JP5617659B2 - Manufacturing method of solar cell - Google Patents
Manufacturing method of solar cell Download PDFInfo
- Publication number
- JP5617659B2 JP5617659B2 JP2011012838A JP2011012838A JP5617659B2 JP 5617659 B2 JP5617659 B2 JP 5617659B2 JP 2011012838 A JP2011012838 A JP 2011012838A JP 2011012838 A JP2011012838 A JP 2011012838A JP 5617659 B2 JP5617659 B2 JP 5617659B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- solar cell
- pressure
- holding plate
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 239000000758 substrate Substances 0.000 claims description 111
- 238000000034 method Methods 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 230000032258 transport Effects 0.000 claims description 3
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Photovoltaic Devices (AREA)
Description
本発明は、特に薄い厚さの太陽電池基板を加工、処理する場合に有効な太陽電池の製造方法に関する。 The present invention is particularly thin thickness of the solar cell substrate processing relates to the production how effective solar cell when processing.
現在の太陽電池による電力は、在来の商用電力に比べて発電コストが依然高いという問題があり、そのため製造コストの大幅な低減が求められている。特に主流である結晶シリコン太陽電池では、基板薄型化によるコスト低減が進んでおり、現状では150〜250μmであるが、将来的には50〜100μmを実現する必要があるといわれている。
しかし、このように基板が薄型化してくると、基板自体の機械的強度が低下するため、生産工程での扱いが難しくなる。
Current solar power has a problem that the power generation cost is still higher than that of conventional commercial power. Therefore, a significant reduction in manufacturing cost is required. In particular, in the mainstream crystalline silicon solar cells, the cost reduction due to the thinning of the substrate is progressing. Currently, it is 150 to 250 μm, but it is said that it is necessary to realize 50 to 100 μm in the future.
However, when the substrate is thinned in this way, the mechanical strength of the substrate itself is reduced, making it difficult to handle in the production process.
そこで従来、薄厚基板の強度を補うために、基板を保持する板状の保持台に接合させた接合体を形成し、基板の搬送や加工を施す手法がとられてきた。
前記接合体の形成に関しては、保持台と基板を粘着剤により剥離自在に密着させる方法(特開2006−156679号公報:特許文献1)が提案されている。しかし、粘着剤の除去工程は煩雑であり、しばしば基板表面に粘着剤の残渣が生じ、デバイスの品質を損なうことがあった。更に剥離工程中に基板を破損してしまうことがあった。また、粘着剤は有機物を使用するため、処理温度が数百度を越える工程には使用できないという制約があった。
Therefore, conventionally, in order to supplement the strength of the thin substrate, a method of forming a joined body joined to a plate-like holding base for holding the substrate and transporting or processing the substrate has been used.
Regarding the formation of the joined body, there has been proposed a method (Japanese Patent Laid-Open No. 2006-156679: Patent Document 1) in which a holding base and a substrate are detachably adhered with an adhesive. However, the pressure-sensitive adhesive removing process is complicated, and a pressure-sensitive adhesive residue often occurs on the substrate surface, which may impair device quality. Further, the substrate may be damaged during the peeling process. In addition, since the pressure-sensitive adhesive uses an organic substance, there is a restriction that it cannot be used in a process where the processing temperature exceeds several hundred degrees.
これに対し、基板と保持台の接着をせず、基板を保持台ごと搬送する方法が提案されている(特開2008−10448号公報:特許文献2)。この方法では、図1に示すように、真空吸引を行う吸着治具103上に基板101と保持板102を配置し、基板101と保持板102の真空吸引を同時に行うとしている。真空吸引は吸着治具103に設けられた吸引口103cから行い、吸引口103bにより保持板102が吸着治具に吸着される。また基板101は、保持板102に設けられた貫通口102aを介して、吸着治具103に設けられた吸引口103cから吸着固定される。基板101は、所定の操作を施された後、保持板102と共に吸着治具から開放され、保持板に載せられたまま搬送される。
On the other hand, a method has been proposed in which the substrate and the holding table are transported together without bonding the substrate and the holding table (Japanese Patent Laid-Open No. 2008-10448: Patent Document 2). In this method, as shown in FIG. 1, the
しかし、この方法では、搬送中の基板は保持板の上で開放されているため、基板が保持板から脱落してしまう。そのため、基板脱落防止として例えば保持板の基板保持部外周に突起を設けるといった加工がなされる。ところがこのような保持板形状は複雑且つコスト高となりばかりでなく、基板脱落防止の突起や段差が障害となり、例えばスクリーン印刷などの工程が適用できないといった制限があった。 However, in this method, since the substrate being transported is opened on the holding plate, the substrate falls off the holding plate. For this reason, for example, a process of providing protrusions on the outer periphery of the substrate holding portion of the holding plate is performed to prevent the substrate from falling off. However, such a shape of the holding plate is not only complicated and expensive, but also has a limitation that projections and steps for preventing the substrate from falling off become obstacles, and a process such as screen printing cannot be applied.
また一方、1バッチで多量枚数を同時処理する多くのバッチ式加工処理装置では、基板を垂直に多数充填したカセットやボートで基板搬送及び処理を行うのが一般的であり、従って基板が独立して固定されないこの方法は太陽電池の量産工程に適用できなかった。 On the other hand, in many batch processing apparatuses that process a large number of sheets simultaneously in one batch, the substrates are generally transported and processed in a cassette or boat in which a large number of substrates are vertically packed, so that the substrates are independent. This method, which is not fixed, cannot be applied to the mass production process of solar cells.
本発明は、上記問題に鑑みなされたものであり、粘着剤を使用せず、簡単な構成で薄厚太陽電池基板を保持し、搬送及び加工できる太陽電池の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, without the use of adhesives to hold the thin solar cell substrate with a simple structure, to provide a manufacturing how the Ru solar cell can transport and processing Objective.
本発明は上記目的を達成するため、下記の太陽電池の製造方法を提供する。
請求項1:
太陽電池基板を、この基板と当接する面の少なくとも一部に凹構造が施された保持板に大気圧より低い圧力P1の雰囲気中において保持する工程と、この保持を維持した状態において前記圧力P1より高い雰囲気圧力P2に曝して、前記基板を前記保持板に固定した接合体を形成する工程とを含み、それ以降の太陽電池の製造工程において前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板として接合体の太陽電池基板を加工又は処理し、又は該接合体を搬送する太陽電池の製造方法であって、前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板として第1の処理を行う工程と、前記第1の処理工程後に前記太陽電池基板を保持板から離脱し、更に該太陽電池基板を、この基板と当接する面の少なくとも一部に凹構造が施された前記第1の処理工程で用いたものとは別の材質の第2の処理用の保持板に大気圧より低い圧力P1の雰囲気中において保持する工程と、この保持を維持した状態において前記圧力P1より高い雰囲気圧力P2に曝して、前記基板を前記第2の処理用の保持板に固定した接合体を形成する工程と、前記圧力P2以上の圧力雰囲気中で前記接合体を第2の処理用の保持板と太陽電池基板とを一体化した疑似基板として第2の処理を行う工程とを有することを特徴とする太陽電池の製造方法。
請求項2:
前記第1の処理工程又は第2の処理工程として、前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板としてウェット洗浄する工程を有することを特徴とする請求項1記載の太陽電池の製造方法。
請求項3:
前記第1の処理工程又は第2の処理工程として、前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板として熱処理する工程を有することを特徴とする請求項1記載の太陽電池の製造方法。
請求項4:
前記熱処理用の保持板は、少なくともその表面が酸化シリコン、炭化シリコン、窒化シリコンから選ばれる材料により形成されている請求項3記載の太陽電池の製造方法。
請求項5:
前記第1の処理工程又は第2の処理工程として、前記圧力P2以上の圧力雰囲気中で前記接合体を保持板と太陽電池基板とを一体化した疑似基板としてカセット又はボートに各々垂直に複数充填して搬送し、前記充填した複数枚の接合体を同時処理することを特徴とする請求項1〜4のいずれか1項記載の太陽電池の製造方法。
請求項6:
更に、前記接合体を前記圧力P1以下の雰囲気において前記固定を解除し、太陽電池基板を保持板から離脱する工程を有する請求項1〜5のいずれか1項記載の太陽電池の製造方法。
請求項7:
保持板の凹構造が、その開口部の幅を凹構造の深さ方向における最大幅より狭く形成した構成を有する請求項1〜6のいずれか1項記載の太陽電池の製造方法。
請求項8:
太陽電池基板の厚さが50〜100μmである請求項1〜7のいずれか1項記載の太陽電池の製造方法。
In order to achieve the above object, the present invention provides the following solar cell manufacturing method.
Claim 1:
A step of holding the solar cell substrate in an atmosphere of a pressure P1 lower than atmospheric pressure on a holding plate having a concave structure on at least a part of a surface in contact with the substrate, and the pressure P1 while maintaining this holding Forming a joined body in which the substrate is fixed to the holding plate by exposing to a higher atmospheric pressure P2, and in the subsequent solar cell manufacturing process, the joined body is placed in a pressure atmosphere of the pressure P2 or higher. A method of manufacturing a solar cell that processes or processes a solar cell substrate of a joined body as a pseudo substrate in which a holding plate and a solar cell substrate are integrated, or transports the joined body, and is in a pressure atmosphere equal to or higher than the pressure P2. In the first step, the bonded body is a pseudo substrate in which the holding plate and the solar cell substrate are integrated, and after the first processing step, the solar cell substrate is detached from the holding plate, The battery substrate is lower than atmospheric pressure on a second processing holding plate made of a material different from that used in the first processing step in which a concave structure is formed on at least a part of a surface in contact with the substrate. A process of holding in an atmosphere of pressure P1 and exposure to an atmospheric pressure P2 higher than the pressure P1 while maintaining this holding form a bonded body in which the substrate is fixed to the holding plate for the second processing. And a step of performing the second treatment as a pseudo substrate in which the second treatment holding plate and the solar cell substrate are integrated in a pressure atmosphere of the pressure P2 or higher. A method for manufacturing a solar cell.
Claim 2:
The first processing step or the second processing step includes a step of performing wet cleaning as a pseudo substrate in which a holding plate and a solar cell substrate are integrated in a pressure atmosphere of the pressure P2 or higher. A method for producing a solar cell according to
Claim 3:
The first treatment step or the second treatment step includes a step of heat-treating the joined body as a pseudo substrate in which a holding plate and a solar cell substrate are integrated in a pressure atmosphere of the pressure P2 or more. The manufacturing method of the solar cell of
Claim 4:
The method for manufacturing a solar cell according to
Claim 5 :
As the first processing step or the second processing step , a plurality of the joined bodies are vertically filled in a cassette or a boat as a pseudo substrate in which a holding plate and a solar cell substrate are integrated in a pressure atmosphere of the pressure P2 or higher. and then transported, for producing a solar cell according to any one of claims 1-4, characterized in that simultaneously process a plurality of conjugates that the filling.
Claim 6 :
Furthermore, the manufacturing method of the solar cell of any one of Claims 1-5 which has the process of canceling | releasing the said fixation in the atmosphere below the said pressure P1, and detach | detaching a solar cell board | substrate from a holding plate.
Claim 7 :
Concave structure of the holding plate, photovoltaic cell manufacturing method according to any one of claims 1-6 having the configuration formed narrower than the maximum width the width of the opening of the concave structure in the depth direction.
Claim 8 :
Process for producing a solar cell according to any one of
太陽電池を安価に製造するには、太陽電池の基板を薄くして原材料費を削減する必要がある。しかしながら、基板の機械的強度は薄型化に伴って低下するため、基板自体を搬送したり加工したりすると破損しやすくなり、また、更に薄型化を進めると基板自体で形状を保持できなくなるため、既存の太陽電池製造工程を適用することが難しいという課題があるが、本発明によれば、太陽電池の基板を、保持板に吸着させて固定すると共に前記基板の強度を補い、吸着を維持したまま前記基板の搬送及び加工処理を行うことができ、厚さ50μm程度の薄厚基板でも搬送、加工や処理を安定して行うことが可能になり、太陽電池の低コスト化が可能になる。 In order to manufacture a solar cell at low cost, it is necessary to reduce the raw material cost by thinning the substrate of the solar cell. However, since the mechanical strength of the substrate decreases as the thickness is reduced, it is likely to be damaged if the substrate itself is transported or processed, and if the thickness is further reduced, the shape of the substrate itself cannot be maintained. Although there is a problem that it is difficult to apply the existing solar cell manufacturing process, according to the present invention, the substrate of the solar cell is adsorbed and fixed to the holding plate, and the strength of the substrate is supplemented and the adsorption is maintained. The substrate can be transported and processed as it is, and even a thin substrate having a thickness of about 50 μm can be transported, processed and processed stably, and the cost of the solar cell can be reduced.
以下、図2〜5を参照して本発明の実施例を説明する。
図2は、本発明の一実施例に係る太陽電池基板用保持板1で、この保持板1は、保持板本体2の太陽電池基板10との当接面3に多数の凹構造(凹部)4が形成されたものである。
この保持板1を用いて太陽電池基板10を保持し、また搬送、加工又は処理を行う場合は、まず図3(a)に示すように、大気圧のチャンバー20内において太陽電池基板101と凹構造4が施された保持板1を離して配置する。
次に、図3(b)に示すように、チャンバー20の内部を真空ポンプにより大気圧より低い圧力P1に減圧する。
圧力がP1に達したら、図3(c)に示すように、基板10と保持板1の所定の位置に配置する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 2 shows a solar cell
When the
Next, as shown in FIG.3 (b), the inside of the
When the pressure reaches P1, the
次に、図3(d)に示すように、基板10と保持板1の接触を保ったまま雰囲気圧力をP1より高い圧力P2に昇圧する。しかし、このとき凹構造4内の圧力は基板10と保持板1に密閉されてP1に保たれているので、差圧P2−P1により基板10は保持板1に吸着され固定される。これにより、基板10が保持板1と一体化された接合体30が形成され、上記圧力P2以上の圧力雰囲気において、接合体30を搬送し、また保持板1に固定、一体化された基板10は、保持板1から脱落することなく加工、処理することができる。
Next, as shown in FIG. 3D, the atmospheric pressure is increased to a pressure P2 higher than P1 while keeping the contact between the
なお、昇圧には大気を導入してもよいし、続けて何らかの処理を基板に行う場合には工程所望のプロセスガスを用いてもよい。 Note that atmospheric pressure may be introduced for the pressure increase, and when a certain process is subsequently performed on the substrate, a process gas of a desired process may be used.
本発明によれば、保持板と保持板に固定された太陽電池基板を一体化した擬似基板として様々な処理を行うことが可能である。従って、圧力P1の値は、太陽電池工程によって最適化されるべきものであるが、目安としては工程における雰囲気圧力(つまり圧力P2)の1/10以下にするのがよい。
保持板の材質はある程度の剛性を有すると同時に、太陽電池の各製造工程によって使い分けるのが望ましい。
According to the present invention, various processes can be performed as a pseudo substrate in which a holding plate and a solar cell substrate fixed to the holding plate are integrated. Therefore, the value of the pressure P1 should be optimized by the solar cell process, but as a guideline, it should be 1/10 or less of the atmospheric pressure in the process (that is, the pressure P2).
It is desirable that the material of the holding plate has a certain degree of rigidity, and at the same time, it is selectively used depending on each manufacturing process of the solar cell.
例えば化学薬品を使ったウェット洗浄では耐薬品性の高い樹脂や石英を使用するのがよく、また焼結性金属ペーストの焼成熱処理等では、耐熱性の高いセラミックスが使用できる。
しかし、高い太陽電池特性を得るには、特に高温工程での不純物汚染を抑制する必要があるので、好ましくは石英(酸化シリコン)、炭化シリコン、窒化シリコン又はこれらの組合せを用いるのがよい。これらはバルク材を加工して保持板としてもよいが、コストや適用する工程によっては、例えば比較的安価なセラミック基板や金属基板にコーティング材として適用してもよい。
For example, wet cleaning using chemicals may use a resin or quartz having high chemical resistance, and ceramics having high heat resistance can be used for firing heat treatment of a sinterable metal paste.
However, in order to obtain high solar cell characteristics, it is necessary to suppress impurity contamination particularly in a high temperature process. Therefore, it is preferable to use quartz (silicon oxide), silicon carbide, silicon nitride, or a combination thereof. These may be processed into a holding material by processing a bulk material, but may be applied as a coating material to a relatively inexpensive ceramic substrate or metal substrate, for example, depending on the cost and the applied process.
凹構造の形成は、保持板の母材に適した加工法により形成されればよく、特に限定するものではない。例えば金属であれば、その表面を機械的に研削加工する方法が適用できる。但し、基板との接触面は平坦である必要があり、加工時の変形や異物は取り除く必要がある。このほか母材にセラミックス等を用いる場合には、鋳型による成型加工法や、プレス加工法等が適用できる。 The concave structure may be formed by a processing method suitable for the base material of the holding plate, and is not particularly limited. For example, in the case of metal, a method of mechanically grinding the surface can be applied. However, the contact surface with the substrate needs to be flat, and it is necessary to remove deformation and foreign matter during processing. In addition, when using ceramics or the like as the base material, a molding method using a mold, a press method, or the like can be applied.
凹構造の断面は、図4(a)に示すように、開口幅4aが最大溝幅4bと同じか又はより広くなっていても基板を吸着できるが、望ましくは図4(b)に示すように、開口幅4aが最大溝幅4bより狭くなっている方がよい。このような構造にすることで、凹構造の容量を増やし、基板吸着のための差圧をより安定的に保つことが可能になる。
As shown in FIG. 4A, the cross section of the concave structure can adsorb the substrate even if the opening width 4a is equal to or wider than the
図4(b)のような凹構造は、例えば保持板にパターンマスクを形成し、凹構造形成部分を露出させた上でエッチングを行うことで形成できる。 The concave structure as shown in FIG. 4B can be formed, for example, by forming a pattern mask on the holding plate and exposing the concave structure forming portion to perform etching.
または、図4(c)のように、保持板本体2に切削等で凹構造4を形成し、その上に溝幅4bよりも狭い開口幅4aを持つ板5をはり合わせてもよい。
保持板の形状は、基板の大きさと形に応じて適した形状にすればよい。
Alternatively, as shown in FIG. 4C, the
The shape of the holding plate may be a shape suitable for the size and shape of the substrate.
また、凹構造のパターンは様々なものが適用可能である。図5は例として正方形の保持板を基板支持面側から見た図である。凹構造のパターンは図5(a)に示すような同心状パターンでもよいし、図5(b)のような格子パターンでもよいし、図5(c)のような点パターンでもよい。 Various patterns of the concave structure can be applied. FIG. 5 is a view of a square holding plate as seen from the substrate support surface side as an example. The pattern of the concave structure may be a concentric pattern as shown in FIG. 5A, a lattice pattern as shown in FIG. 5B, or a point pattern as shown in FIG.
基板を保持板から取り外すには、基板及び保持板を再度チャンバーに入れ、圧力をP1以下にする。これにより凹構造による吸引力がなくなり、基板を保持板から取り外すことができる。基板の取り外しは、例えば吸盤や、弱粘性の粘着パッド等で行うのがよい。 In order to remove the substrate from the holding plate, the substrate and the holding plate are put into the chamber again, and the pressure is set to P1 or less. Thereby, the suction force due to the concave structure is eliminated, and the substrate can be removed from the holding plate. The substrate may be removed with, for example, a suction cup or a weakly viscous adhesive pad.
ここで、基板を別の保持板に載せ替えて次工程の処理を行う場合は、基板を保持板から離した状態を保ちつつ、チャンバー内を次工程に適した圧力にし、以降は図2の手順で基板を次工程用保持板に固定する。 Here, when the substrate is transferred to another holding plate and the next process is performed, the pressure in the chamber is set to a pressure suitable for the next process while keeping the substrate separated from the holding plate. The substrate is fixed to the holding plate for the next process by the procedure.
1 太陽電池基板用保持板
2 保持板本体
3 保持板の太陽電池基板との当接面
4 凹構造
4a 凹構造の開口幅
4b 凹構造の深さ方向のおける最大幅
5 板
10 太陽電池基板
20 チャンバー
30 接合体
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011012838A JP5617659B2 (en) | 2011-01-25 | 2011-01-25 | Manufacturing method of solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011012838A JP5617659B2 (en) | 2011-01-25 | 2011-01-25 | Manufacturing method of solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012156234A JP2012156234A (en) | 2012-08-16 |
JP5617659B2 true JP5617659B2 (en) | 2014-11-05 |
Family
ID=46837688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011012838A Active JP5617659B2 (en) | 2011-01-25 | 2011-01-25 | Manufacturing method of solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5617659B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6914078B2 (en) * | 2017-03-31 | 2021-08-04 | 株式会社荏原製作所 | Vacuum suction pad and substrate holding device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS624132U (en) * | 1985-06-24 | 1987-01-12 | ||
JP2005064139A (en) * | 2003-08-08 | 2005-03-10 | Canon Inc | Substrate holding device and exposure device |
JP3817733B2 (en) * | 2003-09-30 | 2006-09-06 | セイコーエプソン株式会社 | Surface treatment jig |
US7055229B2 (en) * | 2003-12-31 | 2006-06-06 | Intel Corporation | Support system for semiconductor wafers and methods thereof |
JP2007281050A (en) * | 2006-04-04 | 2007-10-25 | Miraial Kk | Wafer tray for semiconductor wafers |
JP2008229767A (en) * | 2007-03-20 | 2008-10-02 | Misuzu Kogyo:Kk | Vacuum suction device of flexible sheet-like member |
JP4582820B1 (en) * | 2010-06-08 | 2010-11-17 | 智雄 松下 | Substrate replacement device |
-
2011
- 2011-01-25 JP JP2011012838A patent/JP5617659B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012156234A (en) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5895676B2 (en) | Manufacturing method of semiconductor device | |
JP5772092B2 (en) | Semiconductor manufacturing method and semiconductor manufacturing apparatus | |
JP6128459B2 (en) | Method for peeling a semiconductor chip from a metal foil | |
TWI382462B (en) | Method and apparatus for ultra thin wafer backside processing | |
CN118737998A (en) | Method and apparatus for bonding chips | |
EP1825507A1 (en) | Increasing die strength by etching during or after dicing | |
JP5100579B2 (en) | Adsorption device for substrate and method for handling substrate | |
JP2004241568A (en) | Substrate attachment/detachment device, substrate attachment/detachment method, and substrate treatment system | |
JP5361634B2 (en) | Chuck table for semiconductor wafer and method for processing semiconductor wafer | |
JP5617659B2 (en) | Manufacturing method of solar cell | |
CN114496723A (en) | Manufacturing method and hot plate of semiconductor device | |
JP6224330B2 (en) | Suction member, vacuum suction device and cooling device using the same | |
JP2010153488A (en) | Manufacturing method of soi wafer, and soi wafer | |
JP5352777B2 (en) | Quartz device manufacturing method | |
JP7268208B2 (en) | Substrate processing equipment for wafers | |
JP2009231506A (en) | Manufacturing method of laminated substrate | |
US10304675B2 (en) | System for integrating preceding steps and subsequent steps | |
JP2007134433A (en) | Method of degassing interspace between objects and degassing apparatus | |
JP4451578B2 (en) | Vacuum chuck | |
JP2013219245A (en) | Method for manufacturing semiconductor device | |
JP5185847B2 (en) | Substrate dry etching method | |
JP2003086540A (en) | Manufacturing method of semiconductor device and manufacturing device thereof | |
JP2007194482A (en) | Chuck device | |
WO2019031374A1 (en) | Substrate treatment method | |
KR200407743Y1 (en) | Vacuum chuck |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140819 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140901 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5617659 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |