和明 福岡
冨田 邦和
邦和 冨田
丸田 慶一
慶一 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Bars and Shapes Corp
Original Assignee
JFE Steel Corp
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Bars and Shapes Corp filed Critical JFE Steel Corp
Priority to JP2009066045A priority Critical patent/JP5619366B2/en
Publication of JP2010215986A publication Critical patent/JP2010215986A/en
Application granted granted Critical
Publication of JP5619366B2 publication Critical patent/JP5619366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、時効処理用鋼に関し、特に時効処理後において疲労特性に優れ、自動車、建設機械、産業機械用として好ましいものに関する。   The present invention relates to a steel for aging treatment, and particularly relates to a steel excellent in fatigue characteristics after aging treatment and preferable for automobiles, construction machinery and industrial machinery.

自動車、建設機械のコンロッド、歯車等あるいは産業機械等の機械構造部品には優れた疲労特性が要求される。   Excellent fatigue properties are required for mechanical structural parts such as connecting rods, gears, etc. of automobiles, construction machines, and industrial machines.

これら機械部品は鍛造による粗成形後、切削加工により所定の形状に仕上げ加工された後、焼入・焼戻しによる調質処理あるいは浸炭、窒化等の表面硬化処理により、所望の強度を確保している。   These machine parts have a desired strength after rough forming by forging, finishing to a predetermined shape by cutting, and then tempering by quenching and tempering or surface hardening treatment such as carburizing and nitriding. .

調質あるいは表面硬化処理を施すことなく、鍛造ままで所望の強度が得られれば、製造コスト低減効果が大きいため種々の非調質鋼が開発され、その成分設計思想は1.部品の強度確保のため、鍛造後の硬度を高める成分設計が採用され、これにより低下する切削性を改善するため、S等の快削元素を添加する、2.鍛造後、すなわち切削加工時には硬度が低く、その後時効処理により硬度を高めることが可能な時効硬化型に大別される。   If a desired strength can be obtained as it is without forging or surface hardening treatment, various non-heat treated steels are developed because the production cost reduction effect is great. 1. In order to ensure the strength of the component, a component design that increases the hardness after forging is adopted, and in order to improve the machinability that decreases due to this, a free cutting element such as S is added. After forging, that is, when cutting, the hardness is low, and is roughly classified into age-hardening dies that can be increased in hardness by aging treatment thereafter.

後者の場合、例えば、特許文献1にはV炭窒化物を利用した時効硬化鋼が提案され、特許文献2にはMo、Vの炭化物を利用した時効硬化鋼が提案され、特許文献3にはVの炭化物の時効硬化を利用した時効硬化鋼が提案されている。   In the latter case, for example, Patent Document 1 proposes an age-hardened steel using V carbonitride, Patent Document 2 proposes an age-hardened steel using Mo and V carbides, and Patent Document 3 discloses Age hardening steels utilizing age hardening of V carbides have been proposed.

特開2000−17374号公報JP 2000-17374 A 特開2006−37177号公報JP 2006-37177 A 特開2008−88508号公報JP 2008-88508 A

しかしながら、特許文献1記載の鋼は、時効前の硬さがHV299〜352と高く、切削加工の観点から十分な加工性が得られているとは言いがたく、Vの添加量も下限が0.51%と多く、経済的なものではなかった。   However, the steel described in Patent Document 1 has a high hardness before aging of HV299 to 352, and it is difficult to say that sufficient workability is obtained from the viewpoint of cutting, and the addition amount of V has a lower limit of 0. .51%, so it was not economical.

特許文献2記載の時効硬化鋼は、時効処理前の硬さがHRCで40以下、実施例でHRC40.0〜27.9(HV392〜286)とかなり高く、切削性が十分とは言いがたいもので、特許文献3記載の鋼はVの炭化物の時効硬化を利用したものであるが、時効処理後の硬さが最大で306.2HV程度であり、必ずしも十分とは言えなかった。   The age-hardened steel described in Patent Document 2 has a hardness before aging treatment of 40 or less in HRC, and HRC 40.0 to 27.9 (HV392 to 286) is considerably high in Examples, and it is difficult to say that the machinability is sufficient. However, although the steel described in Patent Document 3 utilizes age hardening of V carbide, the hardness after aging treatment is about 306.2 HV at the maximum, which is not necessarily sufficient.

そこで、本発明は比較的安価な生産コストで時効処理後における硬さを高めることが可能で、疲労特性に優れる時効処理部品の製造が可能な時効処理用鋼を提供することを目的とする。   Therefore, an object of the present invention is to provide a steel for aging treatment that can increase the hardness after aging treatment at a relatively low production cost and can produce an aging treatment part having excellent fatigue characteristics.

本発明者らは、上記課題を解決するため、鋼の時効処理後の疲労特性に及ぼす組織、組成の影響について鋭意検討を行い、時効処理時に微細なナノメータサイズの析出物を析出させて硬度を上昇させた場合、時効処理後において、優れた疲労特性が得られることを知見した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on the effects of the structure and composition on the fatigue properties after aging treatment of steel, and precipitated fine nanometer-size precipitates during the aging treatment to increase the hardness. It has been found that excellent fatigue properties can be obtained after aging treatment when increased.

