JP5609377B2 - measuring device - Google Patents
measuring device Download PDFInfo
- Publication number
- JP5609377B2 JP5609377B2 JP2010168173A JP2010168173A JP5609377B2 JP 5609377 B2 JP5609377 B2 JP 5609377B2 JP 2010168173 A JP2010168173 A JP 2010168173A JP 2010168173 A JP2010168173 A JP 2010168173A JP 5609377 B2 JP5609377 B2 JP 5609377B2
- Authority
- JP
- Japan
- Prior art keywords
- spectral
- sample
- measurement
- light
- fluorescence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
本発明は、蛍光増白試料の光学特性、特に、環境光による全分光放射率係数等の分光特性を測定する技術に関する。 The present invention relates to a technique for measuring optical characteristics of a fluorescent whitening sample, in particular, spectral characteristics such as a total spectral emissivity coefficient by ambient light.
照明光の紫外成分を吸収して、青領域の光を放射することで白さを改善する蛍光増白材を含む蛍光増白紙が印刷用紙などに、広く用いられている。蛍光増白紙等の蛍光増白試料の視覚的な反射特性は、ある条件で照明された試料からの放射光の、同条件で照明された完全拡散反射体からの放射光に対する波長毎の比である全分光放射率係数B(λ)で表される。 A fluorescent whitening paper including a fluorescent whitening material that improves the whiteness by absorbing the ultraviolet component of illumination light and emitting light in the blue region is widely used for printing paper and the like. The visual reflection characteristics of a fluorescent whitening sample such as fluorescent whitening paper is the ratio of the emitted light from a sample illuminated under a certain condition to the emitted light from a perfect diffuse reflector illuminated under the same condition by wavelength. It is expressed by a certain spectral emissivity coefficient B (λ).
蛍光試料の放射光は、反射光と蛍光との和で表される。全分光放射率係数B(λ)も、試料からの反射光及び蛍光の、同条件で照明された完全拡散反射体からの放射光に対する波長毎の比である反射分光放射率係数(分光反射率係数ともいう。)R(λ)及び蛍光分光放射率係数F(λ)の和で表され、式(1)で表される。 The emitted light of the fluorescent sample is represented by the sum of reflected light and fluorescence. The total spectral emissivity coefficient B (λ) is also a reflected spectral emissivity coefficient (spectral reflectivity) that is a ratio of reflected light and fluorescence from the sample to wavelength of emitted light from a perfect diffuse reflector illuminated under the same conditions. It is also referred to as a coefficient.) Expressed by the sum of R (λ) and fluorescence spectral emissivity coefficient F (λ), and expressed by equation (1).
B(λ)=R(λ)+F(λ) (1)
完全拡散反射体は蛍光を放射せず、その反射率は波長に依存しないので、比例定数を別にすれば、全分光放射率係数B(λ)、反射分光放射率係数R(λ)、及び蛍光分光放射率係数F(λ)は、各々、試料の放射光、反射光、及び蛍光の、照明光に対する波長毎の比で表される。
B (λ) = R (λ) + F (λ) (1)
Since the perfect diffuse reflector does not emit fluorescence and its reflectance does not depend on the wavelength, the total spectral emissivity coefficient B (λ), the reflected spectral emissivity coefficient R (λ), and the fluorescence, apart from the proportionality constant The spectral emissivity coefficient F (λ) is represented by the ratio of the emitted light, reflected light, and fluorescence of the sample to the illumination light for each wavelength.
(蛍光試料の光学特性)
蛍光物質の励起特性及び蛍光特性は、波長μの照明光で照明された蛍光試料から放射された波長λの蛍光の、同条件で照明された完全拡散反射体からの放射光に対する比である二分光蛍光放射率係数(Bispectral luminescent Radiance Factor)F(μ,λ)によって記述される。分光分布I(μ)の照明光で照明された二分光蛍光放射率係数F(μ,λ)の蛍光試料の蛍光分光放射率係数F(λ)は、比例定数を別にすれば、式(2)で表される。
(Optical characteristics of fluorescent sample)
The excitation characteristics and fluorescence characteristics of a fluorescent material are the ratio of the fluorescence of wavelength λ emitted from a fluorescent sample illuminated with illumination light of wavelength μ to the emitted light from a perfect diffuse reflector illuminated under the same conditions. It is described by a spectral luminescent emissivity factor F (μ, λ). The fluorescence spectral emissivity coefficient F (λ) of the fluorescent sample having the bispectral fluorescence emissivity coefficient F (μ, λ) illuminated with the illumination light having the spectral distribution I (μ) can be expressed by the following equation (2) ).
F(λ)=∫F(μ,λ)・I(μ)dμ/I(λ) (2)
二分光蛍光放射率係数(二分光特性)は二分光測定器(Bispectro fluorimeter)で測定される。
F (λ) = ∫F (μ, λ) · I (μ) dμ / I (λ) (2)
The bispectral fluorescence emissivity coefficient (bispectral characteristic) is measured with a bispectro fluorimeter.
式(2)が示すように、蛍光試料の蛍光分光放射率係数F(λ)は、照明光の分光分布I(μ)に依存する。蛍光分光放射率係数F(λ)と、照明光の分光分布I(μ)に依存しない反射分光放射率係数R(λ)との和である全分光放射率係数B(λ)も、照明光の分光分布I(μ)に依存する。 As Equation (2) shows, the fluorescence spectral emissivity coefficient F (λ) of the fluorescent sample depends on the spectral distribution I (μ) of the illumination light. The total spectral emissivity coefficient B (λ), which is the sum of the fluorescent spectral emissivity coefficient F (λ) and the reflected spectral emissivity coefficient R (λ) independent of the spectral distribution I (μ) of the illumination light, is also the illumination light. Depending on the spectral distribution I (μ).
従って、蛍光試料の評価には評価用照明光の分光分布I(μ)を特定する必要がある。測定においても、測定器の照明光の相対分光分布を評価用照明光の相対分光分布と一致させる必要があるが、評価用照明光として、D50などの標準イルミナントを採用する場合であっても、目視評価との相関を得るためにライトブースなどの実照明光を採用する場合であっても、評価用照明光と同じ相対分光分布をもつ照明光を測定器が照射することは困難である。 Therefore, it is necessary to specify the spectral distribution I (μ) of the illumination light for evaluation for evaluating the fluorescent sample. Even in the measurement, it is necessary to match the relative spectral distribution of the illumination light of the measuring instrument with the relative spectral distribution of the evaluation illumination light. Even when a standard illuminant such as D50 is used as the evaluation illumination light, Even when actual illumination light such as a light booth is used to obtain a correlation with visual evaluation, it is difficult for the measuring device to irradiate illumination light having the same relative spectral distribution as the evaluation illumination light.
一方、照明光の分光分布I(μ)と、試料の二分光蛍光放射率係数F(μ,λ)とから式(2)によって蛍光分光放射率係数F(λ)を求め、更に式(1)によって全分光放射率係数B(λ)を求めることができるが、二分光蛍光測定器が複雑かつ高価であり、測定にも長時間を要することから実用的でない。 On the other hand, the fluorescence spectral emissivity coefficient F (λ) is obtained by the equation (2) from the spectral distribution I (μ) of the illumination light and the two-spectral fluorescence emissivity coefficient F (μ, λ) of the sample. ), The total spectral emissivity coefficient B (λ) can be obtained, but it is not practical because the dual spectrofluorometer is complicated and expensive, and it takes a long time to measure.
(特許文献1および2の方法)
これらを実用的に代替する方法として、特許文献1、2の方法が提案されている。この方法は、紫外域に強度をもつ第1照明光と、紫外域に強度をもたない第2照明光とで蛍光増白試料xを照明して、各照明光による第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)を求める。そして、求めた第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)を、式(3)に示すように、予め設定されて保存され、波長毎の値を有する重み係数W(λ)で重みつき線形結合する。そして、評価用照明光で照明された蛍光増白試料xの全分光放射率係数B(λ)に近似する合成全分光放射率係数Bc(λ)を求める。
(Methods of
As methods for practically replacing these, the methods of
Bc(λ)=W(λ)・Bx1(λ)+(1−W(λ))・Bx2(λ) (3)
上記の重み係数W(λ)は、以下のように設定される。まず、蛍光増白試料xに近似の励起特性及び蛍光特性をもち、評価用照明光で照明された時の基準全分光放射率係数Bs(λ)が既知の蛍光基準試料sを用意する。そして、この蛍光基準試料sを上記の第1、第2照明光で照明して第1、第2全分光放射率係数Bs1(λ)、Bs2(λ)を測定する。そして、第1、第2全分光放射率係数Bs1(λ)、Bs2(λ)の線形結合であるW(λ)・Bs1(λ)+(1−W(λ))・Bs2(λ)が、基準全分光放射率係数Bs(λ)に等しくなるように、波長毎に重み係数W(λ)を設定する。
Bc (λ) = W (λ) · Bx1 (λ) + (1−W (λ)) · Bx2 (λ) (3)
The weighting factor W (λ) is set as follows. First, a fluorescent reference sample s is prepared which has excitation characteristics and fluorescent characteristics that are similar to the fluorescent whitening sample x and has a known reference total spectral emissivity coefficient Bs (λ) when illuminated with evaluation illumination light. Then, the fluorescence reference sample s is illuminated with the first and second illumination lights to measure the first and second total spectral emissivity coefficients Bs1 (λ) and Bs2 (λ). Then, W (λ) · Bs1 (λ) + (1−W (λ)) · Bs2 (λ), which is a linear combination of the first and second total spectral emissivity coefficients Bs1 (λ) and Bs2 (λ), is obtained. The weight coefficient W (λ) is set for each wavelength so as to be equal to the reference total spectral emissivity coefficient Bs (λ).
(蛍光増白紙上の印刷面の光学特性)
蛍光増白紙上に印刷された試料も蛍光の影響を受ける。インクで覆われていない部分はそのまま蛍光が蛍光増白紙に到達し、インクで覆われた部分はインクの分光透過率に応じた励起光が蛍光増白紙に到達する。そのため、評価域の二分光特性(分光励起効率及び蛍光分光強度)は、蛍光増白紙の二分光特性だけでなく、インクの分光透過特性及びインクの面積率に依存する。通常のカラー印刷では、蛍光増白紙は各プライマリインク(Y、M、C、K)及びこれらの重なり(YM、MC、CY、YMC)で覆われるので、印刷面の二分光特性は、各プライマリインク及びそれらの重なりの分光透過特性と面積率、つまり印刷色に依存する。
(Optical characteristics of printing surface on fluorescent white paper)
Samples printed on fluorescent white paper are also affected by fluorescence. The fluorescent light reaches the fluorescent whitened paper as it is in the portion not covered with ink, and the excitation light corresponding to the spectral transmittance of the ink reaches the fluorescent whitened paper in the portion covered with ink. Therefore, the two spectral characteristics (spectral excitation efficiency and fluorescence spectral intensity) in the evaluation region depend on not only the two spectral characteristics of the fluorescent whitening paper but also the spectral transmission characteristics of the ink and the ink area ratio. In normal color printing, the fluorescent whitening paper is covered with each primary ink (Y, M, C, K) and their overlap (YM, MC, CY, YMC). It depends on the spectral transmission characteristics and area ratio of the inks and their overlap, that is, the printing color.
(特許文献3の方法)
この方法では、蛍光増白紙の既知の二分光特性と、各プライマリインクの分光透過率と、紫外域に強度をもたない照明光による全分光放射率係数から推定した各プライマリインク及びこれらの重なりの面積率とから、評価域の実効的な二分光特性が推定されている。さらに、各プライマリインク及びこれらの重なりと、非印刷面との既知の二分光特性と、推定した面積率とから、評価域の実効的な二分光特性を推定する方法も示されている。
(Method of Patent Document 3)
In this method, the known bispectral characteristics of fluorescent white paper, the spectral transmittance of each primary ink, and each primary ink estimated from the total spectral emissivity coefficient of illumination light with no intensity in the ultraviolet region and their overlap. From the area ratio, effective two spectral characteristics in the evaluation area are estimated. Further, a method for estimating effective two spectral characteristics in the evaluation region from each primary ink and their overlap, the known two spectral characteristics of the non-printed surface, and the estimated area ratio is also shown.
しかしながら、特許文献1、2の手法では、基準全分光放射率係数Bs(λ)を値づけるためには、蛍光基準試料の二分光特性と、照明光の励起域を含む分光分布とが必要となる。そして、二分光特性の測定には長い測定時間を要する。また、環境光下の分光放射率係数の測定には、環境光の少なくとも300nmまでの紫外域を測定レンジとする分光放射輝度計を要する。そのため、特許文献1、2の方法は実用性が低い。
However, in the methods of
また、特許文献1、2の方法はいずれも、二分光特性の印刷色依存性を考慮しておらず、蛍光増白紙上の印刷面に適用すると誤差が生じる。また、特許文献3の方法も、高価な測定器による測定を必要とし、実用性が低い。
In addition, neither of the methods disclosed in
本発明の目的は、高価な測定器を用いずに、蛍光増白試料の環境光下での全分光放射率係数等の分光特性を、実用的、かつ、高精度で測定する測定装置を提供することにある。 The object of the present invention is to provide a measuring device that can measure the spectral characteristics of the fluorescent whitening sample such as the total spectral emissivity coefficient under the ambient light with practical and high accuracy without using an expensive measuring instrument. There is to do.
(1)本発明による測定装置は、蛍光増白試料からなる測定試料を、前記測定試料を測定するためのライトブース内の照明光であって任意のスペクトル分布を持つ照明光としての環境光で照明したときの分光特性を測定する測定装置であって、前記測定試料を相対紫外強度が異なる第1、第2照明光で照明する照明部と、前記測定試料からの放射光を受光して分光分布を測定する受光部と、前記測定試料を前記第1、第2照明光で照明し、前記蛍光増白試料からの放射光を前記受光部で測定することで第1、第2分光分布を取得し、取得した前記第1、第2分光分布から前記測定試料の第1、第2分光特性を求め、求めた前記第1、第2分光特性を波長毎の値を有する重み係数によって重みつき線形結合し、前記測定試料を環境光で照明したときの前記測定試料の合成分光特性を求める演算部とを備え、前記演算部は、前記重み係数を以下の第1〜第3工程で求める。 (1) A measuring apparatus according to the present invention uses a measurement sample composed of a fluorescent whitening sample as ambient light as illumination light in a light booth for measuring the measurement sample and having an arbitrary spectral distribution. A measuring apparatus for measuring spectral characteristics when illuminated, an illumination unit for illuminating the measurement sample with first and second illumination lights having different relative ultraviolet intensities, and receiving radiation from the measurement sample for spectroscopy A light receiving unit for measuring the distribution, and illuminating the measurement sample with the first and second illumination light, and measuring the emitted light from the fluorescent whitening sample with the light receiving unit, the first and second spectral distributions are obtained. The first and second spectral characteristics of the measurement sample are obtained from the obtained first and second spectral distributions, and the obtained first and second spectral characteristics are weighted by a weighting factor having a value for each wavelength. Linearly coupled, and the measurement sample was illuminated with ambient light And an arithmetic unit for obtaining the composite spectral characteristic of Kino the measurement sample, wherein the calculating unit calculates the weight coefficient by the following first to third steps.
第1工程:環境光で照明された無蛍光基準試料からの放射光及び前記測定試料と類似の二分光特性をもつ蛍光基準試料からの放射光を前記受光部で測定することで前記無蛍光基準試料の放射光の分光分布及及び前記蛍光基準試料の放射光の分光分布を取得し、取得した前記無蛍光基準試料の放射光の分光分布及び前記蛍光基準試料の放射光の分光分布と、前記無蛍光基準試料の既知の基準分光特性とから、前記蛍光基準試料の基準分光特性を求める。 1st process: The said non-fluorescence reference | standard by measuring in the said light-receiving part the radiation light from the non-fluorescence reference sample illuminated with environmental light, and the radiation light from the fluorescence reference | standard sample similar to the said measurement sample. Obtaining the spectral distribution of the radiated light of the sample and the spectral distribution of the radiated light of the fluorescent reference sample, and obtaining the spectral distribution of the radiated light of the non-fluorescent reference sample and the spectral distribution of the radiated light of the fluorescent reference sample, The reference spectral characteristic of the fluorescent reference sample is obtained from the known reference spectral characteristic of the non-fluorescent reference sample.
第2工程:前記蛍光基準試料を前記第1、第2照明光で照明し、前記蛍光基準試料からの放射光を前記受光部で測定することで第1、第2分光分布を取得し、取得した前記第1、第2分光分布から前記蛍光基準試料の第1、第2分光特性を求める。 Second step: illuminating the fluorescence reference sample with the first and second illumination light, and measuring the radiation light from the fluorescence reference sample with the light receiving unit to obtain and obtain the first and second spectral distributions The first and second spectral characteristics of the fluorescence reference sample are obtained from the first and second spectral distributions.
第3工程:前記第1、第2分光特性の重みつき線形結合が前記基準分光特性に一致するように前記重み係数を求めて記憶する。 Third step: The weight coefficient is obtained and stored so that the weighted linear combination of the first and second spectral characteristics matches the reference spectral characteristic.
この構成によれば、無蛍光基準試料を環境光で照明すると共に、蛍光増白試料からなる測定試料と類似の二分光特性をもつ蛍光基準試料を環境光及び第1、第2照明光で照明することで、蛍光基準試料の基準分光特性及び第1、第2分光特性が求められ、重み係数が算出されている。そして、この重み係数を用いて、測定試料の第1、第2分光特性が重み付き線形結合され、測定試料を環境光で照明した場合の合成分光特性が算出されている。そのため、測定試料の二分光特性や環境光の分光分布が未知であっても、測定試料を環境光で照明した場合の分光特性を測定することができる。その結果、高価な二分光測定器や紫外可視域分光放射輝度計を用いることなく、実用的に蛍光増白試料の分光特性を求めることができる。また、工程1〜工程3により得られた重み係数を用いて合成分光特性が求められているため、測定試料の分光特性を高精度に求めることができる。なお、「測定試料と類似の二分光特性をもつ蛍光基準試料」とは、測定試料と二分光特性が類似している場合のみならず、測定試料と二分光特性が同一の場合も含まれる。また、分光特性としては、全分光放射率係数が含まれる。また、二分光特性としては、二分光蛍光放射率係数が含まれる。
According to this configuration, the non-fluorescence reference sample is illuminated with the ambient light, and the fluorescence reference sample having two spectral characteristics similar to the measurement sample made of the fluorescent whitening sample is illuminated with the ambient light and the first and second illumination lights. As a result, the reference spectral characteristic and the first and second spectral characteristics of the fluorescence reference sample are obtained, and the weighting coefficient is calculated. Then, using this weighting factor, the first and second spectral characteristics of the measurement sample are weighted linearly combined, and the combined spectral characteristic when the measurement sample is illuminated with ambient light is calculated. Therefore, even when the two spectral characteristics of the measurement sample and the spectral distribution of ambient light are unknown, the spectral characteristics when the measurement sample is illuminated with ambient light can be measured. As a result, the spectral characteristics of the fluorescent whitening sample can be obtained practically without using an expensive dual spectrophotometer or ultraviolet-visible spectral radiance meter. Moreover, since the synthetic | combination spectral characteristic is calculated | required using the weighting coefficient obtained by the process 1-the
(2)前記第1照明光は、紫外域に強度をもたず、前記第2照明光は、紫外域に強度をもつことが好ましい。 (2) The first illumination light preferably has no intensity in the ultraviolet region, and the second illumination light preferably has an intensity in the ultraviolet region.
この構成によれば、第1照明光が紫外域に強度をもたず、第2照明光が紫外域に強度をもつため、第1分光特性は、蛍光の寄与を殆ど受けなくなり、第1照明光の分光分布の変化の影響を受けなくなる。そのため、第1、第2照明光の分光分布が変化した際に生じる合成分光特性の誤差の補正を簡略化することができる。 According to this configuration, since the first illumination light does not have an intensity in the ultraviolet region and the second illumination light has an intensity in the ultraviolet region, the first spectral characteristic hardly receives the contribution of fluorescence. It is no longer affected by changes in the spectral distribution of light. Therefore, it is possible to simplify the correction of the error in the combined spectral characteristic that occurs when the spectral distribution of the first and second illumination light changes.
(3)前記合成分光特性は、合成全分光放射率係数であり、前記第1、第2分光特性は、第1、第2全分光放射率係数であり、前記基準分光特性は、基準全分光放射率係数であることが好ましい。 (3) The synthetic spectral characteristic is a synthetic total spectral emissivity coefficient, the first and second spectral characteristics are first and second total spectral emissivity coefficients, and the reference spectral characteristic is a reference total spectral characteristic. An emissivity coefficient is preferred.
この構成によれば、最終的に合成全分光放射率係数が算出されるため、測定結果から直ちに、様々な色彩値を導くことができる。 According to this configuration, since the combined total spectral emissivity coefficient is finally calculated, various color values can be derived immediately from the measurement result.
(4)前記第2照明光は、紫外域のみに強度をもち、前記合成分光特性は、合成全分光放射率係数であり、前記第1分光特性は、反射分光放射率係数であり、前記第2分光特性は、分光蛍光特性であることが好ましい。 (4) The second illumination light has intensity only in an ultraviolet region, the combined spectral characteristic is a combined total spectral emissivity coefficient, the first spectral characteristic is a reflected spectral emissivity coefficient, The two spectral characteristics are preferably spectral fluorescence characteristics.
この構成によれば、第2照明光を例えばUVLED(紫外線発光ダイオード)の放射光で実現でき、第2照明光の分光分布が変化した場合に発生する合成全分光放射率係数の誤差の補正を簡略化することができる。 According to this configuration, the second illumination light can be realized by, for example, radiated light of UVLED (ultraviolet light emitting diode), and the correction of the error of the combined total spectral emissivity coefficient that occurs when the spectral distribution of the second illumination light changes. It can be simplified.
(5)前記演算部は、前記環境光の照明時と前記第1、第2照明光の照明時とのジオメトリの差に起因する前記基準分光特性の誤差を、蛍光を生じない波長域での、前記基準分光特性と前記第1分光特性又は第2分光特性との差で補正し、補正した前記基準分光特性を用いて前記重み係数を求めることが好ましい。 (5) The calculation unit may calculate an error in the reference spectral characteristic due to a difference in geometry between the illumination of the ambient light and the illumination of the first and second illumination lights in a wavelength region that does not cause fluorescence. Preferably, the weighting coefficient is obtained by correcting the difference between the reference spectral characteristic and the first spectral characteristic or the second spectral characteristic, and using the corrected reference spectral characteristic.
この構成によれば、環境光で照明する際の測定装置のジオメトリと、第1、第2照明光で照明する際の測定装置のジオメトリとが異なっていても、その影響を抑えて重み係数を求めることができる。そのため、測定試料の合成分光特性を精度よく求めることができる。 According to this configuration, even if the geometry of the measuring device when illuminated with ambient light is different from the geometry of the measuring device when illuminated with the first and second illumination lights, the weighting factor is reduced by suppressing the influence thereof. Can be sought. Therefore, the synthetic spectral characteristics of the measurement sample can be obtained with high accuracy.
(6)前記演算部は、前記重み係数設定時の前記第2照明光の分光分布を基準分光分布として保存し、前記測定試料の測定時の前記第2照明光の分光分布と前記基準分光分布とに基づいて、前記重み係数設定時の前記第2照明光による前記測定試料の第2全分光放射率係数を推定し、推定した前記第2全分光放射率係数を用いて前記合成全分光放射率係数を求めることが好ましい。 (6) The calculation unit stores the spectral distribution of the second illumination light when the weighting factor is set as a reference spectral distribution, and the spectral distribution of the second illumination light and the reference spectral distribution when measuring the measurement sample. Based on the above, the second total spectral emissivity coefficient of the measurement sample by the second illumination light at the time of setting the weighting factor is estimated, and the combined total spectral radiation is calculated using the estimated second total spectral emissivity coefficient It is preferable to determine the rate coefficient.
この構成によれば、重み係数設定時の第2照明光で照明した場合の測定試料の第2全分光放射率係数が推定され、この第2全分光放射率係数を用いて合成全分光放射率係数が求められている。そのため、測定試料の測定時の第2照明光の分光分布が、重み係数設定時の分光分布から変化しても、既存の重み係数を用いて、測定試料の全分光放射率係数を精度よく求めることができる。なお、この構成は、駆動による温度上昇で分光分布が変化しやすい白色LED、UVLEDを第1、第2照明光の光源として用いた場合に特に有効である。 According to this configuration, the second total spectral emissivity coefficient of the measurement sample when illuminated with the second illumination light at the time of setting the weighting factor is estimated, and the combined total spectral emissivity is calculated using the second total spectral emissivity coefficient. A coefficient is required. Therefore, even if the spectral distribution of the second illumination light at the time of measurement of the measurement sample changes from the spectral distribution at the time of setting the weighting factor, the total spectral emissivity coefficient of the measurement sample is accurately obtained using the existing weighting factor. be able to. This configuration is particularly effective when a white LED or UV LED whose spectral distribution is likely to change due to a temperature rise due to driving is used as the light source of the first and second illumination light.
(7)前記演算部は、前記基準分光分布をI02(λ)、前記第1、第2全分光放射率係数をBx1(λ)、Bx2(λ)、前記測定時の前記第2照明光の分光分布をI2(λ)とすると、前記重み係数設定時の前記第2照明光による前記測定試料の第2全分光放射率係数Bx02(λ)を以下によって推定することが好ましい。 (7) The calculation unit sets the reference spectral distribution to I02 (λ), the first and second total spectral emissivity coefficients to Bx1 (λ), Bx2 (λ), and the second illumination light at the time of measurement. When the spectral distribution is I2 (λ), it is preferable to estimate the second total spectral emissivity coefficient Bx02 (λ) of the measurement sample by the second illumination light at the time of setting the weighting coefficient as follows.
Bx02(λ)=Bx1(λ)+c・Fx2(λ)・d(λ)
但し、
Fx2(λ)=Bx2(λ)−Bx1(λ)
c=∫I02(μ)dμ/∫I2(μ)dμ
d(λ)=I2(λ)/I02(λ)
この構成によれば、重み係数設定時の第2照明光で測定試料を照明した場合の第2全分光放射率係数を精度良く推定することができる。
Bx02 (λ) = Bx1 (λ) + c · Fx2 (λ) · d (λ)
However,
Fx2 (λ) = Bx2 (λ) −Bx1 (λ)
c = ∫I02 (μ) dμ / ∫I2 (μ) dμ
d (λ) = I2 (λ) / I02 (λ)
According to this configuration, it is possible to accurately estimate the second total spectral emissivity coefficient when the measurement sample is illuminated with the second illumination light when the weighting coefficient is set.
(8)前記演算部は、前記重み係数設定時の前記蛍光基準試料の前記第1、第2全分光放射率係数を保存すると共に、前記重み係数設定時の前記第2照明光の分光分布を基準分光分布として保存し、保存した前記第1、第2全分光放射率係数と、前記測定試料の測定時の前記第2照明光の分光分布と、前記基準分光分布とを基に、前記測定時の第2照明光で前記蛍光基準試料を照明した場合の前記第2全分光放射率係数を推定し、推定した前記第2全分光放射率係数を用いて前記重み係数を再設定し、再設定した重み係数を用いて前記合成全分光放射率係数を求めることが好ましい。 (8) The calculation unit stores the first and second total spectral emissivity coefficients of the fluorescence reference sample at the time of setting the weighting factor, and calculates a spectral distribution of the second illumination light at the time of setting the weighting factor. The measurement is performed based on the first and second total spectral emissivity coefficients stored as the reference spectral distribution, the spectral distribution of the second illumination light at the time of measurement of the measurement sample, and the reference spectral distribution. Estimating the second total spectral emissivity coefficient when the fluorescence reference sample is illuminated with the second illumination light of the time, resetting the weighting coefficient using the estimated second total spectral emissivity coefficient, It is preferable to obtain the combined total spectral emissivity coefficient using the set weight coefficient.
この構成によれば、測定試料を測定する毎に、第2照明光の分光分布に対応した重み係数を設定することができ、測定試料の全分光放射率係数を精度よく求めることができる。 According to this configuration, every time the measurement sample is measured, the weighting coefficient corresponding to the spectral distribution of the second illumination light can be set, and the total spectral emissivity coefficient of the measurement sample can be obtained with high accuracy.
(9)前記演算部は、前記基準分光分布をI02(λ)とし、前記重み係数設定時の前記第1、第2全分光放射率係数をBr01(λ)、Br02(λ)、前記測定時の前記第2照明光の分光分布をI2(λ)とすると、前記測定時の前記第2照明光による前記蛍光基準試料の第2全分光放射率係数Br2(λ)を以下によって推定することが好ましい。 (9) The calculation unit sets the reference spectral distribution to I02 (λ), and sets the first and second total spectral emissivity coefficients at the time of setting the weighting coefficient to Br01 (λ), Br02 (λ), and the measurement time If the spectral distribution of the second illumination light is I2 (λ), the second total spectral emissivity coefficient Br2 (λ) of the fluorescence reference sample by the second illumination light at the time of the measurement may be estimated as follows. preferable.
Br2(λ)=Br01(λ)+c・Fr02(λ)・d(λ)
但し、
Fr02(λ)=Br02(λ)−Br01(λ)
c=∫I2(μ)dμ/∫I02(μ)dμ
d(λ)=I02(λ)/I2(λ)
この構成によれば、蛍光基準試料を測定時の第2照明光で照明した場合の第2全分光放射率係数を精度良く推定することができる。
Br2 (λ) = Br01 (λ) + c · Fr02 (λ) · d (λ)
However,
Fr02 (λ) = Br02 (λ) −Br01 (λ)
c = ∫I2 (μ) dμ / ∫I02 (μ) dμ
d (λ) = I02 (λ) / I2 (λ)
According to this configuration, it is possible to accurately estimate the second total spectral emissivity coefficient when the fluorescence reference sample is illuminated with the second illumination light at the time of measurement.
(10)前記演算部は、前記重み係数設定時の前記第2照明光の分光分布を基準分光分布として保存し、前記測定試料の測定時の前記第2照明光の分光分布と前記基準分光分布とに基づいて、前記重み係数設定時の前記第2照明光による前記測定試料の蛍光分光特性を推定し、推定した前記分光蛍光特性を用いて前記合成全分光放射率係数を求めることが好ましい。 (10) The calculation unit stores the spectral distribution of the second illumination light when the weighting factor is set as a reference spectral distribution, and the spectral distribution of the second illumination light and the reference spectral distribution when measuring the measurement sample. Based on the above, it is preferable to estimate a fluorescence spectral characteristic of the measurement sample by the second illumination light at the time of setting the weighting coefficient, and obtain the combined total spectral emissivity coefficient using the estimated spectral fluorescence characteristic.
この構成によれば、測定時の第2照明光の分光分布が、重み係数設定時の分光分布から変化しても、測定試料の分光全放射率係数を精度よく求めることができる。 According to this configuration, even if the spectral distribution of the second illumination light at the time of measurement changes from the spectral distribution at the time of setting the weighting factor, the spectral total emissivity coefficient of the measurement sample can be obtained with high accuracy.
(11)前記演算部は、基準分光分布をI02(λ)、前記測定時の前記蛍光分光特性をFx2(λ)、前記測定時の第2照明光の分光分布をI2(λ)とすると、前記重み係数設定時の前記第2照明光による蛍光分光特性Fx02(λ)を以下によって推定することが好ましい。 (11) When the reference spectral distribution is I02 (λ), the fluorescence spectral characteristic at the time of measurement is Fx2 (λ), and the spectral distribution of the second illumination light at the time of measurement is I2 (λ), It is preferable that the fluorescence spectral characteristic Fx02 (λ) by the second illumination light at the time of setting the weighting factor is estimated as follows.
Fx02(λ)=c・Fx2(λ)
但し、
c=∫I02(μ)dμ/∫I2(μ)dμ
この構成によれば、重み係数設定時の第2照明光で測定試料を照明した場合の分光蛍光特性を精度良く推定することができる。
Fx02 (λ) = c · Fx2 (λ)
However,
c = ∫I02 (μ) dμ / ∫I2 (μ) dμ
According to this configuration, it is possible to accurately estimate the spectral fluorescence characteristics when the measurement sample is illuminated with the second illumination light when the weighting factor is set.
(12)前記演算部は、前記重み係数設定時の前記蛍光基準試料の前記反射分光放射率係数と、前記分光蛍光特性とを保存すると共に、前記重み係数設定時の前記第2照明光の分光分布を基準分光分布として保存し、保存した前記分光蛍光特性と、前記測定試料の測定時の前記第2照明光の分光分布と、前記基準分光分布とを基に、前記測定時の前記第2照明光で前記蛍光基準試料を照明した場合の前記分光蛍光特性を推定し、推定した前記分光蛍光特性を用いて前記重み係数を再設定し、再設定した重み係数を用いて前記合成全分光放射率係数を求めることが好ましい。 (12) The calculation unit stores the reflection spectral emissivity coefficient of the fluorescence reference sample at the time of setting the weighting factor and the spectral fluorescence characteristic, and the spectrum of the second illumination light at the time of setting the weighting factor. The distribution is stored as a reference spectral distribution, and based on the stored spectral fluorescence characteristics, the spectral distribution of the second illumination light at the time of measurement of the measurement sample, and the reference spectral distribution, the second at the time of measurement. Estimating the spectral fluorescence characteristic when the fluorescence reference sample is illuminated with illumination light, resetting the weighting factor using the estimated spectral fluorescent property, and using the reset weighting factor, the combined total spectral emission It is preferable to determine the rate coefficient.
この構成によれば、測定試料を測定する毎に、測定時の第2照明光の分光分布に対応した重み係数を設定でき、測定試料の合成全分光放射率係数を精度よく求めることができる。 According to this configuration, every time the measurement sample is measured, the weighting coefficient corresponding to the spectral distribution of the second illumination light at the time of measurement can be set, and the combined total spectral emissivity coefficient of the measurement sample can be obtained with high accuracy.
(13)前記演算部は、前記基準分光分布をI02(λ)、前記重み係数設定時の前記蛍光分光特性をFr02(λ)、前記測定時の第2照明光の分光分布をI2(λ)とすると、前記測定時の前記第2照明光による分光蛍光特性Fr2(λ)を以下によって推定することが好ましい。 (13) The calculation unit sets the reference spectral distribution to I02 (λ), the fluorescence spectral characteristic at the time of setting the weighting factor to Fr02 (λ), and the spectral distribution of the second illumination light at the time of measurement to I2 (λ). Then, it is preferable to estimate the spectral fluorescence characteristic Fr2 (λ) by the second illumination light at the time of measurement by the following.
Fr2(λ)=c・Fr02(λ)
但し、
c=∫I2(μ)dμ/∫I02(μ)dμ
この構成によれば、測定試料の測定時の第2照明光による蛍光基準試料の分光蛍光特性を精度よく推定することができる。
Fr2 (λ) = c · Fr02 (λ)
However,
c = ∫I2 (μ) dμ / ∫I02 (μ) dμ
According to this configuration, it is possible to accurately estimate the spectral fluorescence characteristic of the fluorescence reference sample by the second illumination light during measurement of the measurement sample.
(14)前記蛍光増白試料は、蛍光増白紙上に印刷された印刷面であり、前記蛍光基準試料は、前記蛍光増白紙であることが好ましい。 (14) It is preferable that the fluorescent whitening sample is a printing surface printed on a fluorescent whitening paper, and the fluorescent reference sample is the fluorescent whitening paper.
この構成によれば、インクの分光透過率の励起域での波長依存性が無視できる場合には、蛍光増白紙上の印刷面の分光特性及びそれから導かれる色彩特性を、実用的かつ高精度で測定することができる。 According to this configuration, when the wavelength dependence of the spectral transmittance of the ink in the excitation region is negligible, the spectral characteristics of the printing surface on the fluorescent white paper and the color characteristics derived from it can be practically and highly accurate. Can be measured.
(15)前記蛍光増白試料は、蛍光増白紙上に印刷された印刷面であり、前記蛍光基準試料は、前記蛍光増白紙と、前記蛍光増白紙上に1種以上のプライマリインクが印刷された面積率100%の印刷面と、前記蛍光増白紙上に前記プライマリインクが重ねて印刷された面積率100%の印刷面とであり、前記演算部は、前記蛍光基準試料のそれぞれについて前記重み係数を求めて保存しておくと共に、前記蛍光基準試料のそれぞれについての分光蛍光特性を保存しておき、前記測定試料の前記第1又は第2分光特性から各蛍光基準試料に対応する要素の面積率を推定し、推定した各面積率と、保存しておいた前記分光蛍光特性とから各蛍光基準試料の蛍光寄与率を算出し、算出した各蛍光寄与率と保存しておいた前記重み係数とから前記測定試料の実効的な重み係数を算出し、算出した重み係数を用いて前記測定試料の合成分光特性を求めることが好ましい。 (15) The fluorescent whitening sample is a printing surface printed on a fluorescent whitening paper, and the fluorescent reference sample has the fluorescent whitening paper and one or more primary inks printed on the fluorescent whitening paper. A printed surface with an area ratio of 100% and a printed surface with an area ratio of 100% on which the primary ink is printed on the fluorescent whitening paper, and the calculation unit calculates the weight for each of the fluorescent reference samples. The coefficient is obtained and stored, and the spectral fluorescence characteristics of each of the fluorescence reference samples are stored, and the area of the element corresponding to each fluorescence reference sample from the first or second spectral characteristics of the measurement sample The fluorescence contribution ratio of each fluorescence reference sample is calculated from each estimated area ratio and the stored spectral fluorescence characteristics, and each calculated fluorescence contribution ratio and the stored weighting factor are calculated. And the above measurement Calculating the effective weighting coefficients of the sample, it is preferable to obtain the composite spectral characteristics of the measurement sample using the calculated weighting factor.
この構成によれば、インクの分光透過率の励起域での波長依存性が無視できない場合であっても、蛍光増白紙上の印刷面の環境光下での分光特性及びそれから導かれる色彩特性を実用的かつ高精度で測定することができる。 According to this configuration, even when the wavelength dependence of the spectral transmittance of the ink in the excitation region cannot be ignored, the spectral characteristics under the ambient light of the printing surface on the fluorescent white paper and the color characteristics derived therefrom are obtained. It can be measured practically and with high accuracy.
(16)n個の前記蛍光基準試料の重み係数をWn(λ)、前記分光蛍光特性をFr2n(λ)、前記蛍光基準試料の面積率をSnとすると、前記実効的な重み係数We(λ)を以下によって求めることが好ましい。 (16) a weighting factor of n of the fluorescent reference sample W n (lambda), the spectral fluorescence characteristics Fr2 n (lambda), the area ratio of the fluorescent reference sample When S n, the effective weighting factors We (λ) is preferably obtained as follows.
We(λ)=ΣnCn(λ)・Wn(λ)
但し、
Cn(λ)=Sn・Fr2n(λ)/Σn(Sn・Fr2n(λ))
この構成によれば、蛍光増白紙上の印刷面の環境光下での分光特性及びそれから導かれる色彩特性を実用的かつ高精度に測定することができる。
We (λ) = Σ n C n (λ) · W n (λ)
However,
C n (λ) = S n · Fr2 n (λ) / Σ n (S n · Fr2 n (λ))
According to this configuration, it is possible to practically and accurately measure the spectral characteristics of the printing surface on the fluorescent white paper under ambient light and the color characteristics derived therefrom.
(17)前記第1、第2照明光のいずれかは、励起波長域に強度をもたない照明光であり、前記照明光による全分光放射率係数から、各面積率を求めることが好ましい。 (17) Either the first or second illumination light is illumination light having no intensity in the excitation wavelength range, and it is preferable to obtain each area ratio from the total spectral emissivity coefficient of the illumination light.
この構成によれば、一回の測定で蛍光の影響なく面積率を求めることができ、蛍光増白紙上の印刷面の分光特性及びそれから導かれる色彩特性を高精度で測定することができる。 According to this configuration, the area ratio can be obtained without the influence of fluorescence in one measurement, and the spectral characteristics of the printing surface on the fluorescent whitening paper and the color characteristics derived therefrom can be measured with high accuracy.
(18)前記受光部は、対物レンズと、前記対物レンズの焦点近傍に設けられた入射開口とを含む対物光学系であって、試料放射光の前記対物光学系の光軸に平行な成分を前記入射開口に収束する対物光学系を備えることが好ましい。 (18) The light receiving unit is an objective optical system including an objective lens and an entrance aperture provided in the vicinity of the focal point of the objective lens, and a component parallel to the optical axis of the objective optical system of sample radiation light It is preferable to provide an objective optical system that converges on the incident aperture.
この構成によれば、対物光学系の光軸に平行な成分のみが受光されるので、環境光で照明された試料面と光学系との距離が大きくなっても、測定域のサイズの増大を抑制することができる。 According to this configuration, since only the component parallel to the optical axis of the objective optical system is received, the size of the measurement area can be increased even when the distance between the sample surface illuminated by the ambient light and the optical system is increased. Can be suppressed.
(19)試料に前記環境光を照射して放射光を測定する際に、前記測定装置の本体部を保持する設定用保持台を更に備え、前記設定用保持台は、前記環境光による前記測定域への照明を遮らず、かつ、前記測定域からの放射光を遮らずに前記対物光学系に導くことが好ましい。 (19) When the sample is irradiated with the ambient light to measure the emitted light, the sample holder further includes a setting holding base for holding the main body of the measuring device, and the setting holding base is configured to perform the measurement using the environmental light. It is preferable to guide to the objective optical system without blocking the illumination to the area and without blocking the radiated light from the measurement area.
この構成によれば、無蛍光基準試料及び蛍光基準試料を実質的に目視観察と同じ照明光で照明することができ、測定試料を目視観察した場合と相関のある測定試料の合成分光特性を得ることができる。 According to this configuration, it is possible to illuminate the non-fluorescence reference sample and the fluorescence reference sample with substantially the same illumination light as in the visual observation, and obtain a synthetic spectral characteristic of the measurement sample having a correlation with the case where the measurement sample is visually observed. be able to.
(20)前記設定用保持台は、前記本体部が前記測定域の外縁を通る法線と交わらないように、前記本体部を保持することが好ましい。 (20) It is preferable that the setting holding table holds the main body portion so that the main body portion does not intersect a normal line passing through an outer edge of the measurement area.
この構成によれば、環境光による測定域の照明を実質的に遮ることを無くすることができる。 According to this configuration, it is possible to substantially prevent the illumination of the measurement area by ambient light.
(21)前記設定用保持台は、前記試料が配置される試料台板と、前記試料台板とV字状に結合され、前記本体部を保持する保持台板とを備えることが好ましい。 (21) It is preferable that the setting holding base includes a sample base plate on which the sample is arranged, and a holding base plate that is coupled to the sample base plate in a V shape and holds the main body.
この構成によれば、環境光の照明を実質的に遮らず、測定域からの放射光を対物光学系に入射させるように、測定装置の本体部を試料から遠ざけることができる。 According to this configuration, the main body of the measurement apparatus can be moved away from the sample so that the illumination light from the measurement area is incident on the objective optical system without substantially blocking the illumination of the ambient light.
(22)前記試料台板は、前記試料が載置される試料配置部と、前記試料配置部に配置された無蛍光基準試料と、前記無蛍光基準試料上に前記試料を導くスリットとを備えることが好ましい。 (22) The sample base plate includes a sample placement portion on which the sample is placed, a non-fluorescence reference sample placed on the sample placement portion, and a slit that guides the sample onto the non-fluorescence reference sample. It is preferable.
この構成によれば、無蛍光基準試料と前記蛍光基準試料とを、環境光による照明条件を変えることなく容易に交換できる。 According to this configuration, the non-fluorescent reference sample and the fluorescent reference sample can be easily exchanged without changing the illumination conditions with ambient light.
(23)前記保持台板は、前記測定域からの放射光を前記対物光学系に導き、かつ、前記測定域以外からの放射光が前記対物光学系に入射することを抑制する遮光筒を備えることが好ましい。 (23) The holding base plate includes a light shielding cylinder that guides the radiated light from the measurement region to the objective optical system and suppresses the radiated light from other than the measurement region to enter the objective optical system. It is preferable.
この構成によれば、測定域外からの放射光によるノイズを抑制することができる。 According to this configuration, noise due to radiated light from outside the measurement area can be suppressed.
(24)前記設定用保持台は、黒色であることが好ましい。 (24) The setting holding table is preferably black.
この構成によれば、設定用保持台からの反射光の混入によって試料の照明光の相対分光分布が環境光の相対分光分布から変化することによる誤差を抑制するとともに、測定域外からの放射光によるノイズを抑制することができる。 According to this configuration, an error due to a change in the relative spectral distribution of the illumination light of the sample from the relative spectral distribution of the ambient light due to the mixing of reflected light from the setting holding base is suppressed, and also due to the radiated light from outside the measurement area. Noise can be suppressed.
本発明によれば、高価な測定装置を用いずに、蛍光増白試料の環境光下での全分光放射率係数等の分光特性を実用的、かつ、高精度で測定することができる。 According to the present invention, spectral characteristics such as the total spectral emissivity coefficient of the fluorescent whitening sample under ambient light can be measured practically and with high accuracy without using an expensive measuring device.
図1は、本発明の実施の形態による測定装置において第1、第2照明光で試料を照明する場合の外観構成図を示している。図1に示す測定装置は、ハウジング11により覆われた本体部10と、本体部10を保持する測定用保持台20とを備えている。本体部10は、白熱ランプを光源とする第1照明部12と、UVLED(紫外発光ダイオード)を光源とする第2照明部13と、対物レンズ14と、受光部15と、CPU、ROM、及びRAM等のマイクロコンピュータにより構成される制御処理部16とを備える。以下、図1、2、4、6において、左側を前方と記述し、右側を後方と記述する。
FIG. 1 shows an external configuration diagram when a sample is illuminated with first and second illumination light in the measuring apparatus according to the embodiment of the present invention. The measuring apparatus shown in FIG. 1 includes a
制御処理部16は、駆動回路12aを制御して第1照明部12を点灯させる。駆動回路12aは、制御処理部16からの制御に基づいて、第1照明部12を点灯及び消灯させる。第1照明部12は、測定試料1を法線に対し45°の方向から光束12bで照明する。
The
同様に、制御処理部16は、駆動回路13aを制御して第2照明部13を点灯させる。駆動回路13aは、制御処理部16の制御に基づいて、第2照明部13を点灯及び消灯させる。第2照明部13は測定試料1を法線に対し45°の方向から光束13bで照明する。測定試料1、無蛍光基準試料2、及び蛍光基準試料3の反射光の法線成分1a、2a、3aは対物レンズ14を介して受光部15に入射する。つまり、本測定装置は、45°:0°ジオメトリの測定装置である。
Similarly, the
測定試料1の測定時において、本体部10は測定用保持台20に装着される。測定用保持台20は、測定試料1の測定域D1を包含して規定する試料開口21aを備えている。試料開口21a内の測定試料1が、光束12b、13bによって照明され、測定試料1の放射光の対物レンズ14の光軸に平行な成分が、対物レンズ14の焦点近傍の入射開口15aに導かれる。従って、測定域D1は、対物レンズ14の有効径で規定される。
When the
また、測定用保持台20は、測定試料1に載置される試料台板21と、ハウジング11が取り付けられる測定装置台板22とを備えている。
The
図2は、本発明の実施の形態による測定装置の非測定時における外観構成図を示している。図2に示すように、試料台板21と、測定装置台板22とは軸20aを中心に回転可能に結合されている。ユーザは、まず、測定装置台板22を上げた図2の状態で、試料開口21aから測定試料1を視認して、試料開口21aの上方に対物レンズ14が位置するように、試料台板21及び測定装置台板22を閉じ、本体部10を位置決めする。これにより、測定装置は図1の状態になる。続いて、測定装置が起動されると、制御処理部16は、まず、駆動回路12aを駆動して第1照明部12を点灯し、光束12bで測定試料1を照明する。
FIG. 2 shows an external configuration diagram of the measuring apparatus according to the embodiment of the present invention when not measuring. As shown in FIG. 2, the sample base plate 21 and the measuring
照明された測定試料1からの放射光の法線成分1aは、対物レンズ14によって受光部15の入射開口15aに収束して入射し、測定試料1を第1照明光で照明した場合の第1分光分布Ex1(λ)が制御処理部16に取り込まれる。
The
続いて、制御処理部16は、駆動回路13aを駆動して第2照明部13を点灯し、第1照明部12と第2照明部13との双方による第2照明光で測定試料1を照明し、照明された測定試料1の放射光の第2分光分布Ex2(λ)を取り込む。
Subsequently, the
図3は、第1、第2照明部12、13の相対分光分布を示したグラフであり、縦軸は相対強度を示し、横軸は波長を示している。グラフG1、G2、G3は、それぞれ、白熱ランプ、UVLED、及び白熱ランプに置き換え得る白色LED及び紫LED(PLED)からなる光源の相対分光分布を示している。
FIG. 3 is a graph showing the relative spectral distribution of the first and
グラフG1に示すように、白熱ランプは、紫外域の相対強度が低い。そのため、白熱ランプから構成される第1照明部12からの照明光である第1照明光は、相対紫外強度が低い。また、グラフG2に示すようにUVLEDの照明光は、紫外域に相対強度を持つ。よって、白熱ランプの照明光とUVLEDの照明光とからなる第2照明光I2は相対紫外強度が高い。白色LED及びPLEDからなる光源は、グラフG3に示すように、450nm付近、及び600nm付近で2つのピークを有し、紫外域に強度をもたない。
As shown in the graph G1, the incandescent lamp has a low relative intensity in the ultraviolet region. For this reason, the first illumination light, which is the illumination light from the
測定試料1の測定に先だつ白色校正フェーズでは、測定試料1と同様にして無蛍光基準試料2の測定が行われる。つまり、図1に示すように、まず、無蛍光基準試料2が第1照明光により照明され、無蛍光基準試料2からの放射光の第1分光分布Ew1(λ)が受光部15で測定され、制御処理部16により取り込まれて記憶される。続いて、無蛍光基準試料が第2照明光により照明され、無蛍光基準試料2からの放射光の第2分光分布Ew2(λ)が受光部15で測定され、制御処理部16により取り込まれて記憶される。
In the white calibration phase prior to measurement of the
測定試料1の測定フェーズにおいて、制御処理部16は、測定試料1の第1、第2分光分布Ex1(λ)、Ex2(λ)を取り込んだ際、白色校正時に記憶しておいた無蛍光基準試料2の第1、第2分光分布Ew1(λ)、Ew2(λ)と、無蛍光基準試料2の既知の分光反射率係数Rw(λ)とから、測定試料1の第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)を求める。
In the measurement phase of the
具体的には、制御処理部16は、式(4)を用いて、第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)を求める。
Specifically, the
Bx1(λ)=Rw(λ)・Ex1(λ)/Ew1(λ)
Bx2(λ)=Rw(λ)・Ex2(λ)/Ew2(λ) (4)
無蛍光基準試料2の測定時と測定試料1の測定時とにおいて、第1、第2照明光の分光分布I1(λ)、I2(λ)の変動が問題になる場合は、公知のように、各試料からの放射光の分光分布E(λ)を、そのときの照明光の分光分布I(λ)で基準化したE(λ)/I(λ)に置き換えればよい。
Bx1 (λ) = Rw (λ) · Ex1 (λ) / Ew1 (λ)
Bx2 (λ) = Rw (λ) · Ex2 (λ) / Ew2 (λ) (4)
As known in the art, when fluctuations in the spectral distributions I1 (λ) and I2 (λ) of the first and second illumination lights become a problem when measuring the
制御処理部16は、式(5)に示すように、第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)を、予め記憶されている重み係数W(λ)で重みつき線形結合し、環境光で測定試料1を照明したときの測定試料1の全分光放射率係数を近似する合成全分光放射率係数Bc(λ)を求める。
As shown in Expression (5), the
Bc(λ)=W(λ)・Bx1(λ)+(1−W(λ))・Bx2(λ) (5)
(重み係数の設定)
重み係数設定フェーズでは、測定試料1に二分光特性が近似する蛍光基準試料3と、無蛍光基準試料2とが特定の環境光4で照明され、重み係数W(λ)が求められる。
Bc (λ) = W (λ) · Bx1 (λ) + (1−W (λ)) · Bx2 (λ) (5)
(Weighting factor setting)
In the weighting factor setting phase, the
特定の環境光4としては、例えば、特定のライトブースの照明が採用される。つまり、蛍光基準試料3、無蛍光基準試料2がライトブースに設置されて重み係数W(λ)が求められる。以下、具体的に説明する。
As the specific
まず、本体部10は設定用保持台30に装着されてライトブース内に置かれる。図4は、無蛍光基準試料2及び蛍光基準試料3を環境光4で照明する場合の測定装置の外観構成図を示している。図4に示す設定用保持台30は、無蛍光基準試料2及び蛍光基準試料3を環境光4で照明して放射光を測定する際に、本体部10を保持する。以下、無蛍光基準試料2及び蛍光基準試料3を特に区別しない場合は基準試料2、3と記述する。
First, the
ここで、設定用保持台30は、環境光4による測定域D1への照明を実質的に遮らず、かつ、測定域D1からの放射光を遮らずに対物レンズ14に導く。
Here, the setting holder 30 guides the
具体的には、設定用保持台30は、基準試料2、3の上面に載置される試料台板31と、本体部10が取り付けられる測定装置台板32とを備えている。試料台板31と測定装置台板32とは、測定装置台板32に取り付けられた本体部10が、測定域D1の外縁を通る法線D2と交わらないように、側面視においてV字形に結合されている。
Specifically, the setting holding base 30 includes a sample base plate 31 placed on the upper surface of the
試料台板31には測定域D1を規定する試料開口31aが設けられている。測定装置台板32には受光開口32aと遮光筒32bとが設けられている。
The sample base plate 31 is provided with a
遮光筒32bは、測定域D1からの放射光を対物レンズ14に導き、かつ、測定域D1以外からの放射光が対物レンズ14に入射することを抑制する。具体的には、遮光筒32bは、無底の円筒形状を有し、中心軸が測定装置台板32と直交するように測定装置台板32の下面に取り付けられている。受光開口32aは、遮光筒32bを連通させるために、測定装置台板32に形成されている。
The
測定装置台板32に取り付けられた本体部10は、対物レンズ14の光軸が、受光開口32aと遮光筒32bとの中心を通り、試料開口31aの中心を通る。この状態で、基準試料2、3が試料開口31aの下に配置されると基準試料2、3は、試料開口31aを通じて環境光4で照明される。
In the
対物レンズ14の焦点位置には受光部15の入射開口15aが位置している。そのため、基準試料2,3の放射光の対物レンズ14の光軸に平行な成分2c、3cが入射開口15aに収束されて入射され、分光分布が測定される。
An
次に、基準試料2、3の測定について説明する。まず、試料開口31aの下に無蛍光基準試料2が配置され、測定装置が起動されて、ライトブースの照明光(環境光4)で照明された無蛍光基準試料2からの放射光の分光分布Ewe(λ)が受光部15で測定される。測定された分光分布Ewe(λ)は、制御処理部16に取り込まれて記憶される。
Next, the measurement of the
続いて、蛍光基準試料3が配置され、測定装置が起動されて、同じ照明光(環境光4)で照明された蛍光基準試料からの放射光の分光分布Ere(λ)が受光部15で測定される。測定された分光分布Ere(λ)は、制御処理部16に取り込まれて記憶される。
Subsequently, the
制御処理部16は、取り込んだ分光分布Ewe(λ)、Ere(λ)と、無蛍光基準試料2の既知の分光反射率係数Rw(λ)とから、式(6)を用いて、環境光4で蛍光基準試料3を照明したときの蛍光基準試料3の基準全分光放射率係数Bre(λ)を求めて記憶する。
The
Bre(λ)=Rw(λ)・Ere(λ)/Ewe(λ) (6)
続いて、図1、2に示すように、本体部10が測定用保持台20に装着され、前述の測定試料1の測定と同様にして、蛍光基準試料3が第1、第2照明光で照明され、第1、第2全分光放射率係数Br1(λ)、Br2(λ)が受光部15で測定され、制御処理部16に記憶される。これらの測定の後、制御処理部16は、第1全分光放射率係数Br1(λ)と、第2全分光放射率係数Br2(λ)との重みつき線形結合が、基準全分光放射率係数Bre(λ)に一致するように、つまり、式(7)を満たすように波長毎の値を有する重み係数W(λ)を求めて記憶する。
Bre (λ) = Rw (λ) · Ere (λ) / Ewe (λ) (6)
Subsequently, as shown in FIGS. 1 and 2, the
Bre(λ)=W(λ)・Br1(λ)+(1−W(λ))・Br2(λ) (7)
ここで、制御処理部16は、λを所定の分解能で変化させ、λを変化させる都度、式(7)を解いてW(λ)を求めればよい。これにより、波長毎の値を有する重み係数W(λ)が得られる。
Bre (λ) = W (λ) · Br1 (λ) + (1−W (λ)) · Br2 (λ) (7)
Here, the
蛍光基準試料3に類似の二分光特性をもつ蛍光増白試料(測定試料1)の測定時には、この重み係数W(λ)を式(5)に代入する。そして、測定試料1の第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)を求め、求めた第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)を重み係数W(λ)で線形結合する。これにより、測定試料1の測定時において、重み係数設定時と同じ環境光4で測定試料1を照明したときの合成全分光放射率係数Bc(λ)を求めることができる。
When measuring a fluorescent whitening sample (measurement sample 1) having two spectral characteristics similar to those of the
(分光蛍光特性を用いる方法)
上記の測定装置では、紫外成分を殆ど含まない白熱ランプの照明光が第1照明光とされ、第1全分光放射率係数Bx1(λ)が求められた。また、白熱ランプの照明光とUVLEDの照明光とが第2照明光とされ、第2全分光放射率係数B2x(λ)が求められた。そして、式(5)を用いて、第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)が重み係数W(λ)で線形結合され、合成全分光放射率係数Bc(λ)が求められた。
(Method using spectral fluorescence characteristics)
In the measurement apparatus described above, the illumination light of the incandescent lamp that contains almost no ultraviolet component was used as the first illumination light, and the first total spectral emissivity coefficient Bx1 (λ) was obtained. Further, the illumination light from the incandescent lamp and the illumination light from the UVLED were used as the second illumination light, and the second total spectral emissivity coefficient B2x (λ) was obtained. Then, using Equation (5), the first and second total spectral emissivity coefficients Bx1 (λ) and Bx2 (λ) are linearly combined with the weighting coefficient W (λ), and the combined total spectral emissivity coefficient Bc (λ ) Was requested.
しかしながら、これに限定されず、本測定装置は、下記の手法を採用してもよい。すなわち、第1照明部12に紫外カットフィルター等を取り付け、紫外成分が抑制された照明光を第1照明光として、測定試料1を照明して反射分光放射率係数Rx1(λ)を受光部15で測定し、制御処理部16に取り込む。また、第2照明光をUVLEDのみの照明光、つまり、第2照明部13の照明光のみを第2照明光として測定試料1を照明して分光蛍光特性Fx2(λ)を受光部15で測定し、制御処理部16に取り込む。そして、式(8)に示すように、反射分光放射率係数Rx1(λ)と、分光蛍光特性Fx2(λ)とを重み係数W(λ)で重み付けして線形結合し、合成全分光放射率係数Bc(λ)を求める。
However, the measurement apparatus is not limited to this, and the following method may be employed. That is, an ultraviolet cut filter or the like is attached to the
この場合、分光蛍光特性Fx2(λ)は、蛍光域において、波長依存性がなく強度が1の仮想的な照明光に対する蛍光分光放射率係数として扱われる。 In this case, the spectral fluorescence characteristic Fx2 (λ) is treated as a fluorescence spectral emissivity coefficient for virtual illumination light having no wavelength dependency and intensity of 1 in the fluorescence region.
Bc(λ)=Rx1(λ)+W(λ)・Fx2(λ) (8)
ここで、式(8)の重み係数W(λ)は、上記の(重み係数の設定)の項目で述べた手法と同一の手法を用いて設定される。
Bc (λ) = Rx1 (λ) + W (λ) · Fx2 (λ) (8)
Here, the weighting factor W (λ) in the equation (8) is set using the same method as that described in the above item (setting of the weighting factor).
すなわち、図4に示す設定用保持台30に本体部10を載置し、環境光4で無蛍光基準試料2、蛍光基準試料3を順次に照明して、分光分布Ewe(λ)、Ere(λ)を順次に測定する。
That is, the
続いて、式(6)を用いて、蛍光基準試料3の基準全分光放射率係数Bre(λ)を求める。続いて、図1、2に示すように、本体部10を測定用保持台20に装着し、蛍光基準試料3を紫外成分が抑制された第1照明光で照明して、反射分光放射率係数Rr1(λ)を測定する。続いて、蛍光基準試料3をUVLEDの照明光のみからなる第2照明光で照明して、分光蛍光特性Fr2(λ)を測定する。
Subsequently, a reference total spectral emissivity coefficient Bre (λ) of the
続いて、基準全分光放射率係数Bre(λ)、反射分光放射率係数Rr1(λ)、及び分光蛍光特性Fr2(λ)を式(8)´に代入して、重み係数W(λ)を求める。 Subsequently, the reference total spectral emissivity coefficient Bre (λ), the reflected spectral emissivity coefficient Rr1 (λ), and the spectral fluorescence characteristic Fr2 (λ) are substituted into the equation (8) ′, and the weighting coefficient W (λ) is set. Ask.
Bre(λ)=Rr1(λ)+W(λ)・Fr2(λ) (8)´
本体部10と遮光筒32bとを含む測定装置台板32が、少なくとも法線方向から測定域D1に到達する照明光を遮ることを防止するために、図4に示すように、本体部10は測定域D1から所定距離離間させて測定装置台板32に載置されている。これにより、対物レンズ14は、法線D2の方向に対して所定角度傾いた方向から基準試料2、3の放射光を受光する。
Bre (λ) = Rr1 (λ) + W (λ) · Fr2 (λ) (8) ′
In order to prevent the measurement
この場合、測定域D1と本体部10との距離が大きくなってしまう。しかしながら、対物レンズ14は光軸に略平行な光束を入射開口15aに入射させている。そのため、測定領域D1は、対物レンズ14の有効径によって規定され、離間によって拡がることが防止されている。
In this case, the distance between the measurement area D1 and the
測定域D1外からの放射光の入射スリット15aへの入射は、遮光筒32bにより抑制されている。しかしながら、遮光筒32bによる抑制が十分でない場合もある。この場合、試料開口31aの下に殆ど反射のない黒色キャビティを配置して、迷光の分光分布Ese(λ)を測定する。そして、分光分布Ewe(λ)、Ere(λ)のそれぞれから分光分布Ese(λ)減じて分光分布Ewe(λ)、Ere(λ)を補正すればよい。
Incidence of radiated light from outside the measurement area D1 to the
遮光筒32bを含む測定装置台板32は試料開口31aの近傍にあるので、基準試料2、3やその周辺で反射された光が測定装置台板32等で反射されて基準試料2、3を間接照明する虞がある。この間接照明光が環境光4とは異なる相対分光分布をもつと、基準試料2、3を環境光4と同じ相対分光分布の照明光で照明することができなくなる虞がある。この場合、重み係数W(λ)に誤差が生じる。
Since the measuring
本実施の形態では、遮光筒32bを含む測定装置台板32は黒色とされている。これにより、遮光筒32bを含む測定装置台板32が低反射率かつ低波長依存性を有することになり、重み係数W(λ)の誤差を抑制できる。
In the present embodiment, the measuring
(ジオメトリ差の補正)
通常の環境光4による照明は不完全な拡散照明であり、第1、第2照明光で照明するときの測定装置のジオメトリである45°:0°ジオメトリと、環境光4で照明するときの測定装置のジオメトリとの差に起因する誤差が避けられない。
(Correction of geometry difference)
The illumination by the normal
図5は、環境光4で照明して得られた基準全分光放射率係数Bre(λ)と、第1、第2全分光放射率係数Br1(λ)、Br2(λ)とのジオメトリの差に起因する誤差を示したグラフである。図5において縦軸は全分光放射率係数を示し、横軸は波長を示している。
FIG. 5 shows the difference in geometry between the reference total spectral emissivity coefficient Bre (λ) obtained by illumination with
図5において、Breは蛍光基準試料3の環境光4下の基準全分光放射率係数Bre(λ)を示し、Br1、Br2は第1、第2全分光放射率係数Br1(λ)、Br2(λ)を示している。
In FIG. 5, Bre indicates the reference total spectral emissivity coefficient Bre (λ) under the
蛍光のない600nm以上の波長域で、基準全分光放射率係数Bre(λ)が第1、第2全分光放射率係数Br1(λ)、Br2(λ)より一様に高くなっており、誤差が生じていることが分かる。この誤差は、ジオメトリの差による正反射光の寄与により生じる。つまり、拡散照明に近い環境光4は、対物レンズ14により受光される正反射光が、第1、第2照明光の正反射光より大きくなるために、このような誤差が発生するのである。
The reference total spectral emissivity coefficient Bre (λ) is uniformly higher than the first and second total spectral emissivity coefficients Br1 (λ) and Br2 (λ) in a wavelength region of 600 nm or more without fluorescence, and an error occurs. It can be seen that This error is caused by the contribution of specularly reflected light due to the difference in geometry. That is, the
この誤差は、正反射の反射率は波長依存性が小さいことに基づいて下記のように補正することができる。すなわち、600nm以上の波長域の基準全分光放射率係数Bre(λ)と、第1全分光放射率係数Br1(λ)との差ΔBr(λ)の平均値Br_aveを求める。そして、基準全分光放射率係数Bre(λ)から平均値Br_ave減じて基準全分光放射率係数Bre´(λ)を求める。これにより、基準全分光放射率係数Bre(λ)に含まれる誤差を除去することができる。そして、分光放射率係数Bre´(λ)を式(7)の左辺に代入することで重み係数W(λ)を求めればよい。 This error can be corrected as follows based on the fact that the reflectance of regular reflection has a small wavelength dependency. That is, the average value Br_ave of the difference ΔBr (λ) between the reference total spectral emissivity coefficient Bre (λ) in the wavelength region of 600 nm or more and the first total spectral emissivity coefficient Br1 (λ) is obtained. Then, the reference total spectral emissivity coefficient Bre ′ (λ) is obtained by subtracting the average value Br_ave from the reference total spectral emissivity coefficient Bre (λ). Thereby, an error included in the reference total spectral emissivity coefficient Bre (λ) can be removed. Then, the weight coefficient W (λ) may be obtained by substituting the spectral emissivity coefficient Bre ′ (λ) into the left side of Expression (7).
なお、平均値Br_aveは、以下のようにして求めることができる。すなわち、600nm以上の波長域において、所定の分解能で波長を変化させ、波長を変化させる都度、差ΔBr(λ)=基準全分光放射率係数Bre(λ)−第1全分光放射率係数Br1(λ)を求める。そして、差ΔBr(λ)の平均値を求める。この平均値が、Br_aveとなる。 The average value Br_ave can be obtained as follows. That is, in the wavelength region of 600 nm or more, each time the wavelength is changed with a predetermined resolution, the difference ΔBr (λ) = reference total spectral emissivity coefficient Bre (λ) −first total spectral emissivity coefficient Br1 ( λ). Then, an average value of the difference ΔBr (λ) is obtained. This average value is Br_ave.
なお、上記説明では、基準全分光放射率係数Bre(λ)と第1全分光放射率係数Br1(λ)とを用いて、平均値Br_aveを求め、Bre´(λ)を求めたが、第1全分光放射率係数Br1(λ)に代えて、第2全分光放射率係数Br2(λ)を用いて平均値Br_aveを求め、Bre´(λ)を求めても良い。 In the above description, the average value Br_ave is obtained by using the reference total spectral emissivity coefficient Bre (λ) and the first total spectral emissivity coefficient Br1 (λ), and Bre ′ (λ) is obtained. Instead of the 1 total spectral emissivity coefficient Br1 (λ), the average value Br_ave may be obtained using the second total spectral emissivity coefficient Br2 (λ), and Bre ′ (λ) may be obtained.
図6は、設定用保持台30の変形例を示した図である。この変形例では、設定用保持台30の試料台板31に、無蛍光基準試料2が取り付けられた基準試料台板2bが装着される。
FIG. 6 is a view showing a modified example of the setting holding base 30. In this modification, a reference
試料台板31に基準試料台板2bが装着されると、無蛍光基準試料2は、試料開口31aに対向する。また、試料台板31の下面には段差が設けられ、試料台板31は試料開口31aから前方への肉厚が、後方への肉厚に比べて薄くなっている。
When the reference
これにより、試料台板31の下面と基準試料台板2bの上面との間にスリット31bが形成される。
Thereby, a
まず、基準試料台板2bの上側に設定用保持台30が載置され、環境光4が無蛍光基準試料2に照射され、無蛍光基準試料2からの放射光の分光分布Ewe(λ)が受光部15で測定され、制御処理部16に取り込まれる。
First, the setting holder 30 is placed on the upper side of the reference
続いて、スリット31bの前方から蛍光増白紙からなる蛍光基準試料3が挿入され、蛍光基準試料3に環境光4が照射され、蛍光基準試料3からの放射光の分光分布Ire(λ)が受光部15で測定され、制御処理部16により取り込まれる。
Subsequently, the
図6の例では、無蛍光基準試料2が蛍光基準試料3の挿入で汚染されないように、無蛍光基準試料2の上面は、基準試料台板2bの上面より、わずかに低くなっている。この場合、無蛍光基準試料2と蛍光基準試料3とは表面の位置がずれるが、このずれは、環境光4の光源及び基準試料2、3間の距離と、基準試料2、3及び対物レンズ14間の距離とに比べて小さい。よって、このずれによる影響は無視できる。
In the example of FIG. 6, the upper surface of the
(基本工程のフローチャート)
図7は白色校正時の手順を示すフローチャートである。まず、図2に示すように、本体部10を測定用保持台20に取り付ける(ステップS1)。次に、試料開口21aに無蛍光基準試料2が配置され、試料台板21と測定装置台板22とが閉じられて、ハウジング11の下面が試料台板21に当接され、第1照明部12が点灯され、紫外成分が殆どない第1照明光で無蛍光基準試料2が照明される(ステップS2)。
(Flow chart of basic process)
FIG. 7 is a flowchart showing a procedure for white calibration. First, as shown in FIG. 2, the
次に、第1照明光で照明された無蛍光基準試料2の放射光の法線成分2aが対物レンズ14を介して受光部15で受光され、受光部15により放射光の法線成分2aの第1分光分布Ew1(λ)が測定され、制御処理部16により保存される(ステップS3)。
Next, the
次に、第1照明部12の点灯が維持された状態で、第2照明部13が点灯され、紫外成分をもつ第2照明光で無蛍光基準試料2が照明される(ステップS4)。
Next, in a state where the lighting of the
次に、第2照明光で照明された無蛍光基準試料2の放射光の法線成分2aが対物レンズ14を介して受光部15で受光され、受光部15により第2分光分布Ew2(λ)が測定され、制御処理部16により保存される(ステップS5)。次に、第1、第2照明部12、13が消灯される(ステップS6)。
Next, the
図8は、測定試料1の測定手順を示すフローチャートである。まず、本体部10が測定用保持台20に取り付けられる(ステップS11)。次に、上記の図7のステップS2〜S6に示す白色校正が実行される。具体的には、無蛍光基準試料2が第1、第2照明光で順次に照明され、制御処理部16により、無蛍光基準試料2の放射光の第1、第2分光分布Ew1(λ)、Ew2(λ)が順次に測定され、第1、第2分光分布Ew1(λ)、Ew2(λ)が順次に保存される(ステップS12)。
FIG. 8 is a flowchart showing the measurement procedure of the
次に、試料開口21aに測定試料1が配置され、第1照明部12が点灯され、紫外成分が殆どない第1照明光で測定試料1が照明される(ステップS13)。
Next, the
次に、第1照明光で照明された測定試料1の放射光の法線成分1aが、対物レンズ14を介して受光部15により受光され、受光部15により第1分光分布Ex1(λ)が測定され、制御処理部16により保存される(ステップS14)。
Next, the
次に、第1照明部12の点灯が維持された状態で、第2照明部13が点灯され、紫外成分をもつ第2照明光で測定試料1が照明される(ステップS15)。
Next, in a state in which the lighting of the
次に、第2照明光で照明された測定試料1の放射光の法線成分1aが対物レンズ14を介して受光部15で受光され、受光部15により分光分布Ex2(λ)が測定され、制御処理部16により保存される(ステップS16)。
Next, the
次に、第1、第2照明部12、13が消灯される(ステップS17)。次に、制御処理部16は、保存している測定試料1の第1、第2分光分布Ex1(λ)、Ex2(λ)と、無蛍光基準試料2の第1、第2分光分布Ew1(λ)、Ew2(λ)と、既知の分光反射率係数Rw(λ)とを式(4)に代入し、測定試料1の第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)を求める(ステップS18)。
Next, the 1st,
次に、制御処理部16は、式(5)に、第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)と、保存している重み係数W(λ)とを代入し、測定試料1を環境光4で照明したときの全分光放射率係数を近似する合成全分光放射率係数Bc(λ)を求める(ステップS19)。
Next, the
図9は、重み係数W(λ)の設定手順を示すフローチャートである。まず、本体部10を設定用保持台30に取り付け、試料開口31a下の無蛍光基準試料2を環境光4で照明させる(ステップS31)。
FIG. 9 is a flowchart showing a procedure for setting the weighting factor W (λ). First, the
次に、環境光4で照明された無蛍光基準試料2の放射光の対物レンズ14の光軸に平行な成分2cが対物レンズ14を介して受光部15で受光され、受光部15により分光分布Ewe(λ)が測定され、制御処理部16により保存される(ステップS32)。
Next, a
次に、スリット31bに蛍光増白紙である蛍光基準試料3が挿入され、環境光4で照明された蛍光基準試料3の分光分布Ere(λ)が受光部15により測定される(ステップS33)。
Next, the
次に、制御処理部16は、蛍光基準試料3の分光分布Ere(λ)と、保存されている無蛍光基準試料2の分光分布Ewe(λ)と、既知の分光反射率係数Rw(λ)とを式(6)に代入し、環境光4で蛍光基準試料3を照明した場合の基準全分光放射率係数Bre(λ)を求めて保存する(ステップS34)。
Next, the
次に、本体部10が設定用保持台30から取り外され、測定用保持台20に取り付けられる(ステップS35)。次に、図7のステップS2〜S6の白色校正が実行され、無蛍光基準試料2の放射光の法線成分2aの第1、第2分光分布Ew1(λ)、Ew2(λ)が受光部15により測定され、制御処理部16により保存される(ステップS36)。
Next, the
次に、試料開口21aに蛍光基準試料3が配置され、第1照明部12が点灯され、蛍光基準試料3が紫外成分の殆どない第1照明光で照明される(ステップS37)。
Next, the
次に、第1照明光で照明された蛍光基準試料3の放射光の法線成分3aの分光分布Er1(λ)が受光部15で測定され、制御処理部16に保存される(ステップS38)。
Next, the spectral distribution Er1 (λ) of the
次に、第1照明部12の点灯が維持された状態で、第2照明部13が点灯され、紫外成分をもつ第2照明光で蛍光基準試料3が照明される(ステップS39)。
Next, in a state in which the lighting of the
次に、第2照明光で照明された蛍光基準試料3の放射光の法線成分3aが対物レンズ14を介して受光部15で受光され、受光部15により分光分布Er2(λ)が測定され、制御処理部16に保存される(ステップS40)。次に、第1、第2照明部12、13が消灯される(ステップS41)。
Next, the
次に、制御処理部16は、保存している蛍光基準試料3の放射光の法線成分3aの分光分布Er1(λ)、Er2(λ)と、無蛍光基準試料2の放射光の法線線分2aの第1、第2分光分布Ew1(λ)、Ew2(λ)と、既知の分光反射率係数Rw(λ)とを式(4)に代入し、蛍光基準試料3の第1、第2全分光放射率係数Br1(λ)、Br2(λ)を求める(ステップS42)。
Next, the
次に、制御処理部16は、蛍光基準試料3の第1、第2全分光放射率係数Br1(λ)、Br2(λ)と、保存している基準全分光放射率係数Bre(λ)とを式(7)に代入し、重み係数W(λ)を求めて保存する(ステップS43)。
Next, the
(照明光の分光分布の変動による誤差の補正)
基準試料2、3の測定で設定された重み係数W(λ)を適用できるのは、第1、第2照明光の分光分布が、重み係数設定時から変化していないことが前提である。しかしながら、測定試料1の測定時と重み係数設定時とで第1、第2照明光の分光分布が変化しても、重み係数設定時の第1、第2照明光で照明した場合の測定試料1の第1、第2全分光放射率係数Bx01(λ)、Bx02(λ)を推定すれば、重み係数W(λ)を適用して、合成全分光放射率係数Bc(λ)を求めることができる。
(Correction of errors due to fluctuations in the spectral distribution of illumination light)
The weighting factor W (λ) set in the measurement of the
そこで、制御処理部16は、重み係数の設定時の第2照明光の分光分布I02(λ)を保存しておき、測定試料1の測定時の第2照明光の分光分布I2(λ)と、重み係数設定時の第2照明光の分光分布I02(λ)とに基づいて、重み係数設定時の第2照明光による第2全分光放射率係数Bx02(λ)を推定し、推定した第2全分光放射率係数Bx02(λ)を用いて合成全分光放射率係数Bc(λ)を求める。
Therefore, the
第1全分光放射率係数Bx01(λ)は、第1照明光の紫外成分が相対的に小さく、蛍光の寄与が小さいため、反射分光放射率係数とみなすことができ、反射分光放射率係数は照明光の分光分布の変化に影響されないため、Bx01(λ)=Bx1(λ)とできる。 The first total spectral emissivity coefficient Bx01 (λ) can be regarded as a reflected spectral emissivity coefficient because the ultraviolet component of the first illumination light is relatively small and the contribution of fluorescence is small. Since it is not affected by the change in the spectral distribution of the illumination light, Bx01 (λ) = Bx1 (λ) can be obtained.
一方、第2全分光放射率係数Bx02(λ)は、第2照明光の紫外成分が相対的に大きく、無視できない蛍光の寄与があるため、Bx2(λ)に変化するが、この第2全分光放射率係数Bx02(λ)は、以下に示すように推定することができる。 On the other hand, the second total spectral emissivity coefficient Bx02 (λ) changes to Bx2 (λ) because the ultraviolet component of the second illumination light is relatively large and has a contribution of fluorescence that cannot be ignored. The spectral emissivity coefficient Bx02 (λ) can be estimated as shown below.
式(1)に示すように、全分光放射率係数B(λ)は、反射分光放射率係数R(λ)と、蛍光分光放射率係数F(λ)との和(B(λ)=R(λ)+F(λ))で表される。第2照明光の分光分布に依存するのは蛍光分光放射率係数F(λ)だけなので、測定試料1の蛍光分光放射率係数Fx2(λ)について考える。
As shown in equation (1), the total spectral emissivity coefficient B (λ) is the sum of the reflected spectral emissivity coefficient R (λ) and the fluorescent spectral emissivity coefficient F (λ) (B (λ) = R (Λ) + F (λ)). Since only the fluorescence spectral emissivity coefficient F (λ) depends on the spectral distribution of the second illumination light, the fluorescence spectral emissivity coefficient Fx2 (λ) of the
上記からFx2(λ)は式(9)により表される。 From the above, Fx2 (λ) is expressed by equation (9).
Fx2(λ)=Bx2(λ)−Bx1(λ) (9)
同時に、式(2)より、Fx2(λ)は式(2)´で表すことができる。
Fx2 (λ) = Bx2 (λ) −Bx1 (λ) (9)
At the same time, Fx2 (λ) can be expressed by equation (2) ′ from equation (2).
Fx2(λ)=∫Fx(μ,λ)・I2(μ)dμ/I2(λ) (2)´
第2照明光の分光分布I2(μ)の変化による蛍光分光放射率係数Fx2(λ)の変化について、UVLED(第2照明部13)による励起域の変化と、白熱ランプ(第1照明部12)による蛍光域の変化とに分けて考える。
Fx2 (λ) = ∫Fx (μ, λ) · I2 (μ) dμ / I2 (λ) (2) ′
Regarding the change of the fluorescence spectral emissivity coefficient Fx2 (λ) due to the change of the spectral distribution I2 (μ) of the second illumination light, the change of the excitation area by the UVLED (second illumination unit 13) and the incandescent lamp (
UVLEDの発光波長域における励起効率の波長依存性が小さいとすると、式(2)´が示すように、蛍光分光放射率係数Fx2(λ)は、UVLED放射光の励起域での変化によって、形状を維持しつつ、面積∫I2(μ)dμに比例して強度が変化する。 Assuming that the wavelength dependency of excitation efficiency in the emission wavelength region of the UVLED is small, as shown in the equation (2) ′, the fluorescence spectral emissivity coefficient Fx2 (λ) has a shape due to a change in the excitation region of the UVLED radiation light. The intensity changes in proportion to the area ∫I2 (μ) dμ.
本実施の形態では、UVLEDとして、中心波長が375nmであり、中心波長の温度依存性が0.05nm/℃程度と小さいものが採用されている。一般的な蛍光増白剤は、375nm近辺での励起効率の波長依存性が小さいため、UVLEDの発光特性が変化した場合、蛍光分光放射率係数Fx2(λ)は強度のみが面積∫I2(μ)dμに比例して変化する。 In the present embodiment, a UVLED having a center wavelength of 375 nm and a temperature dependency of the center wavelength as small as about 0.05 nm / ° C. is employed. A general fluorescent brightener has a small wavelength dependency of excitation efficiency in the vicinity of 375 nm. Therefore, when the emission characteristics of the UVLED change, the fluorescence spectral emissivity coefficient Fx2 (λ) has an area ∫I2 (μ ) Changes in proportion to dμ.
一方、白熱ランプ放射光が蛍光域で変化した場合、式(2)´に示すようにI2(λ)は、積分の外の分母に存在するため、蛍光分光放射率係数Fx2(λ)は、1/I2(λ)に比例して変化し、波長依存性のある変化がもたらされる。 On the other hand, when the incandescent lamp radiation changes in the fluorescent region, as shown in the equation (2) ′, I2 (λ) exists in the denominator outside the integral, so the fluorescence spectral emissivity coefficient Fx2 (λ) is It changes in proportion to 1 / I2 (λ), resulting in a wavelength-dependent change.
したがって、第2照明光の分光分布がI02(λ)からI2(λ)に変化し、蛍光分光放射率係数がFx02(λ)からFx2(λ)に変化したとすると、変化前の蛍光分光放射率係数Fx02(λ)は式(10)により求められる。 Therefore, if the spectral distribution of the second illumination light changes from I02 (λ) to I2 (λ) and the fluorescence spectral emissivity coefficient changes from Fx02 (λ) to Fx2 (λ), the fluorescence spectral radiation before the change The rate coefficient Fx02 (λ) is obtained by the equation (10).
Fx02(λ)=c・Fx2(λ)・d(λ) (10)
c=∫I02(μ)dμ/∫I2(μ)dμ
d(λ)=I2(λ)/I02(λ)
式(10)で得られた蛍光分光放射率係数Fx02(λ)に、反射分光放射率係数R(λ)を近似するBx1(λ)を加える(式(11))。これにより、重み係数設定時の第2照明光で測定試料1を照明した場合の第2全分光放射率係数Bx02(λ)を推定することができる。
Fx02 (λ) = c · Fx2 (λ) · d (λ) (10)
c = ∫I02 (μ) dμ / ∫I2 (μ) dμ
d (λ) = I2 (λ) / I02 (λ)
Bx1 (λ) that approximates the reflected spectral emissivity coefficient R (λ) is added to the fluorescent spectral emissivity coefficient Fx02 (λ) obtained by Expression (10) (Expression (11)). Accordingly, it is possible to estimate the second total spectral emissivity coefficient Bx02 (λ) when the
Bx02(λ)=Bx1(λ)+Fx02(λ) (11)
そして、式(11)で得られた第2全分光放射率係数Bx02(λ)を式(5)のBx2(λ)に代入し、保存しておいた重み係数W(λ)を式(5)に代入することで、合成全分光放射率係数Bc(λ)を求める。これにより、第1、第2照明光の分光分布が重み係数設定時から変動したことに起因して発生する合成全分光放射率係数Bc(λ)の誤差を抑制することができる。
Bx02 (λ) = Bx1 (λ) + Fx02 (λ) (11)
Then, the second total spectral emissivity coefficient Bx02 (λ) obtained by Expression (11) is substituted into Bx2 (λ) of Expression (5), and the stored weighting coefficient W (λ) is expressed by Expression (5). ) To obtain the combined total spectral emissivity coefficient Bc (λ). As a result, it is possible to suppress an error in the combined total spectral emissivity coefficient Bc (λ) that occurs due to fluctuations in the spectral distribution of the first and second illumination light since the setting of the weighting coefficient.
(照明光の分光分布の変動による誤差の補正の別法1)
第1、第2照明光の分光分布の変動による誤差の補正の別法1として、制御処理部16は、以下の処理を採用してもよい。
(
As another
すなわち、重み係数設定時の蛍光基準試料3の第1、第2全分光放射率係数Br01(λ)、Br02(λ)を保存しておくと共に、重み係数設定時の第2照明光の分光分布I02(λ)を保存しておく。
That is, the first and second total spectral emissivity coefficients Br01 (λ) and Br02 (λ) of the
そして、保存しておいた第1、第2全分光放射率係数Br01(λ)、Br02(λ)と、測定試料1の測定時の第2照明光の分光分布I2(λ)と、保存しておいた第2照明光の分光分布I02(λ)とを基に、測定試料1の測定時の第2照明光で蛍光基準試料3を測定した場合の第2全分光放射率係数Br2(λ)を推定する。
The stored first and second total spectral emissivity coefficients Br01 (λ) and Br02 (λ), and the spectral distribution I2 (λ) of the second illumination light at the time of measurement of the
そして、推定した第2全分光放射率係数Br2(λ)を用いて重み係数W(λ)を再設定し、再設定した重み係数W(λ)を用いて合成全分光放射率係数Bc(λ)を求める。 Then, the weighting coefficient W (λ) is reset using the estimated second total spectral emissivity coefficient Br2 (λ), and the combined total spectral emissivity coefficient Bc (λ) using the reset weighting coefficient W (λ). )
具体的には制御処理部16は下記の処理を実行する。重み係数設定時に用いた蛍光基準試料3の第1、第2全分光放射率係数Br01(λ)、Br02(λ)から、式(12)を用いて重み係数設定時の蛍光分光放射率係数Fr02(λ)を求める。
Specifically, the
Fr02(λ)=Br02(λ)−Br01(λ) (12)
そして、測定試料1の測定時と同じ分光分布を有する第2照明光で蛍光基準試料3を照明した場合の蛍光分光放射率係数Fr2(λ)を、式(13)により求める。
Fr02 (λ) = Br02 (λ) −Br01 (λ) (12)
Then, the fluorescence spectral emissivity coefficient Fr2 (λ) when the
Fr2(λ)=c・Fr02(λ)・d(λ) (13)
c=∫I2(μ)dμ/∫I02(μ)dμ
d(λ)=I02(λ)/I2(λ)
そして、式(13)で得られ蛍光分光放射率係数Fr2(λ)を、式(14)に示すように、保存しておいた第1全分光放射率係数Br01(λ)に加え、第2全分光放射率係数Br2(λ)を求める。これにより、蛍光基準試料3を測定試料1の測定時の第2照明光で照明した場合の第2全分光放射率係数Br2(λ)を推定することができる。
Fr2 (λ) = c · Fr02 (λ) · d (λ) (13)
c = ∫I2 (μ) dμ / ∫I02 (μ) dμ
d (λ) = I02 (λ) / I2 (λ)
Then, the fluorescence spectral emissivity coefficient Fr2 (λ) obtained by the equation (13) is added to the stored first total spectral emissivity coefficient Br01 (λ) as shown in the equation (14), and the second The total spectral emissivity coefficient Br2 (λ) is obtained. Accordingly, it is possible to estimate the second total spectral emissivity coefficient Br2 (λ) when the
Br2(λ)=Br01(λ)+Fr2(λ) (14)
ここで、重み係数設定時の第1、第2全分光放射率係数をBr01(λ)、Br02(λ)と表したため、式(7)は、Bre(λ)=W(λ)・Br01(λ)+(1−W(λ))・Br02(λ)と表される。
Br2 (λ) = Br01 (λ) + Fr2 (λ) (14)
Here, since the first and second total spectral emissivity coefficients at the time of setting the weighting coefficient are expressed as Br01 (λ) and Br02 (λ), the equation (7) is represented by Bre (λ) = W (λ) · Br01 ( λ) + (1−W (λ)) · Br02 (λ).
そして、式(14)で得られた第2全分光放射率係数Br2(λ)を、式(7)の第2全分光放射率係数Br02(λ)に代入する。また、第1照明光の分光分布の変動に影響されない第1全分光放射率係数Br01(λ)には、保存しておいたBr01(λ)を代入する。 Then, the second total spectral emissivity coefficient Br2 (λ) obtained by Expression (14) is substituted into the second total spectral emissivity coefficient Br02 (λ) of Expression (7). Further, the stored Br01 (λ) is substituted for the first total spectral emissivity coefficient Br01 (λ) that is not affected by the fluctuation of the spectral distribution of the first illumination light.
また、式(7)のBre(λ)には、環境光4下で測定され、保存された重み係数設定時のBre(λ)を代入する。これにより、重み係数W(λ)を再設定する。
Also, Bre (λ) measured under the
そして、測定試料1を測定して、第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)を求め、式(5)に、再設定した重み係数W(λ)及び第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)を代入し、合成全分光放射率係数Bc(λ)を求める。
Then, the
(照明光の分光分布の変動による誤差の補正の別法2)
別法2は、式(8)の手法に(照明光の分光分布の変動による誤差の補正)の欄で記載した手法を適用したものである。つまり、測定試料1に重み係数設定時の第2照明光を照射した場合の分光蛍光特性Fx02(λ)を推定し、推定した分光蛍光特性Fx02(λ)を式(8)のFx2(λ)に置き換えて、合成全分光放射率係数Bc(λ)を求める。
(Another
具体的には、制御処理部16は、重み係数設定時の第2照明光の分光分布I02(λ)を保存しておく。そして、測定試料1に第2照明光を照明して得られる分光蛍光特性Fx2(λ)と、測定試料1の測定時の第2照明光の分光分布I2(λ)と、分光分布I02(λ)とに基づいて、重み係数設定時の第2照明光による分光蛍光特性Fx02(λ)を推定する。そして、推定した分光蛍光特性Fx02(λ)を用いて合成全分光放射率係数Bc(λ)を求める。
Specifically, the
ここで、制御処理部16は、式(15)を用いて、分光蛍光特性Fx02(λ)を推定する。
Here, the
Fx02(λ)=c・Fx2(λ) (15)
c=∫I02(μ)dμ/∫I2(μ)dμ
そして、制御処理部16は、式(15)により得られた分光蛍光特性Fx02(λ)を、式(8)のFx2(λ)に代入し、測定試料1を第1照明光で照明して得られた反射分光放射率係数Rx1(λ)、重み係数W(λ)を式(8)に代入し、合成全分光放射率係数Bc(λ)を求める。これにより、第2照明光の分光分布が重み係数設定時と測定試料1の測定時とで変化したとしても、この変化による誤差が抑制されるように、既存の重み係数W(λ)を用いて、合成全分光放射率係数Bc(λ)を求めることができる。
Fx02 (λ) = c · Fx2 (λ) (15)
c = ∫I02 (μ) dμ / ∫I2 (μ) dμ
Then, the
(照明光の分光分布の変動による誤差の補正の別法3)
別法3は、式(8)の手法に(照明光の分光分布の変動による誤差の補正の別法1)の欄で記載した手法を適用したものである。
(
具体的には、制御処理部16は、重み係数設定時の反射分光放射率係数Rr01(λ)と、分光蛍光特性Fr02(λ)とを保存しておくと共に、重み係数設定時の第2照明光の分光分布I02(λ)を保存しておく。そして、保存しておいた分光蛍光特性Fr02(λ)と、重み係数設定時の第2照明光の分光分布I02(λ)と、測定試料1の測定時の第2照明光の分光分布I2(λ)とを基に、測定試料1の測定時に蛍光基準試料3を第2照明光で照明した場合の分光蛍光特性Fr2(λ)を推定する。そして、推定した分光蛍光特性Fr2(λ)を用いて重み係数W(λ)を再設定し、再設定した重み係数W(λ)を用いて合成全分光放射率係数Bc(λ)を求める。
Specifically, the
ここで、制御処理部16は、式(16)を用いて、分光蛍光特性Fr2(λ)を推定する。
Here, the
Fr2(λ)=c・Fr02(λ) (16)
c=∫I2(μ)dμ/∫I02(μ)dμ
重み係数設定時の反射分光放射率係数、分光蛍光特性をRr01(λ)、Fr02(λ)と表したため、式(8)´は、Bre(λ)=Rr01(λ)+W(λ)・Fr02(λ)と表される。
Fr2 (λ) = c · Fr02 (λ) (16)
c = ∫I2 (μ) dμ / ∫I02 (μ) dμ
Since the reflection spectral emissivity coefficient and the spectral fluorescence characteristic at the time of setting the weighting coefficient are expressed as Rr01 (λ) and Fr02 (λ), the equation (8) ′ is represented by Bre (λ) = Rr01 (λ) + W (λ) · It is expressed as Fr02 (λ).
そして、式(16)で得られた分光蛍光特性Fr2(λ)を式(8)´のFr02(λ)に代入し、保存しておいた反射分光放射率係数Rr01、及び重み係数設定時の基準全分光放射率係数Bre(λ)を式(8)´に代入することで重み係数W(λ)を再設定する。 Then, the spectral fluorescence characteristic Fr2 (λ) obtained by the equation (16) is substituted for Fr02 (λ) of the equation (8) ′, and the stored reflection spectral emissivity coefficient Rr01 and the weighting coefficient are set. The weighting coefficient W (λ) is reset by substituting the reference total spectral emissivity coefficient Bre (λ) into the equation (8) ′.
そして、再設定した重み係数W(λ)、測定試料1に第1照明光を照明して求めた反射分光放射率係数Rx1(λ)、測定試料1に第2照明光を照明して求めた分光蛍光特性Fx2(λ)を式(8)に代入することで、合成全分光放射率係数Bc(λ)を求める。
Then, the reset weight coefficient W (λ), the reflection spectral emissivity coefficient Rx1 (λ) obtained by illuminating the first illumination light on the
これらの補正法は、いずれも第1照明光の紫外成分が相対的に小さいことを前提としているため、第1照明部12の前に紫外カットフィルターを配置することが効果的である。第2照明光の分光分布の変化は、図示されていない参照用の光学系と分光器とによってモニタすることができるが、UVLEDについては、特開2008−298579号公報に開示されているように、定電流駆動したときの順電圧変化から推定することもできる。
Since these correction methods are based on the premise that the ultraviolet component of the first illumination light is relatively small, it is effective to arrange an ultraviolet cut filter in front of the
また、第1照明部12の光源を白色LED、あるいは、図3のグラフG3で示す白色LED+PLEDとする場合は、同様に、定電流駆動された各LEDの順電圧変化から、分光分布変化を推定することができる。
When the light source of the
(蛍光増白紙上の印刷面の全分光放射率係数)
蛍光増白紙の印刷面はインクで覆われているため、印刷面の励起特性及び蛍光特性は、蛍光増白紙の励起特性及び蛍光特性だけでなく、各プライマリインク(Y、M、C、K)及びプライマリインクの重なり(YM、MC、CY、YMC)の分光透過特性と面積率、つまり色に依存する。以下、各プライマリインクと、各プライマリインクのうち少なくともいずれか2つの重なりとを拡張プライマリインクと記述する。
(Total spectral emissivity coefficient of printed surface on fluorescent white paper)
Since the printed surface of the fluorescent white paper is covered with ink, the excitation characteristics and fluorescent characteristics of the printed surface are not only the excitation characteristics and fluorescent characteristics of the fluorescent white paper, but also the primary inks (Y, M, C, K). And the primary ink overlap (YM, MC, CY, YMC) spectral transmission characteristics and area ratio, that is, color. Hereinafter, each primary ink and at least any two of the primary inks are described as extended primary ink.
第1照明光が紫外成分を含まず、第1全分光放射率係数Bx1(λ)が反射分光放射率係数と考えられる場合は、制御処理部16は、以下によって、インクが印刷された測定試料1の実効的な重み係数We(λ)を求め、測定試料1の合成全分光放射率係数Bc(λ)を求める。
When the first illumination light does not contain an ultraviolet component and the first total spectral emissivity coefficient Bx1 (λ) is considered to be the reflected spectral emissivity coefficient, the
まず、9領域をもつ蛍光増白紙を用意し、1領域を非印刷域とし、残り8領域に、それぞれ、異なる拡張プライマリインクを100%の面積率で印刷し、9種の蛍光基準試料Rn(n=0〜8、R0は蛍光増白紙の非印刷領域)を用意する。次に、9種の蛍光基準試料Rnにおける重み係数Wn(λ)を(重み係数の設定)の欄で述べた手法を用いて求める。同時に、9種の蛍光基準試料Rnを、それぞれ、第1、第2照明光で照明して求めた、第1、第2全分光放射率係数Br1n(λ)、Br2n(λ)から、式(17)を用いて蛍光分光放射率係数Fr2n(λ)を求め、保存しておく。 First, a FWA treated paper with 9 areas, the first area and the non-printing area, the remaining 8 regions, respectively, different extensions primary ink was printed at 100% of the area ratio, nine fluorescent reference sample R n (N = 0 to 8, R0 is a non-printing area of fluorescent white paper). Next, the weighting factors W n (λ) for the nine types of fluorescence reference samples R n are obtained using the method described in the section (Setting of weighting factors). At the same time, from the first and second total spectral emissivity coefficients Br1 n (λ) and Br2 n (λ) obtained by illuminating nine types of fluorescence reference samples R n with the first and second illumination lights, respectively. , The fluorescence spectral emissivity coefficient Fr2 n (λ) is obtained using equation (17) and stored.
Fr2n(λ)=Br2n(λ)−Br1n(λ) (17)
測定試料1の測定フェーズでは、測定試料1の第1、第2全分光放射率係数Bx1(λ)、Bx2(λ)を求める。そして、印刷面の蛍光が寄与しない第1全分光放射率係数Bx1(λ)から、Neugebauerの式やEule−Nielsenの式等の公知の手法を用いて各拡張プライマリインクPnの面積率Snを推定する。なお、第1全分光放射率係数Bx1(λ)に代えて、第2全分光放射率係数Bx2(λ)を用いて面積率Snを推定してもよい。
Fr2 n (λ) = Br2 n (λ) −Br1 n (λ) (17)
In the measurement phase of the
印刷面からの蛍光に占める各拡張プライマリインクPnの印刷面からの蛍光の寄与は、推定した面積率Snと、保存しておいた蛍光分光放射率係数Fr2nとの積に比例するため、蛍光寄与率Cn(λ)は、式(18)で与えられる。なお、簡単のために、ここでは測定時の第1、第2照明光は変化しないとしている。 Contribution of the fluorescence from the printed surface of each extended primary ink P n occupying the fluorescence from the printing surface, the area ratio S n estimated, proportional to the product of the fluorescence spectral radiance factor Fr2 n that has been stored , The fluorescence contribution ratio C n (λ) is given by equation (18). For simplicity, it is assumed here that the first and second illumination lights during measurement do not change.
Cn(λ)=Sn・Fr2n(λ)/Σn(Sn・Fr2n(λ)) (18)
測定試料1の印刷面の実質的な重み係数We(λ)は、蛍光寄与率Cn(λ)を用いて、式(19)で与えられる。
C n (λ) = S n · Fr2 n (λ) / Σ n (S n · Fr2 n (λ)) (18)
The substantial weighting coefficient We (λ) of the printed surface of the
We(λ)=Σn(Cn(λ)・Wn(λ)) (19)
つまり、印刷面がインクで印刷された測定試料1の全分光放射率係数の測定においては、予め求められた複数の蛍光基準試料Rnの重み係数Wn(λ)と、試料ごとに求められる面積率Snに依存する蛍光寄与率Cn(λ)とに基づいて、重み係数We(λ)が求められる。そして、求めた重み係数We(λ)が式(5)に代入され、合成全分光放射率係数Bc(λ)が求められる。
We (λ) = Σ n (C n (λ) · W n (λ)) (19)
That is, in the measurement of the total spectral emissivity coefficient of the
上記では蛍光基準試料Rnを9種としたが、これに限定されない。すなわち、K(黒)インクおよびY(黄)インクは照明光の紫外成分を殆ど透過しないため、Y及びKの少なくともいずれか一方を含む拡張プライマリインクPn(Y、K、YM、CY、YMC)による印刷部分からの蛍光は、無視できる。そのため、通常、蛍光増白紙上の非印刷域、及びM、C、MCの拡張プライマリインクPnが面積率100%で印刷された印刷域の4種の蛍光基準試料Rnを用意すれば十分である。この場合、無視する蛍光基準試料Rnの蛍光分光放射率係数Fr2n(λ)は、Fr2n(λ)=0とすればよい。 In the above was nine fluorescent reference sample R n, but is not limited thereto. That is, since the K (black) ink and the Y (yellow) ink hardly transmit the ultraviolet component of the illumination light, the extended primary ink P n (Y, K, YM, CY, YMC including at least one of Y and K) is used. ) Fluorescence from the printed part is negligible. Sufficiently Therefore, usually, the non-printing area on the optically brightened paper, and M, C, by preparing four kinds of fluorescent reference sample R n of the print zone to expand the primary ink P n is printed at an area ratio of 100% MC It is. In this case, the fluorescence spectral emissivity coefficient Fr2 n (λ) of the ignored fluorescence reference sample R n may be set to Fr2 n (λ) = 0.
前述の分光蛍光特性を用いる方法でも同様の方法で、環境光下の印刷試料の全分光放射率係数が測定できる。 The total spectral emissivity coefficient of a printed sample under ambient light can be measured by the same method using the aforementioned spectral fluorescence characteristics.
なお、上記説明では、分光蛍光特性の一例として蛍光分光放射率係数を採用したが、これに限定されず、蛍光分光強度を採用してもよい。 In the above description, the fluorescence spectral emissivity coefficient is adopted as an example of the spectral fluorescence characteristic. However, the present invention is not limited to this, and the fluorescence spectral intensity may be adopted.
1 測定試料
2 無蛍光基準試料
3 蛍光基準試料
4 環境光
10 本体部
12 第1照明部
13 第2照明部
16 制御処理部(演算部)
Bx1(λ) 第1全分光放射率係数
Bx2(λ) 第2全分光放射率係数
Bc(λ) 合成全分光放射率係数
Cn(λ) 蛍光寄与率
D1 測定域
Pn 拡張プライマリインク
R(λ) 反射分光放射率係数
Rn 蛍光基準試料
Rw(λ) 無蛍光基準試料の分光反射率係数
Rx1(λ) 反射分光放射率係数
Sn 面積率
W(λ) 重み係数
DESCRIPTION OF
Bx1 (λ) First total spectral emissivity coefficient Bx2 (λ) Second total spectral emissivity coefficient Bc (λ) Composite total spectral emissivity coefficient C n (λ) Fluorescence contribution ratio D1 Measurement area P n Extended primary ink R ( λ) Reflective spectral emissivity coefficient R n Fluorescence reference sample Rw (λ) Spectral reflectance coefficient Rx1 (λ) of non-fluorescent reference sample Reflected spectral emissivity coefficient S n Area ratio W (λ) Weight coefficient
Claims (24)
前記測定試料を相対紫外強度が異なる第1、第2照明光で照明する照明部と、
前記測定試料からの放射光を受光して分光分布を測定する受光部と、
前記測定試料を前記第1、第2照明光で照明し、前記蛍光増白試料からの放射光を前記受光部で測定することで第1、第2分光分布を取得し、取得した前記第1、第2分光分布から前記測定試料の第1、第2分光特性を求め、求めた前記第1、第2分光特性を波長毎の値を有する重み係数によって重みつき線形結合し、前記測定試料を環境光で照明したときの前記測定試料の合成分光特性を求める演算部とを備え、
前記演算部は、前記重み係数を以下の第1〜第3工程で求める測定装置。
第1工程:環境光で照明された無蛍光基準試料からの放射光及び前記測定試料と類似の二分光特性をもつ蛍光基準試料からの放射光を前記受光部で測定することで前記無蛍光基準試料の放射光の分光分布及及び前記蛍光基準試料の放射光の分光分布を取得し、取得した前記無蛍光基準試料の放射光の分光分布及び前記蛍光基準試料の放射光の分光分布と、前記無蛍光基準試料の既知の基準分光特性とから、前記蛍光基準試料の基準分光特性を求める。
第2工程:前記蛍光基準試料を前記第1、第2照明光で照明し、前記蛍光基準試料からの放射光を前記受光部で測定することで第1、第2分光分布を取得し、取得した前記第1、第2分光分布から前記蛍光基準試料の第1、第2分光特性を求める。
第3工程:前記第1、第2分光特性の重みつき線形結合が前記基準分光特性に一致するように前記重み係数を求めて記憶する。 Measurement to measure the spectral characteristics of a measurement sample consisting of a fluorescent whitening sample when illuminated with ambient light as illumination light in a light booth for measuring the measurement sample and having an arbitrary spectral distribution A device,
An illumination unit that illuminates the measurement sample with first and second illumination lights having different relative ultraviolet intensities;
A light receiving unit that receives the radiated light from the measurement sample and measures a spectral distribution;
The first and second spectral distributions are obtained by illuminating the measurement sample with the first and second illumination light, and measuring the emitted light from the fluorescent whitening sample with the light receiving unit, and obtaining the first The first and second spectral characteristics of the measurement sample are obtained from the second spectral distribution, the obtained first and second spectral characteristics are linearly combined with a weighting factor having a value for each wavelength, and the measurement sample is obtained. A calculation unit for obtaining a synthetic spectral characteristic of the measurement sample when illuminated with ambient light,
The said calculating part is a measuring apparatus which calculates | requires the said weighting coefficient in the following 1st-3rd processes.
1st process: The said non-fluorescence reference | standard by measuring in the said light-receiving part the radiation light from the non-fluorescence reference sample illuminated with environmental light, and the radiation light from the fluorescence reference | standard sample similar to the said measurement sample. Obtaining the spectral distribution of the radiated light of the sample and the spectral distribution of the radiated light of the fluorescent reference sample, and obtaining the spectral distribution of the radiated light of the non-fluorescent reference sample and the spectral distribution of the radiated light of the fluorescent reference sample, The reference spectral characteristic of the fluorescent reference sample is obtained from the known reference spectral characteristic of the non-fluorescent reference sample.
Second step: illuminating the fluorescence reference sample with the first and second illumination light, and measuring the radiation light from the fluorescence reference sample with the light receiving unit to obtain and obtain the first and second spectral distributions The first and second spectral characteristics of the fluorescence reference sample are obtained from the first and second spectral distributions.
Third step: The weight coefficient is obtained and stored so that the weighted linear combination of the first and second spectral characteristics matches the reference spectral characteristic.
前記第2照明光は、紫外域に強度をもつ請求項1記載の測定装置。 The first illumination light has no intensity in the ultraviolet region,
The measuring apparatus according to claim 1, wherein the second illumination light has an intensity in an ultraviolet region.
前記第1、第2分光特性は、第1、第2全分光放射率係数であり、
前記基準分光特性は、基準全分光放射率係数である請求項1記載の測定装置。 The synthetic spectral characteristic is a synthetic total spectral emissivity coefficient,
The first and second spectral characteristics are first and second total spectral emissivity coefficients,
The measuring apparatus according to claim 1, wherein the reference spectral characteristic is a reference total spectral emissivity coefficient.
前記合成分光特性は、合成全分光放射率係数であり、
前記第1分光特性は、反射分光放射率係数であり、
前記第2分光特性は、分光蛍光特性である請求項2記載の測定装置。 The second illumination light has intensity only in the ultraviolet region,
The synthetic spectral characteristic is a synthetic total spectral emissivity coefficient,
The first spectral characteristic is a reflection spectral emissivity coefficient;
The measuring apparatus according to claim 2, wherein the second spectral characteristic is a spectral fluorescence characteristic.
Bx02(λ)を以下によって推定する請求項6記載の測定装置。
Bx02(λ)=Bx1(λ)+c・Fx2(λ)・d(λ)
但し、
Fx2(λ)=Bx2(λ)−Bx1(λ)
c=∫I02(μ)dμ/∫I2(μ)dμ
d(λ)=I2(λ)/I02(λ) The calculation unit sets the reference spectral distribution to I02 (λ), the first and second total spectral emissivity coefficients to Bx1 (λ), Bx2 (λ), and the spectral distribution of the second illumination light at the time of measurement. The measurement apparatus according to claim 6, wherein I2 (λ) is used to estimate a second total spectral emissivity coefficient Bx02 (λ) of the measurement sample by the second illumination light when the weighting factor is set as follows.
Bx02 (λ) = Bx1 (λ) + c · Fx2 (λ) · d (λ)
However,
Fx2 (λ) = Bx2 (λ) −Bx1 (λ)
c = ∫I02 (μ) dμ / ∫I2 (μ) dμ
d (λ) = I2 (λ) / I02 (λ)
Br2(λ)=Br01(λ)+c・Fr02(λ)・d(λ)
但し、
Fr02(λ)=Br02(λ)−Br01(λ)
c=∫I2(μ)dμ/∫I02(μ)dμ
d(λ)=I02(λ)/I2(λ) The calculation unit sets the reference spectral distribution to I02 (λ), sets the first and second total spectral emissivity coefficients at the time of setting the weighting factor to Br01 (λ), Br02 (λ), and the first spectral distribution at the time of measurement. The second total spectral emissivity coefficient Br2 (λ) of the fluorescence reference sample by the second illumination light at the time of measurement is estimated as follows, assuming that the spectral distribution of the two illumination lights is I2 (λ). measuring device.
Br2 (λ) = Br01 (λ) + c · Fr02 (λ) · d (λ)
However,
Fr02 (λ) = Br02 (λ) −Br01 (λ)
c = ∫I2 (μ) dμ / ∫I02 (μ) dμ
d (λ) = I02 (λ) / I2 (λ)
Fx02(λ)=c・Fx2(λ)
但し、
c=∫I02(μ)dμ/∫I2(μ)dμ When the reference spectral distribution is I02 (λ), the spectral fluorescence characteristic at the time of measurement is Fx2 (λ), and the spectral distribution of the second illumination light at the time of measurement is I2 (λ), the calculation unit The measurement apparatus according to claim 10, wherein the spectral fluorescence characteristic Fx02 (λ) due to the second illumination light at the time of setting is estimated as follows.
Fx02 (λ) = c · Fx2 (λ)
However,
c = ∫I02 (μ) dμ / ∫I2 (μ) dμ
測定時の前記第2照明光による分光蛍光特性Fr2(λ)を以下によって推定する請求項12記載の測定装置。
Fr2(λ)=c・Fr02(λ)
但し、
c=∫I2(μ)dμ/∫I02(μ)dμ When the reference spectral distribution is I02 (λ), the spectral fluorescence characteristic at the time of setting the weighting factor is Fr02 (λ), and the spectral distribution of the second illumination light at the time of measurement is I2 (λ), The measuring apparatus according to claim 12, wherein the spectral fluorescence characteristic Fr2 (λ) due to the second illumination light at the time of the measurement is estimated by the following.
Fr2 (λ) = c · Fr02 (λ)
However,
c = ∫I2 (μ) dμ / ∫I02 (μ) dμ
前記蛍光基準試料は、前記蛍光増白紙である請求項1〜13のいずれかに記載の測定装置。 The fluorescent whitening sample is a printing surface printed on fluorescent whitening paper,
The measurement apparatus according to claim 1, wherein the fluorescent reference sample is the fluorescent whitening paper.
前記蛍光基準試料は、
前記蛍光増白紙と、
前記蛍光増白紙上に1種以上のプライマリインクが印刷された面積率100%の印刷面と、
前記蛍光増白紙上に前記プライマリインクが重ねて印刷された面積率100%の印刷面とであり、
前記演算部は、前記蛍光基準試料のそれぞれについて前記重み係数を求めて保存しておくと共に、前記蛍光基準試料のそれぞれについての分光蛍光特性を保存しておき、前記測定試料の前記第1分光特性又は第2分光特性から各蛍光基準試料に対応する要素の面積率を推定し、推定した各面積率と、保存しておいた前記分光蛍光特性とから各蛍光基準試料の蛍光寄与率を算出し、算出した各蛍光寄与率と保存しておいた前記重み係数とから前記測定試料の実効的な重み係数を算出し、算出した重み係数を用いて前記測定試料の合成分光特性を求める請求項1〜13のいずれかに記載の測定装置。 The fluorescent whitening sample is a printing surface printed on fluorescent whitening paper,
The fluorescent reference sample is
The fluorescent whitening paper;
A printing surface with an area ratio of 100% on which one or more primary inks are printed on the fluorescent whitening paper;
A printing surface with an area ratio of 100% printed by overlapping the primary ink on the fluorescent whitening paper,
The calculation unit obtains and stores the weighting factor for each of the fluorescence reference samples, stores the spectral fluorescence characteristics for each of the fluorescence reference samples, and stores the first spectral characteristics of the measurement sample. Alternatively, the area ratio of the element corresponding to each fluorescence reference sample is estimated from the second spectral characteristics, and the fluorescence contribution ratio of each fluorescence reference sample is calculated from each estimated area ratio and the stored spectral fluorescence characteristics. An effective weighting factor of the measurement sample is calculated from each calculated fluorescence contribution rate and the stored weighting factor, and a synthetic spectral characteristic of the measurement sample is obtained using the calculated weighting factor. The measuring apparatus in any one of -13.
We(λ)=ΣnCn(λ)・Wn(λ)
但し、
Cn(λ)=Sn・Fr2n(λ)/Σn(Sn・Fr2n(λ)) Assuming that the weight coefficient of the n fluorescence reference samples is Wn (λ), the spectral fluorescence characteristic is Fr2n (λ), and the area ratio of the fluorescence reference sample is Sn, the effective weight coefficient We (λ) is The measuring device according to claim 15, which is obtained by:
We (λ) = ΣnCn (λ) · Wn (λ)
However,
Cn (λ) = Sn · Fr2n (λ) / Σn (Sn · Fr2n (λ))
前記照明光による全分光放射率係数から、各面積率を求める請求項15又は16記載の測定装置。 Either of the first and second illumination light is illumination light having no intensity in the excitation wavelength region,
The measuring device according to claim 15 or 16, wherein each area ratio is obtained from a total spectral emissivity coefficient by the illumination light.
対物レンズと、前記対物レンズの焦点近傍に設けられた入射開口とを含む対物光学系であって、試料放射光の前記対物光学系の光軸に平行な成分を前記入射開口に収束する対物光学系を備える請求項1〜17のいずれかに記載の測定装置。 The light receiving unit is
An objective optical system including an objective lens and an incident aperture provided in the vicinity of the focal point of the objective lens, the objective optical for converging a component parallel to the optical axis of the objective optical system of sample radiation light on the incident aperture The measuring device according to claim 1, comprising a system.
前記設定用保持台は、前記環境光による前記測定域への照明を遮らず、かつ、前記測定域からの放射光を遮らずに前記対物光学系に導く請求項18記載の測定装置。 When measuring the emitted light by irradiating the sample with the ambient light, further comprising a setting holder for holding the main body of the measuring device,
The measurement apparatus according to claim 18, wherein the setting holding table guides to the objective optical system without blocking illumination of the measurement area by the ambient light and without blocking radiation light from the measurement area.
前記試料が配置される試料台板と、
前記試料台板とV字状に結合され、前記本体部を保持する保持台板とを備える請求項19又は20記載の測定装置。 The setting holder is
A sample base plate on which the sample is disposed;
21. The measuring apparatus according to claim 19 or 20, comprising a holding base plate that is coupled to the sample base plate in a V shape and holds the main body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010168173A JP5609377B2 (en) | 2010-07-27 | 2010-07-27 | measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010168173A JP5609377B2 (en) | 2010-07-27 | 2010-07-27 | measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012026962A JP2012026962A (en) | 2012-02-09 |
JP5609377B2 true JP5609377B2 (en) | 2014-10-22 |
Family
ID=45780039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010168173A Expired - Fee Related JP5609377B2 (en) | 2010-07-27 | 2010-07-27 | measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5609377B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103822880A (en) * | 2014-02-26 | 2014-05-28 | 清华大学 | Method and system for measuring fly ash carbon content |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5963511B2 (en) * | 2012-04-12 | 2016-08-03 | キヤノン株式会社 | Data processing apparatus, data processing method and program thereof |
JP6631041B2 (en) * | 2015-05-29 | 2020-01-15 | 株式会社島津製作所 | Oxygen concentration measurement device |
JP2020020702A (en) * | 2018-08-02 | 2020-02-06 | セイコーエプソン株式会社 | Spectrometer, electronic device and spectrometer |
CN112400803B (en) * | 2020-12-18 | 2022-06-17 | 河南中羊牧业有限公司 | Method for breeding ewes fed in barn for 2 fetuses in 1 year |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5763426A (en) * | 1980-10-03 | 1982-04-16 | Hitachi Ltd | Spectrophotometer |
JP3346095B2 (en) * | 1995-05-17 | 2002-11-18 | ミノルタ株式会社 | Spectrophotometer |
JP4105251B2 (en) * | 1996-12-17 | 2008-06-25 | 富士フイルム株式会社 | Measurement method of colorimetric values |
JPH11118603A (en) * | 1997-10-15 | 1999-04-30 | Minolta Co Ltd | Spectral characteristic measuring apparatus of fluorescent specimen and its measuring method |
JP4061765B2 (en) * | 1999-02-09 | 2008-03-19 | コニカミノルタセンシング株式会社 | Apparatus for measuring spectral characteristics of fluorescent sample and measuring method thereof |
US6597454B1 (en) * | 2000-05-12 | 2003-07-22 | X-Rite, Incorporated | Color measurement instrument capable of obtaining simultaneous polarized and nonpolarized data |
JP4660691B2 (en) * | 2005-04-08 | 2011-03-30 | コニカミノルタセンシング株式会社 | Optical property measuring method of fluorescent sample and optical property measuring apparatus using the same |
JP5239442B2 (en) * | 2008-03-25 | 2013-07-17 | コニカミノルタオプティクス株式会社 | Method and apparatus for measuring optical properties of fluorescent sample |
-
2010
- 2010-07-27 JP JP2010168173A patent/JP5609377B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103822880A (en) * | 2014-02-26 | 2014-05-28 | 清华大学 | Method and system for measuring fly ash carbon content |
CN103822880B (en) * | 2014-02-26 | 2016-06-29 | 清华大学 | Flying marking measuring method and system |
Also Published As
Publication number | Publication date |
---|---|
JP2012026962A (en) | 2012-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5239442B2 (en) | Method and apparatus for measuring optical properties of fluorescent sample | |
US7466417B2 (en) | Process for the colour measurement of printed samples including brighteners | |
US8144322B2 (en) | Spectral characteristic measuring apparatus, method for calibrating spectral characteristic measuring apparatus, and spectral characteristic measuring system | |
US7502099B2 (en) | Measuring method and apparatus for measuring an optical property of a fluorescent sample | |
US7259853B2 (en) | Systems and methods for augmenting spectral range of an LED spectrophotometer | |
US20080137086A1 (en) | Optical property measuring method and optical property measuring apparatus | |
JP5609377B2 (en) | measuring device | |
US8102530B2 (en) | Colour measuring unit | |
JP2005207982A5 (en) | ||
JP2009520184A (en) | Apparatus and method for illuminator independent color measurement | |
TWI600894B (en) | Measuring apparatus and measuring method | |
US7847264B2 (en) | Method of measuring the colour of printed samples containing brighteners | |
US20090097028A1 (en) | Color Measurement Systems And Methods Addressing Effects of Ultra-Violet Light | |
US20190285540A1 (en) | Reflection Characteristic Measuring Device | |
US10839271B2 (en) | Image processing apparatus, method and storage medium | |
JP5440609B2 (en) | Color densitometer and density measuring method | |
US8125625B2 (en) | Hard copy re-emission color measurement system | |
JP6984651B2 (en) | A method for measuring the spectral radiation characteristics of a fluorescent whitening sample and a device for measuring the spectral radiation characteristics of a fluorescent whitening sample. | |
US20230384159A1 (en) | Colorimeter and chromaticity measurement method | |
JP2007139632A (en) | Reflectivity measuring instrument and reflectivity measuring method | |
US20190178789A1 (en) | Daylight hand-lamp for checking painted surfaces, in particular in the field of paint repair work on motor vehicles | |
JP4617436B2 (en) | Optical property measuring method of fluorescent sample and optical property measuring apparatus using the same | |
WO2023027718A1 (en) | Spectrographic measurements | |
JP2005024333A (en) | Method and instrument for measuring emission spectrum using spectrophotometer | |
JP2005300252A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130216 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140507 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140805 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140818 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5609377 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |