[go: up one dir, main page]

JP5597116B2 - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP5597116B2
JP5597116B2 JP2010270198A JP2010270198A JP5597116B2 JP 5597116 B2 JP5597116 B2 JP 5597116B2 JP 2010270198 A JP2010270198 A JP 2010270198A JP 2010270198 A JP2010270198 A JP 2010270198A JP 5597116 B2 JP5597116 B2 JP 5597116B2
Authority
JP
Japan
Prior art keywords
electrode
vacuum valve
opposite
electrodes
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010270198A
Other languages
Japanese (ja)
Other versions
JP2012119254A (en
JP2012119254A5 (en
Inventor
孝行 糸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010270198A priority Critical patent/JP5597116B2/en
Publication of JP2012119254A publication Critical patent/JP2012119254A/en
Publication of JP2012119254A5 publication Critical patent/JP2012119254A5/ja
Application granted granted Critical
Publication of JP5597116B2 publication Critical patent/JP5597116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

本発明は、電極を流れる電流によって発生する磁界によってアークを駆動するように構成された真空バルブに関するものである。   The present invention relates to a vacuum valve configured to drive an arc by a magnetic field generated by a current flowing through an electrode.

真空バルブは、一般にセラミックまたはガラスよりなる絶縁円筒の両端開口部を固定側端板及び可動側端板でそれぞれ密封し、気密な容器を構成している。固定側端板には固定側電極を接合した固定側電極棒が支持固定され、この固定側電極と対向するように可動側電極が配置され、これに可動側電極棒が接続される。この可動側電極棒と可動側端板とは蛇腹状のベローズを介して気密に接続し、真空バルブ内の真空を維持しつつ可動側電極及び可動側電極棒を動作させることが可能である。また、電流遮断時に電極間でアークが発生し、電極から金属蒸気が飛散するため、絶縁円筒内面に付着し、内沿面の絶縁性能を低下させる。この絶縁円筒内面の汚損抑制のためアークシールドが電極周囲に設けられている。   The vacuum valve generally forms an airtight container by sealing both ends of an insulating cylinder made of ceramic or glass with a fixed end plate and a movable end plate. A fixed-side electrode plate joined with a fixed-side electrode is supported and fixed on the fixed-side end plate, and a movable-side electrode is disposed so as to face the fixed-side electrode, and the movable-side electrode rod is connected to this. The movable side electrode rod and the movable side end plate are hermetically connected via a bellows-shaped bellows, and the movable side electrode and the movable side electrode rod can be operated while maintaining the vacuum in the vacuum valve. Further, an arc is generated between the electrodes when the current is interrupted, and the metal vapor is scattered from the electrodes, so that it adheres to the inner surface of the insulating cylinder and deteriorates the insulating performance on the inner surface. An arc shield is provided around the electrode to suppress the contamination of the inner surface of the insulating cylinder.

数十kAを越える大電流遮断を行う場合、遮断性能向上の手段の一つとしてスパイラル構造の電極がある。電極にスパイラル状の溝を設け、スパイラル羽根部分に電流が流れることで発生する磁場とアーク電流が作用することで電極外周を円周方向に回転させる駆動力が発生する。アークが回転することで電極表面の局部加熱が抑えられ、遮断性能が向上する。スパイラル羽根部分は細長い形状で強度が比較的弱く、開閉操作力の大きなものではスパイラル羽根部分の変形が発生し、遮断性能や耐電圧性能の低下を引き起こす。対策として円盤状の補強板やリング形状の補強リングを電極背面に固着させるが、一般に機械的強度が高く電気抵抗の大きな材料であるオーステナイト系ステンレスが使用され、電極背面にろう付けにより固定される。   When interrupting a large current exceeding several tens of kA, there is a spiral structure electrode as one means for improving the interrupting performance. A spiral groove is provided in the electrode, and a driving force for rotating the outer periphery of the electrode in the circumferential direction is generated by the action of a magnetic field and an arc current generated by current flowing through the spiral blade portion. By rotating the arc, local heating of the electrode surface is suppressed and the interruption performance is improved. The spiral blade portion has an elongated shape and a relatively low strength, and when the opening / closing operation force is large, the spiral blade portion is deformed, resulting in a decrease in the breaking performance and the withstand voltage performance. As a countermeasure, a disk-shaped reinforcing plate or a ring-shaped reinforcing ring is fixed to the back of the electrode. Generally, austenitic stainless steel, which has high mechanical strength and high electrical resistance, is used, and is fixed to the back of the electrode by brazing. .

特開2001−52576号公報(図1〜3及びその説明)Japanese Patent Laid-Open No. 2001-52576 (FIGS. 1 to 3 and description thereof) 特開平1−105428号公報(第1図及びその説明)JP-A-1-105428 (FIG. 1 and its description)

従来のスパイラル電極構造の真空バルブでは、アークを回転させ、電極表面の局部過熱を抑制するために発生させる磁界強度に限界がある。よりいっそうの電極の小径化を実現するためには、小径化されたスパイラル電極で発生する磁界強度をより大きくしなければならない課題がある。   In the conventional vacuum electrode structure vacuum valve, there is a limit to the strength of the magnetic field generated to rotate the arc and suppress local overheating of the electrode surface. In order to further reduce the diameter of the electrode, there is a problem that the magnetic field intensity generated by the spiral electrode having a reduced diameter must be increased.

この発明は、上記のような問題点を解決するためになされたもので、電極の小径化に対してアークの駆動に必要な磁界強度を得ることを可能にすることを目的とするものである。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to make it possible to obtain a magnetic field strength necessary for driving an arc with respect to a reduction in the diameter of an electrode. .