本発明は以上の知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.質量%で、C≦0.15%、Si≦0.5%、Mn≦2.5%、Ti:0.03〜0.35%、Mo:0.03〜0.8%、Cr≦2%以下、Al≦0.1%、P≦0.040%、S≦0.1を含み、残部Feおよび不可避的不純物からなる鋼組成であり、ベイナイト面積率50%以上の組織を有し、ベイナイト平均パケットサイズが80μm以下であり、ベイナイト相中に粒径が10nm未満の微細析出物が全析出物の90個数%以上、分散析出していることを特徴とする時効処理部品。
2.鋼組成が、更に式(1)を満足することを特徴とする、1記載の時効処理部品。
0.5≦(C/12)/{(Ti/48)+(Mo/96)}≦1.5 −−−(1)
但し、各元素は含有量(質量%)とし、含有しない元素は0とする。
3.微細析出物がTi、Moを含む炭化物であることを特徴とする1または2記載の時効処理部品。
4.鋼組成として、更に質量%で、Nb≦0.08%、V≦0.15%、W≦1.5%の一種または二種以上を含有する、1記載の時効処理部品。
5.鋼組成が、更に式(2)を満足することを特徴とする、4に記載の時効処理部品。
0.5≦(C/12)/{(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)}≦1.5 −−−(2)
但し、各元素は含有量(質量%)とし、含有しない元素は0とする。
6.微細析出物がTiと、Moと、Nb、V、Wの少なくとも一種とを含む炭化物であることを特徴とする、4または5に記載の時効処理部品。
7.鋼組成がさらに、B:0.0003〜0.005%を含有することを特徴とする1乃至6のいずれかに記載の時効処理部品。
8.質量%で、C≦0.15%、Si≦0.5%、Mn≦2.5%、Ti:0.03〜0.35%、Mo:0.03〜0.8%、Cr≦2%以下、Al≦0.1%、P≦0.040%、S≦0.1を含み、残部Feおよび不可避的不純物からなる鋼組成である鋼を、加熱温度を950℃〜1250℃、圧延仕上げ温度800℃以上、圧延仕上げ圧下率10%以上、圧延後700〜550℃の範囲の冷却速度を0.5℃/sec超とした熱間圧延により棒鋼とし、該棒鋼を素材として冷間鍛造および/または切削加工を施して部品形状とし、その後、加熱温度550〜750℃、処理時間10分以上の時効処理を行なうことを特徴とする、ベイナイト面積率50%以上の組織を有し、ベイナイト平均パケットサイズが80μm以下であり、ベイナイト相中に粒径が10nm未満の微細析出物が全析出物の90個数%以上、分散析出している時効処理部品の製造方法。
9.質量%で、C≦0.15%、Si≦0.5%、Mn≦2.5%、Ti:0.03〜0.35%、Mo:0.03〜0.8%、Cr≦2%以下、Al≦0.1%、P≦0.040%、S≦0.1を含み、残部Feおよび不可避的不純物からなる鋼組成である鋼を、加熱温度を950℃〜1250℃、鍛造仕上げ温度800℃以上、鍛造仕上げ圧下率10%以上、鍛造後700〜550℃の範囲の冷却速度を0.5℃/sec超とした熱間鍛造により部品形状とし、その後、加熱温度550〜750℃、処理時間10分以上の時効処理を行なうことを特徴とする、ベイナイト面積率50%以上の組織を有し、ベイナイト平均パケットサイズが80μm以下であり、ベイナイト相中に粒径が10nm未満の微細析出物が全析出物の90個数%以上、分散析出している時効処理部品の製造方法。
10.微細析出物がTi、Moを含む炭化物であることを特徴とする8又は9に記載の時効処理部品の製造方法。
11.鋼組成が、更に式(1)を満足することを特徴とする、8乃至1のいずれかに記載の時効処理部品の製造方法。
0.5≦(C/12)/{(Ti/48)+(Mo/96)}≦1.5 −−−(1)
但し、各元素は含有量(質量%)とし、含有しな元素は0とする。
12.鋼組成として、更に質量%で、Nb≦0.08%、V≦0.15%、W≦1.5%の一種または二種以上を含有する、8または9に記載の時効処理部品の製造方法。
13.微細析出物がTiと、Moと、Nb、V、Wの少なくとも一種とを含む炭化物であることを特徴とする、1に記載の時効処理部品の製造方法。
14.鋼組成が、更に式(2)を満足することを特徴とする、12又は13に記載の時効処理部品の製造方法。
0.5≦(C/12)/{(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)}≦1.5 −−−(2)
但し、各元素は含有量(質量%)とし、含有しな元素は0とする。
15.鋼組成がさらに、B:0.0003〜0.005%を含有することを特徴とする8乃至1のいずれかに記載の時効処理部品の製造方法。
The present invention has been made on the basis of the above findings and further studies, that is, the present invention,
1. % By mass, C ≦ 0.15%, Si ≦ 0.5%, Mn ≦ 2.5%, Ti: 0.03 to 0.35%, Mo: 0.03 to 0.8%, Cr ≦ 2 % Or less, Al ≦ 0.1%, P ≦ 0.040%, S ≦ 0.1 % , a steel composition composed of the balance Fe and inevitable impurities, and has a structure with a bainite area ratio of 50% or more. An aging-treated part having a bainite average packet size of 80 μm or less and fine precipitates having a particle size of less than 10 nm dispersed and precipitated in the bainite phase by 90% by number or more of all precipitates.
2. 2. The aging-treated part according to 1, wherein the steel composition further satisfies the formula (1).
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96)} ≦ 1.5 −−− (1)
However, the content of each element is set to mass (% by mass), and the content of elements not included is set to 0.
3. 3. The aging-treated part according to 1 or 2, wherein the fine precipitate is a carbide containing Ti and Mo.
4). 2. The aging-treated part according to 1, wherein the steel composition further contains one or more of Nb ≦ 0.08%, V ≦ 0.15%, and W ≦ 1.5% in terms of mass%.
5. The aging-treated part according to 4, wherein the steel composition further satisfies the formula (2).
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)} ≦ 1.5 −−− (2 )
However, the content of each element is set to mass (% by mass), and the content of elements not included is set to 0.
6). 6. The aging-treated part according to 4 or 5, wherein the fine precipitate is a carbide containing Ti, Mo, and at least one of Nb, V, and W.
7). The steel composition further contains B: 0.0003 to 0.005%, The aging-treated part according to any one of 1 to 6, wherein
8). % By mass, C ≦ 0.15%, Si ≦ 0.5%, Mn ≦ 2.5%, Ti: 0.03 to 0.35%, Mo: 0.03 to 0.8%, Cr ≦ 2 % Or less, Al ≦ 0.1%, P ≦ 0.040%, S ≦ 0.1 % , a steel having a steel composition composed of the balance Fe and inevitable impurities, the heating temperature is 950 ° C. to 1250 ° C., Rolling finish temperature is 800 ° C or more, rolling finish reduction ratio is 10% or more, and steel bar is formed by hot rolling with a cooling rate in the range of 700 to 550 ° C after rolling is over 0.5 ° C / sec. Forging and / or cutting to form a part shape, and thereafter performing an aging treatment with a heating temperature of 550 to 750 ° C. and a treatment time of 10 minutes or more , having a structure with a bainite area ratio of 50% or more, The bainite average packet size is 80 μm or less, and Fine precipitates of less than 10nm is particle size bets phase is 90% by number or more of the total precipitates manufacturing method of aging treatment components are dispersed and deposited.
9. % By mass, C ≦ 0.15%, Si ≦ 0.5%, Mn ≦ 2.5%, Ti: 0.03 to 0.35%, Mo: 0.03 to 0.8%, Cr ≦ 2 % Or less, Al ≦ 0.1%, P ≦ 0.040%, S ≦ 0.1 % , a steel having a steel composition composed of the balance Fe and inevitable impurities, the heating temperature is 950 ° C. to 1250 ° C., The forging finish temperature is 800 ° C. or higher, the forging finish reduction ratio is 10% or more, and the forging finish is hot forged with a cooling rate in the range of 700 to 550 ° C. exceeding 0.5 ° C./sec. A bainite area ratio of 50% or more , characterized by performing an aging treatment at 750 ° C. and a treatment time of 10 minutes or more, an average bainite packet size of 80 μm or less, and a particle size of less than 10 nm in the bainite phase 90% or more of all precipitates Manufacturing method of aging treatment components are dispersed and deposited.
10. The method for producing an aging-treated part according to 8 or 9, wherein the fine precipitate is a carbide containing Ti and Mo.
11. Steel composition is further characterized by satisfying the equation (1), the manufacturing method of the aging treatment component according to any one of 8 to 1 0.
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96)} ≦ 1.5 −−− (1)
However, each element is the content (wt%), has elements such contained is 0.
12 The manufacture of an aging-treated part according to 8 or 9, further comprising one or more of Nb ≦ 0.08%, V ≦ 0.15%, and W ≦ 1.5% in terms of steel composition as a steel composition. Method.
13. And fine precipitates are Ti, Mo and, Nb, V, characterized in that it is a carbide containing at least one kind of W, the manufacturing method of the aging treatment component according to 1 2.
14 The method for producing an aging-treated part according to 12 or 13 , wherein the steel composition further satisfies the formula (2).
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)} ≦ 1.5 −−− (2 )
However, each element is the content (wt%), has elements such contained is 0.
15. Steel composition further, B: production method of aging treatment component according to any one of 8 to 1 4, characterized in that it contains 0.0003 to .005%.

本発明によれば、時効処理前は被削性に優れ、時効処理後は従来鋼:例えばSCM420鋼と同等の強度・靭性と、より優れた疲労特性とを備えた時効処理用鋼と当該時効処理用鋼を用いた時効処理部品が得られ、産業上極めて有用である。   According to the present invention, machinability is excellent before aging treatment, and after aging treatment, conventional steel: for example, aging treatment steel having strength and toughness equivalent to SCM420 steel and better fatigue properties, and the aging treatment. An aging-treated part using treatment steel is obtained, which is extremely useful industrially.

時効処理部品を製造する概略製造工程を示す図。The figure which shows the outline manufacturing process which manufactures an aging treatment component.

本発明に係る時効処理用鋼のミクロ組織、成分組成および製造条件について以下に詳細に説明する。尚、ミクロ組織は時効処理後のミクロ組織とする。
1.ミクロ組織
時効処理後のミクロ組織をベイナイト面積率50%以上で、ベイナイト平均パケットサイズが80μm以下であり、かつベイナイト相中に粒径10nm未満の微細析出物を分散析出させた組織とする。
The microstructure, component composition, and production conditions of the aging steel according to the present invention will be described in detail below. The microstructure is the microstructure after aging treatment.
1. Microstructure
The microstructure after the aging treatment is a structure in which fine precipitates having a bainite area ratio of 50% or more, an average bainite packet size of 80 μm or less, and a particle size of less than 10 nm are dispersed and precipitated in the bainite phase.

母相をベイナイト組織とした場合、フェライト等その他の組織に比べ、時効処理後の微細析出物の析出量が多く、ベイナイト面積率を50%以上とすると、時効処理後の疲労強度ならびに強度が顕著に向上する。   When the parent phase is a bainite structure, the amount of fine precipitates after aging treatment is larger than that of other structures such as ferrite. To improve.

ベイナイト平均パケットサイズが80μmを超えると、疲労強度が低下するため、ベイナイト平均パケットサイズは80μm以下とする。パケットはベイナイト組織の下部組織の一種で、幅0.2μm、長さ10μm程度のラスと呼ばれる組織の集合体である。   When the bainite average packet size exceeds 80 μm, the fatigue strength decreases, so the bainite average packet size is set to 80 μm or less. The packet is a kind of substructure of the bainite structure, and is an assembly of structures called laths having a width of about 0.2 μm and a length of about 10 μm.

ベイナイト平均パケットサイズは以下の方法で求める。1.組織をナイタール腐食液によりエッチング後、光学顕微鏡により、パケットの観察を行う。2.観察されたパケットについて、画像解析装置により、パケット面積を算出して円相当径への換算を行い、ベイナイト平均パケットサイズとする。   The bainite average packet size is obtained by the following method. 1. After etching the structure with a nital etchant, the packet is observed with an optical microscope. 2. For the observed packet, the image analysis device calculates the packet area and converts it to the equivalent circle diameter to obtain the bainite average packet size.

微細析出物の粒径は10nm未満とする。微細析出物の粒径が10nm以上の場合、時効処理後の析出強化が不充分で、焼入・焼戻し材を素材として時効処理した場合と比較して強度が向上せず、また、強度特性において降伏比も上昇しないので、疲労特性も向上しない。   The particle size of the fine precipitate is less than 10 nm. When the particle size of fine precipitates is 10 nm or more, the precipitation strengthening after aging treatment is insufficient, the strength does not improve compared to the case of aging treatment using a quenching and tempering material, and the strength characteristics Since the yield ratio does not increase, the fatigue characteristics are not improved.

強度・疲労特性の向上には、微細析出物の粒径は小さいほど有効で、望ましくは5nm、更に望ましくは3nm以下である。   In order to improve strength and fatigue characteristics, the smaller the particle size of the fine precipitate, the more effective, preferably 5 nm, more preferably 3 nm or less.

そのような微細析出物としてTiとMoを含む炭化物、またそれらに更にNb、V、Wの一種または二種以上を含む炭化物が好ましい。これらの微細析出物の分布形態は母相中に分散析出することが望ましい。本発明において分散析出は均一分散を意味する。   Carbides containing Ti and Mo as such fine precipitates, and carbides further containing one or more of Nb, V and W are preferred. The distribution form of these fine precipitates is desirably dispersed and precipitated in the matrix. In the present invention, dispersion precipitation means uniform dispersion.

また、本発明において、上述した微細析出物が、全析出物の90%以上であれば、時効処理後目的とする疲労強度が得られる。但し、10nm以上の大きさの析出物は、析出する際に析出物形成元素を消費し、強度に悪影響をあたえるため、50nm以下とすることが好ましい。   Moreover, in this invention, if the fine precipitate mentioned above is 90% or more of all the precipitates, the target fatigue strength after an aging treatment will be obtained. However, a precipitate having a size of 10 nm or more consumes a precipitate-forming element when it is deposited, and adversely affects the strength.

上述した析出物との他に少量のFe炭化物を含有しても本発明の効果は損なわれないが、平均粒径が1μm以上のFe炭化物を多量に含むと靭性を阻害するため、本発明においては含有されるFe炭化物の大きさの上限は5μm、含有率は全体の5%以下とすることが望ましい。   Even if it contains a small amount of Fe carbide in addition to the precipitates described above, the effect of the present invention is not impaired. However, if a large amount of Fe carbide having an average particle size of 1 μm or more is contained, the toughness is inhibited. The upper limit of the size of Fe carbide contained is preferably 5 μm, and the content is preferably 5% or less.

本発明における微細析出物の全析出物に占める割合は、次の方法で決定できる。まず電子顕微鏡試料を、ツインジェット法を用いた電解研磨法で作成し、加速電圧200kVで観察する。   The ratio of the fine precipitates in the present invention to the total precipitates can be determined by the following method. First, an electron microscope sample is prepared by an electropolishing method using a twin jet method and observed at an acceleration voltage of 200 kV.

その際、微細析出物が母相に対して計測可能なコントラストになるように母相の結晶方位を制御し、析出物の数え落としを最低限にするために焦点を正焦点からずらしたデフォーカス法で観察を行う。   At that time, the crystal orientation of the parent phase is controlled so that the fine precipitates have a measurable contrast with respect to the parent phase, and the defocus is shifted from the normal focus in order to minimize the counting of the precipitates. Observe by method.

また、析出物粒子の計測を行った領域の試料の厚さは電子エネルギー損失分光法を用いて、弾性散乱ピークと非弾性散乱ピーク強度を測定することで評価する。   Moreover, the thickness of the sample in the region where the precipitate particles are measured is evaluated by measuring the elastic scattering peak and the inelastic scattering peak intensity using electron energy loss spectroscopy.

この方法により、粒子数の計測と試料厚さの計測を同じ領域について実行することができる。粒子数および粒子径の測定は試料の0.5×0.5μmの領域4箇所について行い、
1μm当たりに分布する析出物を粒径ごとの個数として算出する。
By this method, the measurement of the number of particles and the measurement of the sample thickness can be executed for the same region. The measurement of the number of particles and the particle diameter was performed on four locations of 0.5 × 0.5 μm of the sample,
The precipitates distributed per 1 μm 2 are calculated as the number for each particle size.

得られた値と試料厚さから、1μm当たりに分布する析出物の、粒子径ごとの個数を算出し、径が10nm未満の析出物について、測定した全析出物に占める割合を算出する。 From the obtained value and the sample thickness, the number of precipitates distributed per 1 μm 3 is calculated for each particle diameter, and the ratio of the precipitates having a diameter of less than 10 nm to the measured total precipitates is calculated.

