[go: up one dir, main page]

JP5609386B2 - Variable magnification optical system, optical device - Google Patents

Variable magnification optical system, optical device Download PDF

Info

Publication number
JP5609386B2
JP5609386B2 JP2010171323A JP2010171323A JP5609386B2 JP 5609386 B2 JP5609386 B2 JP 5609386B2 JP 2010171323 A JP2010171323 A JP 2010171323A JP 2010171323 A JP2010171323 A JP 2010171323A JP 5609386 B2 JP5609386 B2 JP 5609386B2
Authority
JP
Japan
Prior art keywords
lens group
lens
end state
refractive power
thirty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010171323A
Other languages
Japanese (ja)
Other versions
JP2012032561A (en
Inventor
昭彦 小濱
昭彦 小濱
規和 横井
規和 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010171323A priority Critical patent/JP5609386B2/en
Priority to US13/194,890 priority patent/US9523843B2/en
Priority to CN201110220267.8A priority patent/CN102346293B/en
Publication of JP2012032561A publication Critical patent/JP2012032561A/en
Application granted granted Critical
Publication of JP5609386B2 publication Critical patent/JP5609386B2/en
Priority to US15/359,227 priority patent/US10203488B2/en
Priority to US16/237,601 priority patent/US10895721B2/en
Priority to US17/122,824 priority patent/US11579421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明は、変倍光学系とこれを有する光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.

従来、一眼レフカメラ用交換レンズなどに用いられる変倍光学系として、最も物体側のレンズ群が正屈折力を有する光学系が数多く提案されている(例えば、特許文献1を参照)。   Conventionally, as a variable magnification optical system used for an interchangeable lens for a single-lens reflex camera or the like, many optical systems in which the lens group closest to the object side has a positive refractive power have been proposed (for example, see Patent Document 1).

特開2008−3195号公報JP 2008-3195 A

従来の変倍光学系をさらに高変倍化しようとすると、収差変動が増大し、十分に高い光学性能を得ることが困難であった。   If the conventional variable magnification optical system is further increased in magnification, aberration fluctuations increase, making it difficult to obtain sufficiently high optical performance.

本発明は、上記問題に鑑みてなされたものであり、収差変動を抑え、高い光学性能を有する変倍光学系とこれを有する光学装置、変倍光学系の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a variable magnification optical system that suppresses aberration fluctuation and has high optical performance, an optical apparatus having the same, and a method for manufacturing the variable magnification optical system. To do.

上記課題を解決するために、本発明は、
光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群からなり
前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、正屈折力の第32レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が減少する光学系全体で実質的に4個のレンズ群からなり、
または、前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、負屈折力の第32レンズ群と、正屈折力の第33レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が変化し、前記第32レンズ群と前記第33レンズ群との間隔が変化する光学系全体で実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、
前記第1レンズ群は以下の条件式を満足する複数の正レンズを有し、
前記第1レンズ群中の前記複数の正レンズは2枚であり、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
ndA≧1.540の時 νdA>66.5
ndA<1.540の時 νdA>75.0
5.569≦f1/fw<11.00
0.28<f1/ft<0.48
但し、
ndA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対する屈折率
νdA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対するアッベ数
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
f1:前記第1レンズ群の焦点距離
また、本発明は、
光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群からなり、
前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、正屈折力の第32レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が減少する光学系全体で実質的に4個のレンズ群からなり、
または、前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、負屈折力の第32レンズ群と、正屈折力の第33レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が変化し、前記第32レンズ群と前記第33レンズ群との間隔が変化する光学系全体で実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、
前記第1レンズ群は以下の条件式を満足する複数の正レンズを有し、
前記第1レンズ群中の前記複数の正レンズは2枚であり、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
ndA≧1.540の時 νdA>66.5
ndA<1.540の時 νdA>75.0
5.569≦f1/fw<11.00
0.28<f1/ft<0.52
0.65<f1A/f1<1.75
但し、
ndA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対する屈折率
νdA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対するアッベ数
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
f1:前記第1レンズ群の焦点距離
f1A:前記第1レンズ群中の前記複数の正レンズの焦点距離
また、本発明は、
光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群からなり、
前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、正屈折力の第32レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が減少する光学系全体で実質的に4個のレンズ群からなり、
または、前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、負屈折力の第32レンズ群と、正屈折力の第33レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が変化し、前記第32レンズ群と前記第33レンズ群との間隔が変化する光学系全体で実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、
前記第1レンズ群は以下の条件式を満足する複数の正レンズを有し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
ndA≧1.540の時 νdA>66.5
ndA<1.540の時 νdA>75.0
5.569≦f1/fw<11.00
0.28<f1/ft<0.48
0.25<Δ1/f1<1.10
但し、
ndA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対する屈折率
νdA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対するアッベ数
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
f1:前記第1レンズ群の焦点距離
Δ1:広角端状態から望遠端状態までの像面に対する前記第1レンズ群の移動量
また、本発明は、
光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群からなり、
前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、正屈折力の第32レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が減少する光学系全体で実質的に4個のレンズ群からなり、
または、前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、負屈折力の第32レンズ群と、正屈折力の第33レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が変化し、前記第32レンズ群と前記第33レンズ群との間隔が変化する光学系全体で実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、
前記第1レンズ群は以下の条件式を満足する複数の正レンズを有し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
ndA≧1.540の時 νdA>66.5
ndA<1.540の時 νdA>75.0
5.569≦f1/fw<11.00
0.28<f1/ft<0.52
0.25<Δ1/f1<1.10
0.65<f1A/f1<1.75
但し、
ndA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対する屈折率
νdA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対するアッベ数
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
f1:前記第1レンズ群の焦点距離
Δ1:広角端状態から望遠端状態までの像面に対する前記第1レンズ群の移動量
f1A:前記第1レンズ群中の前記複数の正レンズの焦点距離
また、本発明は、
光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群からなり、
前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、正屈折力の第32レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が減少する光学系全体で実質的に4個のレンズ群からなり、
または、前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、負屈折力の第32レンズ群と、正屈折力の第33レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が変化し、前記第32レンズ群と前記第33レンズ群との間隔が変化する光学系全体で実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、
前記第1レンズ群は以下の条件式を満足する複数の正レンズを有し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
ndA≧1.540の時 νdA>66.5
ndA<1.540の時 νdA>75.0
5.569≦f1/fw<11.00
0.28<f1/ft<0.44
但し、
ndA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対する屈折率
νdA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対するアッベ数
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
f1:前記第1レンズ群の焦点距離
In order to solve the above problems, the present invention provides:
In order from the object side along the optical axis, it becomes a first lens group having a positive refractive power, a second lens group having negative refractive power, a third lens group having positive refractive power,
The third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power and a 32nd lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the entire optical system in which the distance between the thirty-first lens group and the thirty-second lens group decreases substantially consists of four lens groups,
Alternatively, the third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power, a 32nd lens group having a negative refractive power, and a 33rd lens group having a positive refractive power,
An optical system in which the distance between the thirty-first lens group and the thirty-second lens group changes and the distance between the thirty-second lens group and the thirty-third lens group changes upon zooming from the wide-angle end state to the telephoto end state. It consists essentially of 5 lens groups,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases.
The first lens group has a plurality of positive lenses that satisfy the following conditional expression:
The plurality of positive lenses in the first lens group is two,
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
When ndA ≧ 1.540, νdA> 66.5
When ndA <1.540 νdA> 75.0
5.569 ≦ f1 / fw <11.00
0.28 <f1 / ft < 0.48
However,
ndA: Refractive index νdA for the material of the plurality of positive lenses in the first lens group νdA: Abbe number fw for the material of the plurality of positive lenses in the first lens group fw: in the wide-angle end state Focal length ft of the entire zooming optical system: focal length f1 of the entire zooming optical system in the telephoto end state f1: Focal length of the first lens group
The present invention also provides:
In order from the object side along the optical axis, the first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
The third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power and a 32nd lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the entire optical system in which the distance between the thirty-first lens group and the thirty-second lens group decreases substantially consists of four lens groups,
Alternatively, the third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power, a 32nd lens group having a negative refractive power, and a 33rd lens group having a positive refractive power,
An optical system in which the distance between the thirty-first lens group and the thirty-second lens group changes and the distance between the thirty-second lens group and the thirty-third lens group changes upon zooming from the wide-angle end state to the telephoto end state. It consists essentially of 5 lens groups,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases.
The first lens group has a plurality of positive lenses that satisfy the following conditional expression:
The plurality of positive lenses in the first lens group is two,
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
When ndA ≧ 1.540, νdA> 66.5
When ndA <1.540 νdA> 75.0
5.569 ≦ f1 / fw <11.00
0.28 <f1 / ft <0.52
0.65 <f1A / f1 <1.75
However,
ndA: refractive index with respect to d-line of the materials of the plurality of positive lenses in the first lens group
νdA: Abbe number for the d-line of the materials of the plurality of positive lenses in the first lens group
fw: focal length of the entire zoom optical system in the wide-angle end state
ft: focal length of the entire zoom optical system in the telephoto end state
f1: Focal length of the first lens group
f1A: focal lengths of the plurality of positive lenses in the first lens group
The present invention also provides:
In order from the object side along the optical axis, the first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
The third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power and a 32nd lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the entire optical system in which the distance between the thirty-first lens group and the thirty-second lens group decreases substantially consists of four lens groups,
Alternatively, the third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power, a 32nd lens group having a negative refractive power, and a 33rd lens group having a positive refractive power,
An optical system in which the distance between the thirty-first lens group and the thirty-second lens group changes and the distance between the thirty-second lens group and the thirty-third lens group changes upon zooming from the wide-angle end state to the telephoto end state. It consists essentially of 5 lens groups,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases.
The first lens group has a plurality of positive lenses that satisfy the following conditional expression:
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
When ndA ≧ 1.540, νdA> 66.5
When ndA <1.540 νdA> 75.0
5.569 ≦ f1 / fw <11.00
0.28 <f1 / ft <0.48
0.25 <Δ1 / f1 <1.10
However,
ndA: refractive index with respect to d-line of the materials of the plurality of positive lenses in the first lens group
νdA: Abbe number for the d-line of the materials of the plurality of positive lenses in the first lens group
fw: focal length of the entire zoom optical system in the wide-angle end state
ft: focal length of the entire zoom optical system in the telephoto end state
f1: Focal length of the first lens group
Δ1: Amount of movement of the first lens group with respect to the image plane from the wide-angle end state to the telephoto end state
The present invention also provides:
In order from the object side along the optical axis, the first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
The third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power and a 32nd lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the entire optical system in which the distance between the thirty-first lens group and the thirty-second lens group decreases substantially consists of four lens groups,
Alternatively, the third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power, a 32nd lens group having a negative refractive power, and a 33rd lens group having a positive refractive power,
An optical system in which the distance between the thirty-first lens group and the thirty-second lens group changes and the distance between the thirty-second lens group and the thirty-third lens group changes upon zooming from the wide-angle end state to the telephoto end state. It consists essentially of 5 lens groups,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases.
The first lens group has a plurality of positive lenses that satisfy the following conditional expression:
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
When ndA ≧ 1.540, νdA> 66.5
When ndA <1.540 νdA> 75.0
5.569 ≦ f1 / fw <11.00
0.28 <f1 / ft <0.52
0.25 <Δ1 / f1 <1.10
0.65 <f1A / f1 <1.75
However,
ndA: refractive index with respect to d-line of the materials of the plurality of positive lenses in the first lens group
νdA: Abbe number for the d-line of the materials of the plurality of positive lenses in the first lens group
fw: focal length of the entire zoom optical system in the wide-angle end state
ft: focal length of the entire zoom optical system in the telephoto end state
f1: Focal length of the first lens group
Δ1: Amount of movement of the first lens group with respect to the image plane from the wide-angle end state to the telephoto end state
f1A: focal lengths of the plurality of positive lenses in the first lens group
The present invention also provides:
In order from the object side along the optical axis, the first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
The third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power and a 32nd lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the entire optical system in which the distance between the thirty-first lens group and the thirty-second lens group decreases substantially consists of four lens groups,
Alternatively, the third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power, a 32nd lens group having a negative refractive power, and a 33rd lens group having a positive refractive power,
An optical system in which the distance between the thirty-first lens group and the thirty-second lens group changes and the distance between the thirty-second lens group and the thirty-third lens group changes upon zooming from the wide-angle end state to the telephoto end state. It consists essentially of 5 lens groups,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases.
The first lens group has a plurality of positive lenses that satisfy the following conditional expression:
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
When ndA ≧ 1.540, νdA> 66.5
When ndA <1.540 νdA> 75.0
5.569 ≦ f1 / fw <11.00
0.28 <f1 / ft <0.44
However,
ndA: refractive index with respect to d-line of the materials of the plurality of positive lenses in the first lens group
νdA: Abbe number for the d-line of the materials of the plurality of positive lenses in the first lens group
fw: focal length of the entire zoom optical system in the wide-angle end state
ft: focal length of the entire zoom optical system in the telephoto end state
f1: Focal length of the first lens group

また、本発明は、前記変倍光学系を有することを特徴とする光学装置を提供する。   The present invention also provides an optical apparatus comprising the variable magnification optical system.

本発明によれば、収差変動を抑え、高い光学性能を有する変倍光学系とこれを有する光学装置、変倍光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide a variable magnification optical system that suppresses aberration fluctuation and has high optical performance, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.

第1実施例に係る変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system which concerns on 1st Example. 第1実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberration diagrams in the infinite focus state of the variable magnification optical system according to the first example are shown, (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is a telephoto end state. Show. 第2実施例に係る変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system which concerns on 2nd Example. 第2実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberration diagrams in the infinite focus state of the variable magnification optical system according to the second example are shown, (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is a telephoto end state. Show. 第3実施例に係る変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system which concerns on 3rd Example. 第3実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 5A illustrates various aberration diagrams of the variable magnification optical system according to Example 3 in an infinitely focused state, where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is a telephoto end state. Show. 第4実施例に係る変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system which concerns on 4th Example. 第4実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 5A illustrates various aberration diagrams of the zoom optical system according to Example 4 in an infinitely focused state, where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is a telephoto end state. Show. 第1実施例に係る変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system which concerns on 1st Example. 本願の変倍光学系の製造方法を示す図である。It is a figure which shows the manufacturing method of the variable magnification optical system of this application.

以下、本願の一実施形態に係る変倍光学系について説明する。   Hereinafter, a variable magnification optical system according to an embodiment of the present application will be described.

本実施形態に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有し、広角端状態から望遠端状態への変倍に際し、第1レンズ群と第2レンズ群との間隔は増大し、第2レンズ群と第3レンズ群との間隔は減少する構成とすることで、変倍可能な光学系を実現し、同時に変倍に伴う歪曲収差の変動を抑えている。   The variable magnification optical system according to this embodiment includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. And the distance between the first lens group and the second lens group increases and the distance between the second lens group and the third lens group decreases during zooming from the wide-angle end state to the telephoto end state. By doing so, an optical system capable of zooming is realized, and at the same time, fluctuations in distortion due to zooming are suppressed.

また、本実施形態に係る変倍光学系は、第1レンズ群は以下の条件式(1)を満足する複数の正レンズを有し、以下の条件式(2)、(3)を満足する。
(1) ndA≧1.540の時 νdA>66.5
ndA<1.540の時 νdA>75.0
(2) 4.75<f1/fw<11.00
(3) 0.28<f1/ft<0.52
但し、ndAは第1レンズ群中の複数の正レンズの材質のd線(波長λ=587.6nm)に対する屈折率、νdAは第1レンズ群中の複数の正レンズの材質のd線(波長λ=587.6nm)に対するアッベ数、fwは広角端状態における変倍光学系全系の焦点距離、ftは望遠端状態における変倍光学系全系の焦点距離、f1は第1レンズ群の焦点距離である。
In the variable magnification optical system according to the present embodiment, the first lens group includes a plurality of positive lenses that satisfy the following conditional expression (1), and the following conditional expressions (2) and (3) are satisfied. .
(1) When ndA ≧ 1.540 νdA> 66.5
When ndA <1.540 νdA> 75.0
(2) 4.75 <f1 / fw <11.00
(3) 0.28 <f1 / ft <0.52
Where ndA is the refractive index for the d-line (wavelength λ = 587.6 nm) of the plurality of positive lenses in the first lens group, and νdA is the d-line (wavelength of the plurality of positive lenses in the first lens group). Abbe number for λ = 587.6 nm), fw is the focal length of the entire zooming optical system in the wide-angle end state, ft is the focal length of the entire zooming optical system in the telephoto end state, and f1 is the focal point of the first lens group Distance.

条件式(1)は、第1レンズ群中の複数の正レンズの材質の最適なアッベ数を規定し、広角端から望遠端への変倍に際して発生する色収差変動を抑えて高い光学性能を実現するための条件式である。   Conditional expression (1) defines the optimal Abbe number of the materials of the plurality of positive lenses in the first lens group, and achieves high optical performance by suppressing chromatic aberration fluctuations that occur during zooming from the wide-angle end to the telephoto end. This is a conditional expression.

条件式(1)の下限値を下回った場合、軸上色収差と倍率色収差の変動を抑えることが困難となり、また材質の異常分散性が少ない材質となるため2次色収差の変動を抑えることが困難なことに加え、特に望遠端における軸上色収差と倍率色収差の可視光領域における量が大きくなって、高い光学性能を実現できない。   If the lower limit value of conditional expression (1) is not reached, it will be difficult to suppress fluctuations in axial chromatic aberration and lateral chromatic aberration, and it will be difficult to suppress fluctuations in secondary chromatic aberration because the material will have less anomalous dispersion. In addition, the amount of axial chromatic aberration and lateral chromatic aberration in the visible light region is particularly large at the telephoto end, and high optical performance cannot be realized.

なお、実施形態の効果を確実にするために、ndA≧1.540の時、条件式(1)の下限値を67.5とすることが好ましい。また、実施形態の効果を確実にするために、ndA<1.540の時、条件式(1)の下限値を80.5とすることが好ましい。   In order to secure the effect of the embodiment, when ndA ≧ 1.540, it is preferable to set the lower limit of conditional expression (1) to 67.5. In order to secure the effect of the embodiment, when ndA <1.540, it is preferable to set the lower limit of conditional expression (1) to 80.5.

条件式(2)は、第1レンズ群の最適な焦点距離範囲を規定し、広角端から望遠端への変倍に際して発生する色収差と軸外収差の変動を抑えて高い光学性能を実現するための条件式である。   Conditional expression (2) defines the optimum focal length range of the first lens group, and realizes high optical performance by suppressing variations in chromatic aberration and off-axis aberration that occur during zooming from the wide-angle end to the telephoto end. This is a conditional expression.

条件式(2)の下限値を下回った場合、第1レンズ群の屈折力が過度に強くなり、倍率色収差と軸外収差、特に非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。   If the lower limit value of conditional expression (2) is not reached, the refractive power of the first lens group becomes excessively strong, making it difficult to suppress lateral chromatic aberration and off-axis aberrations, particularly astigmatism fluctuations, resulting in high optical performance. Cannot be realized.

条件式(2)の上限値を上回った場合、第1レンズ群の屈折力が過度に弱くなるため、所定の変倍比を得るためには第1レンズ群の像面に対する移動量を増やす必要が出てくる。すると、広角端から望遠端への変倍に際して軸外光束の通る光軸からの高さの変動が大きくなるため、倍率色収差と軸外収差、特に非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。   When the upper limit value of conditional expression (2) is exceeded, the refractive power of the first lens group becomes excessively weak, so that the amount of movement of the first lens group relative to the image plane needs to be increased in order to obtain a predetermined zoom ratio. Comes out. Then, when changing the magnification from the wide-angle end to the telephoto end, the variation in height from the optical axis through which the off-axis light beam passes becomes large, so it becomes difficult to suppress the variation in lateral chromatic aberration and off-axis aberration, particularly astigmatism, High optical performance cannot be realized.

なお、実施形態の効果を確実にするために、条件式(2)の下限値を5.10とすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (2) to 5.10.

また、実施形態の効果を確実にするために、条件式(2)の上限値を8.80とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(2)の上限値を7.60とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (2) to 8.80. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (2) to 7.60.

条件式(3)は、第1レンズ群の最適な焦点距離範囲を規定し、広角端から望遠端への変倍に際して発生する色収差と軸外収差の変動を抑えて高い光学性能を実現するための条件式である。   Conditional expression (3) defines the optimum focal length range of the first lens group, and realizes high optical performance by suppressing variations in chromatic aberration and off-axis aberration that occur during zooming from the wide-angle end to the telephoto end. This is a conditional expression.

条件式(3)の下限値を下回った場合、第1レンズ群の屈折力が過度に強くなり、軸上色収差と球面収差の変動を抑えることが困難となり、高い光学性能を実現できない。   If the lower limit value of conditional expression (3) is not reached, the refractive power of the first lens group becomes excessively strong, making it difficult to suppress fluctuations in longitudinal chromatic aberration and spherical aberration, and high optical performance cannot be realized.

条件式(3)の上限値を上回った場合、第1レンズ群の屈折力が過度に弱くなるため、所定の変倍比を得るためには第1レンズ群の像面に対する移動量を増やす必要が出てくる。すると、広角端から望遠端への変倍に際して軸外光束の通る光軸からの高さの変動が大きくなるため、倍率色収差と軸外収差、特に非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。   If the upper limit value of conditional expression (3) is exceeded, the refractive power of the first lens group becomes excessively weak, so that the amount of movement of the first lens group relative to the image plane needs to be increased in order to obtain a predetermined zoom ratio. Comes out. Then, when changing the magnification from the wide-angle end to the telephoto end, the variation in height from the optical axis through which the off-axis light beam passes becomes large, so it becomes difficult to suppress the variation in lateral chromatic aberration and off-axis aberration, particularly astigmatism, High optical performance cannot be realized.

なお、実施形態の効果を確実にするために、条件式(3)の下限値を0.31とすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (3) to 0.31.

また、実施形態の効果を確実にするために、条件式(3)の上限値を0.48とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(3)の上限値を0.44とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (3) to 0.48. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (3) to 0.44.

また、本実施形態に係る変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 0.25<Δ1/f1<1.10
但し、Δ1は広角端状態から望遠端状態までの像面に対する第1レンズ群の移動量である。
In addition, it is desirable that the variable magnification optical system according to the present embodiment satisfies the following conditional expression (4).
(4) 0.25 <Δ1 / f1 <1.10
However, Δ1 is the amount of movement of the first lens group with respect to the image plane from the wide-angle end state to the telephoto end state.

条件式(4)は、第1レンズ群の広角端から望遠端までの像面に対する最適な移動量を規定し、変倍に際して発生する色収差と軸外収差の変動を抑えて高い光学性能を実現するための条件式である。   Conditional expression (4) defines the optimum amount of movement of the first lens group from the wide-angle end to the telephoto end, and achieves high optical performance by suppressing variations in chromatic and off-axis aberrations that occur during zooming. This is a conditional expression.

条件式(4)の下限値を下回った場合、第1レンズ群の移動量が過度に少なくなるため、所定の変倍比を得るためには第1レンズ群の屈折力を増やす必要が出てくる。すると、広角端から望遠端への変倍に際して軸外光束の通る光軸からの高さの変動にともなう屈折力変化が過度に大きくなるため、倍率色収差と軸外収差、特に非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。   If the lower limit value of conditional expression (4) is not reached, the amount of movement of the first lens group becomes excessively small, so that it is necessary to increase the refractive power of the first lens group in order to obtain a predetermined zoom ratio. come. Then, when the magnification is changed from the wide-angle end to the telephoto end, the refractive power change due to the change in the height from the optical axis through which the off-axis light beam passes becomes excessively large, and therefore the lateral chromatic aberration and off-axis aberration, especially astigmatism fluctuation It is difficult to suppress this, and high optical performance cannot be realized.

条件式(4)の上限値を上回った場合、第1レンズ群の像面に対する移動量が過度に大きくなり、広角端から望遠端への変倍に際して軸外光束の通る光軸からの高さの変動が大きくなるため、倍率色収差と軸外収差、特に非点収差の変動を抑えることが困難となって、高い光学性能を実現できない。   When the upper limit of conditional expression (4) is exceeded, the amount of movement of the first lens group relative to the image plane becomes excessively large, and the height from the optical axis through which the off-axis light beam passes during zooming from the wide-angle end to the telephoto end. Therefore, it becomes difficult to suppress variations in lateral chromatic aberration and off-axis aberration, particularly astigmatism, and high optical performance cannot be realized.

なお、実施形態の効果を確実にするために、条件式(4)の下限値を0.36とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(4)の下限値を0.48とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (4) to 0.36. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (4) to 0.48.

また、実施形態の効果を確実にするために、条件式(4)の上限値を0.95とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(4)の上限値を0.85とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (4) to 0.95. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (4) to 0.85.

また、本実施形態に係る変倍光学系は、以下の条件式(5)を満足することが望ましい。
(5) 0.65<f1A/f1<1.75
但し、f1Aは第1レンズ群中の複数の正レンズの焦点距離である。
In addition, it is desirable that the variable magnification optical system according to the present embodiment satisfies the following conditional expression (5).
(5) 0.65 <f1A / f1 <1.75
Here, f1A is the focal length of a plurality of positive lenses in the first lens group.

条件式(5)は、第1レンズ群中の複数の正レンズそれぞれの最適な焦点距離を規定し、変倍に際して発生する色収差と軸外収差の変動を抑えて高い光学性能を実現するための条件式である。   Conditional expression (5) defines the optimum focal length of each of the plurality of positive lenses in the first lens group, and achieves high optical performance by suppressing variations in chromatic aberration and off-axis aberration that occur during zooming. Conditional expression.

条件式(5)の下限値を下回った場合、複数の正レンズの屈折力が過度に強くなるため、広角端から望遠端への変倍に際して軸外光束の通る光軸からの高さの変動にともなう屈折力変化が過度に大きくなり、倍率色収差と軸外収差、特に非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。   If the lower limit of conditional expression (5) is not reached, the refractive power of a plurality of positive lenses becomes excessively strong, so that the variation in height from the optical axis through which the off-axis light beam passes during zooming from the wide-angle end to the telephoto end Accordingly, the change in refractive power becomes excessively large, and it becomes difficult to suppress variations in lateral chromatic aberration and off-axis aberration, particularly astigmatism, and high optical performance cannot be realized.

条件式(5)の上限値を上回った場合、複数の正レンズの屈折力が相対的に過度に弱くなるため、第1レンズ群中の複数の正レンズ以外の正レンズの屈折力が過度に強くなり、広角端から望遠端への変倍に際して軸外光束の通る光軸からの高さの変動にともなう屈折力変化が過度に大きくなり、倍率色収差と軸外収差、特に非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。   When the upper limit value of conditional expression (5) is exceeded, the refractive powers of the plurality of positive lenses become relatively excessively weak, so that the refractive powers of positive lenses other than the plurality of positive lenses in the first lens group are excessively large. When the magnification is changed from the wide-angle end to the telephoto end, the refractive power change due to the height variation from the optical axis through which the off-axis light beam passes becomes excessively large, and the lateral chromatic aberration and off-axis aberration, especially astigmatism variation It is difficult to suppress this, and high optical performance cannot be realized.

なお、実施形態の効果を確実にするために、条件式(5)の下限値を0.80とすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (5) to 0.80.

また、実施形態の効果を確実にするために、条件式(5)の上限値を1.35とすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (5) to 1.35.

また、本実施形態に係る変倍光学系は、以下の条件式(6)を満足することが望ましい。
(6) 1.75<φ1A/fw<4.50
但し、φ1Aは第1レンズ群中の複数の正レンズの有効径である。
In addition, it is desirable that the variable magnification optical system according to the present embodiment satisfies the following conditional expression (6).
(6) 1.75 <φ1A / fw <4.50
However, φ1A is an effective diameter of a plurality of positive lenses in the first lens group.

条件式(6)は、第1レンズ群中の複数の正レンズの最適な有効径を規定し、変倍に際して発生する色収差と軸外収差の変動を抑えて高い光学性能を実現するための条件式である。   Conditional expression (6) defines the optimum effective diameter of a plurality of positive lenses in the first lens group, and is a condition for realizing high optical performance by suppressing variations in chromatic aberration and off-axis aberration that occur during zooming. It is a formula.

条件式(6)の下限値を下回った場合、広角端から望遠端への変倍に際して第1レンズ群中の複数の正レンズの軸外光束の通る光軸からの高さの変動が過度に少なくなるため、軸外収差、特に非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。   If the lower limit value of conditional expression (6) is not reached, the variation in height from the optical axis through which off-axis luminous fluxes of the plurality of positive lenses in the first lens group pass during zooming from the wide-angle end to the telephoto end is excessive. Therefore, it becomes difficult to suppress fluctuations in off-axis aberrations, particularly astigmatism, and high optical performance cannot be realized.

条件式(6)の上限値を上回った場合、広角端から望遠端への変倍に際して第1レンズ群中の複数の正レンズの軸外光束の通る光軸からの高さの変動が過度に大きくなり、倍率色収差と軸外収差、特に非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。   If the upper limit value of conditional expression (6) is exceeded, the variation in height from the optical axis through which off-axis luminous fluxes of the plurality of positive lenses in the first lens group pass during zooming from the wide-angle end to the telephoto end is excessive. It becomes difficult to suppress fluctuations in lateral chromatic aberration and off-axis aberration, particularly astigmatism, and high optical performance cannot be realized.

なお、実施形態の効果を確実にするために、条件式(6)の下限値を2.45とすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (6) to 2.45.

また、実施形態の効果を確実にするために、条件式(6)の上限値を3.80とすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (6) to 3.80.

また、本実施形態に係る変倍光学系は、第1レンズ群中の複数の正レンズは2枚であることが望ましい。   In the variable power optical system according to the present embodiment, it is desirable that the plurality of positive lenses in the first lens group be two.

この構成とすることにより、第1レンズ群の厚さを抑えることが可能となり、広角端から望遠端への変倍に際して、第1レンズ群の最も物体側の面の軸外光束の光軸からの高さの変動を抑えることが可能になって、軸外収差、特に非点収差の変動を抑えることができ、高い光学性能を実現できる。   With this configuration, it is possible to suppress the thickness of the first lens unit, and from the optical axis of the off-axis light beam on the most object side surface of the first lens unit upon zooming from the wide angle end to the telephoto end. It is possible to suppress fluctuations in the height of the lens, and to suppress fluctuations in off-axis aberrations, particularly astigmatism, so that high optical performance can be realized.

また、本実施形態に係る変倍光学系は、第1レンズ群は以下の条件式(7)、(8)を満足する負レンズを有することが望ましい。
(7) 1.750<ndN
(8) 28.0<νdN<50.0
但し、ndNは第1レンズ群中の負レンズの材質のd線(波長λ=587.6nm)に対する屈折率、νdNは第1レンズ群中の負レンズの材質のd線(波長λ=587.6nm)に対するアッベ数である。
In the zoom optical system according to the present embodiment, it is desirable that the first lens group has a negative lens that satisfies the following conditional expressions (7) and (8).
(7) 1.750 <ndN
(8) 28.0 <νdN <50.0
Where ndN is the refractive index of the negative lens material d-line (wavelength λ = 587.6 nm) in the first lens group, and νdN is the negative lens material d-line (wavelength λ = 58.7. Abbe number for 6 nm).

条件式(7)は、第1レンズ群中の負レンズの最適な屈折率範囲を規定し、広角端から望遠端への変倍に際して発生する軸外収差の変動を抑えて高い光学性能を得るための条件式である。   Conditional expression (7) defines the optimum refractive index range of the negative lens in the first lens group, and obtains high optical performance by suppressing fluctuations in off-axis aberrations that occur during zooming from the wide-angle end to the telephoto end. Is a conditional expression.

条件式(7)の下限値を下回った場合、第1レンズ群中の負レンズの面の曲率が大きくなるため、広角端から望遠端への変倍に際して負レンズ中を通る軸外光束の通る光軸からの高さの変動による軸外収差、特に非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。   If the lower limit value of conditional expression (7) is not reached, the curvature of the surface of the negative lens in the first lens group becomes large, so that the off-axis light beam passing through the negative lens passes through the negative lens upon zooming from the wide angle end to the telephoto end. It becomes difficult to suppress off-axis aberrations, particularly astigmatism fluctuations due to height fluctuations from the optical axis, and high optical performance cannot be realized.

なお、実施形態の効果を確実にするために、条件式(7)の下限値を1.780とすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (7) to 1.780.

条件式(8)は、第1レンズ群中の負レンズの材質の最適なアッベ数を規定し、広角端から望遠端への変倍に際して発生する色収差変動を抑えて高い光学性能を実現するための条件式である。   Conditional expression (8) defines the optimum Abbe number of the material of the negative lens in the first lens group, and realizes high optical performance by suppressing chromatic aberration fluctuations that occur during zooming from the wide-angle end to the telephoto end. This is a conditional expression.

条件式(8)の下限値を下回った場合、広角端から望遠端への変倍に際して2次色収差の変動を抑えることが困難となり、高い光学性能を実現できない。   If the lower limit value of conditional expression (8) is not reached, it is difficult to suppress fluctuations in secondary chromatic aberration during zooming from the wide-angle end to the telephoto end, and high optical performance cannot be realized.

条件式(8)の上限値を上回った場合、第1レンズ群で所定の色消しを行おうとすると、正負各レンズの屈折力が過度に大きくなり、広角端から望遠端への変倍に際して負レンズ中を通る軸外光束の通る光軸からの高さの変動による軸外収差、特に非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。   If the upper limit of conditional expression (8) is exceeded, if the first lens group tries to perform predetermined achromaticity, the refractive power of each positive and negative lens becomes excessively large and negative when zooming from the wide-angle end to the telephoto end. It is difficult to suppress off-axis aberrations, particularly astigmatism fluctuations due to fluctuations in height from the optical axis through which the off-axis light beam passes through the lens, and high optical performance cannot be realized.

また、実施形態の効果を確実にするために、条件式(8)の上限値を43.0とすることが好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (8) to 43.0.

また、本実施形態に係る変倍光学系は、第1レンズ群中の負レンズは1枚であることが望ましい。   In the variable magnification optical system according to the present embodiment, it is desirable that the number of negative lenses in the first lens group is one.

この構成とすることにより、第1レンズ群の厚さを抑えることが可能となり、広角端から望遠端への変倍に際して、第1レンズ群の最も物体側の面の軸外光束の光軸からの高さの変動を抑えることが可能になって、軸外収差、特に非点収差の変動を抑えることができ、高い光学性能を実現できる。   With this configuration, it is possible to suppress the thickness of the first lens unit, and from the optical axis of the off-axis light beam on the most object side surface of the first lens unit upon zooming from the wide angle end to the telephoto end. It is possible to suppress fluctuations in the height of the lens, and to suppress fluctuations in off-axis aberrations, particularly astigmatism, so that high optical performance can be realized.

また、本実施形態に係る変倍光学系は、第3レンズ群は以下の条件式(9)を満足する正レンズを有することが望ましい。
(9) νd3>65.5
但し、νd3は第3レンズ群中の正レンズの材質のd線(波長λ=587.6nm)に対するアッベ数である。
In the zoom optical system according to the present embodiment, it is desirable that the third lens group has a positive lens that satisfies the following conditional expression (9).
(9) νd3> 65.5
Where νd3 is the Abbe number with respect to the d-line (wavelength λ = 587.6 nm) of the material of the positive lens in the third lens group.

条件式(9)は、第3レンズ群中の正レンズの材質の最適なアッベ数を規定し、広角端から望遠端への変倍に際して発生する色収差変動を抑えて高い光学性能を実現するための条件式である。   Conditional expression (9) defines the optimum Abbe number of the material of the positive lens in the third lens group, and realizes high optical performance by suppressing variation in chromatic aberration that occurs during zooming from the wide-angle end to the telephoto end. This is a conditional expression.

条件式(9)の下限値を下回った場合、軸上色収差と倍率色収差の変動を抑えることが困難となり、また材質の異常分散性が少ない材質となるため2次色収差の変動を抑えることが困難なことに加え、特に望遠端における軸上色収差と倍率色収差の可視光領域における量が大きくなって、高い光学性能を実現できない。   If the lower limit of conditional expression (9) is not reached, it will be difficult to suppress fluctuations in axial chromatic aberration and lateral chromatic aberration, and it will be difficult to suppress fluctuations in secondary chromatic aberration because the material will have less anomalous dispersion. In addition, the amount of axial chromatic aberration and lateral chromatic aberration in the visible light region is particularly large at the telephoto end, and high optical performance cannot be realized.

また、本実施形態に係る変倍光学系は、第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、正屈折力の第32レンズ群とを有し、広角端状態から望遠端状態への変倍に際し、第31レンズ群と第32レンズ群との間隔は減少することが望ましい。   In the zoom optical system according to the present embodiment, the third lens group includes a 31st lens group having a positive refractive power and a 32nd lens group having a positive refractive power in order from the object side along the optical axis. In the zooming from the wide-angle end state to the telephoto end state, it is desirable that the distance between the 31st lens group and the 32nd lens group decreases.

この構成とすることにより、第3レンズ群を一体で移動させるより第3レンズ群の変倍率を上げることが可能となり、さらに球面収差やコマ収差、非点収差の変動を抑えて高い光学性能を実現できる。   With this configuration, it is possible to increase the zoom ratio of the third lens unit rather than moving the third lens unit as a single unit, and further suppress high fluctuations in spherical aberration, coma aberration, and astigmatism, resulting in high optical performance. realizable.

また、本実施形態に係る変倍光学系は、第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、負屈折力の第32レンズ群と、正屈折力の第33レンズ群とを有し、広角端状態から望遠端状態への変倍に際し、第31レンズ群と第32レンズ群との間隔は変化し、第32レンズ群と第33レンズ群との間隔は変化することが望ましい。   In the variable magnification optical system according to the present embodiment, the third lens group includes, in order from the object side along the optical axis, a positive lens power group, a negative lens power group, a negative lens power group, and a positive lens power group. And a distance between the 31st lens group and the 32nd lens group changes upon zooming from the wide-angle end state to the telephoto end state, and the 32nd lens group and the 33rd lens group. It is desirable that the interval between and changes.

この構成とすることにより、第3レンズ群を一体で移動させるより第3レンズ群で発生する収差変動を抑えることが可能となり、特に球面収差やコマ収差、非点収差の変動を抑えて高い光学性能を実現できる。   By adopting this configuration, it is possible to suppress aberration fluctuations that occur in the third lens group rather than moving the third lens group as a unit, and in particular, high optical performance by suppressing fluctuations in spherical aberration, coma aberration, and astigmatism. Performance can be realized.

また、本実施形態に係る変倍光学系は、広角端状態から望遠端状態への変倍に際し、第31レンズ群と第32レンズ群との間隔は増大し、第32レンズ群と第33レンズ群との間隔は減少することが望ましい。   In the zoom optical system according to the present embodiment, the distance between the thirty-first lens group and the thirty-second lens group increases during zooming from the wide-angle end state to the telephoto end state, and the thirty-second lens group and the thirty-third lens. It is desirable to reduce the distance between groups.

この構成とすることにより、第3レンズ群の変倍率を上げることが可能となり、球面収差やコマ収差、非点収差の変動を抑えて高い光学性能を実現できる。   With this configuration, it is possible to increase the zoom ratio of the third lens group, and it is possible to realize high optical performance while suppressing variations in spherical aberration, coma aberration, and astigmatism.

(実施例)
以下、本実施形態に係る各実施例について図面を参照しつつ説明する。
(Example)
Hereinafter, each example according to the present embodiment will be described with reference to the drawings.

(第1実施例)
図1は、第1実施例に係る変倍光学系の構成を示す断面図である。
(First embodiment)
FIG. 1 is a cross-sectional view showing a configuration of a variable magnification optical system according to the first example.

図1に示すように、第1実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3とから構成される。第3レンズ群G3は、光軸に沿って物体側から順に、正屈折力の第31レンズ群G31と、負屈折力の第32レンズ群G32と、正屈折力の第33レンズ群G33とから構成される。   As shown in FIG. 1, the variable magnification optical system according to the first example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power in order from the object side along the optical axis. And a third lens group G3 having a positive refractive power. The third lens group G3 includes, in order from the object side along the optical axis, a 31st lens group G31 having a positive refractive power, a 32nd lens group G32 having a negative refractive power, and a 33rd lens group G33 having a positive refractive power. Composed.

広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は一旦像側へ移動してから物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。さらに、第31レンズ群G31と第32レンズ群G32との間隔は増大し、第32レンズ群G32と第33レンズ群G33との間隔は減少するように、第31レンズ群G31と第32レンズ群G32と第33レンズ群G33は像面Iに対して単調に物体側へ移動する。また、第31レンズ群G31と第33レンズ群G33は、像面Iに対して一体で移動する。   When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 monotonously moves toward the object side, the second lens group G2 moves once toward the image side, then moves toward the object side, and the third lens group G3 Move to the object side monotonously. Further, the distance between the 31st lens group G31 and the 32nd lens group G32 is increased, and the distance between the 32nd lens group G32 and the 33rd lens group G33 is decreased, so that the 31st lens group G31 and the 32nd lens group are reduced. G32 and the 33rd lens group G33 move to the object side monotonously with respect to the image plane I. The thirty-first lens group G31 and the thirty-third lens group G33 move integrally with the image plane I.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第31レンズ群G31と一体で構成される。   The aperture stop S is disposed closest to the object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the 31st lens group G31.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. It consists of a lens. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第31レンズ群G31は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとから構成されている。   The thirty-first lens group G31 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, a cemented lens of a biconvex lens L33, and a negative meniscus lens L34 having a concave surface facing the object side. ing.

第32レンズ群G32は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とから構成されている。第32レンズ群G32の最も物体側に位置する両凹レンズL41は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The thirty-second lens group G32 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a negative meniscus lens L43 having a concave surface facing the object side. It is composed of The biconcave lens L41 located closest to the object side in the thirty-second lens group G32 is a compound aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第33レンズ群G33は、光軸に沿って物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成されている。第33レンズ群G33の最も物体側に位置する正メニスカスレンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL54から射出した光線は像面Iに結像する。   The thirty-third lens group G33 includes, in order from the object side along the optical axis, a positive meniscus lens L51 having a concave surface directed toward the object side, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. ing. The positive meniscus lens L51 located closest to the object side in the thirty-third lens group G33 is a glass mold aspheric lens having an aspheric lens surface on the object side. Light rays emitted from the biconvex lens L54 form an image on the image plane I.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成されている(以降の実施例についても同様である)。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like (the same applies to the following embodiments).

以下の表1に第1実施例に係る変倍光学系の諸元値を掲げる。   Table 1 below lists specifications of the variable magnification optical system according to the first example.

表中の(面データ)において、物面は物体面、面番号は物体側からのレンズ面の番号、rは曲率半径、dは面間隔、ndはd線(波長λ=587.6nm)における屈折率、νdはd線(波長λ=587.6nm)におけるアッベ数、(可変)は可変面間隔、(絞り)は開口絞りS、像面は像面Iをそれぞれ表している。なお、空気の屈折率nd=1.000000は記載を省略している。また、曲率半径r欄の「∞」は平面を示している。   In (surface data) in the table, the object surface is the object surface, the surface number is the lens surface number from the object side, r is the radius of curvature, d is the surface spacing, and nd is the d-line (wavelength λ = 587.6 nm). Refractive index, νd represents the Abbe number in the d-line (wavelength λ = 587.6 nm), (variable) represents the variable surface interval, (diaphragm) represents the aperture stop S, and the image surface represents the image surface I. Note that the refractive index of air nd = 1.000 000 is omitted. Further, “∞” in the radius of curvature r column indicates a plane.

(非球面データ)において、非球面は以下の式で表される。
X(y)=(y/r)/[1+[1−κ(y/r)]1/2
+A4×y+A6×y+A8×y+A10×y10
ここで、光軸に垂直な方向の高さをy、高さyにおける光軸方向の変位量(各非球面の頂点の接平面から各非球面までの光軸に沿った距離)をX(y)、基準球面の曲率半径(近軸曲率半径)をr、円錐係数をκ、n次の非球面係数をAnとする。なお、「E-n」は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。また、各非球面は、(面データ)において、面番号の右側に「*」を付して示している。
In (Aspheric data), the aspheric surface is expressed by the following equation.
X (y) = (y 2 / r) / [1+ [1-κ (y 2 / r 2 )] 1/2 ]
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10
Here, the height in the direction perpendicular to the optical axis is y, and the amount of displacement in the optical axis direction at the height y (the distance along the optical axis from the tangential plane of each aspheric surface to each aspheric surface) is X ( y) Let r be the radius of curvature (paraxial radius of curvature) of the reference sphere, κ be the conic coefficient, and An be the n-th aspherical coefficient. “En” represents “× 10 −n ”, for example “1.234E-05” represents “1.234 × 10 −5 ”. Each aspherical surface is indicated with “*” on the right side of the surface number in (surface data).

(各種データ)において、ズーム比は変倍光学系の変倍比、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態、fは全系の焦点距離、FNOはFナンバー、ωは半画角(単位:「°」)、Yは像高、TLは無限遠合焦状態における第1レンズ群G1の最も物体側の面から像面Iまでのレンズ系全長、Bfはバックフォーカス、diは面番号iでの可変面間隔値をそれぞれ表している。   In (various data), the zoom ratio is the zoom ratio of the zoom optical system, W is the wide-angle end state, M is the intermediate focal length state, T is the telephoto end state, f is the focal length of the entire system, FNO is the F number, ω is the half angle of view (unit: “°”), Y is the image height, TL is the total length of the lens system from the most object side surface of the first lens group G1 to the image surface I in the infinite focus state, and Bf is the back Focus and di each represent a variable surface interval value for surface number i.

(ズームレンズ群データ)は、各レンズ群の始面番号とレンズ群の焦点距離をそれぞれ示す。   (Zoom lens group data) indicates the start surface number of each lens group and the focal length of the lens group.

(条件式対応値)は、各条件式の対応値をそれぞれ示す。   (Conditional expression corresponding value) indicates the corresponding value of each conditional expression.

なお、以下の全ての諸元値において、掲載されている焦点距離f、曲率半径r、面間隔dその他の長さ等は、特記の無い場合一般に「mm」が使われるが、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されること無く他の適当な単位を用いることもできる。さらに、これらの記号の説明は、以降の他の実施例においても同様とし説明を省略する。   In all the following specification values, “mm” is generally used as the focal length f, radius of curvature r, surface interval d and other lengths, etc. unless otherwise specified, but the optical system is proportional. Even if it is enlarged or proportionally reduced, the same optical performance can be obtained. Further, the unit is not limited to “mm”, and other appropriate units may be used. Further, the explanation of these symbols is the same in the other embodiments, and the explanation is omitted.

(表1)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 186.59960 2.20000 1.834000 37.17
2 69.08900 8.80000 1.497820 82.56
3 -494.44545 0.10000
4 73.40222 6.45000 1.593190 67.87
5 2016.71160 (可変)

6* 84.85000 0.10000 1.553890 38.09
7 74.02192 1.20000 1.834810 42.72
8 17.09747 6.95000
9 -37.97970 1.00000 1.816000 46.63
10 77.67127 0.15000
11 36.26557 5.30000 1.784720 25.68
12 -36.26557 0.80000
13 -25.69642 1.00000 1.816000 46.63
14 66.08300 2.05000 1.808090 22.79
15 -666.70366 (可変)

16(絞り) ∞ 1.00000
17 68.30727 3.40000 1.593190 67.87
18 -47.99596 0.10000
19 68.52367 2.45000 1.487490 70.45
20 -136.98392 0.10000
21 46.52671 4.20000 1.487490 70.45
22 -36.16400 1.00000 1.808090 22.79
23 -202.95328 (可変)

24* -55.09840 0.20000 1.553890 38.09
25 -57.24715 0.90000 1.696800 55.52
26 28.15100 2.15000 1.728250 28.46
27 87.70856 4.35000
28 -26.69877 1.00000 1.729160 54.66
29 -76.47707 (可変)

30* -333.89500 4.65000 1.589130 61.18
31 -24.64395 0.10000
32 31.19625 5.85000 1.487490 70.45
33 -43.38887 1.45000
34 -109.71645 1.00000 1.883000 40.77
35 20.29920 5.30000 1.548140 45.79
36 -808.81321 (Bf)
像面 ∞

(非球面データ)
第6面
κ = 1.0000
A4 = 3.13350E-06
A6 = 4.73080E-10
A8 = -3.40500E-11
A10 = 1.16620E-13
第24面
κ = 1.0000
A4 = 5.24030E-06
A6 = -2.00730E-09
A8 = 0.00000E+00
A10 = 0.00000E+00
第30面
κ = 1.0000
A4 = -1.54020E-05
A6 = 1.69500E-09
A8 = 1.34490E-11
A10 = -2.07220E-13

(各種データ)
ズーム比 15.721
W M T
f = 18.52363 104.52143 291.21725
FNO = 3.60558 5.69344 5.89616
ω = 38.89095 7.41882 2.71146
Y = 14.20 14.20 14.20
TL = 164.74420 225.48860 251.39424
Bf = 39.44250 71.57530 83.10134

d5 2.15700 53.25650 76.94960
d15 33.80140 11.31350 2.00000
d23 3.45650 11.60170 13.04330
d29 10.58680 2.44160 1.00000

(ズームレンズ群データ)
群 始面 焦点距離
1 1 118.96910
2 6 −15.62542
3 16 40.08868(W)
33.90635(M)
32.38356(T)
31 16 27.17463
32 24 −25.41506
33 30 34.39022

(条件式対応値)
(1) ndA=1.497820 (L12)
νdA=82.56 (L12)
(1) ndA=1.593190 (L13)
νdA=67.87 (L13)
(2) f1/fw=6.423
(3) f1/ft=0.409
(4) Δ1/f1=0.728
(5) f1A/f1=1.029 (L12)
(5) f1A/f1=1.078 (L13)
(6) φ1A/fw=3.100 (φ1A=57.42)(L12)
(6) φ1A/fw=2.915 (φ1A=54.00)(L13)
(7) ndN=1.834000 (L11)
(8) νdN=37.17 (L11)
(9) νd3=67.87 (L31)
(Table 1)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 186.59960 2.20000 1.834000 37.17
2 69.08900 8.80000 1.497820 82.56
3 -494.44545 0.10000
4 73.40222 6.45000 1.593190 67.87
5 2016.71160 (variable)

6 * 84.85000 0.10000 1.553890 38.09
7 74.02192 1.20000 1.834810 42.72
8 17.09747 6.95000
9 -37.97970 1.00000 1.816000 46.63
10 77.67127 0.15000
11 36.26557 5.30000 1.784720 25.68
12 -36.26557 0.80000
13 -25.69642 1.00000 1.816000 46.63
14 66.08300 2.05000 1.808090 22.79
15 -666.70366 (variable)

16 (Aperture) ∞ 1.00000
17 68.30727 3.40000 1.593190 67.87
18 -47.99596 0.10000
19 68.52367 2.45000 1.487490 70.45
20 -136.98392 0.10000
21 46.52671 4.20000 1.487490 70.45
22 -36.16400 1.00000 1.808090 22.79
23 -202.95328 (variable)

24 * -55.09840 0.20000 1.553890 38.09
25 -57.24715 0.90000 1.696800 55.52
26 28.15100 2.15000 1.728250 28.46
27 87.70856 4.35000
28 -26.69877 1.00000 1.729160 54.66
29 -76.47707 (variable)

30 * -333.89500 4.65000 1.589130 61.18
31 -24.64395 0.10000
32 31.19625 5.85000 1.487490 70.45
33 -43.38887 1.45000
34 -109.71645 1.00000 1.883000 40.77
35 20.29920 5.30000 1.548140 45.79
36 -808.81321 (Bf)
Image plane ∞

(Aspheric data)
6th surface κ = 1.0000
A4 = 3.13350E-06
A6 = 4.73080E-10
A8 = -3.40500E-11
A10 = 1.16620E-13
24th surface κ = 1.0000
A4 = 5.24030E-06
A6 = -2.00730E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00
30th surface κ = 1.0000
A4 = -1.54020E-05
A6 = 1.69500E-09
A8 = 1.34490E-11
A10 = -2.07220E-13

(Various data)
Zoom ratio 15.721
W M T
f = 18.52363 104.52143 291.21725
FNO = 3.60558 5.69344 5.89616
ω = 38.89095 7.41882 2.71146
Y = 14.20 14.20 14.20
TL = 164.74420 225.48860 251.39424
Bf = 39.44250 71.57530 83.10134

d5 2.15700 53.25650 76.94960
d15 33.80140 11.31350 2.00000
d23 3.45650 11.60170 13.04330
d29 10.58680 2.44160 1.00000

(Zoom lens group data)
Group Start surface Focal length 1 1 118.96910
2 6-15.5622
3 16 40.88868 (W)
33.90635 (M)
32.38356 (T)
31 16 27.17463
32 24-25.41506
33 30 34.39022

(Values for conditional expressions)
(1) ndA = 1.497820 (L12)
νdA = 82.56 (L12)
(1) ndA = 1.593190 (L13)
νdA = 67.87 (L13)
(2) f1 / fw = 6.423
(3) f1 / ft = 0.409
(4) Δ1 / f1 = 0.728
(5) f1A / f1 = 1.029 (L12)
(5) f1A / f1 = 1.008 (L13)
(6) φ1A / fw = 3.100 (φ1A = 57.42) (L12)
(6) φ1A / fw = 2.915 (φ1A = 54.00) (L13)
(7) ndN = 1.834000 (L11)
(8) νdN = 37.17 (L11)
(9) νd3 = 67.87 (L31)

図2は、第1実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   2A and 2B are graphs showing various aberrations of the variable magnification optical system according to the first example in the infinite focus state. FIG. 2A is a wide-angle end state, FIG. 2B is an intermediate focal length state, and FIG. Each end state is shown.

各収差図において、FNOはFナンバー、Aは半画角(単位:「°」)を示す。また、dはd線(波長587.6nm)、gはg線(波長435.8nm)に対する諸収差、記載のないものはd線に対する諸収差をそれぞれ表す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面を示す。   In each aberration diagram, FNO represents an F number, and A represents a half angle of view (unit: “°”). Further, d represents d-line (wavelength 587.6 nm), g represents various aberrations with respect to g-line (wavelength 435.8 nm), and those not described represent various aberrations with respect to d-line. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane.

なお、以降の実施例においても同様の記号を使用し、以降の説明を省略する。   In the following examples, the same symbols are used, and the following description is omitted.

各収差図から、第1実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。   From each aberration diagram, it is understood that the variable magnification optical system according to the first example has various optical aberrations corrected and high optical performance.

(第2実施例)
図3は、第2実施例に係る変倍光学系の構成を示す断面図である。
(Second embodiment)
FIG. 3 is a cross-sectional view showing the configuration of the variable magnification optical system according to the second example.

図3に示すように、第2実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3とから構成される。第3レンズ群G3は、光軸に沿って物体側から順に、正屈折力の第31レンズ群G31と、正屈折力の第32レンズ群G32とから構成される。   As shown in FIG. 3, the zoom optical system according to the second example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power in order from the object side along the optical axis. And a third lens group G3 having a positive refractive power. The third lens group G3 includes, in order from the object side along the optical axis, a thirty-first lens group G31 having a positive refractive power and a thirty-second lens group G32 having a positive refractive power.

広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は一旦像側へ移動してから物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。さらに、第31レンズ群G31と第32レンズ群G32との間隔は減少するように、第31レンズ群G31と第32レンズ群G32は像面Iに対して単調に物体側へ移動する。   When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 monotonously moves toward the object side, the second lens group G2 moves once toward the image side, then moves toward the object side, and the third lens group G3 Move to the object side monotonously. Further, the 31st lens group G31 and the 32nd lens group G32 move monotonously with respect to the image plane I toward the object side so that the distance between the 31st lens group G31 and the 32nd lens group G32 decreases.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第31レンズ群G31と一体で構成される。   The aperture stop S is disposed closest to the object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the 31st lens group G31.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、像側に凸面を向けた負メニスカスレンズL24と像側に凸面を向けた正メニスカスレンズL25との接合レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, and a negative meniscus lens having a convex surface directed toward the image side. It consists of a cemented lens of L24 and a positive meniscus lens L25 having a convex surface facing the image side. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第31レンズ群G31は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と両凹レンズL34との接合レンズと、両凹レンズL35と物体側に凸面を向けた正メニスカスレンズL36との接合レンズと、物体側に凹面を向けた負メニスカスレンズL37とから構成されている。両凹レンズL35は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The thirty-first lens group G31 has, in order from the object side along the optical axis, a convex surface facing the biconvex lens L31, the biconvex lens L32, the cemented lens of the biconvex lens L33 and the biconcave lens L34, and the biconcave lens L35. Further, it is composed of a cemented lens with the positive meniscus lens L36 and a negative meniscus lens L37 having a concave surface facing the object side. The biconcave lens L35 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第32レンズ群G32は、光軸に沿って物体側から順に、両凸レンズL41と、両凹レンズL42と両凸レンズL43との接合レンズとから構成されている。第32レンズ群G32の最も物体側に位置する両凸レンズL41は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL43から射出した光線は像面Iに結像する。   The thirty-second lens group G32 includes, in order from the object side along the optical axis, a biconvex lens L41 and a cemented lens of a biconcave lens L42 and a biconvex lens L43. The biconvex lens L41 located closest to the object side in the thirty-second lens group G32 is a glass mold aspheric lens having an aspheric lens surface on the object side. Light rays emitted from the biconvex lens L43 form an image on the image plane I.

以下の表2に第2実施例に係る変倍光学系の諸元値を掲げる。   Table 2 below lists specifications of the variable magnification optical system according to the second example.

(表2)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 123.95945 2.00000 1.850260 32.35
2 65.81889 9.30000 1.497820 82.52
3 -679.81898 0.10000
4 66.63494 6.20000 1.593190 67.87
5 419.93083 (可変)

6* 162.32416 0.15000 1.553890 38.09
7 146.07537 1.00000 1.834807 42.72
8 16.13035 6.55000
9 -35.27597 1.00000 1.882997 40.76
10 60.44503 0.10000
11 37.37226 5.20000 1.846660 23.78
12 -32.72792 0.82143
13 -23.94628 1.00000 1.882997 40.76
14 -252.41497 2.00000 1.808090 22.79
15 -72.44788 (可変)

16(絞り) ∞ 1.00000
17 36.72216 3.30000 1.593190 67.87
18 -118.19629 0.10000
19 41.37679 3.15000 1.487490 70.41
20 -92.34292 0.10000
21 42.34033 3.80000 1.487490 70.41
22 -41.00357 1.00000 1.805181 25.43
23 259.36092 3.81909
24* -63.64853 1.00000 1.806100 40.94
25 22.00000 2.90000 1.805181 25.43
26 150.57815 4.20000
27 -45.82441 1.00000 1.882997 40.76
28 -215.98952 (可変)

29* 77.17936 3.15000 1.589130 61.16
30 -37.11866 0.10000
31 -261.29488 1.00000 1.882997 40.76
32 39.98076 4.40000 1.518229 58.93
33 -48.52092 (Bf)
像面 ∞

(非球面データ)
第6面
κ = -5.7774
A4 = 6.79980E-06
A6 = -2.52730E-08
A8 = 8.26150E-11
A10 = -1.02860E-13
第24面
κ = 2.8196
A4 = 4.59750E-06
A6 = 4.28350E-09
A8 = 0.00000E+00
A10 = 0.00000E+00
第29面
κ = -6.5363
A4 = -1.95310E-05
A6 = 1.79050E-08
A8 = -1.55070E-10
A10 = 4.13770E-13

(各種データ)
ズーム比 15.696
W M T
f = 18.53979 104.99746 290.99204
FNO = 4.10702 5.39973 5.39939
ω = 38.99845 7.50128 2.73812
Y = 14.20 14.20 14.20
TL = 160.00885 218.99165 237.79997
Bf = 39.11693 89.39051 99.16649

d5 2.15153 45.02627 65.69297
d15 40.45482 13.14016 2.00000
d28 8.84506 1.99420 1.50000

(ズームレンズ群データ)
群 始面 焦点距離
1 1 103.25223
2 6 −15.13084
3 16 39.55369(W)
35.07124(M)
34.78685(T)
31 16 44.76649
32 29 47.36030

(条件式対応値)
(1) ndA=1.497820 (L12)
νdA=82.52 (L12)
(1) ndA=1.593190 (L13)
νdA=67.87 (L13)
(2) f1/fw=5.569
(3) f1/ft=0.355
(4) Δ1/f1=0.753
(5) f1A/f1=1.172 (L12)
(5) f1A/f1=1.285 (L13)
(6) φ1A/fw=2.999 (φ1A=55.60)(L12)
(6) φ1A/fw=2.918 (φ1A=54.10)(L13)
(7) ndN=1.850260 (L11)
(8) νdN=32.35 (L11)
(9) νd3=67.87 (L31)
(Table 2)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 123.95945 2.00000 1.850260 32.35
2 65.81889 9.30000 1.497820 82.52
3 -679.81898 0.10000
4 66.63494 6.20000 1.593190 67.87
5 419.93083 (variable)

6 * 162.32416 0.15000 1.553890 38.09
7 146.07537 1.00000 1.834807 42.72
8 16.13035 6.55000
9 -35.27597 1.00000 1.882997 40.76
10 60.44503 0.10000
11 37.37226 5.20000 1.846660 23.78
12 -32.72792 0.82143
13 -23.94628 1.00000 1.882997 40.76
14 -252.41497 2.00000 1.808090 22.79
15 -72.44788 (variable)

16 (Aperture) ∞ 1.00000
17 36.72216 3.30000 1.593190 67.87
18 -118.19629 0.10000
19 41.37679 3.15000 1.487490 70.41
20 -92.34292 0.10000
21 42.34033 3.80000 1.487490 70.41
22 -41.00357 1.00000 1.805181 25.43
23 259.36092 3.81909
24 * -63.64853 1.00000 1.806100 40.94
25 22.00000 2.90000 1.805181 25.43
26 150.57815 4.20000
27 -45.82441 1.00000 1.882997 40.76
28 -215.98952 (variable)

29 * 77.17936 3.15000 1.589130 61.16
30 -37.11866 0.10000
31 -261.29488 1.00000 1.882997 40.76
32 39.98076 4.40000 1.518229 58.93
33 -48.52092 (Bf)
Image plane ∞

(Aspheric data)
6th surface κ = -5.7774
A4 = 6.79980E-06
A6 = -2.52730E-08
A8 = 8.26150E-11
A10 = -1.02860E-13
24th surface κ = 2.8196
A4 = 4.59750E-06
A6 = 4.28350E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00
29th surface κ = -6.5363
A4 = -1.95310E-05
A6 = 1.79050E-08
A8 = -1.55070E-10
A10 = 4.13770E-13

(Various data)
Zoom ratio 15.696
W M T
f = 18.53979 104.99746 290.99204
FNO = 4.10702 5.39973 5.39939
ω = 38.99845 7.50128 2.73812
Y = 14.20 14.20 14.20
TL = 160.00885 218.99165 237.79997
Bf = 39.11693 89.39051 99.16649

d5 2.15153 45.02627 65.69297
d15 40.45482 13.14016 2.00000
d28 8.84506 1.99420 1.50000

(Zoom lens group data)
Group Start surface Focal length 1 1 103.25223
2 6-15.13084
3 16 39.55369 (W)
35.07124 (M)
34.78685 (T)
31 16 44.74649
32 29 47.36030

(Values for conditional expressions)
(1) ndA = 1.497820 (L12)
νdA = 82.52 (L12)
(1) ndA = 1.593190 (L13)
νdA = 67.87 (L13)
(2) f1 / fw = 5.569
(3) f1 / ft = 0.355
(4) Δ1 / f1 = 0.553
(5) f1A / f1 = 1.172 (L12)
(5) f1A / f1 = 1.285 (L13)
(6) φ1A / fw = 2.999 (φ1A = 55.60) (L12)
(6) φ1A / fw = 2.918 (φ1A = 54.10) (L13)
(7) ndN = 1.850260 (L11)
(8) νdN = 32.35 (L11)
(9) νd3 = 67.87 (L31)

図4は、第2実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 4 shows various aberration diagrams of the variable magnification optical system according to Example 2 in the infinitely focused state, where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is telephoto. Each end state is shown.

各収差図から、第2実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the second example has various optical aberrations corrected and high optical performance.

(第3実施例)
図5は、第3実施例に係る変倍光学系の構成を示す断面図である。
(Third embodiment)
FIG. 5 is a cross-sectional view showing the configuration of the variable magnification optical system according to the third example.

図5に示すように、第3実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3とから構成される。第3レンズ群G3は、光軸に沿って物体側から順に、正屈折力の第31レンズ群G31と、負屈折力の第32レンズ群G32と、正屈折力の第33レンズ群G33とから構成される。   As shown in FIG. 5, the variable magnification optical system according to the third example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power in order from the object side along the optical axis. And a third lens group G3 having a positive refractive power. The third lens group G3 includes, in order from the object side along the optical axis, a 31st lens group G31 having a positive refractive power, a 32nd lens group G32 having a negative refractive power, and a 33rd lens group G33 having a positive refractive power. Composed.

広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は一旦像側へ移動してから物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。さらに、第31レンズ群G31と第32レンズ群G32との間隔は増大し、第32レンズ群G32と第33レンズ群G33との間隔は減少するように、第31レンズ群G31と第32レンズ群G32と第33レンズ群G33は像面Iに対して単調に物体側へ移動する。   When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 monotonously moves toward the object side, the second lens group G2 moves once toward the image side, then moves toward the object side, and the third lens group G3 Move to the object side monotonously. Further, the distance between the 31st lens group G31 and the 32nd lens group G32 is increased, and the distance between the 32nd lens group G32 and the 33rd lens group G33 is decreased, so that the 31st lens group G31 and the 32nd lens group are reduced. G32 and the 33rd lens group G33 move to the object side monotonously with respect to the image plane I.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第31レンズ群G31と一体で構成される。   The aperture stop S is disposed closest to the object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the 31st lens group G31.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. It consists of a lens. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第31レンズ群G31は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとから構成されている。   The thirty-first lens group G31 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, a cemented lens of a biconvex lens L33, and a negative meniscus lens L34 having a concave surface facing the object side. ing.

第32レンズ群G32は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とから構成されている。第32レンズ群G32の最も物体側に位置する両凹レンズL41は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The thirty-second lens group G32 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a negative meniscus lens L43 having a concave surface facing the object side. It is composed of The biconcave lens L41 located closest to the object side in the thirty-second lens group G32 is a compound aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第33レンズ群G33は、光軸に沿って物体側から順に、両凸レンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成されている。第33レンズ群G33の最も物体側に位置する両凸レンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL54から射出した光線は像面Iに結像する。   The thirty-third lens group G33 includes, in order from the object side along the optical axis, a biconvex lens L51, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. The biconvex lens L51 located closest to the object side in the thirty-third lens group G33 is a glass mold aspheric lens having an aspheric lens surface on the object side. Light rays emitted from the biconvex lens L54 form an image on the image plane I.

以下の表3に第3実施例に係る変倍光学系の諸元値を掲げる。   Table 3 below lists specifications of the variable magnification optical system according to the third example.

(表3)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 175.60560 2.20000 1.834000 37.16
2 67.43020 8.80000 1.497820 82.52
3 -587.78480 0.10000
4 72.27100 6.45000 1.593190 67.87
5 1826.13880 (可変)

6* 84.76870 0.10000 1.553890 38.09
7 73.93750 1.20000 1.834807 42.72
8 17.18730 6.95000
9 -36.98220 1.00000 1.816000 46.62
10 77.92630 0.15000
11 36.63460 5.30000 1.784723 25.68
12 -36.63460 0.80000
13 -26.19910 1.00000 1.816000 46.62
14 63.73960 2.05000 1.808090 22.79
15 -643.27060 (可変)

16(絞り) ∞ 1.00000
17 65.83650 3.40000 1.593190 67.87
18 -50.15460 0.10000
19 65.68170 2.45000 1.487490 70.41
20 -154.97430 0.10000
21 46.73330 4.20000 1.487490 70.41
22 -35.78330 1.00000 1.808090 22.79
23 -191.93180 (可変)

24* -57.29660 0.20000 1.553890 38.09
25 -59.72500 0.90000 1.696797 55.52
26 28.51000 2.15000 1.728250 28.46
27 91.99760 4.14020
28 -32.89540 1.00000 1.729157 54.66
29 -144.33150 (可変)

30* 6427.19190 4.65000 1.589130 61.18
31 -27.38180 0.10000
32 31.47760 5.85000 1.487490 70.41
33 -43.75390 1.45000
34 -113.58970 1.00000 1.882997 40.76
35 20.34810 5.30000 1.548141 45.79
36 -709.14530 (Bf)
像面 ∞

(非球面データ)
第6面
κ = 1.0000
A4 = 2.88220E-06
A6 = -2.29350E-11
A8 = -2.35280E-11
A10 = 9.21570E-14
第24面
κ = 1.0000
A4 = 4.32780E-06
A6 = 1.88460E-09
A8 = 0.00000E+00
A10 = 0.00000E+00
第30面
κ = 1.0000
A4 = -1.36170E-05
A6 = -3.55860E-10
A8 = 1.83080E-11
A10 = -1.86790E-13

(各種データ)
ズーム比 15.701
W M T
f = 18.56060 104.65150 291.42454
FNO = 3.57565 5.62482 5.81064
ω = 38.80191 7.44205 2.72113
Y = 14.20 14.20 14.20
TL = 164.76435 225.28899 250.61470
Bf = 38.84705 73.57929 86.64770

d5 2.15700 53.01000 76.25220
d15 33.36360 11.30360 2.00000
d23 3.46820 9.64300 9.62460
d29 11.83830 2.66290 1.00000

(ズームレンズ群データ)
群 始面 焦点距離
1 1 117.72937
2 6 −15.60945
3 16 40.44471(W)
33.95695(M)
32.70088(T)
31 16 27.35473
32 24 −26.50041
33 30 35.20423

(条件式対応値)
(1) ndA=1.497820 (L12)
νdA=82.52 (L12)
(1) ndA=1.593190 (L13)
νdA=67.87 (L13)
(2) f1/fw=6.343
(3) f1/ft=0.404
(4) Δ1/f1=0.729
(5) f1A/f1=1.037 (L12)
(5) f1A/f1=1.076 (L13)
(6) φ1A/fw=3.081 (φ1A=57.19)(L12)
(6) φ1A/fw=2.909 (φ1A=54.00)(L13)
(7) ndN=1.834000 (L11)
(8) νdN=37.16 (L11)
(9) νd3=67.87 (L31)
(Table 3)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 175.60560 2.20000 1.834000 37.16
2 67.43020 8.80000 1.497820 82.52
3 -587.78480 0.10000
4 72.27100 6.45000 1.593190 67.87
5 1826.13880 (variable)

6 * 84.76870 0.10000 1.553890 38.09
7 73.93750 1.20000 1.834807 42.72
8 17.18730 6.95000
9 -36.98220 1.00000 1.816000 46.62
10 77.92630 0.15000
11 36.63460 5.30000 1.784723 25.68
12 -36.63460 0.80000
13 -26.19910 1.00000 1.816000 46.62
14 63.73960 2.05000 1.808090 22.79
15 -643.27060 (variable)

16 (Aperture) ∞ 1.00000
17 65.83650 3.40000 1.593190 67.87
18 -50.15460 0.10000
19 65.68170 2.45000 1.487490 70.41
20 -154.97430 0.10000
21 46.73330 4.20000 1.487490 70.41
22 -35.78330 1.00000 1.808090 22.79
23 -191.93180 (variable)

24 * -57.29660 0.20000 1.553890 38.09
25 -59.72500 0.90000 1.696797 55.52
26 28.51000 2.15000 1.728250 28.46
27 91.99760 4.14020
28 -32.89540 1.00000 1.729157 54.66
29 -144.33150 (variable)

30 * 6427.19190 4.65000 1.589130 61.18
31 -27.38180 0.10000
32 31.47760 5.85000 1.487490 70.41
33 -43.75390 1.45000
34 -113.58970 1.00000 1.882997 40.76
35 20.34810 5.30000 1.548141 45.79
36 -709.14530 (Bf)
Image plane ∞

(Aspheric data)
6th surface κ = 1.0000
A4 = 2.88220E-06
A6 = -2.29350E-11
A8 = -2.35280E-11
A10 = 9.21570E-14
24th surface κ = 1.0000
A4 = 4.32780E-06
A6 = 1.88460E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00
30th surface κ = 1.0000
A4 = -1.36170E-05
A6 = -3.55860E-10
A8 = 1.83080E-11
A10 = -1.86790E-13

(Various data)
Zoom ratio 15.701
W M T
f = 18.56060 104.65150 291.42454
FNO = 3.57565 5.62482 5.81064
ω = 38.80191 7.44205 2.72113
Y = 14.20 14.20 14.20
TL = 164.76435 225.28899 250.61470
Bf = 38.84705 73.57929 86.64770

d5 2.15700 53.01000 76.25220
d15 33.36360 11.30360 2.00000
d23 3.46820 9.64300 9.62460
d29 11.83830 2.66290 1.00000

(Zoom lens group data)
Group Start surface Focal length 1 1 117.7729
2 6 -15.60945
3 16 40.44771 (W)
33.95695 (M)
32.70088 (T)
31 16 27.35473
32 24 -26.50041
33 30 35.423

(Values for conditional expressions)
(1) ndA = 1.497820 (L12)
νdA = 82.52 (L12)
(1) ndA = 1.593190 (L13)
νdA = 67.87 (L13)
(2) f1 / fw = 6.343
(3) f1 / ft = 0.404
(4) Δ1 / f1 = 0.729
(5) f1A / f1 = 1.037 (L12)
(5) f1A / f1 = 1.76 (L13)
(6) φ1A / fw = 3.081 (φ1A = 57.19) (L12)
(6) φ1A / fw = 2.909 (φ1A = 54.00) (L13)
(7) ndN = 1.834000 (L11)
(8) νdN = 37.16 (L11)
(9) νd3 = 67.87 (L31)

図6は、第3実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 6 shows various aberration diagrams of the zoom optical system according to the third example in the infinite focus state, where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is telephoto. Each end state is shown.

各収差図から、第3実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。   From each aberration diagram, it can be seen that the variable magnification optical system according to the third example has various optical aberrations corrected and high optical performance.

(第4実施例)
図7は、第4実施例に係る変倍光学系の構成を示す断面図である。
(Fourth embodiment)
FIG. 7 is a cross-sectional view showing a configuration of a variable magnification optical system according to the fourth example.

図7に示すように、第4実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3とから構成される。第3レンズ群G3は、光軸に沿って物体側から順に、正屈折力の第31レンズ群G31と、正屈折力の第32レンズ群G32とから構成される。   As shown in FIG. 7, the variable magnification optical system according to the fourth example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power in order from the object side along the optical axis. And a third lens group G3 having a positive refractive power. The third lens group G3 includes, in order from the object side along the optical axis, a thirty-first lens group G31 having a positive refractive power and a thirty-second lens group G32 having a positive refractive power.

広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は一旦像側へ移動してから物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。さらに、第31レンズ群G31と第32レンズ群G32との間隔は減少するように、第31レンズ群G31と第32レンズ群G32は像面Iに対して単調に物体側へ移動する。   When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 monotonously moves toward the object side, the second lens group G2 moves once toward the image side, then moves toward the object side, and the third lens group G3 Move to the object side monotonously. Further, the 31st lens group G31 and the 32nd lens group G32 move monotonously with respect to the image plane I toward the object side so that the distance between the 31st lens group G31 and the 32nd lens group G32 decreases.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第31レンズ群G31と一体で構成される。   The aperture stop S is disposed closest to the object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the 31st lens group G31.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、像側に凸面を向けた負メニスカスレンズL24と像側に凸面を向けた正メニスカスレンズL25との接合レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, and a negative meniscus lens having a convex surface directed toward the image side. It consists of a cemented lens of L24 and a positive meniscus lens L25 having a convex surface facing the image side. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第31レンズ群G31は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と両凹レンズL34との接合レンズと、両凹レンズL35と両凸レンズL36との接合レンズと、物体側に凹面を向けた負メニスカスレンズL37とから構成されている。両凹レンズL35は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The thirty-first lens group G31 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, a cemented lens composed of a biconvex lens L33 and a biconcave lens L34, and a cemented biconvex lens L35 and a biconvex lens L36. The lens includes a negative meniscus lens L37 having a concave surface facing the object side. The biconcave lens L35 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第32レンズ群G32は、光軸に沿って物体側から順に、両凸レンズL41と、物体側に凸面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズとから構成されている。第32レンズ群G32の最も物体側に位置する両凸レンズL41は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL43から射出した光線は像面Iに結像する。   The thirty-second lens group G32 includes, in order from the object side along the optical axis, a biconvex lens L41, and a cemented lens of a negative meniscus lens L42 having a convex surface facing the object side and a biconvex lens L43. The biconvex lens L41 located closest to the object side in the thirty-second lens group G32 is a glass mold aspheric lens having an aspheric lens surface on the object side. Light rays emitted from the biconvex lens L43 form an image on the image plane I.

以下の表4に第4実施例に係る変倍光学系の諸元値を掲げる。   Table 4 below lists various values of the variable magnification optical system according to the fourth example.

(表4)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 127.94447 2.00000 1.850260 32.35
2 66.54596 7.85000 1.497820 82.52
3 -596.23069 0.10000
4 67.44029 5.40000 1.593190 67.87
5 436.18989 (可変)

6* 135.29609 0.15000 1.553890 38.09
7 107.25966 1.00000 1.804000 46.58
8 15.26261 6.70000
9 -34.54986 1.00000 1.834807 42.72
10 51.89897 0.10000
11 34.09670 4.50000 1.784723 25.68
12 -32.12451 0.90000
13 -21.11569 1.00000 1.882997 40.76
14 -2390.20620 2.10000 1.922860 20.50
15 -67.61249 (可変)

16(絞り) ∞ 1.00000
17 31.61335 3.65000 1.593190 67.87
18 -218.55454 0.10000
19 49.13044 3.20000 1.487490 70.41
20 -63.62105 0.10000
21 35.35729 4.25000 1.487490 70.41
22 -34.07826 1.00000 1.846660 23.78
23 659.96058 3.90000
24* -35.03665 1.00000 1.756998 47.82
25 17.58221 3.90000 1.698947 30.13
26 -95.26227 3.35000
27 -55.52002 1.00000 1.882997 40.76
28 -585.51718 (可変)

29* 439.79346 2.20000 1.589130 61.16
30 -53.20688 0.10000
31 65.13402 1.00000 1.834000 37.16
32 27.72956 4.10000 1.487490 70.41
33 -58.13289 (Bf)
像面 ∞

(非球面データ)
第6面
κ = 4.3350
A4 = 9.45630E-06
A6 = -1.51470E-08
A8 = -1.16860E-12
A10 = 1.65790E-13
第24面
κ = -0.3009
A4 = 6.23810E-06
A6 = 8.96820E-09
A8 = 0.00000E+00
A10 = 0.00000E+00
第29面
κ =-20.0000
A4 = -1.92960E-05
A6 = 5.96200E-09
A8 = -1.65600E-10
A10 = 4.18100E-13

(各種データ)
ズーム比 15.698
W M T
f = 18.53928 105.00169 291.02949
FNO = 3.60631 5.76130 5.78825
ω = 39.00856 7.48510 2.73699
Y = 14.20 14.20 14.20
TL = 148.79923 217.34659 242.82932
Bf = 39.00067 91.11965 105.34665

d5 2.10000 46.65937 67.33267
d15 33.50310 10.98454 2.00000
d28 7.54546 1.93303 1.50000

(ズームレンズ群データ)
群 始面 焦点距離
1 1 104.30654
2 6 −13.81152
3 16 36.15068(W)
32.66171(M)
32.42030(T)
31 16 39.54020
32 29 48.03635

(条件式対応値)
(1) ndA=1.497820 (L12)
νdA=82.52 (L12)
(1) ndA=1.593190 (L13)
νdA=67.87 (L13)
(2) f1/fw=5.626
(3) f1/ft=0.358
(4) Δ1/f1=0.901
(5) f1A/f1=1.157 (L12)
(5) f1A/f1=1.282 (L13)
(6) φ1A/fw=2.982 (φ1A=55.29)(L12)
(6) φ1A/fw=2.919 (φ1A=54.12)(L13)
(7) ndN=1.850260 (L11)
(8) νdN=32.35 (L11)
(9) νd3=67.87 (L31)
(Table 4)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 127.94447 2.00000 1.850260 32.35
2 66.54596 7.85000 1.497820 82.52
3 -596.23069 0.10000
4 67.44029 5.40000 1.593190 67.87
5 436.18989 (variable)

6 * 135.29609 0.15000 1.553890 38.09
7 107.25966 1.00000 1.804000 46.58
8 15.26261 6.70000
9 -34.54986 1.00000 1.834807 42.72
10 51.89897 0.10000
11 34.09670 4.50000 1.784723 25.68
12 -32.12451 0.90000
13 -21.11569 1.00000 1.882997 40.76
14 -2390.20620 2.10000 1.922860 20.50
15 -67.61249 (variable)

16 (Aperture) ∞ 1.00000
17 31.61335 3.65000 1.593190 67.87
18 -218.55454 0.10000
19 49.13044 3.20000 1.487490 70.41
20 -63.62105 0.10000
21 35.35729 4.25000 1.487490 70.41
22 -34.07826 1.00000 1.846660 23.78
23 659.96058 3.90000
24 * -35.03665 1.00000 1.756998 47.82
25 17.58221 3.90000 1.698947 30.13
26 -95.26227 3.35000
27 -55.52002 1.00000 1.882997 40.76
28 -585.51718 (variable)

29 * 439.79346 2.20000 1.589130 61.16
30 -53.20688 0.10000
31 65.13402 1.00000 1.834000 37.16
32 27.72956 4.10000 1.487490 70.41
33 -58.13289 (Bf)
Image plane ∞

(Aspheric data)
6th surface κ = 4.3350
A4 = 9.45630E-06
A6 = -1.51470E-08
A8 = -1.16860E-12
A10 = 1.65790E-13
24th surface κ = -0.3009
A4 = 6.23810E-06
A6 = 8.96820E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00
29th surface κ = -20.0000
A4 = -1.92960E-05
A6 = 5.96200E-09
A8 = -1.65600E-10
A10 = 4.18100E-13

(Various data)
Zoom ratio 15.698
W M T
f = 18.53928 105.00169 291.02949
FNO = 3.60631 5.76130 5.78825
ω = 39.00856 7.48510 2.73699
Y = 14.20 14.20 14.20
TL = 148.79923 217.34659 242.82932
Bf = 39.00067 91.11965 105.34665

d5 2.10000 46.65937 67.33267
d15 33.50310 10.98454 2.00000
d28 7.54546 1.93303 1.50000

(Zoom lens group data)
Group Start surface Focal length 1 1 104.3654
2 6-13.81152
3 16 36.1068 (W)
32.66171 (M)
32.4030 (T)
31 16 39.54020
32 29 48.03635

(Values for conditional expressions)
(1) ndA = 1.497820 (L12)
νdA = 82.52 (L12)
(1) ndA = 1.593190 (L13)
νdA = 67.87 (L13)
(2) f1 / fw = 5.626
(3) f1 / ft = 0.358
(4) Δ1 / f1 = 0.901
(5) f1A / f1 = 1.157 (L12)
(5) f1A / f1 = 1.282 (L13)
(6) φ1A / fw = 2.982 (φ1A = 55.29) (L12)
(6) φ1A / fw = 2.919 (φ1A = 54.12) (L13)
(7) ndN = 1.850260 (L11)
(8) νdN = 32.35 (L11)
(9) νd3 = 67.87 (L31)

図8は、第4実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 8A and 8B are graphs showing various aberrations of the zoom optical system according to Example 4 in the infinitely focused state, where FIG. 8A is a wide angle end state, FIG. 8B is an intermediate focal length state, and FIG. 8C is telephoto. Each end state is shown.

各収差図から、第4実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the fourth example has various aberrations corrected well and high optical performance.

以上のように、本実施形態によれば、収差変動を抑え、高い光学性能を有する変倍光学系を提供することができる。   As described above, according to the present embodiment, it is possible to provide a variable magnification optical system that suppresses aberration fluctuation and has high optical performance.

次に、本実施形態に係る変倍光学系を搭載したカメラについて説明する。なお、第1実施例に係る変倍光学系を搭載した場合について説明するが、他の実施例でも同様である。   Next, a camera equipped with the variable magnification optical system according to the present embodiment will be described. Although the case where the variable magnification optical system according to the first example is mounted will be described, the same applies to other examples.

図9は、第1実施例に係る変倍光学系を備えたカメラの構成を示す図である。   FIG. 9 is a diagram illustrating a configuration of a camera including the variable magnification optical system according to the first example.

図9において、カメラ1は、撮影レンズ2として第1実施例に係る変倍光学系を備えたデジタル一眼レフカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。   In FIG. 9, a camera 1 is a digital single-lens reflex camera provided with a variable magnification optical system according to the first example as a photographing lens 2. In the camera 1, light from an object (subject) (not shown) is collected by the taking lens 2 and is focused on the focusing screen 4 via the quick return mirror 3. The light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6. Thus, the photographer can observe the subject image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。   When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. As a result, light from the subject is picked up by the image sensor 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

カメラ1に撮影レンズ2として第1実施例に係る変倍光学系を搭載することにより、高い性能を有するカメラを実現することができる。   By mounting the zoom optical system according to the first example as the photographing lens 2 on the camera 1, a camera having high performance can be realized.

なお、前記クイックリターンミラー3を有しないカメラであっても上記カメラ1と同様の効果を奏することができる。   Even if the camera does not have the quick return mirror 3, the same effect as the camera 1 can be obtained.

以下、本願の変倍光学系の製造方法の概略を説明する。   The outline of the manufacturing method of the variable magnification optical system of the present application will be described below.

図10は、本願の変倍光学系の製造方法を示す図である。   FIG. 10 is a diagram showing a manufacturing method of the variable magnification optical system of the present application.

本願の変倍光学系の製造方法は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有する変倍光学系の製造方法であって、図10に示すステップS1,S2,S3を含むものである。   The variable magnification optical system manufacturing method of the present application includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. Is a method for manufacturing a variable magnification optical system having steps S1, S2, and S3 shown in FIG.

ステップS1:第1レンズ群と第2レンズ群と第3レンズ群とを、広角端状態から望遠端状態への変倍に際し、第1レンズ群と第2レンズ群との間隔が増大可能、第2レンズ群と第3レンズ群との間隔が減少可能に配置する。   Step S1: When changing the magnification of the first lens group, the second lens group, and the third lens group from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group can be increased. The distance between the second lens group and the third lens group is arranged so as to be reduced.

ステップS2:第1レンズ群中に以下の条件式(1)を満足する複数の正レンズを配置する。   Step S2: A plurality of positive lenses satisfying the following conditional expression (1) are arranged in the first lens group.

ステップS3:以下の条件式(2)、(3)を満足するようにする。
(1) ndA≧1.540の時 νdA>66.5
ndA<1.540の時 νdA>75.0
(2) 4.75<f1/fw<11.00
(3) 0.28<f1/ft<0.52
但し、ndAは第1レンズ群中の複数の正レンズの材質のd線に対する屈折率、νdAは第1レンズ群中の複数の正レンズの材質のd線に対するアッベ数、fwは広角端状態における変倍光学系全系の焦点距離、ftは望遠端状態における変倍光学系全系の焦点距離、f1は第1レンズ群の焦点距離である。
Step S3: The following conditional expressions (2) and (3) are satisfied.
(1) When ndA ≧ 1.540 νdA> 66.5
When ndA <1.540 νdA> 75.0
(2) 4.75 <f1 / fw <11.00
(3) 0.28 <f1 / ft <0.52
Where ndA is the refractive index of the materials of the plurality of positive lenses in the first lens group with respect to the d-line, νdA is the Abbe number of the materials of the plurality of positive lenses in the first lens group with respect to the d-line, and fw is in the wide-angle end state. The focal length of the entire variable magnification optical system, ft is the focal length of the entire variable magnification optical system in the telephoto end state, and f1 is the focal length of the first lens group.

本願の変倍光学系の製造方法によれば、収差変動を抑え、高い光学性能を有する変倍光学系を製造することができる。   According to the manufacturing method of the variable magnification optical system of the present application, it is possible to manufacture a variable magnification optical system that suppresses aberration fluctuation and has high optical performance.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   The contents described below can be appropriately adopted as long as the optical performance is not impaired.

実施例では、3群構成を示したが、4群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   Although the three-group configuration is shown in the embodiment, the present invention can be applied to other group configurations such as a four-group configuration. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。特に、第2レンズ群の少なくとも一部を合焦レンズ群とするのが好ましい。   A single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object. The focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like). In particular, it is preferable that at least a part of the second lens group is a focusing lens group.

また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としても良い。特に、第3レンズ群の少なくとも一部を防振レンズ群とするのが好ましい。   In addition, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or is rotated (swayed) in the in-plane direction including the optical axis to reduce image blur caused by camera shake. A vibration-proof lens group to be corrected may be used. In particular, it is preferable that at least a part of the third lens group is an anti-vibration lens group.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。   Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface.

レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。   When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to processing and assembly adjustment errors can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.

レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。   When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

また、本実施形態の変倍光学系は、変倍比が7〜25程度である。   The variable magnification optical system of the present embodiment has a variable magnification ratio of about 7 to 25.

また、本実施形態の変倍光学系は、第1レンズ群が正のレンズ成分を2つ有するのが好ましい。また、第1レンズ群は、物体側から順に、正正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。   In the variable magnification optical system of the present embodiment, it is preferable that the first lens group has two positive lens components. In the first lens group, it is preferable that lens components are arranged in order of positive and negative in order from the object side with an air gap interposed therebetween.

また、本実施形態の変倍光学系は、第2レンズ群が正のレンズ成分を1つと負のレンズ成分を3つ有するのが好ましい。また、第2レンズ群は、物体側から順に、負負正負の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。   In the variable power optical system of the present embodiment, it is preferable that the second lens group has one positive lens component and three negative lens components. In the second lens group, it is preferable that the lens components are arranged in order of negative, positive and negative in order from the object side with an air gap interposed therebetween.

また、本実施形態の変倍光学系は、第3レンズ群が少なくとも正のレンズ成分を3つと少なくとも負のレンズ成分を1つ有するのが好ましい。   In the variable magnification optical system of the present embodiment, it is preferable that the third lens group has at least three positive lens components and at least one negative lens component.

なお、本発明を分かり易く説明するために実施形態の構成要件を付して説明したが、本発明はこれに限定されるものではない。   In addition, in order to explain the present invention in an easy-to-understand manner, the configuration requirements of the embodiment have been described, but the present invention is not limited to this.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G31 第31レンズ群
G32 第32レンズ群
G33 第33レンズ群
L11 負メニスカスレンズ
L12 両凸レンズ
L13 正メニスカスレンズ
L31 両凸レンズ
S 開口絞り
I 像面
1 カメラ
G1 1st lens group G2 2nd lens group G3 3rd lens group G31 31st lens group G32 32nd lens group G33 33rd lens group L11 Negative meniscus lens L12 Biconvex lens L13 Positive meniscus lens L31 Biconvex lens S Aperture stop I Image surface 1 Camera

Claims (13)

光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群からなり、
前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、正屈折力の第32レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が減少する光学系全体で実質的に4個のレンズ群からなり、
または、前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、負屈折力の第32レンズ群と、正屈折力の第33レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が変化し、前記第32レンズ群と前記第33レンズ群との間隔が変化する光学系全体で実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、
前記第1レンズ群は以下の条件式を満足する複数の正レンズを有し、
前記第1レンズ群中の前記複数の正レンズは2枚であり、
以下の条件式を満足することを特徴とする変倍光学系。
ndA≧1.540の時 νdA>66.5
ndA<1.540の時 νdA>75.0
5.569≦f1/fw<11.00
0.28<f1/ft<0.48
但し、
ndA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対する屈折率
νdA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対するアッベ数
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
f1:前記第1レンズ群の焦点距離
In order from the object side along the optical axis, the first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
The third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power and a 32nd lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the entire optical system in which the distance between the thirty-first lens group and the thirty-second lens group decreases substantially consists of four lens groups,
Alternatively, the third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power, a 32nd lens group having a negative refractive power, and a 33rd lens group having a positive refractive power,
An optical system in which the distance between the thirty-first lens group and the thirty-second lens group changes and the distance between the thirty-second lens group and the thirty-third lens group changes upon zooming from the wide-angle end state to the telephoto end state. It consists essentially of 5 lens groups,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases.
The first lens group has a plurality of positive lenses that satisfy the following conditional expression:
The plurality of positive lenses in the first lens group is two,
A zoom optical system characterized by satisfying the following conditional expression:
When ndA ≧ 1.540, νdA> 66.5
When ndA <1.540 νdA> 75.0
5.569 ≦ f1 / fw <11.00
0.28 <f1 / ft <0.48
However,
ndA: Refractive index νdA for the material of the plurality of positive lenses in the first lens group νdA: Abbe number fw for the material of the plurality of positive lenses in the first lens group fw: in the wide-angle end state Focal length ft of the entire zooming optical system: focal length f1 of the entire zooming optical system in the telephoto end state f1: Focal length of the first lens group
光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群からなり、
前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、正屈折力の第32レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が減少する光学系全体で実質的に4個のレンズ群からなり、
または、前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、負屈折力の第32レンズ群と、正屈折力の第33レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が変化し、前記第32レンズ群と前記第33レンズ群との間隔が変化する光学系全体で実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、
前記第1レンズ群は以下の条件式を満足する複数の正レンズを有し、
前記第1レンズ群中の前記複数の正レンズは2枚であり、
以下の条件式を満足することを特徴とする変倍光学系。
ndA≧1.540の時 νdA>66.5
ndA<1.540の時 νdA>75.0
5.569≦f1/fw<11.00
0.28<f1/ft<0.52
0.65<f1A/f1<1.75
但し、
ndA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対する屈折率
νdA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対するアッベ数
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
f1:前記第1レンズ群の焦点距離
f1A:前記第1レンズ群中の前記複数の正レンズの焦点距離
In order from the object side along the optical axis, the first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
The third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power and a 32nd lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the entire optical system in which the distance between the thirty-first lens group and the thirty-second lens group decreases substantially consists of four lens groups,
Alternatively, the third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power, a 32nd lens group having a negative refractive power, and a 33rd lens group having a positive refractive power,
An optical system in which the distance between the thirty-first lens group and the thirty-second lens group changes and the distance between the thirty-second lens group and the thirty-third lens group changes upon zooming from the wide-angle end state to the telephoto end state. It consists essentially of 5 lens groups,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases.
The first lens group has a plurality of positive lenses that satisfy the following conditional expression:
The plurality of positive lenses in the first lens group is two,
A zoom optical system characterized by satisfying the following conditional expression:
When ndA ≧ 1.540, νdA> 66.5
When ndA <1.540 νdA> 75.0
5.569 ≦ f1 / fw <11.00
0.28 <f1 / ft <0.52
0.65 <f1A / f1 <1.75
However,
ndA: Refractive index νdA for the material of the plurality of positive lenses in the first lens group νdA: Abbe number fw for the material of the plurality of positive lenses in the first lens group fw: in the wide-angle end state Focal length ft of the entire variable magnification optical system: Focal length f1 of the entire variable magnification optical system in the telephoto end state f1: Focal length f1A of the first lens group: Focal points of the plurality of positive lenses in the first lens group distance
光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群からなり、
前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、正屈折力の第32レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が減少する光学系全体で実質的に4個のレンズ群からなり、
または、前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、負屈折力の第32レンズ群と、正屈折力の第33レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が変化し、前記第32レンズ群と前記第33レンズ群との間隔が変化する光学系全体で実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、
前記第1レンズ群は以下の条件式を満足する複数の正レンズを有し、
以下の条件式を満足することを特徴とする変倍光学系。
ndA≧1.540の時 νdA>66.5
ndA<1.540の時 νdA>75.0
5.569≦f1/fw<11.00
0.28<f1/ft<0.48
0.25<Δ1/f1<1.10
但し、
ndA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対する屈折率
νdA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対するアッベ数
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
f1:前記第1レンズ群の焦点距離
Δ1:広角端状態から望遠端状態までの像面に対する前記第1レンズ群の移動量
In order from the object side along the optical axis, the first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
The third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power and a 32nd lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the entire optical system in which the distance between the thirty-first lens group and the thirty-second lens group decreases substantially consists of four lens groups,
Alternatively, the third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power, a 32nd lens group having a negative refractive power, and a 33rd lens group having a positive refractive power,
An optical system in which the distance between the thirty-first lens group and the thirty-second lens group changes and the distance between the thirty-second lens group and the thirty-third lens group changes upon zooming from the wide-angle end state to the telephoto end state. It consists essentially of 5 lens groups,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases.
The first lens group has a plurality of positive lenses that satisfy the following conditional expression:
A zoom optical system characterized by satisfying the following conditional expression:
When ndA ≧ 1.540, νdA> 66.5
When ndA <1.540 νdA> 75.0
5.569 ≦ f1 / fw <11.00
0.28 <f1 / ft <0.48
0.25 <Δ1 / f1 <1.10
However,
ndA: Refractive index νdA for the material of the plurality of positive lenses in the first lens group νdA: Abbe number fw for the material of the plurality of positive lenses in the first lens group fw: in the wide-angle end state Focal length ft of the entire zooming optical system: focal length f1 of the entire zooming optical system in the telephoto end state f1: focal length Δ1: the first lens group on the image plane from the wide-angle end state to the telephoto end state Movement amount of one lens group
光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群からなり、
前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、正屈折力の第32レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が減少する光学系全体で実質的に4個のレンズ群からなり、
または、前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、負屈折力の第32レンズ群と、正屈折力の第33レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が変化し、前記第32レンズ群と前記第33レンズ群との間隔が変化する光学系全体で実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、
前記第1レンズ群は以下の条件式を満足する複数の正レンズを有し、
以下の条件式を満足することを特徴とする変倍光学系。
ndA≧1.540の時 νdA>66.5
ndA<1.540の時 νdA>75.0
5.569≦f1/fw<11.00
0.28<f1/ft<0.52
0.25<Δ1/f1<1.10
0.65<f1A/f1<1.75
但し、
ndA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対する屈折率
νdA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対するアッベ数
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
f1:前記第1レンズ群の焦点距離
Δ1:広角端状態から望遠端状態までの像面に対する前記第1レンズ群の移動量
f1A:前記第1レンズ群中の前記複数の正レンズの焦点距離
In order from the object side along the optical axis, the first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
The third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power and a 32nd lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the entire optical system in which the distance between the thirty-first lens group and the thirty-second lens group decreases substantially consists of four lens groups,
Alternatively, the third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power, a 32nd lens group having a negative refractive power, and a 33rd lens group having a positive refractive power,
An optical system in which the distance between the thirty-first lens group and the thirty-second lens group changes and the distance between the thirty-second lens group and the thirty-third lens group changes upon zooming from the wide-angle end state to the telephoto end state. It consists essentially of 5 lens groups,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases.
The first lens group has a plurality of positive lenses that satisfy the following conditional expression:
A zoom optical system characterized by satisfying the following conditional expression:
When ndA ≧ 1.540, νdA> 66.5
When ndA <1.540 νdA> 75.0
5.569 ≦ f1 / fw <11.00
0.28 <f1 / ft <0.52
0.25 <Δ1 / f1 <1.10
0.65 <f1A / f1 <1.75
However,
ndA: Refractive index νdA for the material of the plurality of positive lenses in the first lens group νdA: Abbe number fw for the material of the plurality of positive lenses in the first lens group fw: in the wide-angle end state Focal length ft of the entire zooming optical system: focal length f1 of the entire zooming optical system in the telephoto end state f1: focal length Δ1: the first lens group on the image plane from the wide-angle end state to the telephoto end state Movement amount f1A of one lens group: focal lengths of the plurality of positive lenses in the first lens group
光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群からなり、
前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、正屈折力の第32レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が減少する光学系全体で実質的に4個のレンズ群からなり、
または、前記第3レンズ群は、光軸に沿って物体側から順に、正屈折力の第31レンズ群と、負屈折力の第32レンズ群と、正屈折力の第33レンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔が変化し、前記第32レンズ群と前記第33レンズ群との間隔が変化する光学系全体で実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、
前記第1レンズ群は以下の条件式を満足する複数の正レンズを有し、
以下の条件式を満足することを特徴とする変倍光学系。
ndA≧1.540の時 νdA>66.5
ndA<1.540の時 νdA>75.0
5.569≦f1/fw<11.00
0.28<f1/ft<0.44
但し、
ndA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対する屈折率
νdA:前記第1レンズ群中の前記複数の正レンズの材質のd線に対するアッベ数
fw:広角端状態における変倍光学系全系の焦点距離
ft:望遠端状態における変倍光学系全系の焦点距離
f1:前記第1レンズ群の焦点距離
In order from the object side along the optical axis, the first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
The third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power and a 32nd lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the entire optical system in which the distance between the thirty-first lens group and the thirty-second lens group decreases substantially consists of four lens groups,
Alternatively, the third lens group includes, in order from the object side along the optical axis, a 31st lens group having a positive refractive power, a 32nd lens group having a negative refractive power, and a 33rd lens group having a positive refractive power,
An optical system in which the distance between the thirty-first lens group and the thirty-second lens group changes and the distance between the thirty-second lens group and the thirty-third lens group changes upon zooming from the wide-angle end state to the telephoto end state. It consists essentially of 5 lens groups,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third lens group decreases.
The first lens group has a plurality of positive lenses that satisfy the following conditional expression:
A zoom optical system characterized by satisfying the following conditional expression:
When ndA ≧ 1.540, νdA> 66.5
When ndA <1.540 νdA> 75.0
5.569 ≦ f1 / fw <11.00
0.28 <f1 / ft <0.44
However,
ndA: Refractive index νdA for the material of the plurality of positive lenses in the first lens group νdA: Abbe number fw for the material of the plurality of positive lenses in the first lens group fw: in the wide-angle end state Focal length ft of the entire zooming optical system: focal length f1 of the entire zooming optical system in the telephoto end state f1: Focal length of the first lens group
以下の条件式を満足することを特徴とする請求項1又は2に記載の変倍光学系。
0.25<Δ1/f1<1.10
但し、
Δ1:広角端状態から望遠端状態までの像面に対する前記第1レンズ群の移動量
The zoom lens system according to claim 1 or 2, wherein the following conditional expression is satisfied.
0.25 <Δ1 / f1 <1.10
However,
Δ1: Amount of movement of the first lens group with respect to the image plane from the wide-angle end state to the telephoto end state
以下の条件式を満足することを特徴とする請求項5に記載の変倍光学系。
0.65<f1A/f1<1.75
但し、
f1A:前記第1レンズ群中の前記複数の正レンズの焦点距離
6. The variable magnification optical system according to claim 5, wherein the following conditional expression is satisfied.
0.65 <f1A / f1 <1.75
However,
f1A: focal lengths of the plurality of positive lenses in the first lens group
以下の条件式を満足することを特徴とする請求項1から7のいずれか1項に記載の変倍光学系。
1.75<φ1A/fw<4.50
但し、
φ1A:前記第1レンズ群中の前記複数の正レンズの有効径
The zoom lens system according to claim 1, wherein the following conditional expression is satisfied.
1.75 <φ1A / fw <4.50
However,
φ1A: Effective diameter of the plurality of positive lenses in the first lens group
前記第1レンズ群は以下の条件式を満足する負レンズを有することを特徴とする請求項1から8のいずれか1項に記載の変倍光学系。
1.750<ndN
28.0<νdN<50.0
但し、
ndN:前記第1レンズ群中の前記負レンズの材質のd線に対する屈折率
νdN:前記第1レンズ群中の前記負レンズの材質のd線に対するアッベ数
9. The variable magnification optical system according to claim 1, wherein the first lens group includes a negative lens that satisfies the following conditional expression. 10.
1.750 <ndN
28.0 <νdN <50.0
However,
ndN: refractive index νdN of the negative lens material in the first lens group with respect to the d-line νdN: Abbe number of the negative lens material in the first lens group with respect to the d-line
前記第1レンズ群中の前記負レンズは1枚であることを特徴とする請求項9に記載の変倍光学系。   The variable magnification optical system according to claim 9, wherein the number of the negative lenses in the first lens group is one. 前記第3レンズ群は以下の条件式を満足する正レンズを有することを特徴とする請求項1から10のいずれか1項に記載の変倍光学系。
νd3>65.5
但し、
νd3:前記第3レンズ群中の前記正レンズの材質のd線に対するアッベ数
11. The variable magnification optical system according to claim 1, wherein the third lens group includes a positive lens that satisfies the following conditional expression. 11.
νd3> 65.5
However,
νd3: Abbe number with respect to d-line of the material of the positive lens in the third lens group
広角端状態から望遠端状態への変倍に際し、前記第31レンズ群と前記第32レンズ群との間隔は増大し、前記第32レンズ群と前記第33レンズ群との間隔は減少することを特徴とする請求項1から11のいずれか1項に記載の変倍光学系。   During zooming from the wide-angle end state to the telephoto end state, the distance between the thirty-first lens group and the thirty-second lens group increases, and the distance between the thirty-second lens group and the thirty-third lens group decreases. The variable power optical system according to claim 1, wherein the zoom lens system has a variable magnification. 請求項1から12のいずれか1項に記載の変倍光学系を有することを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to claim 1.
JP2010171323A 2010-07-30 2010-07-30 Variable magnification optical system, optical device Active JP5609386B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010171323A JP5609386B2 (en) 2010-07-30 2010-07-30 Variable magnification optical system, optical device
US13/194,890 US9523843B2 (en) 2010-07-30 2011-07-29 Zoom lens, optical apparatus, and method for manufacturing zoom lens
CN201110220267.8A CN102346293B (en) 2010-07-30 2011-08-01 Zoom lens, optical device and the method for the manufacture of zoom lens
US15/359,227 US10203488B2 (en) 2010-07-30 2016-11-22 Zoom lens, optical apparatus, and method for manufacturing zoom lens
US16/237,601 US10895721B2 (en) 2010-07-30 2018-12-31 Zoom lens, optical apparatus, and method for manufacturing zoom lens
US17/122,824 US11579421B2 (en) 2010-07-30 2020-12-15 Zoom lens, optical apparatus, and method for manufacturing zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171323A JP5609386B2 (en) 2010-07-30 2010-07-30 Variable magnification optical system, optical device

Publications (2)

Publication Number Publication Date
JP2012032561A JP2012032561A (en) 2012-02-16
JP5609386B2 true JP5609386B2 (en) 2014-10-22

Family

ID=45846043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171323A Active JP5609386B2 (en) 2010-07-30 2010-07-30 Variable magnification optical system, optical device

Country Status (1)

Country Link
JP (1) JP5609386B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743810B2 (en) * 2010-10-07 2015-07-01 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5867829B2 (en) * 2012-07-06 2016-02-24 株式会社タムロン Zoom lens
JP5959994B2 (en) * 2012-08-24 2016-08-02 株式会社シグマ Zoom lens system
JP6406870B2 (en) * 2014-05-08 2018-10-17 キヤノン株式会社 Optical system and imaging apparatus having the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249974A (en) * 2004-03-02 2005-09-15 Fujinon Corp Zoom lens
JP5064837B2 (en) * 2007-03-01 2012-10-31 キヤノン株式会社 Zoom lens with anti-vibration function
JP5046747B2 (en) * 2007-05-24 2012-10-10 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JP2012032561A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5742100B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5273184B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5458477B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5641680B2 (en) Zoom lens and optical apparatus having the same
JP2009020341A (en) Wide angle lens, optical device, and focusing method for wide angle lens
WO2014017025A1 (en) Zoom lens, optical instrument, and method for manufacturing zoom lens
JP5724189B2 (en) Variable magnification optical system, optical device
WO2010004806A1 (en) Zoom lens, optical device having same, and zoom lens manufacturing method
JP6583420B2 (en) Zoom lens and optical equipment
JP5273167B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2017107067A (en) Zoom lens, optical apparatus and method for manufacturing zoom lens
JP5845972B2 (en) Variable magnification optical system, optical device
JP5609386B2 (en) Variable magnification optical system, optical device
JP2010117677A (en) Zoom lens, optical apparatus, and method for manufacturing zoom lens
WO2017131223A1 (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP5333530B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5338865B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5736651B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6119953B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
JP5488061B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6583574B2 (en) Zoom lens and imaging device
WO2020136745A1 (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
WO2020136744A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
WO2020136746A1 (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
WO2020136748A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5609386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250