この発明に係る真空バルブは、対をなす電極が真空容器内に接離可能に支持され、前記電極を流れる電流による磁界が前記対をなす電極の一方の電極と他方の電極と間に発生するアークを駆動するように円周方向に伸びた腕が前記電極に形成された真空バルブにおいて、前記電極の相手方電極との対向面と反対側の面の側に流れる電流を制限して前記電極の腕部を流れる電流を前記対向面の側に偏らせる電流制限構造を前記対向面と反対側に設けた真空バルブであって、前記電流制限構造が、前記電極の前記対向面と反対側の面の中央部に設けられた窪み部であることを特徴とする真空バルブである。 In the vacuum valve according to the present invention, a pair of electrodes are supported in a vacuum container so as to be able to contact and separate, and a magnetic field due to a current flowing through the electrodes is generated between one electrode and the other electrode of the pair of electrodes. In a vacuum valve in which arms extending in the circumferential direction so as to drive an arc are formed on the electrode, the current flowing to the surface of the electrode opposite to the surface facing the counterpart electrode is limited to limit the current of the electrode. A vacuum valve in which a current limiting structure for biasing a current flowing through the arm portion toward the facing surface is provided on the side opposite to the facing surface , wherein the current limiting structure is a surface opposite to the facing surface of the electrode. It is a vacuum valve characterized by being a hollow part provided in the central part .

この発明は、対をなす電極が真空容器内に接離可能に支持され、前記電極を流れる電流による磁界が前記対をなす電極の一方の電極と他方の電極と間に発生するアークを駆動するように円周方向に伸びた腕が前記電極に形成された真空バルブにおいて、前記電極の相手方電極との対向面と反対側の面の側に流れる電流を制限して前記電極の腕部を流れる電流を前記対向面の側に偏らせる電流制限構造を前記対向面と反対側に設けた真空バルブであって、前記電流制限構造が、前記電極の前記対向面と反対側の面の中央部に設けられた窪み部であるので、電極の小径化に対してアークの駆動に必要な磁界強度を得ることができる効果がある。 In the present invention, a pair of electrodes are supported in a vacuum container so as to be able to contact and separate, and a magnetic field generated by a current flowing through the electrodes drives an arc generated between one electrode and the other electrode of the pair of electrodes. Thus, in a vacuum valve in which arms extending in the circumferential direction are formed on the electrode, the current flowing on the surface of the electrode opposite to the surface facing the counterpart electrode is limited and flows through the arm portion of the electrode. A vacuum valve provided with a current limiting structure for biasing current toward the opposing surface on the side opposite to the opposing surface , wherein the current limiting structure is provided at a central portion of the surface opposite to the opposing surface of the electrode. Since the recess is provided, there is an effect that the magnetic field intensity necessary for driving the arc can be obtained with respect to the reduction in the diameter of the electrode.

この発明の実施の形態1を示す図で、真空バルブの構成の一例を示す断面図である。It is a figure which shows Embodiment 1 of this invention, and is sectional drawing which shows an example of a structure of a vacuum valve. この発明の実施の形態1を示す図で、(a)は固定側電極の上面図、(b)は固定側電極の断面図、(c)は固定側電極の下面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, (a) is a top view of a fixed side electrode, (b) is sectional drawing of a fixed side electrode, (c) is a bottom view of a fixed side electrode. この発明の実施の形態1を示す図で、(a)は固定側電極の上面斜視図、(b)は固定側電極の下面斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, (a) is an upper surface perspective view of a fixed side electrode, (b) is a lower surface perspective view of a fixed side electrode. この発明の実施の形態2を示す図で、(a)は固定側電極の上面図、(b)は固定側電極の断面図、(c)は固定側電極の下面図である。4A and 4B are diagrams showing Embodiment 2 of the present invention, in which FIG. 5A is a top view of a fixed side electrode, FIG. 5B is a cross-sectional view of the fixed side electrode, and FIG. この発明の実施の形態2を示す図で、(a)は固定側電極の上面斜視図、(b)は固定側電極の下面斜視図である。It is a figure which shows Embodiment 2 of this invention, (a) is an upper surface perspective view of a stationary-side electrode, (b) is a lower surface perspective view of a stationary-side electrode. この発明の実施の形態2を示す図で、(a)は固定側電極の他の変形例の上面図、(b)は固定側電極の他の変形例の断面図、(c)は固定側電極の他の変形例の下面図である。FIG. 5 is a diagram illustrating a second embodiment of the present invention, in which (a) is a top view of another modification of the fixed electrode, (b) is a cross-sectional view of another modification of the fixed electrode, and (c) is a fixed side. It is a bottom view of the other modification of an electrode. この発明の実施の形態2を示す図で、(a)は固定側電極の他の変形例の上面斜視図、(b)は固定側電極の他の変形例の下面斜視図である。It is a figure which shows Embodiment 2 of this invention, (a) is an upper surface perspective view of the other modification of a stationary side electrode, (b) is a lower surface perspective view of the other modification of a stationary side electrode.

実施の形態1.
以下この発明の実施の形態1を図1〜図3により説明する。図1は真空バルブの構成の一例を示す断面図、図2(a)は固定側電極の上面図、図2(b)は固定側電極の断面図、図2(c)は固定側電極の下面図、図3(a)は固定側電極の上面斜視図、図3(b)は固定側電極の下面斜視図である。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. 1 is a cross-sectional view showing an example of the configuration of a vacuum valve, FIG. 2 (a) is a top view of a fixed-side electrode, FIG. 2 (b) is a cross-sectional view of the fixed-side electrode, and FIG. FIG. 3A is a bottom view, FIG. 3A is a top perspective view of the fixed electrode, and FIG. 3B is a bottom perspective view of the fixed electrode.

図において、1はアルミナセラミックス等からなる絶縁円筒で、2は絶縁円筒1の一方の端部開口部を覆う固定側端板、3は絶縁円筒1の他方の端部開口部を覆う可動側端板で、これら固定側及び可動側端板2、3はそれぞれ絶縁円筒1の端面にろう付けにより同軸上に取付けられている。4は固定側端板にろう付け接合された固定側電極棒、11は固定側電極棒にろう付け接合された固定側電極、12は固定側電極5に対向して配設された可動側電極、7は可動側電極12にろう付け接合した可動電極棒、6は例えば薄いステンレスで蛇腹状に製作され真空気密を保ちながら可動側電極棒5が移動可能なように配設されたベローズ、このベローズ6により固定側電極11と可動側電極12が真空気密を保持しつつ接離可能となっている。アークシールド7は、電流遮断時に電極間で発生するアークによる金属蒸気が絶縁円筒1の内面に付着する量を抑制するため、固定側電極11と可動側電極12の周囲を囲むように配設されている。   In the figure, 1 is an insulating cylinder made of alumina ceramics, 2 is a fixed side end plate that covers one end opening of the insulating cylinder 1, and 3 is a movable side end that covers the other end opening of the insulating cylinder 1. The fixed and movable side end plates 2 and 3 are coaxially attached to the end surface of the insulating cylinder 1 by brazing. 4 is a fixed side electrode rod brazed to the fixed side end plate, 11 is a fixed side electrode brazed to the fixed side electrode rod, and 12 is a movable side electrode disposed facing the fixed side electrode 5. , 7 is a movable electrode bar brazed to the movable side electrode 12, and 6 is a bellows made of, for example, thin stainless steel in a bellows shape and arranged so that the movable side electrode bar 5 can move while maintaining vacuum airtightness. The bellows 6 allows the fixed side electrode 11 and the movable side electrode 12 to contact and separate while maintaining vacuum airtightness. The arc shield 7 is disposed so as to surround the periphery of the fixed electrode 11 and the movable electrode 12 in order to suppress the amount of metal vapor caused by the arc generated between the electrodes when the current is interrupted from adhering to the inner surface of the insulating cylinder 1. ing.

固定側電極11と可動側電極12の対向面の裏面には、それぞれ補強板15がろう付けにより接合され、それぞれ固定側電極棒3と可動側電極棒5にも接合されている。これは、遮断器に搭載され投入動作時にその衝撃で電極が大きく変形し破損することを防止している。   Reinforcing plates 15 are joined to the back surfaces of the opposed surfaces of the fixed side electrode 11 and the movable side electrode 12 by brazing, and are also joined to the fixed side electrode rod 3 and the movable side electrode rod 5, respectively. This prevents the electrode from being greatly deformed and broken due to the impact when it is mounted on the circuit breaker during the closing operation.

固定側電極11と可動側電極12は、数十kAを越える大電流遮断を行う有効な電極構造の一つとしてスパイラル電極であり、スパイラル溝11aによってスパイラル羽根13が形成されている。図2では4枚のスパイラル羽根13をもつスパイラル電極の例を示している。固定側電極11と可動側電極12は、対向面の中間位置の面に対して対称形であるので、固定側電極について説明する。固定側電極11は電極同士の対向面側中央部が円形に窪んだ形状となっており、この中央窪み部11bの径寸法をφB、深さをt1とする。さらに、電極同士の対向面の反対側面(以降は電極裏面と称す)にも中央に窪み部11cを設け、窪み部11cの径寸法をφC、深さをt2とする。11dは固定側電極11と可動側電極12との接触部であり、11eは補強板15とのろう付け固着部を示す。窪み部11bの径寸法φBは、遮断性能と必要な接触部11dの面積によって適宜決められる。窪み部11bの深さt1は、遮断性能の観点から6mm以内が望ましい。窪み部11bの深さt1を大きくするほど、アークとスパイラル羽根13を流れる電流との距離が離れるため、アークに作用する磁界強度が低下し、結果として駆動力が小さくなるためアークを電極外周部で円周方向に回転させる速度が低下し、遮断性能低下を引き起こす。   The fixed side electrode 11 and the movable side electrode 12 are spiral electrodes as one of effective electrode structures for interrupting a large current exceeding several tens of kA, and a spiral blade 13 is formed by a spiral groove 11a. FIG. 2 shows an example of a spiral electrode having four spiral blades 13. Since the fixed side electrode 11 and the movable side electrode 12 are symmetrical with respect to the surface at the intermediate position of the opposing surface, the fixed side electrode will be described. The fixed-side electrode 11 has a shape in which the opposite-surface-side center portion between the electrodes is recessed in a circular shape, and the diameter of the center-recessed portion 11b is φB and the depth is t1. Further, a recess 11c is provided in the center on the side opposite to the opposing surfaces of the electrodes (hereinafter referred to as the electrode back), and the diameter of the recess 11c is φC and the depth is t2. 11 d is a contact portion between the fixed side electrode 11 and the movable side electrode 12, and 11 e is a brazed and fixed portion with the reinforcing plate 15. The diameter φB of the hollow portion 11b is appropriately determined depending on the blocking performance and the required area of the contact portion 11d. The depth t1 of the hollow portion 11b is preferably 6 mm or less from the viewpoint of blocking performance. As the depth t1 of the depression 11b is increased, the distance between the arc and the current flowing through the spiral blade 13 is increased, so that the magnetic field strength acting on the arc is reduced, and as a result, the driving force is reduced. As a result, the speed of rotating in the circumferential direction decreases, causing a reduction in the shut-off performance.

大電流遮断時、アークの発生しているスパイラル羽根13を流れる電流が磁界を発生させ、アークが駆動させることになるが、電極裏面側中央に窪み部11cを設けているため、スパイラル羽根13を流れる電流は電極対向面側に集中することになり、アークに作用する磁界強度は窪み部11cがない場合より大きくなる。アークは接触部11d上を回転し、局部過熱が抑制されるが、大電流遮断性能には他にその接触部の熱容量の影響がある。電流遮断に必要な熱容量を確保し、電極厚さを増やすことを抑えるため、窪み部11cの径φCは対向面側窪み部φB以下とすることが望ましい。電極裏側窪み部11cの深さt2は、定格電流値及び電極材料に依存する強度から適宜決められる値である。アークに作用する磁界強度向上のみを目的とするならば、できる限り窪み部径φCを大きく、深さt2を深くするべきであるが、実際は通電性能、機械的強度、経済性の観点から値を決めることになる。さらに、電極裏面側窪み部11cを設けたことから、固定側電極11と補強板15とのろう付け固着部11eの面積が減少し、補強板15を介してのスパイラル羽根13間の漏れ電流が減少する。この漏れ電流は、アークの存在するスパイラル羽根13を流れる電流の減少によるアークに作用する磁界強度低下、漏れ電流自身により発生する磁界によってアークを駆動させる磁界強度の低減が生じるため、漏れ電流減少はアークの駆動力に対して良い結果を生む。   When a large current is interrupted, the current flowing through the spiral blade 13 where the arc is generated generates a magnetic field and the arc is driven. However, since the hollow portion 11c is provided at the center on the back side of the electrode, the spiral blade 13 is The flowing current is concentrated on the electrode facing surface side, and the magnetic field intensity acting on the arc is larger than when there is no depression 11c. The arc rotates on the contact portion 11d and local overheating is suppressed, but the large current interruption performance is influenced by the heat capacity of the contact portion. In order to secure a heat capacity necessary for current interruption and to suppress an increase in the electrode thickness, it is desirable that the diameter φC of the depression 11c be equal to or smaller than the depression on the opposite surface side φB. The depth t2 of the electrode back-side depression 11c is a value that is appropriately determined from the rated current value and the strength depending on the electrode material. If the purpose is only to improve the strength of the magnetic field acting on the arc, the dent portion diameter φC should be as large as possible and the depth t2 should be as deep as possible. To decide. Furthermore, since the electrode back surface side depression 11c is provided, the area of the brazing fixing part 11e between the fixed electrode 11 and the reinforcing plate 15 is reduced, and the leakage current between the spiral blades 13 via the reinforcing plate 15 is reduced. Decrease. This leakage current causes a reduction in the magnetic field strength acting on the arc due to a decrease in the current flowing through the spiral blade 13 where the arc exists, and a reduction in the magnetic field strength that drives the arc by the magnetic field generated by the leakage current itself. It produces good results for the driving force of the arc.

固定側電極11(可動側電極12)の裏面側にスパイラル羽根13を流れる電流分布を制御するための窪み部11cを設けることにより、電流がより電極対向面側に流れ、アークの駆動に作用する磁界強度が大きくなる。さらに、固定側電極11(可動側電極12)の裏面には補強板15がろう付け固定されるため、スパイラル羽根13間には補強板15を介して漏れ電流が流れ、アークの駆動のための磁界強度を低下させるが、この窪み部11cによって漏れ電流低減がなされ、アークの駆動に作用する磁界強度が大きくなる。よって、アークの駆動開始時間が短く、さらに回転速度を速めて電極表面の局部過熱を抑制し大電流遮断性能を向上させた真空バルブを提供できる。また、電極を小径化した場合は一般にアークを駆動させる磁界強度が低下することにより遮断性能が低下するが、この電流分布制御手段によって大電流遮断に必要な磁界強度が得られるようになるため、小形化した真空バルブを提供できる。   By providing the recess 11c for controlling the current distribution flowing through the spiral blade 13 on the back surface side of the fixed side electrode 11 (movable side electrode 12), the current flows more to the electrode facing surface side and acts on the driving of the arc. Magnetic field strength increases. Further, since the reinforcing plate 15 is brazed and fixed to the back surface of the fixed side electrode 11 (movable side electrode 12), a leakage current flows between the spiral blades 13 via the reinforcing plate 15 to drive the arc. Although the magnetic field strength is reduced, the leakage current is reduced by the recess 11c, and the magnetic field strength acting on the driving of the arc is increased. Therefore, it is possible to provide a vacuum valve in which the arc drive start time is short, the rotation speed is further increased, local overheating of the electrode surface is suppressed, and the large current interruption performance is improved. In addition, when the diameter of the electrode is reduced, generally the magnetic field strength for driving the arc is reduced, so that the interruption performance is reduced, but the magnetic field intensity necessary for high current interruption can be obtained by this current distribution control means, A miniaturized vacuum valve can be provided.

実施の形態2.
以下この発明の実施の形態2を図4〜図7により説明する。図4(a)は固定側電極の上面図、図4(b)は固定側電極の断面図、図4(c)は固定側電極の下面図、図5(a)は固定側電極の上面斜視図、図5(b)は固定側電極の下面斜視図、図6(a)は固定側電極の他の変形例の上面図、図6(b)は固定側電極の他の変形例の断面図、図6(c)は固定側電極の他の変形例の下面図、図7(a)は固定側電極の他の変形例の上面斜視図、図7(b)は固定側電極の他の変形例の下面斜視図である。
Embodiment 2. FIG.
A second embodiment of the present invention will be described below with reference to FIGS. 4A is a top view of the fixed side electrode, FIG. 4B is a sectional view of the fixed side electrode, FIG. 4C is a bottom view of the fixed side electrode, and FIG. 5A is a top view of the fixed side electrode. 5B is a bottom perspective view of the fixed electrode, FIG. 6A is a top view of another modification of the fixed electrode, and FIG. 6B is another modification of the fixed electrode. FIG. 6C is a bottom view of another modification of the fixed electrode, FIG. 7A is a top perspective view of another modification of the fixed electrode, and FIG. 7B is a diagram of the fixed electrode. It is a bottom surface perspective view of another modification.

真空バルブの構成は、前述の実施例1と同一または相当品であり、また固定側電極と可動側電極は対称形であるので、固定側電極のみについて説明する。
図4及び図5の固定側電極11はスパイラル溝11aによってスパイラル羽根13が形成され、4枚のスパイラル羽根13をもつスパイラル電極の例を示している。固定側電極11は電極同士の対向面側中央部が円形に窪んだ形状の中央窪み部11bがあり、スパイラル溝11aは電極対向面側から電極裏面に向かい3段階で溝幅が大きくなっている例を示している(溝幅W1<溝幅W2)。
また、図6及び図7に示すように、固定側電極11の溝11aの幅は一様(直線的または曲線的に)に大きくなっても良いし、何段階で溝幅が大きくなっても良い。この溝11aの形状は、製作の容易さ、通電容量(スパイラル羽根13の断面積・抵抗値)、機械的強度から適宜決めればよい。
The configuration of the vacuum valve is the same as or equivalent to that of the first embodiment described above, and since the fixed side electrode and the movable side electrode are symmetrical, only the fixed side electrode will be described.
4 and FIG. 5 shows an example of a spiral electrode having four spiral blades 13 in which spiral blades 13 are formed by spiral grooves 11a. The fixed-side electrode 11 has a central recess portion 11b having a shape in which the center portion on the opposite surface side between the electrodes is circularly depressed, and the spiral groove 11a has a groove width that increases in three steps from the electrode-facing surface side to the electrode back surface. An example is shown (groove width W1 <groove width W2).
Further, as shown in FIGS. 6 and 7, the width of the groove 11a of the fixed electrode 11 may be increased uniformly (linearly or in a curve), and no matter how many steps the groove width increases. good. The shape of the groove 11a may be determined as appropriate based on ease of manufacture, current carrying capacity (cross-sectional area / resistance value of the spiral blade 13), and mechanical strength.

大電流遮断時、アークの発生しているスパイラル羽根13を流れる電流が磁界を発生させ、アークを駆動させることになるが、スパイラル溝11aを電極対向面側から電極裏面へ向かい大きくしているため、スパイラル羽根13を流れる電流は電極対向面側により多く流れる分布になり、アークに作用する磁界強度はより大きくなる。スパイラル羽根13から隣のスパイラル羽根13へアークが移行する場合、スパイラル溝11aが小さいほど移行し易く局部過熱が小さくなる。しかし、単純にスパイラル溝11aの幅を小さくした場合、補強板15を介しての漏れ電流が大きくなり、アークに作用する磁界強度低下を招くとともに、大電流遮断を数回重ねるとスパイラル羽根13の熱的ダメージによりスパイラル溝11aが埋まり、スパイラル電極としての役目を果たさなくなる。電極径、遮断電流値により溝幅に変化がない最適なスパイラル溝があるが、電極裏面側に向かって溝幅を大きくすることによって、電極裏面と補強板の接合面積が小さくなること及びスパイラル羽根間の距離(補強板でつながっている長さ)が長くなることで抵抗が大きくなり補強板15を介しての漏れ電流も抑制され、アークに作用する磁界強度を大きくすることができる。   When a large current is interrupted, the current flowing through the spiral blade 13 where the arc is generated generates a magnetic field and drives the arc. However, the spiral groove 11a is enlarged from the electrode facing surface side to the electrode back surface. The current flowing through the spiral blade 13 is distributed to flow more on the electrode facing surface side, and the magnetic field intensity acting on the arc becomes larger. When the arc moves from the spiral blade 13 to the adjacent spiral blade 13, the smaller the spiral groove 11a, the easier the transition and the local overheating becomes smaller. However, when the width of the spiral groove 11a is simply reduced, the leakage current through the reinforcing plate 15 is increased, resulting in a decrease in the strength of the magnetic field acting on the arc. Due to the thermal damage, the spiral groove 11a is filled and can no longer serve as a spiral electrode. There is an optimal spiral groove whose groove width does not change depending on the electrode diameter and cutoff current value, but by increasing the groove width toward the back side of the electrode, the joint area between the back side of the electrode and the reinforcing plate is reduced and the spiral blade By increasing the distance between them (the length connected by the reinforcing plate), the resistance is increased, the leakage current through the reinforcing plate 15 is also suppressed, and the magnetic field strength acting on the arc can be increased.

固定側電極11(可動側電極12)のスパイラル羽根13を流れる電流分布を制御するために、スパイラル溝13の溝幅を電極裏面に向かい大きくする形状としたことにより、電流がより電極対向面側に流れ、アークの駆動に作用する磁界強度が大きくなる。さらに、固定側電極11(可動側電極12)の裏面には補強板15がろう付け固定されるため、スパイラル羽根13間には補強板15を介して漏れ電流が流れ、アークの駆動のための磁界強度を低下させるが、スパイラル溝11aの裏面側の幅を大きくしたことによって漏れ電流低減がなされ、アークの駆動に作用する磁界強度が大きくなる。よって、アークの回転開始時間が短く、さらに回転速度を速めて電極表面の局部過熱を抑制し大電流遮断性能を向上させた真空バルブを提供できる。また、電極を小径化した場合は一般にアークを駆動させる磁界強度が低下することにより遮断性能が低下するが、この電流分布制御手段によって大電流遮断に必要な磁界強度が得られるようになるため、小形化した真空バルブを提供できる。   In order to control the distribution of current flowing through the spiral blade 13 of the fixed side electrode 11 (movable side electrode 12), the groove width of the spiral groove 13 is increased toward the back surface of the electrode, so that the current is more on the electrode facing surface side. And the magnetic field strength acting on the arc drive increases. Further, since the reinforcing plate 15 is brazed and fixed to the back surface of the fixed side electrode 11 (movable side electrode 12), a leakage current flows between the spiral blades 13 via the reinforcing plate 15 to drive the arc. Although the magnetic field strength is reduced, the leakage current is reduced by increasing the width of the back surface side of the spiral groove 11a, and the magnetic field strength acting on the driving of the arc is increased. Therefore, it is possible to provide a vacuum valve in which the arc rotation start time is short, the rotation speed is further increased, local overheating of the electrode surface is suppressed, and the large current interruption performance is improved. In addition, when the diameter of the electrode is reduced, generally the magnetic field strength for driving the arc is reduced, so that the interruption performance is reduced, but the magnetic field intensity necessary for high current interruption can be obtained by this current distribution control means, A miniaturized vacuum valve can be provided.

上述の実施の形態1および実施の形態2は以下の特徴点を有している。
特徴点1.対をなす電極が真空容器内に接離可能に支持され、前記電極を流れる電流による磁界が前記電極間に発生するアークを駆動するように円周方向に伸びた腕が前記電極に形成された真空バルブにおいて、前記電極の相手方電極との対向面と反対側の面側に流れる電流を制限して前記電極の腕部を流れる電流を前記対向面側に偏らせる電流制限構造を前記対向面と反対側に設けたことを特徴とする。
特徴点2.特徴点1において、前記電極の前記対向面側の中央部に窪み部があり、この窪み部の周りで対をなす電極が接離することを特徴とする。
特徴点3.特徴点1または特徴点2において、前記電流制限構造が、前記電極の前記対向面と反対側の面の中央部に設けられた窪み部であることを特徴とする。
特徴点4.特徴点3において、前記電極の前記対向面と反対側の面の中央部に設けられた窪み部の径が、前記電極の前記対向面側の中央部の窪み部の径より小さいことを特徴とする。
特徴点5.請求項1〜4の何れか一において、前記電極の円周方向に伸びた腕は、前記電極の中心部から前記電極の周縁部に向かって渦巻状に設けられた溝によって形成され、前記溝の形状が、前記電極の対向面側から前記反対面側に向かい溝幅が大きい形状であることを特徴とする。
特徴点6.一対の電極が真空容器内に接離可能に支持され、前記電極を流れる電流による磁界が前記電極間に発生するアークを駆動するように円周方向に伸びた腕を持つ電極が形成され、前記電極同士の対向面側中央部に窪み部があり、外周側で電極同士が接触する形状とするとともに、前記電極の対向面の反対側の面側に前記電極の腕部を流れる電流分布を制御する手段を設けたことを特徴とする。
特徴点7.特徴6において、電極同士の対向面の反対側の面の中央部に窪み部を設けることを特徴とする。
特徴点8.特徴点7において、電極同士の対向面の反対側面部分にある窪み部径寸法が、対向面側中央部にある窪み部径寸法以下であることを特徴とする。
特徴点9.特徴点6において、電極の円周方向に伸びた腕は、前記電極の中心部から周縁部に向かって渦巻状に設けた溝によって形成され、前記溝形状を前記電極の対向面側から反対面側に向かい溝幅を大きくすることを特徴とする。
特徴点10.スパイラル電極対向面の反対面側にスパイラル羽根を流れる電流分布を制御するための手段を設けることにより、スパイラル羽根を流れる電流分布により発生する磁界が従来よりアークの駆動に作用するようにすることで、電極の小径化に対してアークの駆動に必要な磁界強度を得ることが可能となり、小径化したスパイラル電極構造の真空バルブを提供できる。
特徴点11.電極の対向した面の反対面側にスパイラル羽根を流れる電流分布を制御するための手段を設けたものである。
特徴点12.電極の対向した面の反対面側中央に窪み部を設け、スパイラル羽根を流れる電流分布をより対向面側に電流が流れるように改善したものである。
特徴点13.電極の対向した面の反対面側中央に窪み部を設け、この窪み部径が電極対向面側の窪み部径より小さく、スパイラル羽根を流れる電流分布を改善するとともにアークが回転駆動する部分の熱容量は確保するようにしたものである。
特徴点14.電極に中心部から周縁部に向かって渦巻状の溝を設けてスパイラル羽根が形成され、この溝形状が電極対向面側から反対面側に向かい溝幅を大きくすることで、スパイラル羽根を流れる電流分布をより対向面側に電流が流れるように改善したものである。特徴点15.スパイラル電極の対向面の反対面側にスパイラル羽根を流れる電流分布を制御するための手段を設けることにより、電流がより電極対向面側に流れ、アークの駆動に作用する磁界強度が大きくなる。さらに、スパイラル電極の対向面の反対面には補強板がろう付け固定されるため、スパイラル羽根間には補強板を通して漏れ電流が流れ、アークの駆動のための磁界強度を低下させるが、この電流分布制御手段によって漏れ電流低減がなされ、アークの駆動に作用する磁界強度が大きくなる。よって、アークの駆動開始時間が短く、さらに回転速度を速めて電極表面の局部過熱を抑制し大電流遮断性能を向上させた真空バルブを提供できる。また、電極を小径化した場合は一般にアークを駆動させる磁界強度が低下することにより遮断性能が低下するが、この電流分布制御手段によって必要な磁界強度が得られるようになるため、小形化した真空バルブを提供できる。
Embodiment 1 and Embodiment 2 described above have the following characteristic points.
Features 1 A pair of electrodes are supported in a vacuum container so as to be able to contact and separate, and arms extending in a circumferential direction are formed on the electrodes so that a magnetic field generated by a current flowing through the electrodes drives an arc generated between the electrodes. In the vacuum valve, a current limiting structure for limiting the current flowing on the surface opposite to the surface facing the counterpart electrode of the electrode and biasing the current flowing in the arm portion of the electrode toward the facing surface is defined as the facing surface. It is provided on the opposite side.
Features 2 The feature point 1 is characterized in that a concave portion is provided at a central portion of the electrode on the facing surface side, and a pair of electrodes are contacted and separated around the concave portion.
Feature point 3. In the feature point 1 or the feature point 2, the current limiting structure is a recess provided in a central portion of a surface of the electrode opposite to the facing surface.
Feature point 4. In the feature point 3, the diameter of the recess provided in the center of the surface opposite to the facing surface of the electrode is smaller than the diameter of the recess in the center of the electrode on the facing surface side. To do.
Feature point 5. The arm extending in the circumferential direction of the electrode according to any one of claims 1 to 4, is formed by a groove provided in a spiral shape from a central portion of the electrode toward a peripheral portion of the electrode, The shape is characterized in that the groove width is large from the opposite surface side of the electrode toward the opposite surface side.
Feature point6. A pair of electrodes are supported in a vacuum container so as to be able to contact and separate, and an electrode having arms extending in a circumferential direction is formed so that a magnetic field generated by a current flowing through the electrodes drives an arc generated between the electrodes, There is a depression in the center of the opposing surface side of the electrodes, and the electrodes are in contact with each other on the outer peripheral side, and the current distribution flowing through the arm portion of the electrode on the opposite side of the opposing surface of the electrode is controlled It is characterized in that means for performing the above is provided.
Feature 7 The feature 6 is characterized in that a depression is provided in the center of the surface opposite to the opposing surfaces of the electrodes.
Feature point 8. The feature point 7 is characterized in that the diameter of the hollow portion on the side surface opposite to the facing surface between the electrodes is equal to or smaller than the diameter of the hollow portion in the central portion on the facing surface side.
Feature point 9. In the feature point 6, the arm extending in the circumferential direction of the electrode is formed by a groove provided in a spiral shape from the center portion of the electrode toward the peripheral portion, and the groove shape is formed on the opposite surface from the opposite surface side of the electrode. The groove width is increased toward the side.
Feature point 10. By providing a means for controlling the current distribution flowing through the spiral blade on the opposite side of the surface facing the spiral electrode, the magnetic field generated by the current distribution flowing through the spiral blade acts more on the arc drive than before. In addition, it is possible to obtain the magnetic field strength necessary for driving the arc with respect to the reduction in the diameter of the electrode, and it is possible to provide a vacuum valve having a reduced spiral electrode structure.
Feature point 11. Means for controlling the current distribution flowing through the spiral blades is provided on the opposite side of the opposing surface of the electrode.
Feature point 12. A recess is provided in the center of the opposite surface of the electrode facing surface, and the current distribution flowing through the spiral blade is improved so that the current flows more toward the facing surface.
Feature point 13. A recess is provided in the center of the opposite surface of the electrode facing surface, and the diameter of this recess is smaller than the diameter of the recess on the electrode facing surface, improving the current distribution flowing through the spiral blade and the heat capacity of the part where the arc is driven to rotate Is to secure.
Feature point 14. A spiral blade is formed by providing a spiral groove from the center to the periphery of the electrode, and this groove shape increases the groove width from the electrode facing surface side to the opposite surface side. The distribution is improved so that a current flows to the opposite surface side. Feature point 15. By providing means for controlling the current distribution flowing through the spiral blade on the opposite surface side of the opposed surface of the spiral electrode, the current flows more toward the electrode opposed surface side, and the magnetic field strength acting on the driving of the arc is increased. Furthermore, since the reinforcing plate is brazed and fixed to the opposite surface of the spiral electrode, a leakage current flows between the spiral blades through the reinforcing plate, reducing the magnetic field strength for driving the arc. Leakage current is reduced by the distribution control means, and the magnetic field strength acting on the driving of the arc is increased. Therefore, it is possible to provide a vacuum valve in which the arc drive start time is short, the rotation speed is further increased, local overheating of the electrode surface is suppressed, and the large current interruption performance is improved. In addition, when the diameter of the electrode is reduced, the magnetic field strength for driving the arc is generally lowered, so that the interruption performance is lowered. However, since the required magnetic field strength can be obtained by this current distribution control means, the vacuum is reduced in size. A valve can be provided.

なお、図1〜図7において、各図中、同一符合は同一または相当部分を示す。   1 to 7, the same reference numerals denote the same or corresponding parts in each figure.

1 絶縁円筒、
2 固定側端板、
3 可動側端板、
4 固定側電極棒、
5 可動側電極棒、
6 ベローズ、
7 アークシールド、
11 固定側電極、
11a スパイラル溝、
11b 対向面側窪み部、
11c 裏面側窪み部(電流制限構造)、
11d 接触部、
11e ろう付け固着部、
12 可動側電極、
13 スパイラル羽根(腕部)、
15 補強板。
1 Insulating cylinder,
2 fixed end plate,
3 Movable end plate,
4 Fixed side electrode rod,
5 movable electrode rod,
6 Bellows,
7 Arc shield,
11 Fixed electrode,
11a spiral groove,
11b Opposite surface side depression,
11c Indentation on the back side (current limiting structure),
11d contact part,
11e brazing fixing part,
12 movable electrode,
13 Spiral feather (arm),
15 Reinforcement plate.

Claims (5)

対をなす電極が真空容器内に接離可能に支持され、前記電極を流れる電流による磁界が前記対をなす電極の一方の電極と他方の電極と間に発生するアークを駆動するように円周方向に伸びた腕が前記電極に形成された真空バルブにおいて、
前記電極の相手方電極との対向面と反対側の面の側に流れる電流を制限して前記電極の腕部を流れる電流を前記対向面の側に偏らせる電流制限構造を前記対向面と反対側に設けた真空バルブであって、
前記電流制限構造が、前記電極の前記対向面と反対側の面の中央部に設けられた窪み部である
ことを特徴とする真空バルブ。
A pair of electrodes are supported in a vacuum container so as to be able to contact and separate, and a magnetic field generated by a current flowing through the electrodes drives a circular arc generated between one electrode and the other electrode of the pair of electrodes. In a vacuum valve with arms extending in the direction formed on the electrode,
A current limiting structure that limits the current flowing to the surface opposite to the surface facing the counter electrode of the electrode and biases the current flowing through the arm portion of the electrode toward the facing surface, opposite to the facing surface A vacuum valve provided in
The vacuum valve , wherein the current limiting structure is a recess provided in a central portion of a surface opposite to the facing surface of the electrode .
前記電極の前記対向面の側の中央部に窪み部があり、この窪み部の周りで対をなす電極が接離することを特徴とする請求項1に記載の真空バルブ。   2. The vacuum valve according to claim 1, wherein a recess is formed in a central portion of the electrode on the side of the facing surface, and a pair of electrodes are contacted and separated around the recess. 前記電極の前記対向面と反対側の面の中央部に設けられた窪み部の径が、前記電極の前記対向面の側の中央部の窪み部の径より小さいことを特徴とする請求項1または請求項2に記載の真空バルブ。 The diameter of the hollow part provided in the center part of the surface on the opposite side to the said opposing surface of the said electrode is smaller than the diameter of the hollow part of the central part by the side of the said opposing surface of the said electrode. Or the vacuum valve of Claim 2. 対をなす電極が真空容器内に接離可能に支持され、前記電極を流れる電流による磁界が前記対をなす電極の一方の電極と他方の電極と間に発生するアークを駆動するように円周方向に伸びた腕が前記電極に形成された真空バルブにおいて、
前記電極の相手方電極との対向面と反対側の面の側に流れる電流を制限して前記電極の腕部を流れる電流を前記対向面の側に偏らせる電流制限構造を前記対向面と反対側に設け真空バルブであって、
前記電極の円周方向に伸びた腕は、前記電極の中心部から前記電極の周縁部に向かって渦巻状に設けられた溝によって形成され、
前記電流制限構造として、前記溝の形状が、前記電極の対向面の側から前記反対側の面の側に向かい溝幅が大きい形状である
ことを特徴とする真空バルブ。
A pair of electrodes are supported in a vacuum container so as to be able to contact and separate, and a magnetic field generated by a current flowing through the electrodes drives a circular arc generated between one electrode and the other electrode of the pair of electrodes. In a vacuum valve with arms extending in the direction formed on the electrode,
A current limiting structure that limits the current flowing to the surface opposite to the surface facing the counter electrode of the electrode and biases the current flowing through the arm portion of the electrode toward the facing surface, opposite to the facing surface A vacuum valve provided in
The arm extending in the circumferential direction of the electrode is formed by a groove provided in a spiral shape from the center of the electrode toward the peripheral edge of the electrode,
The vacuum valve characterized in that, as the current limiting structure, the shape of the groove is a shape in which the groove width increases from the opposite surface side of the electrode toward the opposite surface side .
前記電極の円周方向に伸びた腕は、前記電極の中心部から前記電極の周縁部に向かって渦巻状に設けられた溝によって形成され、
前記電流制限構造として、前記溝の形状が、前記電極の対向面の側から前記反対側の面の側に向かい溝幅が大きい形状である
ことを特徴とする請求項1から3の何れか一に記載の真空バルブ。
The arm extending in the circumferential direction of the electrode is formed by a groove provided in a spiral shape from the center of the electrode toward the peripheral edge of the electrode,
As the current limiting structure, the shape of the groove, any one of claims 1 to 3, characterized in that from the side of the opposing surface of the electrode is shaped groove width toward the side having a large surface of the opposite side The vacuum valve as described in.
JP2010270198A 2010-12-03 2010-12-03 Vacuum valve Active JP5597116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270198A JP5597116B2 (en) 2010-12-03 2010-12-03 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270198A JP5597116B2 (en) 2010-12-03 2010-12-03 Vacuum valve

Publications (3)

Publication Number Publication Date
JP2012119254A JP2012119254A (en) 2012-06-21
JP2012119254A5 JP2012119254A5 (en) 2013-12-19
JP5597116B2 true JP5597116B2 (en) 2014-10-01

Family

ID=46501846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270198A Active JP5597116B2 (en) 2010-12-03 2010-12-03 Vacuum valve

Country Status (1)

Country Link
JP (1) JP5597116B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9552941B1 (en) * 2015-08-24 2017-01-24 Eaton Corporation Vacuum switching apparatus and electrical contact therefor
US9922777B1 (en) 2016-11-21 2018-03-20 Eaton Corporation Vacuum switching apparatus and electrical contact therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443186B1 (en) * 1970-06-03 1979-12-18
JPS5069571A (en) * 1973-10-26 1975-06-10

Also Published As

Publication number Publication date
JP2012119254A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP7109659B2 (en) vacuum valve
JP5281192B2 (en) Vacuum valve
JP5597116B2 (en) Vacuum valve
JP6381317B2 (en) Vacuum valve
JP6093936B2 (en) Vacuum valve for vacuum switch gear
JP5451500B2 (en) Vacuum valve
JP4818530B2 (en) Vacuum valve
JP2010267442A (en) Vertical magnetic-field electrode for vacuum interrupter
CN109964297B (en) Vacuum switching device and electrical contact therefor
JPH1125815A (en) Composite insulated switchgear
JPH01105428A (en) Vacuum valve
JP5020164B2 (en) Vacuum valve
JP3812711B2 (en) Vacuum valve
JP3708735B2 (en) Vacuum valve
JP7098414B2 (en) Vacuum switchgear
JP2018198148A (en) Vacuum valve
JP5610995B2 (en) Vacuum valve
JP2020068121A (en) Vacuum valve
JP7118765B2 (en) Vacuum valve and its manufacturing method
JP2001229791A (en) Vacuum valve
JP4170598B2 (en) Vacuum valve
JP6395642B2 (en) Vacuum valve
JPH01204322A (en) Vacuum valve
JP2000208010A (en) Vacuum circuit breaker
WO2015125325A1 (en) Vacuum valve or switch having vacuum valve

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140808

R151 Written notification of patent or utility model registration

Ref document number: 5597116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250