また、本発明においてベイナイト面積率50%以上の組織とは、断面組織観察(200倍の光学顕微鏡組織観察)でベイナイト組織の面積率50%以上とし、好ましくは60%以上、さらに好ましくは70%以上とする。   Further, in the present invention, the structure having a bainite area ratio of 50% or more means that the area ratio of the bainite structure is 50% or more, preferably 60% or more, more preferably 70%, in cross-sectional structure observation (observation with 200 times optical microscope structure). That's it.

2.成分組成
本発明鋼は、以下の成分組成とすることが好ましい。説明において%は質量%とする。

Cはベイナイト組織生成および強度確保のため添加する。0.15%超えで含有すると微
細析出物が粗大化し、強度が低下するため0.15%以下とする。より好ましくは0.02%以上0.12%以下である。さらに好ましくは0.02%以上0.10%未満である。
2. Ingredient composition
The steel of the present invention preferably has the following component composition. In the description,% is mass%.
C
C is added to form a bainite structure and ensure strength. If the content exceeds 0.15%, fine precipitates become coarse and the strength decreases, so the content is made 0.15% or less. More preferably, it is 0.02% or more and 0.12% or less. More preferably, it is 0.02% or more and less than 0.10%.

Si
Siは脱酸のため添加するが、0.5%を超えるとフェライトおよびベイナイト組織中に
固溶し、機械加工性および冷間加工性を劣化させるため0.5%以下とする。より好まし
くは0.3%以下である。
Si
Si is added for deoxidation, but if it exceeds 0.5%, it dissolves in the ferrite and bainite structure and deteriorates the machinability and cold workability, so the content is made 0.5% or less. More preferably, it is 0.3% or less.

Mn
Mnはベイナイト組織生成ならびに強度向上に有効なため添加するが、2.5%を超える
と機械加工性および冷間加工性を劣化させるので2.5%以下とする。より好ましくは0.5%以上2.0%以下である。さらに好ましくは1.0%超え2.0%以下である。
Mn
Mn is added because it is effective for bainite structure formation and strength improvement. However, if it exceeds 2.5%, the machinability and the cold workability deteriorate, so the content is made 2.5% or less. More preferably, it is 0.5% or more and 2.0% or less. More preferably, it is more than 1.0% and not more than 2.0%.

Ti
TiはTi系炭化物や、MoとともにTi−Mo系炭化物を含む析出物を微細に析出させ、時効処理材の疲労強度を向上させるため添加する。0.03%未満では析出物量が少なく所望の疲労強度が得られないため0.03%以上とし、一方、0.35%を超えて添加すると析出物が粗大化し、疲労強度向上効果が低下するため0.03〜0.35%とする。より好ましくは0.05〜0.35%である。さらに好ましくは0.13〜0.35%である。
Ti
Ti is added to finely precipitate Ti-based carbides and precipitates containing Ti-Mo-based carbides together with Mo and improve the fatigue strength of the aging treatment material. If it is less than 0.03%, the amount of precipitates is small and the desired fatigue strength cannot be obtained, so 0.03% or more is added. On the other hand, if added over 0.35%, the precipitates become coarse and the effect of improving fatigue strength decreases. Therefore, it is set to 0.03 to 0.35%. More preferably, it is 0.05 to 0.35%. More preferably, it is 0.13-0.35%.

Mo
MoはMo系炭化物や、TiとともにTi−Mo系炭化物を含む析出物を微細に析出させ、時効処理材の疲労強度を向上させるため添加する。疲労強度向上のため0.03%以上添加し、一方、0.8%を超えて添加すると、機械加工性が低下するため0.03〜0.8%とする。より好ましくは0.10〜0.6%である。さらに好ましくは0.12〜0.45%である。
Mo
Mo is added to finely precipitate Mo-based carbides and precipitates containing Ti-Mo-based carbides together with Ti and improve the fatigue strength of the aging treatment material. To improve fatigue strength, 0.03% or more is added. On the other hand, if over 0.8% is added, the machinability deteriorates, so the content is made 0.03 to 0.8%. More preferably, it is 0.10 to 0.6%. More preferably, it is 0.12-0.45%.

Moは拡散速度が遅く、Tiとともに析出する場合、析出物の成長速度が低下し、微細な析出物が得られやすい。   Mo has a slow diffusion rate, and when it precipitates together with Ti, the growth rate of the precipitate is reduced, and a fine precipitate is easily obtained.

(C/12)/{(Ti/48)+(Mo/96)}
本パラメータ式は、析出物の大きさに影響を与えるもので、0.5以上、1.5以下とした場合、粒径10nm未満の微細析出物の形成が容易となる。
(C / 12) / {(Ti / 48) + (Mo / 96)}
This parameter formula affects the size of the precipitate. When the value is 0.5 or more and 1.5 or less, it becomes easy to form a fine precipitate having a particle diameter of less than 10 nm.

以上が本発明の基本成分組成であるが、更に、特性を向上させる場合、Nb、V、Wの一種または二種以上を添加する。   The above is the basic component composition of the present invention. When further improving the characteristics, one or more of Nb, V, and W are added.

Nb
NbはTiと同様に、微細析出物を形成して疲労強度向上に寄与する。0.08%を超えると析出物が粗大化するようになるため添加する場合は、0.08%以下とする。より好ましくは0.05%以下である。
Nb
Nb, like Ti, contributes to improving fatigue strength by forming fine precipitates. If it exceeds 0.08%, the precipitate becomes coarse, so when added, the content is made 0.08% or less. More preferably, it is 0.05% or less.


VはTiと同様に、微細析出物を形成して疲労強度向上に寄与するが、0.15%を超えると析出物が粗大化するようになるため、添加する場合は0.15%以下とする。より好ましくは0.10%未満である。
V
V, like Ti, contributes to the improvement of fatigue strength by forming fine precipitates. However, if it exceeds 0.15%, the precipitates become coarser. To do. More preferably, it is less than 0.10%.


WはTiと微細析出物を形成して疲労強度向上に寄与するが、1.5%を超えると析出物が粗大化するようになるため、添加する場合は1.5%以下とする。より好ましくは1.0%以下である。
W
W forms fine precipitates with Ti and contributes to the improvement of fatigue strength. However, if it exceeds 1.5%, the precipitates become coarse, so when added, the content is made 1.5% or less. More preferably, it is 1.0% or less.

これらの元素の添加においては、C、Ti、Mo、Nb、V、Wの原子比を規定することが炭化物の微細化に有効で(C/12)/{(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)}を0.5以上、1.5以下とした場合、粒径10nm未満の微細析出物の形成が容易となる。   In the addition of these elements, it is effective to define the atomic ratio of C, Ti, Mo, Nb, V, and W to refine the carbide (C / 12) / {(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)} is 0.5 or more and 1.5 or less, it is easy to form fine precipitates having a particle size of less than 10 nm.

本発明鋼では、鍛造後や時効処理処理材の被削性を向上させる場合は、0.03≦S≦0.1%とし、Pb≦0.2%、Ca≦0.005%、Bi≦0.02%の一種以上を添加することができる。   In the steel of the present invention, when improving the machinability after forging or aging treatment, 0.03 ≦ S ≦ 0.1%, Pb ≦ 0.2%, Ca ≦ 0.005%, Bi ≦ One or more of 0.02% can be added.

また、本発明鋼では上記添加元素以外の残部はFe及び不可避不純物とするが、脱酸剤としてAlを0.1%以下添加することができる。更に素材の冷間鍛造性を向上させる場合、P≦0.040%、N≦80ppmとし、強度を向上させる場合、Cu≦2%、Ni≦2%、Cr≦2%、B:0.0003〜0.005%の一種または二種以上を添加することができる。尚、これらの元素の含有量や添加の有無により本発明の効果が損なわれることはない。   In the steel of the present invention, the balance other than the above-mentioned additive elements is Fe and inevitable impurities, but Al can be added as a deoxidizer in an amount of 0.1% or less. Further, when improving the cold forgeability of the material, P ≦ 0.040% and N ≦ 80 ppm, and when improving the strength, Cu ≦ 2%, Ni ≦ 2%, Cr ≦ 2%, B: 0.0003 One or more of ~ 0.005% can be added. In addition, the effect of this invention is not impaired by content of these elements, or the presence or absence of addition.

3.製造条件
図1は本発明に係る時効処理用鋼を用いて時効処理部品を製造する概略製造工程を示し、S1は素材となる棒鋼製造工程、S2は搬送工程、S3は製品(時効処理部品)仕上げ工程を示す。棒鋼製造工程(S1)で鋼塊を熱間圧延し棒鋼とし品質検査後、出荷する。
3. Manufacturing conditions
FIG. 1 shows a schematic manufacturing process for manufacturing an aging-treated part using the aging-treated steel according to the present invention, where S1 is a raw steel bar manufacturing process, S2 is a conveying process, and S3 is a product (aging-treated part) finishing process. Indicates. The steel ingot is hot-rolled into a steel bar in the steel bar manufacturing process (S1) and shipped after quality inspection.

製品(時効処理部品)仕上げ工程(S3)で、該棒鋼を所定の寸法に切断し、熱間鍛造あるいは冷間鍛造を行い、必要に応じてドリル穿孔や旋削等の切削加工で所望の形状とした後、時効処理を行い製品とする。   In the product (aging treated part) finishing step (S3), the steel bar is cut to a predetermined size, hot forged or cold forged, and the desired shape is obtained by cutting such as drilling or turning as necessary. After that, an aging treatment is performed to obtain a product.

また、熱間圧延材をそのまま旋削やドリル穿孔等の切削加工で所望の形状に仕上げ、その後時効処理を行い製品とすることもある。尚、熱間鍛造の場合、熱間鍛造後に冷間矯正が行われる場合がある。また、最終製品にペンキやメッキ等の皮膜処理がなされる場合もある。以下に望ましい製造工程について詳細に説明する。   Further, the hot rolled material may be finished as it is by a cutting process such as turning or drilling, and then subjected to an aging treatment to obtain a product. In the case of hot forging, cold correction may be performed after hot forging. In addition, the final product may be subjected to a coating treatment such as paint or plating. A desirable manufacturing process will be described in detail below.

圧延加熱温度
圧延加熱温度は950〜1250℃とする。本発明鋼は、圧延材(鍛造部品の素材となる棒鋼)に微細析出物が析出し鍛造性を損なわないよう、熱間圧延時に溶解時から残存する炭化物を固溶させる。
Rolling heating temperature
Rolling heating temperature shall be 950-1250 degreeC. The steel of the present invention dissolves carbides remaining from the time of melting during hot rolling so that fine precipitates are not deposited on the rolled material (bar steel used as the material of the forged part) and the forgeability is not impaired.

圧延加熱温度は950℃未満とした場合、溶解時から残存する炭化物が固溶しないため、950℃以上とする。また、1250℃を超えると、結晶粒が粗大化して鍛造性が悪化するため、加熱温度は950℃〜1250℃とする。   When the rolling heating temperature is less than 950 ° C., the remaining carbide from the time of dissolution does not dissolve, so the temperature is set to 950 ° C. or higher. On the other hand, if the temperature exceeds 1250 ° C., the crystal grains become coarse and the forgeability deteriorates, so the heating temperature is set to 950 ° C. to 1250 ° C.

圧延仕上げ温度
圧延仕上げ温度は800℃未満ではフェライト組織が生成し、次工程として特に、冷間鍛造あるいは切削加工後に時効処理を施す場合、時効処理後に母相を面積率で50%以上のベイナイト組織とするためには不利である。また、圧延荷重が高く、圧延材の真円度も劣化する。このため、圧延仕上げ温度を800℃以上とする。
Rolling finish temperature
When the rolling finish temperature is less than 800 ° C., a ferrite structure is formed. In particular, when the aging treatment is performed after cold forging or cutting, the parent phase is formed into a bainite structure having an area ratio of 50% or more after the aging treatment. Is disadvantageous. Further, the rolling load is high, and the roundness of the rolled material is also deteriorated. For this reason, a rolling finishing temperature shall be 800 degreeC or more.

圧延仕上げ圧下率
圧延仕上げ圧下率は10%未満では、ベイナイト平均パケットサイズが粗大となり、次工程として特に、冷間鍛造あるいは切削加工後に時効処理を施す場合、時効処理後にベイナイト平均パケットサイズを80μm以下とするためには不利である。このため、圧延仕上げ圧下率を10%以上とする。
Rolling finish reduction ratio If the rolling finish reduction ratio is less than 10%, the bainite average packet size becomes coarse. In particular, when the aging treatment is performed after cold forging or cutting, the bainite average packet size is 80 μm or less after the aging treatment. This is disadvantageous. For this reason, the rolling finish reduction ratio is set to 10% or more.

冷却速度
鍛造前に微細析出物が析出し、鍛造性を損なわないよう、圧延後の冷却速度を規定する。
微細析出物の析出温度範囲の700〜550℃を、微細析出物が得られる限界冷却速度(0.5℃/sec)超えで冷却する。
Cooling rate
The cooling rate after rolling is regulated so that fine precipitates are deposited before forging and the forgeability is not impaired.
The precipitation temperature range of 700 to 550 ° C. of the fine precipitate is cooled at a rate exceeding the limit cooling rate (0.5 ° C./sec) at which the fine precipitate is obtained.

時効処理(析出処理)
得られた棒鋼を素材とし、鍛造後、切削加工等により部品形状とする。その後、時効処
理を行う。時効処理は微細析出物を析出させるように、加熱温度:550〜750℃、処理時間10分以上で行う。550℃未満では、十分な量の析出物が得られず、750℃超えでは析出物が粗大化するため、550〜750℃とする。なお、より好ましくは550〜700℃とする。
Aging treatment (precipitation treatment)
The obtained steel bar is used as a raw material, and after forging, it is formed into a part shape by cutting or the like. Thereafter, an aging treatment is performed. The aging treatment is performed at a heating temperature of 550 to 750 ° C. and a treatment time of 10 minutes or more so as to precipitate fine precipitates. When the temperature is lower than 550 ° C., a sufficient amount of precipitate cannot be obtained, and when the temperature exceeds 750 ° C., the precipitate becomes coarse, so the temperature is set to 550 to 750 ° C. In addition, More preferably, it shall be 550-700 degreeC.

尚、熱間鍛造を用いた場合、時効処理後、母相を面積率で50%以上のベイナイト組織でかつベイナイト平均パケットサイズ80μm以下とするため、ならびに、熱間鍛造後の冷間矯正や切削加工性の観点から、微細析出物が析出しないように、熱間鍛造時の加熱温度を950〜1250℃、鍛造仕上げ温度を800℃以上、鍛造仕上げ圧下率を10%以上、鍛造後の冷却速度を0.5℃/sec超えで行う。   When hot forging is used, after aging treatment, the parent phase has a bainite structure with an area ratio of 50% or more and an average bainite packet size of 80 μm or less, and cold correction and cutting after hot forging. From the viewpoint of workability, the heating temperature during hot forging is 950 to 1250 ° C., the forging finishing temperature is 800 ° C. or more, the forging finish reduction ratio is 10% or more, and the cooling rate after forging so that fine precipitates do not precipitate. At 0.5 ° C./sec.

表1に示す組成の鋼(No.1〜14)を150kg真空溶解炉にて溶製し、圧延を1200℃加熱、980℃仕上げで行い、その後1℃/secで室温まで冷却し50mmφの棒鋼とした。No.14は従来材JIS SCM420である。   Steel (No. 1-14) having the composition shown in Table 1 was melted in a 150 kg vacuum melting furnace, rolled at 1200 ° C. and finished at 980 ° C., then cooled to room temperature at 1 ° C./sec, and a 50 mmφ bar steel It was. No. Reference numeral 14 denotes a conventional material JIS SCM420.

これらの素材をさらに、1180℃に加熱後、1080℃にて仕上げ圧下率40%で熱間鍛造を行い、30mmφとし、1℃/secおよび一部比較として0.1℃/secで室温まで冷却した。なお、これらのミクロ組織は、1℃/sec冷却材がベイナイト主体組織、0.1℃/sec冷却材がフェライトーパーライト組織であった。また、鋼No.2については、比較のため、素材を1180℃に加熱後、1080℃にて仕上げ圧下率4%で熱間鍛造を行い、48mmφとし、1℃/secで室温まで冷却した。これらのミクロ組織は、ベイナイト主体組織であった。   These materials are further heated to 1180 ° C., then hot forged at 1080 ° C. with a finishing reduction rate of 40%, 30 mmφ, 1 ° C./sec, and partially cooled to room temperature at 0.1 ° C./sec. did. In these microstructures, the 1 ° C./sec coolant was a bainite main structure, and the 0.1 ° C./sec coolant was a ferrite pearlite structure. Steel No. For comparison, for comparison, the material was heated to 1180 ° C., and then hot forged at 1080 ° C. with a finishing reduction rate of 4% to 48 mmφ and cooled to room temperature at 1 ° C./sec. These microstructures were bainite-based structures.

上記素材について、被削性をドリル切削試験により評価した。熱間鍛造材を20mm厚に切断したものを試験材として、JIS高速度工具鋼SKH51の6mmφのストレートドリルで送り0.15mm/rev、回転数745rpm、1断面当たり5箇所の貫通穴を開け、ドリルが穿孔不能になるまでの総穴数で評価した。   About the said raw material, the machinability was evaluated by the drill cutting test. Using a hot forged material cut to a thickness of 20 mm as a test material, a JIS high-speed tool steel SKH51 6 mmφ straight drill is used to feed 0.15 mm / rev, a rotational speed of 745 rpm, and five through holes per cross section. Evaluation was made based on the total number of holes until the drill could not be drilled.

また、これらの素材について、硬度を測定した。測定方法は、ビッカース硬度計を用い、試験荷重10kgにて、素材の横断面について、直径の1/4の位置で4点測定し、それらの平均値を測定値とした。   Further, the hardness of these materials was measured. As a measuring method, a Vickers hardness tester was used, and at a test load of 10 kg, a cross section of the material was measured at four points at a quarter of the diameter, and an average value thereof was taken as a measured value.

鋼No.1〜13は、熱間鍛造材にさらに時効処理を施し、鋼No.14は熱間鍛造材に焼入・焼戻し処理した後、さらに時効処理を行った。時効処理は525〜775℃に加熱し、3時間保持して行った。これらの時効処理材について、組織観察、硬度および疲労特性調査を行った。   Steel No. In Nos. 1 to 13, the hot forging material was further subjected to aging treatment, and steel No. In No. 14, the hot forging was quenched and tempered, and further subjected to aging treatment. The aging treatment was performed by heating to 525 to 775 ° C. and holding for 3 hours. These aging-treated materials were subjected to structure observation, hardness and fatigue property investigation.

組織観察は断面を光学顕微鏡で観察するとともに、析出物を透過型電子顕微鏡(TEM)で観察し、組成をエネルギー分散型X線分光装置(EDX)により求めた。   In the structure observation, the cross section was observed with an optical microscope, the precipitate was observed with a transmission electron microscope (TEM), and the composition was determined with an energy dispersive X-ray spectrometer (EDX).

時効処理後の硬さはビッカース硬度計を用い、試験荷重10kgにて、時効処理材の横断面について、直径の1/4の位置で4点測定し、それらの平均値を測定値とした。   The hardness after the aging treatment was measured using a Vickers hardness tester at a test load of 10 kg, and the cross section of the aging treatment material was measured at four points at a quarter of the diameter, and the average value thereof was taken as the measured value.

疲労特性は小野式回転曲げ疲労試験により疲労限を求めた。小野式回転曲げ疲労試験片(平行部8mmφ)は熱間鍛造材より採取し、上述した時効処理を施し、作製した。   Fatigue characteristics were determined by the Ono type rotating bending fatigue test. An Ono-type rotating bending fatigue test piece (parallel portion 8 mmφ) was collected from a hot forged material and subjected to the aging treatment described above.

表2に試験結果を示す。No.1〜8が本発明例、No.9〜17が比較例、No.18がJIS SCM420鋼による従来例である。   Table 2 shows the test results. No. 1-8 are examples of the present invention, No.1. 9 to 17 are comparative examples. 18 is a conventional example of JIS SCM420 steel.

表から明らかなように、No.1〜8の時効処理材は、従来材(No.18)を焼入・焼戻し処理後時効処理したものより、疲労強度が優れている。時効処理前の素材(熱間鍛造材)の硬度、ドリル切削加工性については、No.1〜8は、硬度は従来材(No.18)と同等以上で、ドリル切削加工性は従来材(No.18)と実用上同等レベルである。   As can be seen from the table, no. The aging treatment materials 1 to 8 are superior in fatigue strength to those obtained by aging treatment of the conventional material (No. 18) after quenching and tempering treatment. Regarding the hardness and drill cutting workability of the material (hot forged material) before aging treatment, In Nos. 1 to 8, the hardness is equal to or higher than that of the conventional material (No. 18), and the drill cutting workability is practically equivalent to that of the conventional material (No. 18).

比較例No.9〜17は化学組成あるいは得られたミクロ組織が本発明範囲外で、疲労強度あるいはドリル加工性に劣る。   Comparative Example No. In Nos. 9 to 17, the chemical composition or the obtained microstructure is outside the scope of the present invention, and the fatigue strength or drillability is inferior.

No.9は時効処理温度が本発明例より高いため、時効処理後の析出物粒径が大きく、微細析出物量が少ないため、析出強化が不足し、疲労強度が低い。   No. No. 9 has an aging treatment temperature higher than that of the examples of the present invention, so that the grain size of the precipitate after aging treatment is large and the amount of fine precipitates is small, so that precipitation strengthening is insufficient and fatigue strength is low.

No.10は時効処理温度が本発明例より低いため、時効処理による、微細析出物の生成量が少なく、析出強化が不足し、疲労強度が低い。   No. No. 10 has an aging treatment temperature lower than that of the example of the present invention, so that the amount of fine precipitates produced by aging treatment is small, precipitation strengthening is insufficient, and fatigue strength is low.

No.11は熱間鍛造後の冷却速度が本発明例より遅いため、ベイナイト組織が得られず、時効処理による、微細析出物の生成量が少なく、析出強化が不足し、発明例に比べ疲労強度が低い。   No. No. 11 has a slower cooling rate after hot forging than the examples of the present invention, so a bainite structure cannot be obtained, the amount of fine precipitates produced by aging treatment is small, precipitation strengthening is insufficient, and fatigue strength is lower than that of the examples of the invention. Low.

No.12は、熱間鍛造仕上げ圧下率が本発明例より低いため、時効処理後のベイナイト粒径が大きく、ベイナイト粒径が80μm以下のNo.2に比べ、疲労強度が低下している。   No. No. 12 has a hot forging finish reduction ratio lower than that of the examples of the present invention, so that the bainite particle size after aging treatment is large and the bainite particle size is 80 μm or less. Compared to 2, the fatigue strength is reduced.

No.13はCが本発明範囲外で高いため、時効処理後の微細析出物量が少なく、十分な析出強化が得られず、従来材より疲労強度が低い。   No. Since C is high outside the scope of the present invention, the amount of fine precipitates after aging treatment is small, sufficient precipitation strengthening cannot be obtained, and fatigue strength is lower than that of conventional materials.

No.14はSi、Mnが本発明範囲外で高いため圧延材の硬度が高く、ドリル加工性が従来材の4割程度に低下している。   No. No. 14, since Si and Mn are high outside the scope of the present invention, the hardness of the rolled material is high, and the drill workability is reduced to about 40% of the conventional material.

No.15はTiが本発明範囲外で低く、C/(Ti+Mo)も本発明範囲外で高いため、時効処理後の微細析出物量が少なく、十分な析出強化が得られないため、従来材より疲労強度が低い。   No. 15 is low outside the scope of the present invention, and C / (Ti + Mo) is also outside the scope of the present invention, so the amount of fine precipitates after aging treatment is small and sufficient precipitation strengthening cannot be obtained. Is low.

No.16はMoが本発明範囲外で低いため、時効処理後の微細析出物量が少なく、十分な析出強化が得られないため、従来材より疲労強度が低い。   No. Since No. 16 is low outside the scope of the present invention, the amount of fine precipitates after the aging treatment is small, and sufficient precipitation strengthening cannot be obtained. Therefore, the fatigue strength is lower than that of the conventional material.

No.17はC/(Ti+Mo)が本発明範囲外で低いため、時効処理後の微細析出物量が少なく、十分な析出強化が得られないため、従来材より疲労強度が低い。   No. In No. 17, C / (Ti + Mo) is low outside the scope of the present invention, so the amount of fine precipitates after aging treatment is small, and sufficient precipitation strengthening cannot be obtained, so the fatigue strength is lower than that of conventional materials.

Figure 0005619366
Figure 0005619366

Figure 0005619366
Figure 0005619366

Claims (15)

質量%で、C≦0.15%、Si≦0.5%、Mn≦2.5%、Ti:0.03〜0.35%、Mo:0.03〜0.8%、Cr≦2%以下、Al≦0.1%、P≦0.040%、S≦0.1を含み、残部Feおよび不可避的不純物からなる鋼組成であり、ベイナイト面積率50%以上の組織を有し、ベイナイト平均パケットサイズが80μm以下であり、ベイナイト相中に粒径が10nm未満の微細析出物が全析出物の90個数%以上、分散析出していることを特徴とする時効処理部品。 % By mass, C ≦ 0.15%, Si ≦ 0.5%, Mn ≦ 2.5%, Ti: 0.03 to 0.35%, Mo: 0.03 to 0.8%, Cr ≦ 2 % Or less, Al ≦ 0.1%, P ≦ 0.040%, S ≦ 0.1 % , a steel composition composed of the balance Fe and inevitable impurities, and has a structure with a bainite area ratio of 50% or more. An aging-treated part having a bainite average packet size of 80 μm or less and fine precipitates having a particle size of less than 10 nm dispersed and precipitated in the bainite phase by 90% by number or more of all precipitates. 鋼組成が、更に式(1)を満足することを特徴とする、請求項1記載の時効処理部品。
0.5≦(C/12)/{(Ti/48)+(Mo/96)}≦1.5 −−−(1)
但し、各元素は含有量(質量%)とし、含有しない元素は0とする。
The aging-treated part according to claim 1, wherein the steel composition further satisfies the formula (1).
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96)} ≦ 1.5 −−− (1)
However, the content of each element is set to mass (% by mass), and the content of elements not included is set to 0.
微細析出物がTi、Moを含む炭化物であることを特徴とする請求項1または2記載の時効処理部品。   The aging-treated part according to claim 1 or 2, wherein the fine precipitate is a carbide containing Ti and Mo. 鋼組成として、更に質量%で、Nb≦0.08%、V≦0.15%、W≦1.5%の一種または二種以上を含有する、請求項1記載の時効処理部品。   The aging-treated part according to claim 1, further comprising, as a steel composition, one or more of Nb ≦ 0.08%, V ≦ 0.15%, and W ≦ 1.5%. 鋼組成が、更に式(2)を満足することを特徴とする、請求項4に記載の時効処理部品。
0.5≦(C/12)/{(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)}≦1.5 −−−(2)
但し、各元素は含有量(質量%)とし、含有しない元素は0とする。
The aging-treated part according to claim 4, wherein the steel composition further satisfies the formula (2).
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)} ≦ 1.5 −−− (2 )
However, the content of each element is set to mass (% by mass), and the content of elements not included is set to 0.
微細析出物がTiと、Moと、Nb、V、Wの少なくとも一種とを含む炭化物であることを特徴とする、請求項4または5に記載の時効処理部品。   The aging-treated part according to claim 4 or 5, wherein the fine precipitate is a carbide containing Ti, Mo, and at least one of Nb, V, and W. 鋼組成がさらに、B:0.0003〜0.005%を含有することを特徴とする請求項1乃至6のいずれかに記載の時効処理部品。   The steel composition further contains B: 0.0003 to 0.005%, the aging-treated part according to any one of claims 1 to 6. 質量%で、C≦0.15%、Si≦0.5%、Mn≦2.5%、Ti:0.03〜0.35%、Mo:0.03〜0.8%、Cr≦2%以下、Al≦0.1%、P≦0.040%、S≦0.1を含み、残部Feおよび不可避的不純物からなる鋼組成である鋼を、加熱温度を950℃〜1250℃、圧延仕上げ温度800℃以上、圧延仕上げ圧下率10%以上、圧延後700〜550℃の範囲の冷却速度を0.5℃/sec超とした熱間圧延により棒鋼とし、該棒鋼を素材として冷間鍛造および/または切削加工を施して部品形状とし、その後、加熱温度550〜750℃、処理時間10分以上の時効処理を行なうことを特徴とする、ベイナイト面積率50%以上の組織を有し、ベイナイト平均パケットサイズが80μm以下であり、ベイナイト相中に粒径が10nm未満の微細析出物が全析出物の90個数%以上、分散析出している時効処理部品の製造方法。 % By mass, C ≦ 0.15%, Si ≦ 0.5%, Mn ≦ 2.5%, Ti: 0.03 to 0.35%, Mo: 0.03 to 0.8%, Cr ≦ 2 % Or less, Al ≦ 0.1%, P ≦ 0.040%, S ≦ 0.1 % , a steel having a steel composition composed of the balance Fe and inevitable impurities, the heating temperature is 950 ° C. to 1250 ° C., Rolling finish temperature is 800 ° C or more, rolling finish reduction ratio is 10% or more, and steel bar is formed by hot rolling with a cooling rate in the range of 700 to 550 ° C after rolling is over 0.5 ° C / sec. Forging and / or cutting to form a part shape, and thereafter performing an aging treatment with a heating temperature of 550 to 750 ° C. and a treatment time of 10 minutes or more , having a structure with a bainite area ratio of 50% or more, The bainite average packet size is 80 μm or less, and Fine precipitates of less than 10nm is particle size bets phase is 90% by number or more of the total precipitates manufacturing method of aging treatment components are dispersed and deposited. 質量%で、C≦0.15%、Si≦0.5%、Mn≦2.5%、Ti:0.03〜0.35%、Mo:0.03〜0.8%、Cr≦2%以下、Al≦0.1%、P≦0.040%、S≦0.1を含み、残部Feおよび不可避的不純物からなる鋼組成である鋼を、加熱温度を950℃〜1250℃、鍛造仕上げ温度800℃以上、鍛造仕上げ圧下率10%以上、鍛造後700〜550℃の範囲の冷却速度を0.5℃/sec超とした熱間鍛造により部品形状とし、その後、加熱温度550〜750℃、処理時間10分以上の時効処理を行なうことを特徴とする、ベイナイト面積率50%以上の組織を有し、ベイナイト平均パケットサイズが80μm以下であり、ベイナイト相中に粒径が10nm未満の微細析出物が全析出物の90個数%以上、分散析出している時効処理部品の製造方法。 % By mass, C ≦ 0.15%, Si ≦ 0.5%, Mn ≦ 2.5%, Ti: 0.03 to 0.35%, Mo: 0.03 to 0.8%, Cr ≦ 2 % Or less, Al ≦ 0.1%, P ≦ 0.040%, S ≦ 0.1 % , a steel having a steel composition composed of the balance Fe and inevitable impurities, the heating temperature is 950 ° C. to 1250 ° C., The forging finish temperature is 800 ° C. or higher, the forging finish reduction ratio is 10% or more, and the forging finish is hot forged with a cooling rate in the range of 700 to 550 ° C. exceeding 0.5 ° C./sec. A bainite area ratio of 50% or more , characterized by performing an aging treatment at 750 ° C. and a treatment time of 10 minutes or more, an average bainite packet size of 80 μm or less, and a particle size of less than 10 nm in the bainite phase 90% or more of all precipitates Manufacturing method of aging treatment components are dispersed and deposited. 微細析出物がTi、Moを含む炭化物であることを特徴とする請求項8又は9に記載の時効処理部品の製造方法。 The method for producing an aging-treated part according to claim 8 or 9, wherein the fine precipitate is a carbide containing Ti and Mo. 鋼組成が、更に式(1)を満足することを特徴とする、請求項8乃至1のいずれかに記載の時効処理部品の製造方法。
0.5≦(C/12)/{(Ti/48)+(Mo/96)}≦1.5 −−−(1)
但し、各元素は含有量(質量%)とし、含有しな元素は0とする。
Steel composition is further characterized by satisfying the equation (1), the manufacturing method of the aging treatment component according to any of claims 8 to 1 0.
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96)} ≦ 1.5 −−− (1)
However, each element is the content (wt%), has elements such contained is 0.
鋼組成として、更に質量%で、Nb≦0.08%、V≦0.15%、W≦1.5%の一種または二種以上を含有する、請求項8または9に記載の時効処理部品の製造方法。   The aging-treated part according to claim 8 or 9, further comprising one or more of Nb ≦ 0.08%, V ≦ 0.15%, and W ≦ 1.5% as a steel composition. Manufacturing method. 微細析出物がTiと、Moと、Nb、V、Wの少なくとも一種とを含む炭化物であることを特徴とする、請求項1に記載の時効処理部品の製造方法。 And fine precipitates are Ti, Mo and, Nb, V, characterized in that it is a carbide containing at least one kind of W, the manufacturing method of the aging treatment component according to claim 1 2. 鋼組成が、更に式(2)を満足することを特徴とする、請求項12又は13に記載の時効処理部品の製造方法。
0.5≦(C/12)/{(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/184)}≦1.5 −−−(2)
但し、各元素は含有量(質量%)とし、含有しな元素は0とする。
The method for producing an aging-treated part according to claim 12 or 13 , wherein the steel composition further satisfies the formula (2).
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (Nb / 93) + (V / 51) + (W / 184)} ≦ 1.5 −−− (2 )
However, each element is the content (wt%), has elements such contained is 0.
鋼組成がさらに、B:0.0003〜0.005%を含有することを特徴とする請求項8乃至1のいずれかに記載の時効処理部品の製造方法。 Steel composition further, B: production method of aging treatment component according to any of claims 8 to 1 4, characterized in that it contains 0.0003 to .005%.
JP2009066045A 2009-03-18 2009-03-18 Aging treatment parts and method for manufacturing the same Expired - Fee Related JP5619366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009066045A JP5619366B2 (en) 2009-03-18 2009-03-18 Aging treatment parts and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009066045A JP5619366B2 (en) 2009-03-18 2009-03-18 Aging treatment parts and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2010215986A JP2010215986A (en) 2010-09-30
JP5619366B2 true JP5619366B2 (en) 2014-11-05

Family

ID=42975119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009066045A Expired - Fee Related JP5619366B2 (en) 2009-03-18 2009-03-18 Aging treatment parts and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5619366B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248341A (en) * 1993-02-23 1994-09-06 Sumitomo Metal Ind Ltd Method for producing high strength and high toughness steel from non-heat treated steel
JP2001123224A (en) * 1999-10-27 2001-05-08 Sumitomo Metal Ind Ltd Method for manufacturing high-strength, high-toughness non-tempered parts

Also Published As

Publication number Publication date
JP2010215986A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5427418B2 (en) Steel for soft nitriding
EP1669469B1 (en) Steel parts for machine structure, material therefor, and method for manufacture thereof
JP5620336B2 (en) Steel parts for high fatigue strength and high toughness machine structure and manufacturing method thereof
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
JP6384629B2 (en) Induction hardening steel
WO2013121794A1 (en) Soft-nitriding steel and soft-nitrided component using steel as material
JP5152441B2 (en) Steel parts for machine structure and manufacturing method thereof
US20170219000A1 (en) Steel for bolts, and bolt
JP5260460B2 (en) Case-hardened steel parts and manufacturing method thereof
JP5528082B2 (en) Soft nitriding gear
JP2010270346A (en) Non-heat treated steel for hot-forging, having high bending fatigue strength and small amount of deformation due to repeating stress, and method for manufacturing parts of the same
JP5152440B2 (en) Steel parts for machine structure and manufacturing method thereof
JP5370073B2 (en) Alloy steel for machine structural use
JP6828591B2 (en) Bearing steel and bearing parts
JP5286220B2 (en) Steel for machine structure and manufacturing method thereof
JP4020822B2 (en) Soft nitrided parts with excellent fatigue characteristics and manufacturing method thereof
JP4268826B2 (en) Steel bar for cold forging, cold forged product and manufacturing method
JP5619366B2 (en) Aging treatment parts and method for manufacturing the same
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP2003321743A (en) High strength bolt having excellent delayed fracture characteristics and production method therefor
JP4556770B2 (en) Carburizing steel and method for producing the same
JP4268825B2 (en) Hot rolled non-heat treated steel bar and manufacturing method thereof
JP3734765B2 (en) Carburized parts and manufacturing method thereof
JP2013112826A (en) Induction hardening gear excellent in wear resistance and surface fatigue characteristic, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R150 Certificate of patent or registration of utility model

Ref document number: 5619366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Ref document number: 5619366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees