[go: up one dir, main page]

JP5611777B2 - Hydroponic cultivation system and hydroponic cultivation method - Google Patents

Hydroponic cultivation system and hydroponic cultivation method Download PDF

Info

Publication number
JP5611777B2
JP5611777B2 JP2010250701A JP2010250701A JP5611777B2 JP 5611777 B2 JP5611777 B2 JP 5611777B2 JP 2010250701 A JP2010250701 A JP 2010250701A JP 2010250701 A JP2010250701 A JP 2010250701A JP 5611777 B2 JP5611777 B2 JP 5611777B2
Authority
JP
Japan
Prior art keywords
nutrient solution
planting structure
cultivation
water level
root
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010250701A
Other languages
Japanese (ja)
Other versions
JP2012100573A (en
JP2012100573A5 (en
Inventor
裕樹 澤田
裕樹 澤田
俊哉 斎藤
俊哉 斎藤
善 工藤
善 工藤
貴子 大野
貴子 大野
嘉代 吉松
嘉代 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2010250701A priority Critical patent/JP5611777B2/en
Publication of JP2012100573A publication Critical patent/JP2012100573A/en
Publication of JP2012100573A5 publication Critical patent/JP2012100573A5/ja
Application granted granted Critical
Publication of JP5611777B2 publication Critical patent/JP5611777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Hydroponics (AREA)

Description

本発明は、養液を貯留する栽培槽と、栽培槽内に略鉛直方向に形成され、上端開口部に植物体を設置する一又は複数の筒状部と、栽培槽内の養液の水位を変動させる水位変動手段とを備えた根物作物の養液栽培システム、及び、同様の養液栽培方法などに関連する。   The present invention includes a cultivation tank for storing a nutrient solution, one or a plurality of cylindrical parts that are formed in a substantially vertical direction in the cultivation tank and in which a plant body is installed in the upper end opening, and a water level of the nutrient solution in the cultivation tank The present invention relates to a nourishment nourishing culture system having a water level fluctuation means for changing the above, a similar nourishing cultivation method, and the like.

農作物を自然の気象条件下で栽培する露地栽培に対し、温室・ビニールハウスなど、人工的な施設内で栽培する施設栽培が広く普及している。また、近年、究極的な施設栽培として、閉鎖空間又は半閉鎖空間内で、光・水・栄養など、植物の生育環境を制御して栽培する植物工場が脚光を浴びている。   In contrast to outdoor cultivation where crops are cultivated under natural weather conditions, facility cultivation in greenhouses, plastic houses, and other artificial facilities is widely used. Also, in recent years, plant factories that cultivate plants under controlled conditions such as light, water, and nutrients in closed spaces or semi-closed spaces have attracted attention as the ultimate facility cultivation.

植物工場を含め、施設栽培には、天候の影響が少なく安定的な生産が可能である、収穫・出荷時期を調整できる、などの利点がある。加えて、植物工場での栽培には、病原菌・害虫の侵入がないため、無農薬生産が可能であるという利点もある。   Plant cultivation, including plant factories, has advantages such as stable production with little influence from the weather, and the ability to adjust harvest and shipping times. In addition, cultivation in a plant factory has the advantage that no pesticide-free production is possible because there is no invasion of pathogenic bacteria and pests.

施設栽培では、農作物の種類などに応じて、土耕栽培、養液土耕、養液栽培などが行われている。このうち、養液栽培は、土壌を用いずに、灌水と施肥を養液で行い、農作物を育てる方法であり、培地を用いない水耕栽培、培地を用いた固形培地耕などに分類される。水耕栽培は、土壌・固形培地などを用いずに、養液で栽培する方法であり、固形培地耕は、ロックウールなど、根の支持に土の代わりとなる固形培地を用いて、養液で栽培する方法である。   In the institutional cultivation, soil cultivation, hydroponics, and hydroponics are performed according to the type of crops. Among these, hydroponics is a method of cultivating crops by irrigating and fertilizing with nutrient solution without using soil, and is classified into hydroponics without using a culture medium, solid culture with a culture medium, etc. . Hydroponics is a method of cultivating with nutrient solution without using soil or solid medium, and solid medium cultivation is a nutrient solution using a solid medium such as rock wool instead of soil for root support. It is a method of cultivating.

一般的に、養液栽培には、養液成分を調整できる、連作障害を予防できる、生育が早く短期間で出荷できる、土壌などの付着がないため簡易に洗浄できる、収穫作業などの労力を軽減できる、などの利点がある。そのため、メロン・イチゴ・ナス・トマトなどの果菜類、ホウレンソウ・レタスなどの葉菜類などで養液栽培が広く実用化されている。また、植物工場では、養液栽培が採用されている。   In general, for nutrient solution cultivation, it is possible to adjust the nutrient solution components, prevent continuous cropping failure, can grow quickly and can be shipped in a short period of time, can be easily washed because there is no adhesion of soil, etc. There are advantages such as being able to reduce. Therefore, hydroponic cultivation is widely put into practical use for fruit vegetables such as melon, strawberry, eggplant, and tomato, and leaf vegetables such as spinach and lettuce. Moreover, hydroponics is adopted in the plant factory.

しかし、ダイコン・ニンジン・ゴボウなどの根菜類や、根部を収穫対象とする薬用植物など、いわゆる根物作物では、根部を養液に浸漬した状態で栽培すると、細根が多数発生し、主根・不定根・根茎・塊茎などの収穫部位が充分に肥大しない。そのため、根物作物の養液栽培は、ほとんど実用化されていない。   However, root crops such as radish, carrot, burdock, and medicinal plants whose roots are harvested, so-called root crops, produce a large number of fine roots when they are cultivated with their roots immersed in nutrient solution. -The harvested parts such as rhizomes and tubers are not sufficiently enlarged. Therefore, hydroponics of root crops has hardly been put to practical use.

本発明に関連する先行文献として、例えば、特許文献1には、立体物を周期的に槽内に出し入れして養液の水位を周期的に上下に変位させる水位変位手段を含む水耕栽培装置が、特許文献2には、根の先端部分を培養液に浸しつつ、根の先端以外の部分を培養液に浸さずに培養する根菜類の水耕栽培方法が、特許文献3には、根菜類などを収穫するための、傾斜させたベッドを用いた養液栽培システムが、特許文献4には、根から自身に対する成長抑制物質を放出する目的植物と、当該目的植物の成長を助成する助成植物とを、異なる水耕栽培区域にて栽培し、これらの区域間で水を流動させる水耕栽培方法が、特許文献5には、培養液の液面を所定時間毎に上下動させるゴボウの水耕栽培方法が、それぞれ記載されている。
特開平7−177829号公報 特開2005−91号公報 特開2007−49957号公報 特開2004−267140号公報 特開平10−41号公報
As prior art documents related to the present invention, for example, Patent Literature 1 discloses a hydroponic cultivation apparatus including water level displacement means for periodically moving a three-dimensional object into and out of a tank and periodically shifting the level of the nutrient solution up and down. However, Patent Literature 2 discloses a method for hydroponics of root vegetables in which the tip portion of the root is immersed in the culture solution and the portion other than the tip portion of the root is not immersed in the culture solution. A hydroponic cultivation system using an inclined bed for harvesting varieties and the like is disclosed in Patent Document 4 as a target plant that releases a growth-inhibiting substance for itself from the roots, and a subsidy for supporting the growth of the target plant. A hydroponic cultivation method for cultivating plants in different hydroponic cultivation areas and causing water to flow between these areas is disclosed in Patent Document 5 in the burdock that moves the liquid level of the culture solution up and down every predetermined time. Hydroponics methods are described respectively.
JP-A-7-177829 JP-A-2005-91 JP 2007-49957 A JP 2004-267140 A Japanese Patent Laid-Open No. 10-41

上述の通り、いわゆる根物作物では、根部を養液に浸漬した状態で栽培すると、細根が多数発生し、主根・不定根・根茎・塊茎などの収穫部位が充分に肥大しない。そのため、根物作物の養液栽培は、ほとんど実用化されていない。   As described above, when so-called root crops are cultivated with their roots immersed in a nutrient solution, a large number of fine roots are generated, and the harvested parts such as main roots, adventitious roots, rhizomes and tubers are not sufficiently enlarged. Therefore, hydroponics of root crops has hardly been put to practical use.

そこで、本発明は、根物作物において、根部の収穫部位を肥大させることのできる新規養液栽培手段を提供することなどを目的とする。   Then, an object of this invention is to provide the new hydroponic cultivation means etc. which can enlarge the harvest site | part of a root part in a root crop.

本発明では、養液を貯留する栽培槽と、該栽培槽内に略鉛直方向に形成され、上端開口部に植物体を設置する一又は複数の筒状部と、前記栽培槽内の養液の水位を変動させる水位変動手段と、を備えた根物作物の養液栽培システム、及び、同様の養液栽培方法を提供する。   In this invention, the cultivation tank which stores a nutrient solution, the 1 or several cylindrical part which is formed in this cultivation tank in a substantially perpendicular direction, installs a plant body in an upper end opening part, and the nutrient solution in the said cultivation tank A hydroponic cultivation system for root crops, and a similar hydroponic cultivation method are provided.

まず、養液を貯留する栽培槽内に一又は複数の筒状部を略鉛直方向に形成し、根部が筒状部内を伸長するように筒状部の上端開口部に植物体を設置することにより、根物作物の根部が曲がったり二股に分かれたりすることを防止でき、直根の収穫物を得ることができる。また、一つの筒状部に一つの植物体を定植することにより、隣接する植物体の根部が絡むことを防止でき、他株の影響による収穫物の形状悪化を防止できる。その他、収穫作業を簡易かつ低労力で行うことができるという有利性もある。   First, one or a plurality of cylindrical portions are formed in a substantially vertical direction in a cultivation tank storing a nutrient solution, and the plant body is installed at the upper end opening of the cylindrical portion so that the root portion extends in the cylindrical portion. As a result, it is possible to prevent the root portion of the root crop from being bent or split into two, and a straight root crop can be obtained. Moreover, by planting one plant body in one cylindrical part, it can prevent that the root part of an adjacent plant body gets entangled, and can prevent the deterioration of the shape of the crop by the influence of another strain. In addition, there is an advantage that the harvesting operation can be performed easily and with low labor.

加えて、栽培槽内の養液の水位を変動させ、間欠的に根部に乾燥ストレスを与えることにより、細根の発生を抑制し、主根・不定根・根茎・塊茎などの収穫部位を充分に肥大させることができる。   In addition, by changing the water level of the nutrient solution in the cultivation tank and intermittently applying drought stress to the roots, the occurrence of fine roots is suppressed, and the harvested parts such as main roots, adventitious roots, rhizomes and tubers are sufficiently enlarged. be able to.

例えば、栽培槽に定植構造体を設置し、定植構造体に設けられた貫通部に筒状体を挿嵌することにより、若しくは定植構造体に略鉛直方向の貫通孔を設けることにより、筒状部を形成する。   For example, by installing a fixed planting structure in a cultivation tank and inserting a cylindrical body into a penetrating portion provided in the fixed planting structure, or by providing a substantially vertical through hole in the fixed planting structure, Forming part.

定植構造体を、養液に対して浮遊する軽量部材で形成し、例えば、定植構造体に上方から圧力を加えて軽量部材を下方に移動させることにより、養液の水位を変動させる水位変動手段を備えた構成にしてもよい。   A water level fluctuation means for changing the water level of the nutrient solution by forming the planting structure with a lightweight member floating with respect to the nutrient solution, for example, by applying pressure to the planting structure from above and moving the lightweight member downward You may make it the structure provided with.

定植構造体を下方に移動させる手段として、例えば、下記(1)又は(2)のいずれかの構成にすることができる。
(1)線状部材を定植構造体に張架し、該線状部材の両端を栽培槽の略対面する位置に固定するとともに、線状部材の少なくとも一端に巻き取り手段を設置し、線状部材を巻き取ることにより軽量部材を下方に移動させる構成。
(2)略水平方向に形成された押し下げ部材と、該押し下げ部材を上下へ移動させる昇降手段とを備え、前記昇降手段で前記押し下げ部材を下方へ移動させることにより、前記押し下げ部材が前記定植構造体を押し下げる構成。
As means for moving the fixed planting structure downward, for example, any one of the following configurations (1) or (2) can be employed.
(1) A linear member is stretched over a fixed planting structure, and both ends of the linear member are fixed at positions substantially facing the cultivation tank, and a winding means is installed at at least one end of the linear member. The structure which moves a lightweight member below by winding up a member.
(2) A push-down member formed in a substantially horizontal direction and an elevating means for moving the push-down member up and down, and the push-down member is moved downward by the elevating means, so that the push-down member becomes the fixed planting structure. Configuration that pushes down the body.

定植構造体を下方に移動させ、養液の水位を変動させる手段を採用することにより、定植構造体の体積分の養液を減量でき、貯液タンクなどの養液関連設備の規模を縮小できる。また、水位を変動させる際のポンプなどが不要になるほか、栽培槽を大型化させても速やかな水位変動が可能になるという利点がある。その他、軽量の部材を用いるため、設置・交換・除去などの取扱いやメンテナンスなどが容易である、水位変動には不充分な給排水設備しか有さない既存の設備(例えば、プール、貯水槽)などにも適用できる、などの利点もある。   By adopting means to move the planting structure downward and change the water level of the nutrient solution, the nutrient solution for the volume of the planting structure can be reduced, and the scale of nutrient solution related equipment such as a storage tank can be reduced. . In addition, there is an advantage that a pump or the like for changing the water level is unnecessary, and that the water level can be changed quickly even if the cultivation tank is enlarged. In addition, the use of lightweight components makes it easy to handle, maintain, etc. for installation, replacement, removal, etc., and existing facilities that have only water and drainage facilities that are insufficient for fluctuations in water level (for example, pools, water tanks, etc.) There is also an advantage that it can be applied to.

この養液栽培システムでは、前記筒状部の上端開口部に延設する内面略筒状の延長部材を設置することにより、若しくは前記筒状体を長いものと交換することにより、前記筒状部の長さを延長できる構成にしてもよい。例えば、根部が栽培槽の底面近くまで伸長した際に、筒状部の長さを延長して養液栽培を行うことにより、延長した長さだけ、さらに根部を生長・伸長させることができる。これにより、根物作物の場合、根部の伸長にあわせた栽培が可能であり、より長く大きい収穫物を得ることができる。   In this nourishing culture system, the cylindrical portion can be obtained by installing a substantially cylindrical extending member on the inner surface extending to the upper end opening of the cylindrical portion, or by replacing the cylindrical body with a long one. You may make it the structure which can extend the length of. For example, when the root portion extends to the vicinity of the bottom surface of the cultivation tank, the root portion can be further grown and extended by the extended length by performing hydroponics by extending the length of the tubular portion. Thereby, in the case of a root crop, cultivation according to the elongation of the root portion is possible, and a longer and larger crop can be obtained.

その他、この養液栽培システムでは、所定の容積を有する充填部材を設置してもよい。例えば、栽培槽内で栽培には利用されていない部分に充填部材を設置して、栽培槽内の容積を減らすことにより、その体積分の養液を減量でき、貯液タンクなどの養液関連設備の規模を縮小できる。   In addition, in this hydroponics system, you may install the filling member which has a predetermined volume. For example, by installing a filling member in a part of the cultivation tank that is not used for cultivation, and reducing the volume in the cultivation tank, the nutrient solution for that volume can be reduced, such as a storage tank. The scale of equipment can be reduced.

本発明により、根物作物において、細根の発生を抑制し、主根などの収穫部位を肥大させることができ、良好な収穫物を取得できる。   According to the present invention, in root crops, the occurrence of fine roots can be suppressed, the harvested parts such as main roots can be enlarged, and a good crop can be obtained.

<本発明に係る養液栽培システムについて>
本発明は、養液を貯留する栽培槽と、該栽培槽内に略鉛直方向に形成され、上端開口部に植物体を設置する一又は複数の筒状部と、前記栽培槽内の養液の水位を変動させる水位変動手段とを少なくとも備えた養液栽培システム、並びに該システムを備える装置をすべて包含する。以下、図1〜図8を用いて説明する。
<About the hydroponic system according to the present invention>
The present invention includes a cultivation tank for storing a nutrient solution, one or a plurality of cylindrical parts that are formed in a substantially vertical direction in the cultivation tank, and a plant body is installed in an upper end opening, and the nutrient solution in the cultivation tank A hydroponic cultivation system including at least a water level changing means for changing the water level of the water and an apparatus including the system are included. Hereinafter, a description will be given with reference to FIGS.

図1は、本発明に係る養液栽培システムの例を示す断面模式図である。   FIG. 1 is a schematic cross-sectional view showing an example of a hydroponic cultivation system according to the present invention.

図1の養液栽培システムAでは、養液Wを貯留する栽培槽1と、栽培槽1内に略鉛直方向に形成され、上端開口部に植物体Pを設置する複数の筒状部3と、栽培槽1内の養液Wの水位を変動させる水位変動手段4とを備える。   In the nutrient solution cultivation system A of FIG. 1, a cultivation tank 1 that stores the nutrient solution W, a plurality of tubular parts 3 that are formed in the cultivation tank 1 in a substantially vertical direction, and that have a plant body P installed at the upper end opening. The water level changing means 4 for changing the water level of the nutrient solution W in the cultivation tank 1 is provided.

栽培槽1には定植構造体2が設置され、筒状部3が、定植構造体2に設けられた貫通部21に筒状体31を挿嵌することにより形成されている。植物体Pの設置は、茎の下の部分(根部P1の少し上の部分)を支持部材32により支持し、その支持部材32を筒状部3の上端開口部に載置することにより、行われている。   A fixed planting structure 2 is installed in the cultivation tank 1, and a cylindrical part 3 is formed by inserting a cylindrical body 31 into a penetrating part 21 provided in the fixed planting structure 2. The plant body P is installed by supporting the lower part of the stem (the part slightly above the root part P1) by the support member 32 and placing the support member 32 on the upper end opening of the cylindrical part 3. It has been broken.

栽培槽1は、養液Wを貯留する部位である。栽培槽1は、公知のものを広く利用でき、特に限定されない。また、材質は、特に限定されないが、長期間、養液Wを貯留しても劣化の少ないものが好ましい。例えば、熱可塑性樹脂(例えば、高密度ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ABS樹脂、AS樹脂、アクリル樹脂など)製のもの、発泡性樹脂(発泡ポリスチレン、発泡ポリプロピレン、発泡ポリウレタンなど)製のものなどを利用できる。   The cultivation tank 1 is a part for storing the nutrient solution W. A well-known thing can be utilized widely for the cultivation tank 1, and it is not specifically limited. Moreover, although a material is not specifically limited, A thing with little deterioration is preferable even if the nutrient solution W is stored for a long period of time. For example, those made of thermoplastic resin (for example, high density polyethylene, polypropylene, polyvinyl chloride, polystyrene, ABS resin, AS resin, acrylic resin, etc.), made of foamable resin (foamed polystyrene, foamed polypropylene, foamed polyurethane, etc.) Things can be used.

また、大規模に貯水可能な既存の設備、例えば、プール、貯水槽などを用いてもよい。これにより、使用頻度の少ない既存の設備を有効利用できるほか、建設コストを低減でき、簡易かつ低コストで根物作物の大規模栽培を実施できる。   Moreover, you may use the existing installation which can store water on a large scale, for example, a pool, a water tank, etc. As a result, existing facilities that are not frequently used can be used effectively, construction costs can be reduced, and large-scale cultivation of root crops can be performed easily and at low cost.

定植構造体2は、筒状部3を形成するための構造体である。定植構造体2は、システム構成・用途などに応じて、水よりも比重の低いもの、水と比重が同程度のもの、水よりも比重の高いものを適宜選択して用いることができる。   The fixed planting structure 2 is a structure for forming the cylindrical portion 3. The planting structure 2 can be appropriately selected from those having a specific gravity lower than that of water, those having a specific gravity comparable to that of water, and those having a specific gravity higher than that of water, depending on the system configuration and use.

定植構造体2の材質は、公知のものを用いることができ、特に限定されないが、一定の強度を有し、外力によって変形せず、耐水性があり、長期間の栽培によっても溶解・腐食しない素材が好ましい。例えば、発泡性樹脂(発泡スチロール、ポリスチレンフォーム、発泡ポリプロピレン、硬質発泡ウレタンなど)製のもの、軽量プラスチック、木材、同形状のポリタンクなどは、比較的安価で、目的の形状に成形・加工しやすく、耐久性にも優れ、好適である。また、例えば、これらの材質に、重りなどを取り付け、比重を調節してもよい。   A known material can be used as the material of the planting structure 2, and it is not particularly limited, but has a certain strength, is not deformed by an external force, has water resistance, and does not dissolve or corrode even after long-term cultivation. A material is preferred. For example, those made of foamable resin (such as polystyrene foam, polystyrene foam, foamed polypropylene, rigid foamed urethane, etc.), lightweight plastic, wood, and plastic tanks of the same shape are relatively inexpensive and easy to mold and process into the desired shape. It is excellent in durability and suitable. Further, for example, a weight or the like may be attached to these materials to adjust the specific gravity.

その他、例えば、栽培槽1の蓋部材を定植構造体2として用いて、その蓋部材に設けられた貫通部21に筒状体31を挿嵌する構成にしてもよい(図示せず)。この場合、筒状体31を自立させることができる、システム構成・設置作業を簡易化できるという利点がある。   In addition, for example, the lid member of the cultivation tank 1 may be used as the fixed planting structure 2 and the tubular body 31 may be inserted into the penetrating portion 21 provided in the lid member (not shown). In this case, there is an advantage that the cylindrical body 31 can be made independent and the system configuration / installation work can be simplified.

筒状部3は、その上端開口部に植物体を設置し、植物体の根部をその筒内で伸長させる部位である。上述の通り、栽培槽1内に一又は複数の筒状部3を略鉛直方向に形成し、根部P1が筒状部3内を伸長するように筒状部3の上端開口部に植物体Pを設置することにより、根物作物の根部が曲がったり二股に分かれたりすることを防止でき、直根の収穫物を得ることができる。また、一つの筒状部3に一つの植物体Pを定植することにより、隣接する植物体の根部が絡むことを防止でき、他株の影響による収穫物の形状悪化を防止できる。その他、収穫作業を簡易かつ低労力で行うことができるという有利性もある。   The cylindrical part 3 is a site | part which installs a plant body in the upper-end opening part, and extends the root part of a plant body in the cylinder. As above-mentioned, the plant body P is formed in the upper-end opening part of the cylindrical part 3 so that the one or some cylindrical part 3 may be formed in a substantially vertical direction in the cultivation tank 1, and the root part P1 may extend in the cylindrical part 3. Can prevent the root of the root crop from being bent or bifurcated, and a straight root crop can be obtained. Moreover, by planting one plant body P in one cylindrical part 3, it can prevent that the root part of an adjacent plant body gets entangled, and can prevent the shape deterioration of the crop by the influence of another strain. In addition, there is an advantage that the harvesting operation can be performed easily and with low labor.

筒状部3は、養液Wが下端開口部などから自由に出入りでき、栽培槽1内の水位と筒状部3内の水位がほぼ同じになるように形成されていればよい。例えば、図1に示すように、定植構造体2に設けられた貫通部21に筒状体31を挿嵌することにより形成してもよいし、若しくは定植構造体2に、直接、略鉛直方向の貫通孔を設けることにより形成してもよい。なお、筒状体31で筒状部3を形成する場合、水位変動などによっても筒状体31が倒れない状態で設置できるのであれば、貫通部21と筒状体31の径を必ずしも精密に合わせて挿嵌する必要はなく、例えば、筒状体31が貫通部21に少なくとも遊嵌されている状態であればよい。   The cylindrical part 3 should just be formed so that the nutrient solution W can freely enter and exit from the lower end opening or the like, and the water level in the cultivation tank 1 and the water level in the cylindrical part 3 are substantially the same. For example, as shown in FIG. 1, it may be formed by inserting a cylindrical body 31 into a through-hole 21 provided in the fixed planting structure 2, or directly in a substantially vertical direction on the fixed planting structure 2. You may form by providing this through-hole. In addition, when forming the cylindrical part 3 with the cylindrical body 31, if the cylindrical body 31 can be installed in the state which does not fall down by a water level fluctuation etc., the diameter of the penetration part 21 and the cylindrical body 31 is not necessarily exact. For example, the cylindrical body 31 may be at least loosely fitted into the through-hole 21.

筒状部3の長さ・径の大きさは、植物種や根部(収穫部)P1の長さに応じて、適宜設定する。例えば、筒状部3の長さは10cm〜1m、孔径は直径2〜20cmが好適である。なお、筒状体31を用いる場合、その材質については、塩化ビニル管など、略筒型形状を有する公知のものを広く用いることができる。   The length and the size of the diameter of the cylindrical portion 3 are appropriately set according to the plant species and the length of the root portion (harvesting portion) P1. For example, the length of the cylindrical portion 3 is preferably 10 cm to 1 m, and the hole diameter is preferably 2 to 20 cm. In addition, when using the cylindrical body 31, the well-known thing which has a substantially cylindrical shape, such as a vinyl chloride pipe | tube, can be widely used about the material.

また、固形培地を筒状部3内に保持でき、かつ養液が筒状部3内外を自由に出入できる底受け部を、筒状部3の底部又はその近傍に形成させ、固形培地耕を行うことができる構成にしてもよい。底受け部は、養液が自由に出入でき、かつ固形培地の流出を防止できるものであればよい。例えば、筒状部3の底部に網状体、板状体に複数の小孔を設けたもの、浸水性シートなどの公知の部材を設置して底受け部を形成してもよいし、筒状体31を用いる場合、その一端が閉じられて底部が形成されたものを用いるとともに、その底部に複数の小孔を設けることにより底受け部を形成してもよい。   In addition, a bottom receiving part that can hold the solid medium in the cylindrical part 3 and allows the nutrient solution to freely enter and exit the cylindrical part 3 is formed at or near the bottom of the cylindrical part 3, You may make it the structure which can be performed. The bottom receiving portion may be any as long as the nutrient solution can freely enter and exit and the solid medium can be prevented from flowing out. For example, the bottom receiving portion may be formed by installing a known member such as a net-like body at the bottom of the tubular portion 3, a plate-like body provided with a plurality of small holes, a water-permeable sheet, or the like. When the body 31 is used, the bottom receiving portion may be formed by providing a plurality of small holes in the bottom portion while using one in which one end is closed and the bottom portion is formed.

用いる固形培地としては、水に不溶性のものであれば無機培地・有機培地を問わず公知のものを用いることができ、特に限定されない。例えば、無機培地として、砂、れき(礫)、ロックウール、パミスサンド、バーミキュライト、パーライト、ハイドロボール、セラミック、もみ殻くん炭、粒状フェノール樹脂などを、有機培地として、ピートモス、ココヤシ繊維、樹皮培地、もみ殻などを用いることができる。   The solid medium to be used is not particularly limited as long as it is insoluble in water, and any known medium can be used regardless of whether it is an inorganic medium or an organic medium. For example, sand, rubble (rock), rock wool, pumice sand, vermiculite, perlite, hydroball, ceramic, rice husk charcoal, granular phenol resin, etc. as an organic medium, peat moss, coconut fiber, bark medium, Rice husk etc. can be used.

支持部材32は、植物体Pを支持する部位である。支持部材32の材質は、合成樹脂製の板状物など、公知のものを用いることができる。例えば、支持部材32の中心付近に孔をあけ、植物体Pの茎の下の部分(根部P1の少し上の部分)に綿やウレタンスポンジなどを巻きつけ、支持部材32の孔に差し込み、植物体を支持する。そして、植物体Pが支持された支持部材32を筒状部3の上端開口部に載置し、植物体Pを設置する。   The support member 32 is a part that supports the plant body P. As the material of the support member 32, a known material such as a synthetic resin plate can be used. For example, a hole is made in the vicinity of the center of the support member 32, cotton or urethane sponge is wrapped around the lower part of the stem of the plant body P (a part slightly above the root part P1), and the plant is inserted into the hole of the support member 32. Support the body. And the support member 32 with which the plant body P was supported is mounted in the upper-end opening part of the cylindrical part 3, and the plant body P is installed.

水位変動手段4は、養液Wの水位を調節する部位である。上述の通り、栽培槽1内の養液Wの水位W1を変動させ、間欠的に根部P1に乾燥ストレスを与えることにより、細根の発生を抑制し、主根・不定根・根茎・塊茎などの収穫部位を充分に肥大させることができる。   The water level changing means 4 is a part for adjusting the water level of the nutrient solution W. As described above, by changing the water level W1 of the nutrient solution W in the cultivation tank 1 and intermittently applying a drying stress to the root P1, the occurrence of fine roots is suppressed, and harvested parts such as main roots, adventitious roots, rhizomes, tubers, etc. Can be enlarged sufficiently.

図1では、水位変動手段4は、養液Wを栽培槽1内に供給する養液供給手段41と、養液Wを栽培槽2の外に排出する養液排出手段42とから構成される。   In FIG. 1, the water level fluctuation means 4 includes a nutrient solution supply means 41 that supplies the nutrient solution W into the cultivation tank 1, and a nutrient solution discharge means 42 that drains the nutrient solution W out of the cultivation tank 2. .

植物体Pの根部P1を養液Wに浸漬させたい場合は、養液供給手段41から養液を供給し(矢印X1)、栽培槽1内を養液Wで満たすようにし、根部P1に乾燥ストレスを与えたい場合は、養液排出手段42により、栽培槽1内から養液Wを排出する(矢印X2)。   When the root part P1 of the plant body P is desired to be immersed in the nutrient solution W, the nutrient solution is supplied from the nutrient solution supply means 41 (arrow X1), the cultivation tank 1 is filled with the nutrient solution W, and the root part P1 is dried. When applying stress, the nutrient solution discharge means 42 discharges the nutrient solution W from the cultivation tank 1 (arrow X2).

養液供給手段41は、公知の手段、例えば、供給ポンプなどを用いることができる。養液排出手段42も、公知の手段、例えば、排水ポンプ、サイフォン方式による排出などを適用できる。   As the nutrient solution supply means 41, a known means such as a supply pump can be used. As the nutrient solution discharge means 42, known means such as a drainage pump and siphon discharge can be applied.

その他、例えば、水位センサー、タイマーなどを用いて、養液の供給・排水の時間、タイミングなどを制御にしてもよい。その場合、電磁弁などを用いて、給排水を制御してもよい。また、制御部に接続することにより、養液の水位変動の時間、養液の給排水速度、タイミングなどを自動制御することもできる。   In addition, for example, the time and timing of supply / drainage of nutrient solution may be controlled using a water level sensor, a timer, or the like. In that case, the water supply / drainage may be controlled using a solenoid valve or the like. In addition, by connecting to the control unit, it is possible to automatically control the time of fluctuation of the water level of the nutrient solution, the supply / drainage speed of the nutrient solution, timing, and the like.

養液Wは、水若しくは肥料・各種栄養素などを溶解した水であり、栽培槽1に貯留される。養液Wには、栽培する植物種などに応じて、公知のものを適宜利用できる。   The nutrient solution W is water in which water or fertilizer / various nutrients are dissolved, and is stored in the cultivation tank 1. A well-known thing can be suitably utilized for the nutrient solution W according to the plant species etc. to grow.

植物Pの種類は、特に限定されないが、本発明は、例えば、根菜類や、根部を収穫対象とする薬用植物など、いわゆる根物作物に適用できる。   Although the kind of plant P is not specifically limited, For example, this invention is applicable to what is called a root crop, such as root vegetables and a medicinal plant which makes a root part harvest.

根菜類として、例えば、ダイコン、ニンジン、ゴボウなどが挙げられる。   Examples of root vegetables include radish, carrot, burdock and the like.

根部を収穫対象とする薬用植物として、例えば、ウラルカンゾウ(学名「Glycyrrhiza uralensis」)、スペインカンゾウ(学名「Glycyrrhiza
glabra」)、ベラドンナ(学名「Atropa belladonna」)、トウキ(学名「Angelica acutiloba」)、ヨロイグサ(学名「Angelica
dahurica」)、シシウド(学名「Angelica pubescens」)、ウスバサイシン(学名「Asiasarum sieboldii」)、ケイリンサイシン(学名「Asiasarum
heterotropoides var.mandshuricum」)、クサスギカズラ(学名「Asparagus
cochinchinensis」)、キバナオウギ(学名「Astragalus membranaceus」)、モウコオウギ(学名「Astragalus mongholicus」)、ヒナタイノコズチ(学名「Achyranthes fauriei」)、トウゴシツ(学名「Achyranthes bidentata」)、ミシマサイコ(学名「Bupleurum falcatum」)、トコン(学名「Cephaelis
ipecacuanha」)、サキシマボタンヅル(学名「Clematis chinensis」)、ゲンチアナ(学名「Gentiana lutea」)、トウリンドウ(学名「Gentiana scabra」)、ハマボウフウ(学名「Glehnia littoralis」)、コロンボ(学名「Jateorhiza
columba」)、テンダイウヤク(学名「Lindera strychnifolia」)、ムラサキ(学名「Lithospermum erythrorhizon」)、クコ(学名「Lycium
chinense」)、ナガバクコ(学名「Lycium barbatum」)、マグワ(学名「Morus alba」)、ジャノヒゲ(学名「Ophiopogon japonicus」)、シャクヤク(学名「Paeonia lactiflora」)、ボタン(学名「Paeonia
suffruticosa」)、オタネニンジン(学名「Panax ginseng」)、キキョウ(学名「Platycodon grandiflorum」)、セネガ(学名「Polygala
senega」)、イトヒメハギ(学名「Polygala tenuifolia」)、クズ(学名「Pueraria lobata」)、アカヤジオウ(学名「Rehmannia
glutinosa var. purpurea」)、カイケイジオウ(学名「Rehmannia
glutinosa f. hueichigensis」)、ボウフウ(学名「Saposhnikovia
divaricata」)、モッコウ(学名「Saussurea lappa」)、コガネバナ(学名「Scutellaria baicalensis」)、クララ(学名「Sophora
flavescens」)、キカラスウリ(学名「Trichosanthes
kirilowii」)、インドジャボク(学名「Rauwolfia
serpentina」)、カノコソウ(学名「Valeriana fauriei」)、ツルドクダミ(学名「Polygonum multiflorum」)、オウレン(学名「Coptis
japonica」)、コプティス・キネンシス(学名「Coptis chinensis」)、コプティス・デルトイデア(学名「Coptis deltoidea」)、リョウキョウ(学名「Alpinia
officinarum」)、ハナスゲ(学名「Anemarrhena asphodeloides」)、ウド(学名「Aralia
cordata」)、オケラ(学名「Atractylodes japonica」)、オオバナオケラ(学名「Atractylodes ovata」)、ホソバオケラ(学名「Atractylodes
lancea」)、サラシナショウマ(学名「Cimicifuga simplex」)、ホクショウマ(学名「Cimicifuga dahurica」)、カンショウマ(学名「Cimicifuga
heracleifolia」)、センキュウ(学名「Cnidium officinale」)、ウコン(学名「Curcuma longa」)、ガジュツ(学名「Curcuma zedoaria」)、ハマスゲ(学名「Cyperus rotundus」)、ヤマノイモ(学名「Dioscorea
japonica」)、ナガイモ(学名「Dioscorea batatas」)、エゾウコギ(学名「Eleutherococcus senticosus」)、チガヤ(学名「Imperata
cylindrica」)、キョウカツ(学名「Notopterygium incisum」)、コウホネ(学名「Nuphar japonicum」)、トチバニンジン(学名「Panax
japonicus」)、ポドフィルム・ペルタツム(学名「Podophyllum
peltatum」)、ナルコユリ(学名「Polygonatum
falcatum」)、カギクルマバナルコユリ(学名「Polygonatum kingianum」)、ショウヨウダイオウ(学名「Rheum palmatum」)、ハシリドコロ(学名「Scopolia japonica」)、ショウガ(学名「Zingiber officinale」)、オクトリカブト(学名「Aconitum
japonicum」)、ハナトリカブト(学名「Aconitum carmichaeli」)、サジオモダカ(学名「Alisma orientale」)、エンゴサク(学名「Corydalis turtschaninovii f.
yanhusuo」)、オニノヤガラ(学名「Gastrodia elata」)、カラスビシャク(学名「Pinellia ternate」)、サンキライ(学名「Smilax glabra」)、アミガサユリ(学名「Fritillaria verticillata var. thunbergii」)などが挙げられる。
Examples of medicinal plants whose roots are to be harvested include Ural licorice (scientific name “Glycyrrhiza uralensis”) and Spanish licorice (scientific name “Glycyrrhiza”).
glabra ”), Belladonna (scientific name“ Atropa belladonna ”), Toki (scientific name“ Angelica acutiloba ”), Yoroigusa (scientific name“ Angelica ”)
dahurica ”), Siciud (scientific name“ Angelica pubescens ”), Usbasaicin (scientific name“ Asiasarum sieboldii ”), Keirin Saisin (scientific name“ Asiasarum ”)
heterotropoides var.mandshuricum "), Kusasugikazura (scientific name" Asparagus
cochinchinensis "), yellow eel (scientific name" Astragalus membranaceus "), musk eel (scientific name" Astragalus mongholicus "), cypress (scientific name" Achyranthes fauriei "), Togoshitsu (scientific name" Achyranthes bidentata "), lc" B " Tokon (scientific name "Cephaelis
ipecacuanha "), saximatic button eel (scientific name" Clematis chinensis "), gentian (scientific name" Gentiana scabra "), hamlin (scientific name" Glehnia littoralis "), Colombo (scientific name" Jateorhiza ")
columba "), Tendai Yaku (scientific name" Lindera strychnifolia "), Murasaki (scientific name" Lithospermum erythrorhizon "), Kuko (scientific name" Lycium ")
chinense "), Nagabakuko (scientific name" Lycium barbatum "), Magwa (scientific name" Morus alba "), Janohige (scientific name" Ophiopogon japonicus "), peonies (scientific name" Paeonia lactiflora "), buttons (scientific name" Paeonia ")
suffruticosa "), Panax ginseng (scientific name" Panax ginseng "), Kyokyo (scientific name" Platycodon grandiflorum "), Senega (scientific name" Polygala "
senega ”), Itohimehagi (scientific name“ Polygala tenuifolia ”), Kudu (scientific name“ Pueraria lobata ”), Akajiaio (scientific name“ Rehmannia ”)
glutinosa var. purpurea "), Kaikeijio (scientific name" Rehmannia
glutinosa f. hueichigensis "), Bow Fu (scientific name" Saposhnikovia
divaricata "), Mokko (scientific name" Saussurea lappa "), Koganebana (scientific name" Scutellaria baicalensis "), Clara (scientific name" Sophora
flavescens "), Kikarasuuri (scientific name" Trichosanthes "
kirilowii "), Indian jabok (scientific name" Rauwolfia "
serpentina ”), Valeriana fauriei (scientific name“ Polygonum multiflorum ”), Oren (scientific name“ Coptis ”)
japonica ”), Coptis chinensis (scientific name“ Coptis chinensis ”), Coptis deltoidea (scientific name“ Coptis deltoidea ”), Ryoko (scientific name“ Alpinia ”)
officinarum "), Hanasuge (scientific name" Anemarrhena asphodeloides "), Udo (scientific name" Aralia
cordata ”), Okera (scientific name“ Atractylodes japonica ”), Ovana Okera (scientific name“ Atractylodes ovata ”), Hosoba Okera (scientific name“ Atractylodes
lancea "), Sarasinashoma (scientific name" Cimicifuga simplex "), Hokushouma (scientific name" Cimicifuga dahurica "), Kanshoma (scientific name" Cimicifuga ")
heracleifolia "), senkyu (scientific name" Cnidium officinale "), turmeric (scientific name" Curcuma longa "), gadgets (scientific name" Curcuma zedoaria "), hamasuge (scientific name" Cyperus rotundus "), yam (scientific name" Dioscorea ")
japonica "), Chinese yam (scientific name" Dioscorea batatas "), Ezoukogi (scientific name" Eleutherococcus senticosus "), Chigaya (scientific name" Imperata
cylindrica "), Kyokatsu (scientific name" Notopterygium incisum "), Kouhone (scientific name" Nuphar japonicum "), Tochibaninjin (scientific name" Panax
japonicus)), Podofilm Pertatum (scientific name "Podophyllum")
peltatum "), Narukoyuri (scientific name" Polygonatum "
falcatum ”), Kagulumabanarukoyuri (scientific name“ Polygonatum kingianum ”), Dioscorea (scientific name“ Rheum palmatum ”), Hasirikoro (scientific name“ Scopolia japonica ”), Ginger (scientific name“ Zingiber officinale ”), Octopricorn“ Aconitum ”
japonicum "), Japanese beetle (scientific name" Aconitum carmichaeli "), Sagiomodaka (scientific name" Alisma orientale "), Engosaku (scientific name" Corydalis turtschaninovii f.
yanhusuo ”), Onino Yagara (scientific name“ Gastrodia elata ”), Karas Bishak (scientific name“ Pinellia ternate ”), Sankirai (scientific name“ Smilax glabra ”), Amiga Sayuri (scientific name“ Fritillaria verticillata var. thunbergii ”).

図2は、本発明に係る養液栽培システムの別の例を示す外観斜視模式図、図3は、同断面模式図である。   FIG. 2 is a schematic external perspective view showing another example of the hydroponic cultivation system according to the present invention, and FIG. 3 is a schematic cross-sectional view thereof.

図2及び図3の養液栽培システムA’では、筒状部3が、定植構造体2に直接略鉛直方向の貫通孔を設けることにより形成されるとともに、定植構造体2が養液Wに対して浮遊する軽量部材で形成され、該定植構造体2を下方に移動させることにより、養液Wの水位を変動させる水位変動手段4を備える。   In the nutrient solution cultivation system A ′ of FIGS. 2 and 3, the tubular portion 3 is formed by providing a substantially vertical through-hole directly in the planting structure 2, and the planting structure 2 is used as the nutrient solution W. On the other hand, it is formed of a lightweight member that floats, and includes a water level fluctuation means 4 that fluctuates the water level of the nutrient solution W by moving the fixed planting structure 2 downward.

また、この養液栽培システムA’では、定植構造体2を下方に移動させる手段として、線状部材43を定植構造体2に張架し、該線状部材43の両端をそれぞれ栽培槽1の略対面する位置44、45に固定するとともに、線状部材43の少なくとも一端45に巻き取り手段46を設置し、線状部材43を巻き取ることにより定植構造体2を下方に移動させる構成を採用している。   Moreover, in this nourishing culture system A ′, as a means for moving the planting structure 2 downward, the linear member 43 is stretched over the planting structure 2, and both ends of the linear member 43 are respectively connected to the cultivation tank 1. A structure is adopted in which the fixed planting structure 2 is moved downward by fixing the winding means 46 at at least one end 45 of the linear member 43 and winding the linear member 43 while fixing to the substantially facing positions 44 and 45. doing.

この構成により、線状部材43が緩和している状態では、定植構造体2が養液Wに対し浮上するため(符号X3)、植物体Pの根部P1はほとんど養液Wに浸漬していない状態となる。即ち、線状部材43が緩和することにより、植物体Pの根部P1に乾燥ストレスを与えることができる。   With this configuration, in the state where the linear member 43 is relaxed, the planting structure 2 floats with respect to the nutrient solution W (reference numeral X3), and therefore the root part P1 of the plant body P is hardly immersed in the nutrient solution W. It becomes a state. That is, when the linear member 43 is relaxed, it is possible to apply a drying stress to the root portion P1 of the plant body P.

一方、巻き取り手段46で線状部材43を巻き取り、緊張状態とすると、定植構造体2は下方に押し下げられるため(符号X3)、植物体Pの根部P1が養液Wに浸漬した状態となる。   On the other hand, when the linear member 43 is wound up by the winding means 46 and is in a tension state, the fixed planting structure 2 is pushed downward (reference numeral X3), and therefore the root P1 of the plant body P is immersed in the nutrient solution W and Become.

従って、巻き取り手段46を用いて、線状部材43の緊張状態と緩和状態を調節することにより、植物体Pの根部P1に対し、養液供給と乾燥ストレス負荷の両方を行うことができる。   Therefore, by adjusting the tension state and the relaxed state of the linear member 43 using the winding means 46, both the nutrient solution supply and the dry stress load can be performed on the root part P1 of the plant body P.

これにより、定植構造体2の体積分の養液を減量でき、貯液タンクなどの養液関連設備の規模を縮小できる。また、水位を変動させる際のポンプが不要になるほか、栽培槽を大型化させても速やかな水位変動が可能になるという利点がある。その他、軽量の部材を用いるため、設置・交換・除去などの取扱いやメンテナンスなどが容易である、水位変動には不充分な給排水設備しか有さない既存の設備(例えば、プール、貯水槽)などにも適用できる、などの利点もある。   Thereby, the nutrient solution for the volume of the fixed planting structure 2 can be reduced, and the scale of the nutrient solution related equipment such as the storage tank can be reduced. In addition, there is an advantage that a pump for changing the water level is not necessary and that the water level can be changed quickly even if the cultivation tank is enlarged. In addition, the use of lightweight components makes it easy to handle, maintain, etc. for installation, replacement, removal, etc., and existing facilities that have only water and drainage facilities that are insufficient for fluctuations in water level (for example, pools, water tanks, etc.) There is also an advantage that it can be applied to.

定植構造体2で採用する軽量部材は、公知の材料を用いることができ、特に限定されないが、水よりも比重の低く、外力の無い状態で水に浮く素材が好ましい。また、一定の強度を有し、外力によって変形せず、耐水性があり、長期間の栽培によっても溶解・腐食しない素材が好ましい。例えば、発泡性樹脂(発泡スチロール、ポリスチレンフォーム、発泡ポリプロピレン、硬質発泡ウレタンなど)製のもの、軽量プラスチック、木材、同形状のポリタンクなどは、比較的安価で、目的の形状に成形・加工しやすく、耐久性にも優れ、好適である。   A known material can be used as the lightweight member employed in the fixed planting structure 2 and is not particularly limited. However, a material having a specific gravity lower than that of water and floating in water without external force is preferable. In addition, a material having a certain strength, not deformed by an external force, water-resistant, and does not dissolve or corrode even after long-term cultivation is preferable. For example, those made of foamable resin (such as polystyrene foam, polystyrene foam, foamed polypropylene, rigid foamed urethane, etc.), lightweight plastic, wood, and plastic tanks of the same shape are relatively inexpensive and easy to mold and process into the desired shape. It is excellent in durability and suitable.

なお、定植構造体2にポリタンクを用いることには、適宜注水・排水することにより比重を制御できるという利点がある。その他、例えば、設置・交換・除去・メンテナンス時などには排水することで軽量化できる。また、例えば、水位変動時などには注水して定植構造体2と水の比重を近似させることにより、システムへの重量負荷を軽減でき、若しくはシステムを小型化できる。   In addition, using a poly tank for the fixed planting structure 2 has an advantage that specific gravity can be controlled by appropriately pouring and draining water. In addition, for example, the weight can be reduced by draining during installation, replacement, removal, maintenance, and the like. Further, for example, when the water level fluctuates, the weight load on the system can be reduced or the system can be downsized by approximating the specific gravity of the fixed planting structure 2 and the water.

線状部材43は、定植構造体2の浮力に耐えうる強度を有していればよく、その材質などは特に限定されない。例えば、金属製のワイヤーや合成樹脂製のベルト・紐状物などを用いることができる。   The linear member 43 should just have the intensity | strength which can endure the buoyancy of the fixed planting structure 2, and the material is not specifically limited. For example, a metal wire or a synthetic resin belt / string may be used.

線状部材43を栽培槽1の所定の外壁部分に固定する手段についても、公知の技術で行うことが可能である。例えば、掛け具などで係止する、金具などを栽培槽1に打設してその部分に線状部材43を締結するなどの手段を採用できる。また、巻き取り手段46が設けられている部分では、巻き取り手段46に直接固定すればよい。   The means for fixing the linear member 43 to the predetermined outer wall portion of the cultivation tank 1 can also be performed by a known technique. For example, it is possible to employ means such as locking with a hanging tool or the like, placing a metal fitting or the like in the cultivation tank 1 and fastening the linear member 43 to the portion. Moreover, what is necessary is just to fix to the winding means 46 directly in the part in which the winding means 46 is provided.

巻き取り手段46については、線状部材43を巻き取ることができればよく、その構成などは特に限定されない。また、巻き取り手段46は、一か所に設置されている場合のみに狭く限定されず、複数個所に設置されている場合も広く包含される。例えば、モーター装置などで巻き取る構成にすることにより、簡易な操作で制御可能となる。また、制御部に接続することにより、養液の水位変動の時間、タイミングなどを自動制御することもできる。   The winding means 46 is not particularly limited as long as the linear member 43 can be wound up. Moreover, the winding means 46 is not limited narrowly only when it is installed in one place, but the case where it is installed in multiple places is also widely included. For example, by adopting a configuration in which it is wound by a motor device or the like, control can be performed with a simple operation. Further, by connecting to the control unit, it is possible to automatically control the time, timing, etc. of the water level fluctuation of the nutrient solution.

栽培槽1に貯留する養液Wの量は、特に限定されない。例えば、図3のように、外力の無い状態で完全に水に浮く軽量素材を定植構造体2に用いるとともに、筒状部3(植物体Pの根部P1)の長さと定植構造体2の高さがほぼ同じになるようにし、かつ線状部材43が最も緊張した状態(定植構造体2が最も下がった状態)の時に満水位になるように養液Wを貯留することにより、線状部材43の緩和時には根部P1が養液Wに浸らず、緊張時には根部P1が養液Wに完全に浸漬するように構成できる。   The amount of nutrient solution W stored in the cultivation tank 1 is not particularly limited. For example, as shown in FIG. 3, a light-weight material that floats completely in water without external force is used for the planting structure 2, and the length of the tubular portion 3 (the root portion P1 of the plant body P) and the height of the planting structure 2 are increased. By storing the nutrient solution W so as to reach the full water level when the linear member 43 is in the most tensioned state (the state where the fixed planting structure 2 is lowest), the linear member The root P1 is not immersed in the nutrient solution W during the relaxation of 43, and the root P1 can be completely immersed in the nutrient solution W during tension.

図4は、本発明に係る養液栽培システムのさらに別の例を示す外観斜視模式図、図5は、同断面模式図である。   FIG. 4 is a schematic external perspective view showing still another example of the hydroponic system according to the present invention, and FIG. 5 is a schematic cross-sectional view thereof.

図4及び図5の養液栽培システムA’’では、筒状部3が、定植構造体2に設けられた貫通部21に筒状体31を挿嵌することにより形成され、支持部材32が筒状部3の上端開口部に載置され、植物体Pが設置されているとともに、水位変動手段4として、略水平方向に形成された押し下げ部材47と、押し下げ部材47を上下へ移動させる昇降手段50とを備え、昇降手段50で押し下げ部材47を下方へ移動させることにより、押し下げ部材47が定植構造体2を押し下げる構成を備えている。また、養液栽培システムA’’では、定植構造体2に軽量部材を用いている。   4 and 5, the tubular portion 3 is formed by inserting the tubular body 31 into the penetrating portion 21 provided in the fixed planting structure 2, and the support member 32 is formed. The plant body P is placed on the upper end opening of the cylindrical portion 3, and as the water level fluctuation means 4, a push-down member 47 formed in a substantially horizontal direction, and a lift that moves the push-down member 47 up and down. Means 50, and the push-down member 47 pushes down the fixed planting structure 2 by moving the push-down member 47 downward by the lifting means 50. Further, in the hydroponic system A ″, a lightweight member is used for the fixed planting structure 2.

この構成により、例えば、昇降手段50により、押し下げ部材47を上方へ移動させた場合には(符号X4)、定植構造体2が浮上し、植物体Pの根部P1に乾燥ストレスを与えることができる。   With this configuration, for example, when the push-down member 47 is moved upward by the lifting / lowering means 50 (reference numeral X4), the fixed planting structure 2 is floated and a drying stress can be applied to the root portion P1 of the plant body P. .

一方、昇降手段50により、押し下げ部材47を下方へ移動させた場合には(符号X4)、押し下げ部材47が定植構造体2を押し下げ、定植構造体2が養液W内に沈み、植物体Pの根部P1が養液Wに浸漬した状態となる。   On the other hand, when the push-down member 47 is moved downward by the lifting means 50 (reference numeral X4), the push-down member 47 pushes down the planting structure 2, and the planting structure 2 sinks into the nutrient solution W, and the plant P It will be in the state where the root part P1 of was immersed in the nutrient solution W.

従って、昇降手段50を用いて、押し下げ部材47の高さを調節することにより、植物体Pの根部P1に対し、養液供給と乾燥ストレス負荷の両方を行うことができる。   Therefore, by adjusting the height of the push-down member 47 using the elevating means 50, both the nutrient solution supply and the drying stress load can be performed on the root P1 of the plant body P.

これにより、上記と同様、定植構造体2の体積分の養液を減量でき、貯液タンクなどの養液関連設備の規模を縮小できる。また、水位を変動させる際のポンプが不要になるほか、栽培槽を大型化させても速やかな水位変動が可能になるという利点がある。その他、軽量の部材を用いるため、設置・交換・除去などの取扱いやメンテナンスなどが容易である、水位変動には不充分な給排水設備しか有さない既存の設備(例えば、プール、貯水槽)などにも適用できる、などの利点もある。   Thereby, like the above, the nutrient solution for the volume of the fixed planting structure 2 can be reduced, and the scale of the nutrient solution-related equipment such as the storage tank can be reduced. In addition, there is an advantage that a pump for changing the water level is not necessary and that the water level can be changed quickly even if the cultivation tank is enlarged. In addition, the use of lightweight components makes it easy to handle, maintain, etc. for installation, replacement, removal, etc., and existing facilities that have only water and drainage facilities that are insufficient for fluctuations in water level (for example, pools, water tanks, etc.) There is also an advantage that it can be applied to.

押し下げ部材47は、水位変動を行う際に定植構造体2を押し下げることができる形状の部材であればよい。例えば、定植構造体2の上方に略水平方向に形成された枠体、棒状物などを設置し、定植構造体2を押し下げる際には、押し下げ部材47を下方に移動させ、定植構造体2の上面に圧力を加えて定植構造体2を押し下げる構成にしてもよい。また、略水平方向に形成された枠体、棒状物などを定植構造体2に固定などしておき、定植構造体2を押し下げる際には、押し下げ部材47を下方に移動させ、定植構造体2に下方への圧力を加えて定植構造体2を押し下げる構成にしてもよい。   The push-down member 47 may be a member having a shape that can push down the fixed planting structure 2 when the water level is changed. For example, a frame body or a rod-like object formed in a substantially horizontal direction is installed above the fixed planting structure 2, and when the fixed planting structure 2 is pushed down, the push-down member 47 is moved downward to You may make it the structure which pushes down the fixed planting structure 2 by applying a pressure to an upper surface. Further, a frame body, a rod-like object or the like formed in a substantially horizontal direction is fixed to the planting structure 2, and when the planting structure 2 is pressed down, the push-down member 47 is moved downward to move the planting structure 2 Alternatively, a downward pressure may be applied to push down the fixed planting structure 2.

押し下げ部材47の材質も、定常構造体2を押し下げる際の負荷に耐えうるものであればよく、特に限定されない。例えば、金属製、ステンレス製、合成樹脂製のものなどを用いることができる。   The material of the push-down member 47 is not particularly limited as long as it can withstand the load when the steady structure 2 is pushed down. For example, those made of metal, stainless steel, or synthetic resin can be used.

昇降手段50については、押し下げ部材47を上下に移動させることができる構成であればよく、公知の技術を用いることができ、特に限定されない。例えば、ラック・アンド・ピニオン(rack and pinion)方式により、ラック48とピニオン49を組み合わせ、押し下げ部材47を上下へ移動させる構成にしてもよい。その場合、例えば、リニアヘッドなどを用いて作動させることにより、簡易な操作で制御可能となる。また、制御部に接続することにより、養液の水位変動の時間、タイミング、昇降速度などを自動制御することもできる。   The raising / lowering means 50 is not particularly limited as long as it can move the push-down member 47 up and down, and a known technique can be used. For example, the rack 48 and the pinion 49 may be combined and the push-down member 47 may be moved up and down by a rack and pinion method. In that case, for example, by operating using a linear head or the like, the control can be performed with a simple operation. Further, by connecting to the control unit, it is possible to automatically control the time, timing, elevating speed, etc. of the water level fluctuation of the nutrient solution.

図6は、本発明に係る養液栽培システムのさらに別の例を示す断面模式図である。   FIG. 6 is a schematic cross-sectional view showing still another example of the hydroponic cultivation system according to the present invention.

図6の養液栽培システムA’’’では、定植構造体2に略鉛直方向に気体貯留部22が形成されるとともに、気体貯留部22に気体Gを供給する気体供給手段51と、気体貯留部22の上端開口部に装着された開閉手段52とを備える水位変動手段4を有する。   In the nutrient solution cultivation system A ′ ″ of FIG. 6, the gas storage unit 22 is formed in the planting structure 2 in a substantially vertical direction, and the gas supply means 51 that supplies the gas G to the gas storage unit 22 and the gas storage The water level changing means 4 includes an opening / closing means 52 attached to the upper end opening of the portion 22.

開閉手段52を閉鎖した状態で気体供給手段51より気体Gが供給されると、気体Gは気体貯留部22に貯留する。これにより、定植構造体2に浮力が生じ(矢印X6)、植物体Pの根部P1はほとんど養液Wに浸漬していない状態となる。即ち、気体貯留部22に気体を貯留させることにより、植物体Pの根部P1に乾燥ストレスを与えることができる。   When the gas G is supplied from the gas supply unit 51 with the opening / closing unit 52 closed, the gas G is stored in the gas storage unit 22. Thereby, buoyancy arises in the fixed planting structure 2 (arrow X6), and the root part P1 of the plant body P will be in the state which is hardly immersed in the nutrient solution W. That is, it is possible to apply a drying stress to the root part P <b> 1 of the plant body P by storing the gas in the gas storage part 22.

一方、開閉手段52を開放して、気体貯留部22に貯留する気体Gを排出すると、定植構造体2が自重で沈み(符号X6)、植物体Pの根部P1が養液Wに浸漬した状態となる。   On the other hand, when the opening / closing means 52 is opened and the gas G stored in the gas storage unit 22 is discharged, the fixed planting structure 2 sinks with its own weight (reference numeral X6), and the root P1 of the plant body P is immersed in the nutrient solution W. It becomes.

従って、気体供給手段51と開閉手段52を備えた水位変動手段4を用いることにより、植物体Pの根部P1に対し、養液供給と乾燥ストレス負荷の両方を行うことができる。なお、この養液栽培システムA’’’には、エアレーションにより養液Wの溶存酸素を向上できるという有利性がある。   Therefore, by using the water level fluctuation means 4 provided with the gas supply means 51 and the opening / closing means 52, both the nutrient solution supply and the drought stress load can be performed on the root part P1 of the plant body P. In addition, this nutrient solution cultivation system A "" has an advantage that the dissolved oxygen of the nutrient solution W can be improved by aeration.

この場合、定植構造体2は、水よりも比重がやや高く、外力の無い状態で水にゆっくり沈む素材が好ましい。例えば、上記と同様の素材に、重りなどを取り付け、比重を調節して用いてもよい。   In this case, the planting structure 2 is preferably made of a material that has a specific gravity slightly higher than that of water and that sinks slowly in water without any external force. For example, a weight or the like may be attached to the same material as described above and the specific gravity may be adjusted.

気体供給手段51は、気体を供給する部位であり、エアポンプ、エアコンプレッサー(空気圧縮供給機)、エアボンベなど、公知のものを用いることができる。気体Gには、例えば、一般的な空気(大気)を用いればよい。   The gas supply means 51 is a part that supplies gas, and a known device such as an air pump, an air compressor (air compression supply machine), or an air cylinder can be used. For the gas G, for example, general air (atmosphere) may be used.

開閉手段52は、気体貯留部22を閉鎖し、同部位に気体Gを貯留させるためのものである。開閉手段52は、通常の合成樹脂製の密閉栓など、手動で設置するものも含め、公知のものを広く採用できる。また、例えば、開閉手段52を電磁弁で構成することにより、簡易な操作で制御可能となる。その他、気体供給手段51及び電磁弁を制御部に接続することにより、養液の水位変動の時間、タイミングなどを自動制御することもできる。   The opening / closing means 52 is for closing the gas storage part 22 and storing the gas G in the same part. As the opening / closing means 52, well-known ones can be widely adopted including those manually installed such as ordinary synthetic resin sealing plugs. Further, for example, by configuring the opening / closing means 52 with a solenoid valve, it is possible to control with a simple operation. In addition, by connecting the gas supply means 51 and the electromagnetic valve to the control unit, it is possible to automatically control the time and timing of the water level fluctuation of the nutrient solution.

図7は、本発明に係る養液栽培システムに延長部材を設置した例を示す断面模式図である。   FIG. 7: is a cross-sectional schematic diagram which shows the example which installed the extending member in the hydroponic cultivation system which concerns on this invention.

図7では、図5に示す養液栽培システムA’’のうち、根部P1が特に伸長した植物体P(符号P1’)に対し、筒状部3の上端開口部に延設する内面略筒状の延長部材6を設置している。   In FIG. 7, in the nutrient solution cultivation system A ″ shown in FIG. 5, a substantially inner surface cylinder that extends to the upper end opening of the tubular portion 3 with respect to the plant body P (reference P <b> 1 ′) in which the root portion P <b> 1 is particularly elongated. The extending member 6 is installed.

例えば、植物体Pの根部P1が栽培槽の底面近くまで伸長した際に、筒状部3の上端開口部に延設する内面略筒状の延長部材6を設置して筒状部3の長さを栽培槽1の深さよりも長く延長することにより、延長した長さだけ、さらに根部P1を生長・伸長させることができる。これにより、根物作物の場合、根部の伸長にあわせた栽培が可能であり、より長く大きい収穫物を得ることができる。   For example, when the root part P1 of the plant body P extends to the vicinity of the bottom surface of the cultivation tank, the inner surface substantially cylindrical extension member 6 extending to the upper end opening of the cylindrical part 3 is installed to increase the length of the cylindrical part 3. By extending the length longer than the depth of the cultivation tank 1, it is possible to further grow and extend the root portion P1 by the extended length. Thereby, in the case of a root crop, cultivation according to the elongation of the root portion is possible, and a longer and larger crop can be obtained.

なお、延長部材6を用いた場合、根部P1の上部が水位W1の変動に関わらず養液Wに浸漬されない状態になるが、根部P1の下部は満水位の際には養液Wに浸漬されており、養水分が根部P1に供給されるため、根部P1の上部も肥大を続ける。また、薬用植物において、その有効成分が水溶性である場合、根部P1の上部が常に養液Wに浸漬されないため、その部分の有効成分の含有量が増大し、目的の薬効成分を多く回収できる。   When the extension member 6 is used, the upper portion of the root portion P1 is not immersed in the nutrient solution W regardless of the fluctuation of the water level W1, but the lower portion of the root portion P1 is immersed in the nutrient solution W when the water level is full. Since nourishing moisture is supplied to the root part P1, the upper part of the root part P1 also continues to enlarge. Moreover, in a medicinal plant, when the active ingredient is water-soluble, since the upper part of the root part P1 is not always immersed in the nutrient solution W, the content of the active ingredient in that part increases, and many target medicinal ingredients can be recovered. .

延長部材6は、例えば、上述の筒状体31と同様のものを、植物体Pと筒状部3の間に設置して用いてもよいし、定植構造体2と同様の部材に貫通孔を形成し、それを植物体Pと筒状部3の間に設置して用いてもよい。延長部材6の材質も、それらと同様のものを用いることができる。   For example, the extension member 6 may be the same as the tubular body 31 described above, installed between the plant body P and the tubular portion 3, or the same member as the fixed plant structure 2 with a through hole. May be formed and used between the plant body P and the tubular portion 3. The material of the extension member 6 can also be the same as those.

延長部材6の大きさ・長さは、定植構造体2、筒状部3、植物体Pの根部P1の長さなどに応じて、適宜設定する。例えば、延長部材6の内面の孔径は筒状部3の孔径とほぼ同じにすることが好ましい。延長部材6の長さは、例えば、10cm〜50cmが好適であり、また、複数の延長部材6を連設させて長さを調節してもよい。   The size and length of the extending member 6 are appropriately set according to the length of the fixed planting structure 2, the cylindrical portion 3, the root portion P1 of the plant body P, and the like. For example, it is preferable that the hole diameter of the inner surface of the extension member 6 is substantially the same as the hole diameter of the cylindrical portion 3. The length of the extension member 6 is preferably 10 cm to 50 cm, for example, and the length may be adjusted by connecting a plurality of extension members 6.

延長部材6の設置方法は、例えば、筒状部3の上端開口部に延長部材6を載置するだけでもよく、また、筒状部3に延長部材6を挿嵌などして連結する構造にしてもよい。   The extension member 6 may be installed by, for example, simply placing the extension member 6 in the upper end opening of the cylindrical portion 3 and connecting the extension member 6 to the cylindrical portion 3 by insertion or the like. May be.

その他、筒状部3の上端開口部に延設する内面略筒状の延長部材6を設置する代わりに、筒状体31を長いものと交換することにより、筒状部3の長さを延長してもよい。この構成により、簡易な作業で筒状部3を延長できる。   In addition, the length of the cylindrical portion 3 is extended by replacing the cylindrical body 31 with a long one instead of installing the substantially cylindrical extending member 6 extending to the upper end opening of the cylindrical portion 3. May be. With this configuration, the cylindrical portion 3 can be extended with a simple operation.

図8は、二以上の栽培槽を用いて水位を変動させる養液栽培システムの例を示す断面模式図である。   FIG. 8 is a schematic cross-sectional view showing an example of a nutrient solution cultivation system that fluctuates the water level using two or more cultivation tanks.

図8の養液栽培システムでは、図1と同様の養液栽培システムAが併設され、それぞれが、養液Wを貯留する栽培槽1と、定植構造体2に筒状体31を挿嵌することにより、栽培槽1内に略鉛直方向に形成され、上端開口部に植物体Pが設置された複数の筒状部3と、を備える。   In the nutrient solution cultivation system of FIG. 8, a nutrient solution cultivation system A similar to that of FIG. 1 is provided, and the tubular body 31 is inserted into the cultivation tank 1 and the fixed planting structure 2 that store the nutrient solution W, respectively. By this, it is provided with the some cylindrical part 3 in which the plant body P was installed in the cultivation tank 1 in the substantially perpendicular direction, and the plant body P was installed in the upper end opening part.

また、両システムA、A間には、両栽培槽1、1内の養液Wを相互に移動させる水位交換手段53と、両栽培槽1、1間を直接連結する導水管54を備える水位調節手段4が設置されている。その他、栽培槽1内に、所定の容積を有する充填部材7が設置されている。   Moreover, between both systems A and A, a water level provided with the water level exchange means 53 which moves the nutrient solution W in both the cultivation tanks 1 and 1 mutually, and the water conduit 54 which connects between both cultivation tanks 1 and 1 directly. Adjustment means 4 is installed. In addition, a filling member 7 having a predetermined volume is installed in the cultivation tank 1.

例えば、栽培槽1を併設し、一方の栽培槽1では、植物体Pの根部P1が養液Wに浸漬された状態にし、もう一方の栽培槽1では、植物体Pの根部P1に乾燥ストレスを与えた状態にする。   For example, the cultivation tank 1 is provided, and in one cultivation tank 1, the root part P1 of the plant body P is immersed in the nutrient solution W, and in the other cultivation tank 1, dry stress is applied to the root part P1 of the plant body P. To the state given.

次に、水位交換手段53により、養液Wをもう一方の栽培槽1に移動させる。これにより、そちらの植物体Pの根部P1が養液Wに浸漬された状態になり、養液Wに浸漬されていた方の植物体Pには、乾燥ストレスが負荷される。   Next, the nutrient solution W is moved to the other cultivation tank 1 by the water level exchange means 53. As a result, the root P1 of the plant body P is immersed in the nutrient solution W, and the plant body P that has been immersed in the nutrient solution W is subjected to drying stress.

そして、水位交換手段53による養液Wの移動を一定周期ごとに行い、その水位W2、W3を交互に変動させることにより、それぞれの栽培槽1、1における両方の植物体Pに対し、養液供給と乾燥ストレス負荷を交互に行うことができる。なお、養液Wの水位交換は、例えば、5分〜1時間ごとに行うことが好適である。   And by performing the movement of the nutrient solution W by the water level exchange means 53 for every fixed period and changing the water levels W2 and W3 alternately, the nutrient solution for both plant bodies P in the respective cultivation tanks 1 and 1 Supply and drought stress loading can be performed alternately. The water level exchange of the nutrient solution W is preferably performed every 5 minutes to 1 hour, for example.

これにより、両栽培槽1、1において、根物作物の主根などの収穫部位を肥大させることができ、良好な収穫物を取得できる。加えて、この構成にすることにより、養液の総量を理論的には半分に減らすことができるという利点がある。その他、貯水タンクなどが不要になるため、システム構成を簡略化でき、建設コストを低減でき、栽培面積を増大できる。   Thereby, in both cultivation tanks 1 and 1, the harvested parts such as the main root of the root crop can be enlarged, and a good harvest can be acquired. In addition, this configuration has the advantage that the total amount of nutrient solution can theoretically be reduced to half. In addition, since a water storage tank or the like is unnecessary, the system configuration can be simplified, the construction cost can be reduced, and the cultivation area can be increased.

水位交換手段53には、例えば、公知の給排水ポンプなどを用いることができる。例えば、水位センサー、タイマーなどを用いて、養液の供給・排水の時間、タイミングなどを制御にしてもよい。また、制御部に接続することにより、養液の水位変動の時間、タイミングなどを自動制御することもできる。   For the water level exchanging means 53, for example, a known water supply / drainage pump can be used. For example, the time and timing of supply / drainage of nutrient solution may be controlled using a water level sensor, a timer, or the like. Further, by connecting to the control unit, it is possible to automatically control the time, timing, etc. of the water level fluctuation of the nutrient solution.

導水管54は、両栽培槽1、1間に直接連結され、開閉手段を備え、開放時に養液Wが通過する部位である。例えば、両栽培槽1、1間の水位交換を行う際に、導水管54を開放することにより、水位差で、両栽培槽1、1の水位が同じになるまで養液が移動する。これにより、水位交換手段53におけるポンプなどの負担軽減、水位変動時間の短縮、消費電力の低減などが可能になる。   The water guide pipe 54 is directly connected between the two cultivation tanks 1 and 1, is provided with an opening / closing means, and is a part through which the nutrient solution W passes. For example, when the water level is exchanged between the two cultivation tanks 1, 1, the nutrient solution moves until the water levels of the two cultivation tanks 1, 1 become the same due to the difference in water level by opening the water conduit 54. As a result, it is possible to reduce the burden on the pump or the like in the water level exchanging means 53, shorten the water level fluctuation time, reduce the power consumption, and the like.

導水管54は、開閉手段を備えているものであればよく、公知の塩化ビニル管、金属管などを用いることができる。開閉手段としては、公知の弁構造などを適宜採用できる。また、開閉手段に電磁弁を用いるとともに、制御部に接続することにより、水位交換手段53と連動した水位交換の自動制御が可能である。   The water guide pipe 54 may be any pipe provided with an opening / closing means, and a known vinyl chloride pipe, metal pipe, or the like can be used. As the opening / closing means, a known valve structure or the like can be appropriately employed. Further, by using a solenoid valve as the opening / closing means and connecting to the control unit, automatic control of the water level exchange in conjunction with the water level exchange means 53 is possible.

充填部材7は、所定の容積を有する部材である。栽培槽1内に、所定の容積を有する充填部材7を設置することにより、栽培槽1内の容積を減らし、用いる養液Wの量を低減できる。   The filling member 7 is a member having a predetermined volume. By installing the filling member 7 having a predetermined volume in the cultivation tank 1, the volume in the cultivation tank 1 can be reduced and the amount of the nutrient solution W to be used can be reduced.

例えば、栽培槽1が大きい場合、大量の養液Wが必要になる。また、その場合、水位を変動させる際などにおけるポンプなどに対する容量負担が大きくなり、初期コスト・ランニングコストが高くなる。これに対し、栽培槽1内に充填部材7を設置することにより、充填部材7の容量分だけ、養液量、水位変動手段に対する容量負担を低減できる。   For example, when the cultivation tank 1 is large, a large amount of nutrient solution W is required. In this case, the capacity burden on the pump and the like when the water level is changed is increased, and the initial cost and running cost are increased. On the other hand, the capacity | capacitance burden with respect to the amount of nutrient solution and a water level fluctuation | variation can be reduced by the capacity | capacitance of the filling member 7 by installing the filling member 7 in the cultivation tank 1. FIG.

充填部材7は、所定の容積を有していればよく、その材質などは特に限定されない。例えば、定植構造体2などと同様の材質のものをそのまま用いたり、それらの部材に穴などをあけて用いたりしてもよい。また、例えば、ポリタンクなどに注水して比重を調節し、用いてもよい。充填部材7にポリタンクを用いることには、設置・交換・除去・メンテナンス時などの作業負担が少ないなどの利点がある。これらの充填部材7を、例えば、栽培槽1内に載置したり、所定の位置で固定して用いる。   The filling member 7 only needs to have a predetermined volume, and the material thereof is not particularly limited. For example, the same material as the fixed planting structure 2 may be used as it is, or a hole or the like may be formed in those members. For example, the specific gravity may be adjusted by pouring water into a plastic tank or the like. The use of a polytank for the filling member 7 has an advantage that the work load during installation, replacement, removal and maintenance is small. These filling members 7 are used, for example, placed in the cultivation tank 1 or fixed at a predetermined position.

その他、例えば、複数の栽培槽1を階段状に並べて設置し、上流の栽培槽1から順次下流の栽培槽1へ養液を移動させることにより、各栽培槽1が、一つ置きに、植物体Pの根部P1が養液Wに浸漬された状態と植物体Pの根部P1に乾燥ストレスを与えた状態とを繰り返すように構成にしてもよい。   In addition, for example, by arranging a plurality of cultivation tanks 1 in a stepped manner, and moving the nutrient solution from the upstream cultivation tank 1 to the downstream cultivation tank 1 in sequence, each cultivation tank 1 is planted every other plant. You may make it the structure which repeats the state in which the root part P1 of the body P was immersed in the nutrient solution W, and the state which gave the dry stress to the root part P1 of the plant body P. FIG.

この場合、最も上流側の栽培槽1へは、最も下流側の栽培槽1からポンプなどの送液手段で養液Wを汲み上げることにより、養液Wを供給する。この構成の場合、最も上流側の栽培槽1へ送液する場合以外は、重力により、エネルギーを用いずに各栽培槽1の水位を変動できる。   In this case, the nutrient solution W is supplied to the most upstream culture tank 1 by pumping the nutrient solution W from the most downstream culture tank 1 by a liquid feeding means such as a pump. In the case of this configuration, the water level of each cultivation tank 1 can be changed without using energy by gravity except when the liquid is fed to the most upstream cultivation tank 1.

<本発明に係る養液栽培方法>
本発明に係る根物作物の養液栽培方法は、養液を貯留する栽培槽内に一又は複数の筒状部を略鉛直方向に形成し、根部が筒状部内を伸長するように筒状部の上端開口部に植物体を設置し、栽培槽内の養液の水位を変動させ、間欠的に根部に乾燥ストレスを与えるものをすべて包含する。
<Nutrient culture method according to the present invention>
The nourishing crop cultivation method for root crops according to the present invention forms one or a plurality of cylindrical portions in a substantially vertical direction in a cultivation tank for storing the nutrient solution, and is tubular so that the root portion extends in the cylindrical portion. The plant body is installed in the upper end opening of the part, and the water level of the nutrient solution in the cultivation tank is changed to include all that intermittently give drought stress to the root.

上述の通り、筒状部内で根物作物を栽培することにより、根物作物の根部が曲がったり二股に分かれたりすることを防止でき、直根の収穫物を得ることができる。また、一つの筒状部に一つの植物体を定植することにより、隣接する植物体の根部が絡むことを防止でき、他株の影響による収穫物の形状悪化を防止できる。   As described above, by cultivating the root crop in the tubular portion, it is possible to prevent the root portion of the root crop from being bent or split into two branches, and a straight root crop can be obtained. Moreover, by planting one plant body in one cylindrical part, it can prevent that the root part of an adjacent plant body gets entangled, and can prevent the deterioration of the shape of the crop by the influence of another strain.

加えて、栽培槽内の養液の水位を変動させ、間欠的に根部に乾燥ストレスを与えることにより、細根の発生を抑制し、主根・不定根・根茎・塊茎などの収穫部位を充分に肥大させることができる。   In addition, by changing the water level of the nutrient solution in the cultivation tank and intermittently applying drought stress to the roots, the occurrence of fine roots is suppressed, and the harvested parts such as main roots, adventitious roots, rhizomes and tubers are sufficiently enlarged. be able to.

例えば、栽培槽に定植構造体を設置し、筒状部を、定植構造体に設けられた貫通部に筒状体を挿嵌することにより、若しくは前記定植構造体に略鉛直方向の貫通孔を設けることにより形成されたものを用いて、根物作物の養液栽培を行ってもよい。   For example, by installing a fixed planting structure in a cultivation tank and inserting a cylindrical part into a through part provided in the fixed planting structure, or a through hole in a substantially vertical direction in the fixed planting structure You may perform the hydroponics of a root crop using what was formed by providing.

また、定植構造体を、養液に対して浮遊する軽量部材で形成し、定植構造体を下方に移動させることにより、養液の水位を変動させるようにしてもよい。   Moreover, you may make it fluctuate the water level of a nutrient solution by forming a planting structure with the lightweight member which floats with respect to a nutrient solution, and moving a planting structure downward.

定植構造体を下方に移動させる手段として、例えば、下記(1)又は(2)のいずれかの手段を採用できる。
(1)線状部材を前記定植構造体に張架し、該線状部材の両端を前記栽培槽の略対面する位置に固定するとともに、前記線状部材の少なくとも一端に巻き取り手段を設置し、前記線状部材を巻き取る。
(2)略水平方向に形成された押し下げ部材と、該押し下げ部材を上下へ移動させる昇降手段とを備え、前記昇降手段で前記押し下げ部材を下方へ移動させることにより、前記押し下げ部材が前記定植構造体を押し下げる。
As means for moving the fixed planting structure downward, for example, any one of the following means (1) or (2) can be adopted.
(1) A linear member is stretched over the fixed planting structure, and both ends of the linear member are fixed at positions substantially facing the cultivation tank, and a winding means is installed at at least one end of the linear member. The linear member is wound up.
(2) A push-down member formed in a substantially horizontal direction and an elevating means for moving the push-down member up and down, and the push-down member is moved downward by the elevating means, so that the push-down member becomes the fixed planting structure. Press down on the body.

定植構造体を下方に移動させ養液の水位を変動させることにより、定植構造体の体積分の養液を減量でき、貯液タンクなどの養液関連設備の規模を縮小できる。また、水位を変動させる際のポンプなどが不要になるほか、栽培槽を大型化させても速やかな水位変動が可能になるという利点がある。その他、軽量の部材を用いるため、設置・交換・除去などの取扱いやメンテナンスなどが容易である、水位変動には不充分な給排水設備しか有さない既存の設備(例えば、プール、貯水槽)などにも適用できる、などの利点もある。   By moving the planting structure downward and changing the water level of the nutrient solution, the nutrient solution for the volume of the planting structure can be reduced, and the scale of the nutrient solution-related equipment such as a storage tank can be reduced. In addition, there is an advantage that a pump or the like for changing the water level is unnecessary, and that the water level can be changed quickly even if the cultivation tank is enlarged. In addition, the use of lightweight components makes it easy to handle, maintain, etc., such as installation, replacement, and removal. There is also an advantage that it can be applied to.

その他、この養液栽培方法は、筒状部の長さを延長して養液栽培を行う工程を含んでいてもよい。   In addition, this hydroponics method may include the process of extending the length of a cylindrical part and performing hydroponics.

例えば、根部が栽培槽の底面近くまで伸長した際に、筒状部の上端開口部に延設する内面略筒状の延長部材を設置することにより、若しくは筒状体を長いものと交換することにより、筒状部を栽培槽の深さよりも長く延長して養液栽培を行うことにより、延長した長さだけ、さらに根部を生長・伸長させることができる。これにより、根物作物の場合、根部の伸長にあわせた栽培が可能であり、より長く大きい収穫物を得ることができる。   For example, when the root portion extends near the bottom surface of the cultivation tank, by installing a substantially cylindrical extension member that extends to the upper end opening of the cylindrical portion, or replacing the cylindrical body with a long one By extending the cylindrical part longer than the depth of the cultivation tank and performing hydroponics, the root part can be further grown and extended by the extended length. Thereby, in the case of a root crop, cultivation according to the elongation of the root portion is possible, and a longer and larger crop can be obtained.

水位変動時間は、栽培植物などによって異なるが、例えば、満水位(根部が養液に浸漬された状態)が約5分〜48時間、排水位(根部に乾燥ストレスを負荷した状態)が約5分〜1時間で、満水位と排水位を交互に行うことが好ましい。   Although the water level fluctuation time varies depending on the cultivated plant, for example, the full water level (the state where the root is immersed in the nutrient solution) is about 5 minutes to 48 hours, and the drainage level (the state where the root is subjected to drying stress) is about 5 It is preferable to perform the full water level and the drainage level alternately in minutes to 1 hour.

その他、栽培水位、養液の組成なども、栽培植物に応じて適宜設定する。   In addition, the cultivation water level, the composition of the nutrient solution, and the like are appropriately set according to the cultivated plant.

実施例1では、水位変動法により、カンゾウ属の薬用植物であるウラルカンゾウの栽培を試みた。   In Example 1, an attempt was made to cultivate Ural licorice, a medicinal plant belonging to the genus Licorice, by the water level fluctuation method.

50cm×50cm×50cmの栽培槽内に、直径10cm、高さ50cmの塩化ビニル管を9本、略鉛直方向に立設した。10cm×10cmのプラスチックパネルの中心付近に孔をあけ、ウラルカンゾウの植物体の茎の下の部分ウレタンスポンジなどを巻きつけ、プラスチックパネルの孔に差し込んだ。そのパネルを塩化ビニル管の上端開口部に載置した。   Nine vinyl chloride tubes with a diameter of 10 cm and a height of 50 cm were erected in a substantially vertical direction in a 50 cm × 50 cm × 50 cm cultivation tank. A hole was made in the vicinity of the center of a 10 cm × 10 cm plastic panel, and a partial urethane sponge or the like under the stem of a plant of Ural licorice was wrapped around and inserted into the hole in the plastic panel. The panel was placed in the upper end opening of the vinyl chloride tube.

養液に大塚A処方の等倍養液を用いて、養液水位の干満を繰り返しながら、300日間栽培した。   Cultivated for 300 days using the same nutrient solution of the Otsuka A prescription as the nutrient solution while repeating the trough of the nutrient solution water level.

その結果、全ての株で、根部を肥大させることができた。根の肥大部の収量は、乾燥重量で1株当たり平均200g以上であり、土壌栽培の場合の約20倍だった。   As a result, the root was enlarged in all the strains. The yield of the enlarged part of the root was 200 g or more per strain in terms of dry weight, which was about 20 times that in the case of soil cultivation.

実施例2では、実施例1の養液栽培システムに延長部材を設置して、薬用植物ウラルカンゾウの栽培を継続した。   In Example 2, the extension member was installed in the hydroponic culture system of Example 1, and cultivation of the medicinal plant Ural licorice was continued.

実施例1において、根部が充分に肥大・伸長した株について、塩化ビニル管とプラスチックパネルの間に、直径10cm、高さ5cmの塩化ビニル管を計5本、根部の伸長に応じて順次挟んでいき、栽培を継続した。   In Example 1, for strains with sufficiently enlarged and elongated roots, a total of five vinyl chloride tubes with a diameter of 10 cm and a height of 5 cm were sandwiched between the vinyl chloride tube and the plastic panel in accordance with the elongation of the roots. I went and continued cultivation.

その結果、根部の長さが養液の深さを超えても、根部の肥大・伸長を継続させることができた。特に、根部のうち、満水位の際にも養液に浸漬されない部位についても、肥大・伸長が継続した。   As a result, even if the length of the root part exceeded the depth of the nutrient solution, the enlargement and elongation of the root part could be continued. In particular, enlargement / elongation continued in the root portion of the portion that was not immersed in the nutrient solution even at the full water level.

本発明は、根菜類や、根部を収穫対象とする薬用植物など、いわゆる根物作物の養液栽培に適用できる。上述の通り、養液栽培には、天候の影響が少なく安定的な生産が可能である、収穫・出荷時期を調整できる、養液成分を調整できる、連作障害を予防できる、生育が早く短期間で出荷できる、土壌などの付着がないため簡易に洗浄できる、収穫作業などの労力を軽減できる、などの利点がある。従って、露地栽培の多かった根物作物についても本発明により実用化可能な養液栽培を行うことができるという点で、本発明は産業上有用である。   INDUSTRIAL APPLICABILITY The present invention can be applied to hydroponics of so-called root crops such as root vegetables and medicinal plants whose roots are harvested. As mentioned above, hydroponic cultivation is less affected by the weather and can be stably produced. Harvest and shipping time can be adjusted. There are advantages such as being able to be shipped out, and being able to wash easily because there is no adhesion of soil, etc., and reducing labor such as harvesting work. Therefore, the present invention is industrially useful in that it is possible to perform hydroponic cultivation that can be put to practical use according to the present invention even for root crops that have been heavily cultivated in the open field.

一般的に、薬用植物は、野生のものを収穫して用いる場合が多い。それに対し、近年、一部の薬用植物では、乱獲による環境破壊や資源の枯渇化の問題が顕在化している。本発明は、それらの薬用植物を養液栽培により安定供給できる可能性があるという点でも、産業上有用である。   In general, medicinal plants are often harvested and used in the wild. On the other hand, in some medicinal plants, problems of environmental destruction and resource depletion due to overfishing have become apparent. The present invention is also industrially useful in that there is a possibility that these medicinal plants can be stably supplied by hydroponics.

本発明に係る養液栽培システムの例を示す断面模式図Cross-sectional schematic diagram showing an example of a hydroponic system according to the present invention 本発明に係る養液栽培システムの別の例を示す外観斜視模式図(線状部材を用いて水位変動を行う場合)。The external appearance schematic perspective view which shows another example of the hydroponic cultivation system which concerns on this invention (when performing a water level fluctuation | variation using a linear member). 本発明に係る養液栽培システムの別の例を示す断面模式図(線状部材を用いて水位変動を行う場合)。The cross-sectional schematic diagram which shows another example of the hydroponic cultivation system which concerns on this invention (when changing a water level using a linear member). 本発明に係る養液栽培システムのさらに別の例を示す外観斜視模式図(昇降手段を用いて水位変動を行う場合)。The external appearance schematic perspective view which shows another example of the hydroponic cultivation system which concerns on this invention (when performing a water level fluctuation | variation using a raising / lowering means). 本発明に係る養液栽培システムのさらに別の例を示す断面模式図(昇降手段を用いて水位変動を行う場合)。The cross-sectional schematic diagram which shows another example of the hydroponic cultivation system which concerns on this invention (when changing a water level using a raising / lowering means). 本発明に係る養液栽培システムのさらに別の例を示す断面模式図(気泡供給手段を用いて水位変動を行う場合)。The cross-sectional schematic diagram which shows another example of the hydroponic cultivation system which concerns on this invention (when changing a water level using a bubble supply means). 本発明に係る養液栽培システムに延長部材を設置した例を示す断面模式図。The cross-sectional schematic diagram which shows the example which installed the extension member in the hydroponic cultivation system which concerns on this invention. 二以上の栽培槽を用いて水位を変動させる養液栽培システムの例を示す断面模式図。The cross-sectional schematic diagram which shows the example of the nutrient solution cultivation system which fluctuates a water level using two or more cultivation tanks.

1 栽培槽
2 定植構造体
3 筒状部
31 筒状体
32 支持部材
4 水位変動手段
41 養液供給手段
42 養液排出手段
43 線状部材
46 巻き取り手段
47 押し下げ部材
50 昇降手段
51 空気供給手段
52 開閉手段
53 水位交換手段
54 導水管
6 延長部材
7 充填部材
A 養液栽培システム
G 気体
P 植物体
P1 植物体Pの根部
DESCRIPTION OF SYMBOLS 1 Cultivation tank 2 Fixed planting structure 3 Tubular part 31 Tubular body 32 Support member 4 Water level fluctuation | variation means 41 Nutrient solution supply means 42 Nutrient solution discharge means 43 Linear member 46 Winding means 47 Push-down member 50 Lifting means 51 Air supply means 52 Opening / closing means 53 Water level exchanging means 54 Water guide pipe 6 Extension member 7 Filling member A Hydroponic system G Gas P Plant P1 Root of plant P

Claims (11)

主根を形成する根物作物の養液栽培システムであって、
養液を貯留する栽培槽と、
該栽培槽内に略鉛直方向に形成され、上端開口部に植物体を設置する一又は複数の筒状部と、
前記栽培槽内の養液の水位を変動させる水位変動手段と、を備え
長さが前記主根よりも長く設定された前記筒状部を用いて、根部を前記筒状部の筒内で伸長させる養液栽培システム。
A hydroponics system for root crops that form the main root,
A cultivation tank for storing nutrient solution;
One or a plurality of cylindrical parts that are formed in the cultivation tank in a substantially vertical direction and install a plant in the upper end opening,
Water level variation means for varying the water level of the nutrient solution in the cultivation tank ,
A hydroponic system for extending a root portion within a cylinder of the cylindrical portion using the cylindrical portion whose length is set to be longer than that of the main root .
前記栽培槽に定植構造体が設置され、
前記筒状部が、前記定植構造体に設けられた貫通部に筒状体を挿嵌することにより、若しくは前記定植構造体に略鉛直方向の貫通孔を設けることにより形成された請求項1記載の養液栽培システム。
A planting structure is installed in the cultivation tank,
The said cylindrical part was formed by inserting a cylindrical body in the penetration part provided in the said fixed planting structure, or providing the through-hole of a substantially perpendicular direction in the said fixed planting structure. Hydroponics system.
前記定植構造体が前記養液に対して浮遊する軽量部材で形成され、
該定植構造体を下方に移動させることにより、養液の水位を変動させる前記水位変動手段を備えた請求項2記載の養液栽培システム。
The planting structure is formed of a lightweight member that floats against the nutrient solution,
The hydroponic culture system according to claim 2, comprising the water level changing means for changing the water level of the nutrient solution by moving the fixed planting structure downward.
前記定植構造体を下方に移動させる手段として、下記(1)又は(2)のいずれかの構成を備えた請求項3記載の養液栽培システム。
(1)線状部材を前記定植構造体に張架し、該線状部材の両端を前記栽培槽の略対面する位置に固定するとともに、前記線状部材の少なくとも一端に巻き取り手段を設置し、前記線状部材を巻き取ることにより前記定植構造体を下方に移動させる構成。
(2)略水平方向に形成された押し下げ部材と、該押し下げ部材を上下へ移動させる昇降手段とを備え、前記昇降手段で前記押し下げ部材を下方へ移動させることにより、前記押し下げ部材が前記定植構造体を押し下げる構成。
The hydroponic system according to claim 3, comprising any one of the following (1) and (2) as means for moving the planting structure downward.
(1) A linear member is stretched over the fixed planting structure, and both ends of the linear member are fixed at positions substantially facing the cultivation tank, and a winding means is installed at at least one end of the linear member. The structure which moves the said fixed planting structure downward by winding up the said linear member.
(2) A push-down member formed in a substantially horizontal direction and an elevating means for moving the push-down member up and down, and the push-down member is moved downward by the elevating means, so that the push-down member becomes the fixed planting structure. Configuration that pushes down the body.
前記筒状部の上端開口部に延設する内面略筒状の延長部材を設置することにより、若しくは前記筒状体を長いものと交換することにより、前記筒状部の長さを延長できる構成を備えた請求項2〜4のいずれか一項記載の養液栽培システム。   A configuration in which the length of the cylindrical portion can be extended by installing a substantially cylindrical extension member that extends to the upper end opening of the cylindrical portion, or by replacing the cylindrical body with a long one. The hydroponic cultivation system according to any one of claims 2 to 4, comprising: 前記栽培槽内に、所定の容積を有する充填部材を設置した請求項1〜5のいずれか一項記載の養液栽培システム。   The hydroponic system according to any one of claims 1 to 5, wherein a filling member having a predetermined volume is installed in the cultivation tank. 主根を形成する根物作物の養液栽培方法であって、
養液を貯留する栽培槽内に一又は複数の筒状部を略鉛直方向に形成し、
筒状部の上端開口部に植物体を設置し、
前記筒状部の長さを前記主根よりも長く設定して根部が該筒状部内を伸長するようにし、
前記栽培槽内の養液の水位を変動させ、間欠的に根部に乾燥ストレスを与える養液栽培方法。
A hydroponics method for root crops forming the main root,
Forming one or a plurality of cylindrical portions in a substantially vertical direction in the cultivation tank storing the nutrient solution,
The plants were placed on the upper end opening of the tubular portion,
The length of the cylindrical part is set longer than the main root so that the root part extends in the cylindrical part,
A hydroponic cultivation method that fluctuates the water level of the nutrient solution in the cultivation tank and intermittently applies drought stress to the roots.
前記栽培槽に定植構造体を設置し、
前記筒状部を、前記定植構造体に設けられた貫通部に筒状体を挿嵌することにより、若しくは前記定植構造体に略鉛直方向の貫通孔を設けることにより形成する請求項7記載の養液栽培方法。
Install a planting structure in the cultivation tank,
The said cylindrical part is formed by inserting a cylindrical body in the penetration part provided in the said fixed planting structure, or providing the through-hole of a substantially perpendicular direction in the said fixed planting structure. Hydroponic cultivation method.
前記定植構造体を、前記養液に対して浮遊する軽量部材で形成し、
該定植構造体を下方に移動させることにより、養液の水位を変動させる請求項8記載の養液栽培方法。
The fixed planting structure is formed of a lightweight member that floats with respect to the nutrient solution,
The hydroponic cultivation method according to claim 8, wherein the water level of the nutrient solution is changed by moving the fixed planting structure downward.
下記(1)又は(2)のいずれかの手段により、前記定植構造体を下方に移動させる請求項9記載の養液栽培方法。
(1)線状部材を前記定植構造体に張架し、該線状部材の両端を前記栽培槽の略対面する位置に固定するとともに、前記線状部材の少なくとも一端に巻き取り手段を設置し、前記線状部材を巻き取る。
(2)略水平方向に形成された押し下げ部材と、該押し下げ部材を上下へ移動させる昇降手段とを備え、前記昇降手段で前記押し下げ部材を下方へ移動させることにより、前記押し下げ部材が前記定植構造体を押し下げる。
The hydroponic cultivation method according to claim 9, wherein the planted structure is moved downward by any one of the following (1) or (2).
(1) A linear member is stretched over the fixed planting structure, and both ends of the linear member are fixed at positions substantially facing the cultivation tank, and a winding means is installed at at least one end of the linear member. The linear member is wound up.
(2) A push-down member formed in a substantially horizontal direction and an elevating means for moving the push-down member up and down, and the push-down member is moved downward by the elevating means, so that the push-down member becomes the fixed planting structure. Press down on the body.
前記筒状部の長さを延長して養液栽培を行う工程を含む請求項7〜10のいずれか一項記載の養液栽培方法。   The hydroponics method as described in any one of Claims 7-10 including the process of extending the length of the said cylindrical part and performing hydroponics.
JP2010250701A 2010-11-09 2010-11-09 Hydroponic cultivation system and hydroponic cultivation method Active JP5611777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010250701A JP5611777B2 (en) 2010-11-09 2010-11-09 Hydroponic cultivation system and hydroponic cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010250701A JP5611777B2 (en) 2010-11-09 2010-11-09 Hydroponic cultivation system and hydroponic cultivation method

Publications (3)

Publication Number Publication Date
JP2012100573A JP2012100573A (en) 2012-05-31
JP2012100573A5 JP2012100573A5 (en) 2013-06-20
JP5611777B2 true JP5611777B2 (en) 2014-10-22

Family

ID=46391812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010250701A Active JP5611777B2 (en) 2010-11-09 2010-11-09 Hydroponic cultivation system and hydroponic cultivation method

Country Status (1)

Country Link
JP (1) JP5611777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101823799B1 (en) 2013-09-12 2018-01-30 파나소닉 아이피 매니지먼트 가부시키가이샤 Hydroponic cultivation apparatus and hydroponic cultivation method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6255645B2 (en) * 2013-02-19 2018-01-10 株式会社グリーンイノベーション How to collect licorice foliage
JP5662513B2 (en) 2013-04-25 2015-01-28 パナソニックIpマネジメント株式会社 Hydroponics apparatus and hydroponics method
JP6530584B2 (en) * 2013-08-27 2019-06-12 公益財団法人ヒューマンサイエンス振興財団 Method of producing seedlings of licorice genus plant
JP2015139411A (en) * 2014-01-29 2015-08-03 パナソニックIpマネジメント株式会社 Water culture medium and water culture device using the same
JP7064960B2 (en) * 2018-05-25 2022-05-11 株式会社クラレ Cultivation method and cultivation equipment
CN109206188A (en) * 2018-12-03 2019-01-15 九州天润(武汉)中药研究院有限公司 A kind of mill water culture nutrient solution and its ciltivating process of Herba Epimedii
CN110432100B (en) * 2019-09-11 2024-10-29 上海市农业生物基因中心 Rice double-cylinder drought resistance identification device and method based on deep and shallow layer root stress treatment
KR102539576B1 (en) * 2020-10-21 2023-06-05 이경재 Turbo type automatic irrigating apparatus for supplying a mixture of water and medicinal fluid
JP7153098B2 (en) * 2021-02-05 2022-10-13 株式会社 アーバングリーンコンポジション Hydroponic cultivation device with low water level adjustment mechanism
GB2604112B (en) * 2021-02-23 2023-05-31 Lazyscrog Ltd An apparatus for maintaining a plant
JP7689011B2 (en) * 2021-04-22 2025-06-05 前澤化成工業株式会社 plant growing equipment
JP7276907B2 (en) * 2021-06-21 2023-05-18 株式会社エコタイプ次世代植物工場 Panax ginseng hydroponics method
KR102770929B1 (en) * 2021-12-02 2025-02-25 대한민국 Tree nursery system with stimulating root apical meristem function
CN114568280B (en) * 2022-03-29 2022-12-16 浙江大学 Water-saving, light, simple and high-efficiency facility fruit and vegetable substrate cultivation system
CN115885835B (en) * 2022-10-25 2023-06-16 枣庄市城乡规划事业发展中心 Urban planning artificial ecological green island

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118280Y2 (en) * 1974-11-18 1976-05-15
JPS5242836U (en) * 1975-09-22 1977-03-26
JPS5944255U (en) * 1982-09-17 1984-03-23 株式会社日立製作所 plant support equipment
JP3343580B2 (en) * 1996-06-13 2002-11-11 独立行政法人 農業技術研究機構 How to cultivate burdock

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101823799B1 (en) 2013-09-12 2018-01-30 파나소닉 아이피 매니지먼트 가부시키가이샤 Hydroponic cultivation apparatus and hydroponic cultivation method

Also Published As

Publication number Publication date
JP2012100573A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5611777B2 (en) Hydroponic cultivation system and hydroponic cultivation method
JP5633666B2 (en) Cultivation apparatus and cultivation method
Waiba et al. Soil-less vegetable cultivation: A review
CN101755633A (en) Plant cultivation trough
CN106305193A (en) Planting frame and cultivation technology for cultivating dendrobium officinale by planting frame
CN105191691A (en) Depth-adjustable submerged plant planting plate
Urrestarazu et al. Sustainable green walls in architecture
KR101154680B1 (en) An Apparatus of Vertical Plant Growing-up as Environment-friendly High Yield
CN106804154A (en) One kind greening culture net and preparation method thereof and application method
JP5930211B2 (en) Medicinal plant cultivation apparatus and cultivation method
CN201003160Y (en) Sand-pressing sand-prevention ecological environment protection net rack system
CN113966711B (en) Underground drip irrigation type desert tree planting system
EP3836777B1 (en) Device for plant
CN210406370U (en) Self-filtering water storage and planting aids
CN204392945U (en) A kind of soybean salt-tolerance and Saline alkali tolerance screening plant
CN101107914A (en) Five parts integrated combined type ecological greenhouse
CN108739550B (en) Vegetable-worm-fish co-cropping method for upside-down integrated three-dimensional planting
CN105144932B (en) A multifunctional agricultural device suitable for mountainous and hilly areas
CN107466716A (en) The cultural method of dendrobium candidum
JP2001275502A (en) Agricultural method of water surface floating bed type
CN208639114U (en) External tree planting structure of rock slope
CN208286087U (en) Water-gas circulation formula sand culture implant system
CN107494238B (en) Method for constructing net rack platform type water forest or flower orchard
JP7545735B2 (en) Floating plant care platform
KR20150011992A (en) Water bottle for raising seedlings

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140903

R150 Certificate of patent or registration of utility model

Ref document number: 5611777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250