[go: up one dir, main page]

JP5595219B2 - Air lift pump - Google Patents

Air lift pump Download PDF

Info

Publication number
JP5595219B2
JP5595219B2 JP2010235794A JP2010235794A JP5595219B2 JP 5595219 B2 JP5595219 B2 JP 5595219B2 JP 2010235794 A JP2010235794 A JP 2010235794A JP 2010235794 A JP2010235794 A JP 2010235794A JP 5595219 B2 JP5595219 B2 JP 5595219B2
Authority
JP
Japan
Prior art keywords
gas
separation chamber
liquid separation
pipe
lift pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010235794A
Other languages
Japanese (ja)
Other versions
JP2012087696A (en
Inventor
浩輔 大出
卓也 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010235794A priority Critical patent/JP5595219B2/en
Publication of JP2012087696A publication Critical patent/JP2012087696A/en
Application granted granted Critical
Publication of JP5595219B2 publication Critical patent/JP5595219B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Description

本発明は、液体や固形物を含んだ混合液を移送させるためのエアリフトポンプに関するもので、例えば、下水処理場の反応槽等の槽内部に揚水管を立設し、その揚水管の上部に槽内の液体などを移送自在な移送流路を接続するとともに、揚水管下部に空気供給装置を接続自在な空気供給口を設けたエアリフトポンプに関する。   The present invention relates to an air lift pump for transferring a liquid mixture containing liquids and solids.For example, a pumping pipe is installed inside a tank such as a reaction tank in a sewage treatment plant, and the pumping pipe is formed above the pumping pipe. The present invention relates to an air lift pump in which a transfer flow path capable of transferring liquid or the like in a tank is connected, and an air supply port to which an air supply device can be connected is provided at the lower part of a pumping pipe.

液体や小さい粒径の固形物を含む混合液(以下、本明細書において、単に「液体類」という。)を移送するためのポンプの1つとして、エアリフトポンプが知られている。
図5に従来のエアリフトポンプの一例を示す。
このエアリフトポンプは、移送しようとする液体類2が収容されている槽1内に、所定の内径を有する揚水管3が、その大部分を液体類2の中に浸漬させて、立設されている。
槽1の内部には、揚水管3内に向けて気体を吹き込むための導管4が設けられている。
導管4の一方の開口端4aは、揚水管3の下部に設けられた空気室3aに接続されており、もう一方の開口端4bは、ブロワ等の気体供給源8に接続されている。
空気室3aに投入された空気は、揚水管3の外周部に設けられた空気投入部としての気孔3bより揚水管3の内部に入り、気泡6となって上昇する。
揚水管3の内部において、空気室3aより上部側が気液混合流体となるため、揚水管3の空気室3aの静圧が低くなり、揚水管3の下端部より液体類が流入し、揚水管3の内部を上昇する。
揚水管3の上部は、気液分離室10’から水平方向に延びる移送流路5に接続されており、気泡6を含む液体は、気液分離室10’で気体と液体類とに分離され、気体は大気中に排出され、液体類は移送流路内を水平方向に流れ、流出路部7から排出される。
An air lift pump is known as one of pumps for transferring a liquid or a mixed liquid containing a solid substance having a small particle diameter (hereinafter, simply referred to as “liquids”).
FIG. 5 shows an example of a conventional air lift pump.
In this air lift pump, a pumping pipe 3 having a predetermined inner diameter is placed in a tank 1 in which liquids 2 to be transferred are accommodated, and most of them are immersed in the liquids 2 and are erected. Yes.
Inside the tank 1, a conduit 4 is provided for blowing gas toward the pumped water pipe 3.
One open end 4a of the conduit 4 is connected to an air chamber 3a provided in the lower part of the pumping pipe 3, and the other open end 4b is connected to a gas supply source 8 such as a blower.
The air introduced into the air chamber 3 a enters the inside of the pumping pipe 3 through the air holes 3 b as the air feeding part provided on the outer peripheral part of the pumping pipe 3 and rises as bubbles 6.
Since the upper side of the air chamber 3a is a gas-liquid mixed fluid inside the pumping pipe 3, the static pressure of the air chamber 3a of the pumping pipe 3 is lowered, and liquids flow from the lower end of the pumping pipe 3, and the pumping pipe Ascend the inside of 3.
The upper part of the pumping pipe 3 is connected to a transfer channel 5 extending in the horizontal direction from the gas-liquid separation chamber 10 ′, and the liquid containing the bubbles 6 is separated into gas and liquids in the gas-liquid separation chamber 10 ′. The gas is discharged into the atmosphere, and the liquids flow in the horizontal direction in the transfer flow path and are discharged from the outflow path section 7.

このエアリフトポンプは、作動部分が極めて少なく、唯一あるのが、例えば、空気供給装置のような揚水管3内に対する気体の吹き込み機構のみであるため、構造が極めて簡単であり、故障が少ない等の利点がある。
このような利点を有するエアリフトポンプは、下水処理場の反応槽においても曝気槽から無酸素槽への返送手段やその他の槽間での移送手段として用いられている。
This air lift pump has very few operating parts and the only one is, for example, a gas blowing mechanism for the inside of the pumping pipe 3 such as an air supply device, so that the structure is very simple and there are few failures. There are advantages.
The air lift pump having such advantages is used also as a return means from an aeration tank to an oxygen-free tank or a transfer means between other tanks in a reaction tank of a sewage treatment plant.

従来のエアリフトポンプは、上記利点を有する反面、移送流路5を閉水路とし、かつ、移送する液体類への気泡残存の防止を考える必要性が生じる場合には、閉水路状の移送流路5の一部に気液分離室10’を設け、液体から気泡を除去する手段を講じなければならないが、その気液分離室10’を槽1の液面より高い位置に設置した場合には、移送を目的としているにもかかわらず一旦水位を上げるために大きな動力を要し、空気投入のために所要動力が大きくなり、エネルギ効率が低いという課題を有していた。
また、従来はエアリフトポンプは、気液分離室10’自体が大きなものとならざるを得ず、エアリフトポンプの大型化をまねいていた。
The conventional air lift pump has the above-mentioned advantages, but on the other hand, when the transfer channel 5 is a closed channel and there is a need to consider the prevention of bubbles remaining in the liquid to be transferred, a closed channel-shaped transfer channel is used. 5 must be provided with a gas-liquid separation chamber 10 ′ and a means for removing bubbles from the liquid. However, when the gas-liquid separation chamber 10 ′ is installed at a position higher than the liquid level of the tank 1. In spite of the purpose of the transfer, a large amount of power is required to raise the water level once, and the required power is increased for air input, resulting in low energy efficiency.
Conventionally, in the air lift pump, the gas-liquid separation chamber 10 ′ itself has to be large, and the size of the air lift pump has been increased.

また、移送流路5を閉水路とし、気液分離室10’を設けない場合には、多数の気泡を含んだまま液体を移送することになる。気泡を含んだ液体類が流れる際の配管抵抗は液体類のみの場合と比べて大きいため、空気の投入に用いたエネルギの大きさに対して移送する液体類の流量割合が小さくなってしまい、その結果、省エネルギ運転が行えないという課題を有していた。
また、移送流路5内の気泡を除去せずにそのまま移送すると移送先の槽1A内の流体に大量の酸素が供給されることになる。そのため、移送先の槽内の環境が好気的に変化することになり、移送先の槽1Aが嫌気槽や無酸素槽の場合には、水処理性能が低下する等の弊害が生じる。
Further, when the transfer channel 5 is a closed channel and the gas-liquid separation chamber 10 ′ is not provided, the liquid is transferred while including a large number of bubbles. Since the pipe resistance when the liquid containing bubbles flows is larger than the case of only the liquid, the flow rate of the liquid to be transferred becomes small relative to the amount of energy used for the input of air. As a result, there has been a problem that energy-saving operation cannot be performed.
Further, if the air is transferred as it is without removing the bubbles in the transfer flow path 5, a large amount of oxygen is supplied to the fluid in the transfer destination tank 1A. For this reason, the environment in the transfer destination tank changes aerobically, and when the transfer destination tank 1A is an anaerobic tank or an oxygen-free tank, adverse effects such as a decrease in water treatment performance occur.

また、エアリフトポンプにおいて、移送流路5を開水路とする場合には、気液混合流体が移送流路5を流れる過程において、気泡が液体類とともに下流へ流れるに従って液体類の自由表面より徐々に大気解放されるため、気液分離室1Aが不要になるというメリットがあった。
しかしながら、その移送流路5の途中に、例えば、槽1の横梁等の土木構造物が存在する場合には、エアリフトポンプが適用できないといった不都合があるなど、本装置の適用の可否が土木構造物の形状に依存することになるため、不適用になる場合があるという課題を有していた。
In the air lift pump, when the transfer channel 5 is an open channel, in the process in which the gas-liquid mixed fluid flows through the transfer channel 5, the bubbles gradually move from the free surface of the liquids as the bubbles flow downstream with the liquids. Since the atmosphere was released, there was a merit that the gas-liquid separation chamber 1A became unnecessary.
However, if there is a civil structure such as a cross beam of the tank 1 in the middle of the transfer flow path 5, there is a disadvantage that the air lift pump cannot be applied. Because it depends on the shape of the material, there is a problem that it may not be applied.

本発明は、エネルギ効率が高く、装置を小型化できる等、従来のエアリフトポンプの有する課題を一挙に解消できるエアリフトポンプを提供することを目的とする。   An object of the present invention is to provide an air lift pump that can solve all the problems of conventional air lift pumps, such as high energy efficiency and miniaturization of the apparatus.

上記目的を達成するため、本発明のエアリフトポンプは、揚水管と、該揚水管に設けられた空気投入部と、揚水管に接続した水平方向に気液二相流を移送する水平部を有する移送流路と、該移送流路に空気と液体類とを各々分離するための気液分離室とを備えるようにした槽内に収容されている液体類を移送するためのエアリフトポンプにおいて、前記槽内に収容されている移送対象の液体類の自由表面と、前記移送流路の水平部の上端の設置高さと一致するように、前記移送流路を設置し、揚水部の平面位置から気液分離室の気泡開放用開口の上流端までの距離が、揚水管の内径の4〜7倍となるように設定するようにしたことを特徴とする。 In order to achieve the above object, an air lift pump of the present invention has a pumping pipe, an air input part provided in the pumping pipe, and a horizontal part for transferring a gas-liquid two-phase flow in a horizontal direction connected to the pumping pipe. a transfer passage, the air lift pump for transferring liquid such contained in the tank to so that a gas-liquid separation chamber for respectively separating the air and liquid such to the transport channel, the free surface of the liquid such transportation target contained in the tank, the so installation height of the upper end of the horizontal portion of the transfer channel and match, set up the transfer channel, the plane position of the pumping unit distance from to the upstream end of the cell opening for opening of the gas-liquid separation chamber, characterized in that the so that set so as to be 4-7 times the internal diameter of the riser pipe.

この場合において、揚水管と移送流路との接続部に曲率半径が揚水管の内径の1〜2倍のベンド管を用いることができる。   In this case, a bend pipe having a radius of curvature of 1 to 2 times the inner diameter of the water pump pipe can be used at the connection portion between the water pump pipe and the transfer channel.

また、気液分離室を、移送流路の断面上部に、長さが揚水管の内径の3〜7倍のスリット状の開口を開け、その外周部に開口を囲う外筒を設けて構成することができる。   Further, the gas-liquid separation chamber is configured by opening a slit-like opening having a length 3 to 7 times the inner diameter of the pumping pipe in the upper part of the cross section of the transfer channel, and providing an outer cylinder surrounding the opening on the outer periphery thereof. be able to.

また、気液分離室の下流側に斜め30〜60度の下降管を設けることができる。   Further, a downcomer having an angle of 30 to 60 degrees can be provided on the downstream side of the gas-liquid separation chamber.

また、気液分離室及び下降管の内径を揚水管の内径の1.1〜1.2倍に設定することができる。   Further, the inner diameters of the gas-liquid separation chamber and the downcomer can be set to 1.1 to 1.2 times the inner diameter of the pumped pipe.

また、気液分離室の下流側に隣接して第2の気液分離室を設け、該第2の気液分離室を、移送流路の断面上部に長孔状の開口を設け、その外周部に開口を囲う外筒を設けて構成することができる。   In addition, a second gas-liquid separation chamber is provided adjacent to the downstream side of the gas-liquid separation chamber, the second gas-liquid separation chamber is provided with a long hole-like opening in the upper cross section of the transfer channel, and the outer periphery thereof. An outer cylinder surrounding the opening can be provided in the part.

本発明のエアリフトポンプによれば、槽内の自由表面と移送流路の水平部の上端の設置高さとを一致させるようにしたことにより、水位を槽内液面より高くする場合と比べて、同じ空気量を投入した場合の駆動力が大きくなり、その結果省エネルギ運転が可能となる。
また、移送流路を閉水路としたことにより、土木構造物の形状に依存することなく、さまざまな構造の槽に設置が可能となる。
According to the air lift pump of the present invention, by matching the free surface in the tank and the installation height of the upper end of the horizontal portion of the transfer channel, compared to the case where the water level is higher than the liquid level in the tank, When the same amount of air is input, the driving force increases, and as a result, energy-saving operation is possible.
In addition, since the transfer channel is a closed channel, the transfer channel can be installed in tanks having various structures without depending on the shape of the civil engineering structure.

そして、揚水部の平面位置から気液分離室の気泡開放用開口の上流端までの距離が、揚水管の内径の4〜7倍となるように設定することにより、揚水管から水平方向に向きを変えた流体に含まれている気泡が移送流路内で徐々に上昇し、気液分離室の開口より除去される際には気泡のほとんどが上部に集まっている状態となるので、上部以外に集中している液体類の流れをあまり乱すことなく、気泡は効率よく除去される。そのため、気液分離室の開口長さの寸法を短くでき、その結果、本気液分離室の小容積化が可能となる。And by setting the distance from the plane position of the pumping section to the upstream end of the bubble opening of the gas-liquid separation chamber to be 4 to 7 times the inner diameter of the pumping pipe, the distance from the pumping pipe is set in the horizontal direction. The bubbles contained in the fluid with the changed flow gradually rise in the transfer flow path, and when removed from the opening of the gas-liquid separation chamber, most of the bubbles are gathered at the upper part. Air bubbles are efficiently removed without disturbing the flow of liquids concentrated on the liquid crystal. Therefore, the dimension of the opening length of the gas-liquid separation chamber can be shortened, and as a result, the volume of the main gas-liquid separation chamber can be reduced.

また、揚水管と移送流路との接続部に曲率半径が揚水管の内径の1〜2倍のベンド管を用いることにより、上昇する気液二相流が、進行方向を水平方向に変える際にロスが少なく省エネルギ運転が可能となる。   Moreover, when a bend pipe having a radius of curvature of 1 to 2 times the inner diameter of the pumping pipe is used at the connection part between the pumping pipe and the transfer flow path, the rising direction of the gas-liquid two-phase flow changes in the horizontal direction. Therefore, energy saving operation is possible.

また、気液分離室の下流側に斜め30〜60度の下降管を設けること、特に、気液分離室及び下降管の内径を揚水管の内径の1.1〜1.2倍に設定することにより、液体類の流速が低下し、気泡の上昇を促し、小さな開口から効率よく気泡が除去される。   In addition, an inclined down pipe of 30 to 60 degrees is provided on the downstream side of the gas-liquid separation chamber, and in particular, the inner diameters of the gas-liquid separation chamber and the down pipe are set to 1.1 to 1.2 times the inner diameter of the pumping pipe. As a result, the flow rate of the liquids is reduced, the bubbles are increased, and the bubbles are efficiently removed from the small openings.

また、気液分離室を、移送流路の断面上部に、幅が揚水管の内径の0.05〜0.2倍で、長さが揚水管の内径の3〜7倍のスリット状の開口を開け、その外周部に開口を囲う外筒を設けて構成し、さらに、この気液分離室の下流側に隣接して第2の気液分離室を設け、該第2の気液分離室を、移送流路の断面上部に長孔状の開口を設け、その外周部に開口を囲う外筒を設けて構成することにより、気液分離室及び第2の気液分離室の小容積化が可能となる。
ここで、第2の気液分離室の開口では、以下の2つの系路を経た気泡が除去される。1系路目は気液分離室で除去されず移送流路内の断面上部を流れ続けた少数の残留気泡である。2経路目は、第2の気液分離室以降においても僅かに残留していた細かな気泡が第2の気液分離室の下流側の下降管でその断面における上部を当初下降し、下降途中で合体しその断面上部を逆流するように上昇し、前記2つめの気液分離室の開口より同じく除去される。
これにより、下降管の途中以降の下流側の移送流路内には気泡が皆無に近い状態となり、その結果、流れの抵抗が小さくなり省エネルギ運転が可能となる。
In addition, the gas-liquid separation chamber has a slit-like opening in the upper cross section of the transfer channel, whose width is 0.05 to 0.2 times the inner diameter of the pumping pipe and whose length is 3 to 7 times the inner diameter of the pumping pipe. And an outer cylinder surrounding the opening is provided on the outer periphery thereof, and a second gas-liquid separation chamber is provided adjacent to the downstream side of the gas-liquid separation chamber, and the second gas-liquid separation chamber The volume of the gas-liquid separation chamber and the second gas-liquid separation chamber can be reduced by providing a long hole-like opening in the upper part of the cross section of the transfer channel and providing an outer cylinder surrounding the opening on the outer periphery thereof. Is possible.
Here, at the opening of the second gas-liquid separation chamber, bubbles that have passed through the following two systems are removed. The first channel is a small number of residual bubbles that are not removed in the gas-liquid separation chamber and continue to flow through the upper section of the transfer channel. In the second path, fine bubbles that remained slightly after the second gas-liquid separation chamber are initially lowered at the upper part of the cross section by the downcomer pipe on the downstream side of the second gas-liquid separation chamber. Then, they are lifted so as to flow backward in the upper part of the cross section, and are similarly removed from the opening of the second gas-liquid separation chamber.
As a result, there is almost no air bubbles in the downstream transfer flow path after the middle of the downcomer, and as a result, the flow resistance is reduced and energy saving operation is possible.

本発明のエアリフトポンプの一実施例を示す概略垂直断面図である。It is a general | schematic vertical sectional view which shows one Example of the air lift pump of this invention. 図1のA矢視平面図である。It is an A arrow top view of FIG. 図1のB矢視断面図である。It is B arrow sectional drawing of FIG. 給気量と送水量の計測結果を示すグラフである。It is a graph which shows the measurement result of air supply amount and water supply amount. 従来のエアリフトポンプを示す概略垂直断面図である。It is a schematic vertical sectional view showing a conventional air lift pump.

以下、本発明のエアリフトポンプの実施の形態を、図面に基づいて説明する。   Embodiments of an air lift pump according to the present invention will be described below with reference to the drawings.

図1〜図3に、本発明のエアリフトポンプの一実施例を示す。   1 to 3 show an embodiment of the air lift pump of the present invention.

このエアリフトポンプは、図5に記載した従来のエアリフトポンプと同様、移送しようとする液体類2が収容されている槽1内に、所定の内径を有する揚水管3が、その大部分を液体類2の中に浸漬させて、立設されている。
槽1の内部には、揚水管3内に向けて気体を吹き込むための導管4が設けられている。
導管4の一方の開口端4aは、揚水管3の下部に設けられた空気室3aに接続されており、もう一方の開口端4bは、ブロワ等の気体供給源8に接続されている。
空気室3aに投入された空気は、揚水管3の外周部に設けられた空気投入部としての気孔3bより揚水管3の内部に入り、気泡6となって上昇する。
揚水管3の内部において、空気室3aより上部側が気液混合流体となるため、揚水管3の入口部の静圧が低くなり、揚水管3の下端部より液体類が流入し、揚水管3の内部を上昇する。
This air lift pump is similar to the conventional air lift pump shown in FIG. 5 in that a pumping pipe 3 having a predetermined inner diameter is contained in a tank 1 in which liquids 2 to be transferred are accommodated. It is immersed in 2 and is erected.
Inside the tank 1, a conduit 4 is provided for blowing gas toward the pumped water pipe 3.
One open end 4a of the conduit 4 is connected to an air chamber 3a provided in the lower part of the pumping pipe 3, and the other open end 4b is connected to a gas supply source 8 such as a blower.
The air introduced into the air chamber 3 a enters the inside of the pumping pipe 3 through the air holes 3 b as the air feeding part provided on the outer peripheral part of the pumping pipe 3 and rises as bubbles 6.
Since the upper side of the air chamber 3a is a gas-liquid mixed fluid inside the pumping pipe 3, the static pressure at the inlet of the pumping pipe 3 is lowered, and liquids flow from the lower end of the pumping pipe 3, and the pumping pipe 3 Rise inside.

そして、このエアリフトポンプは、揚水管3と、空気投入部としての気孔3bと、水平方向に気液二相流を移送する移送流路5と、このエアリフトポンプは、移送流路5に空気と液体類とを各々分離するための気液分離室10とを備え、槽1内の自由表面と移送流路5の水平部の上端の設置高さとを一致させるようにしている。   The air lift pump includes a pumping pipe 3, pores 3b as an air input portion, a transfer channel 5 for transferring a gas-liquid two-phase flow in the horizontal direction, and the air lift pump A gas-liquid separation chamber 10 for separating liquids from each other is provided, and the free surface in the tank 1 and the installation height of the upper end of the horizontal portion of the transfer channel 5 are made to coincide.

具体的には、槽1からこの槽1の槽壁を貫通して他の槽1Aへ液体類を移送する移送流路5を閉水路とし、水位がほぼ移送流路5の水平部5aの頂上部と一致するように配置する。   Specifically, the transfer channel 5 that transfers liquids from the tank 1 to the other tank 1A through the tank wall of the tank 1 is a closed channel, and the water level is approximately the top of the horizontal portion 5a of the transfer channel 5. Arrange to match the part.

また、揚水管3と移送流路5の方向変更のために揚水管3の上部に適切な形状のベンド管9を設け、気液分離室10、さらに必要に応じて、第2の気液分離室11を、それぞれ適切な位置に配置し、各々を小容積の適切な構造の気液分離室10、11とし、気液分離室10の下流側(第2の気液分離室11を設ける場合は、第2の気液分離室11の下流側)に斜めの下降管12を設けるようにしている。   In addition, a bend pipe 9 having an appropriate shape is provided above the pumping pipe 3 to change the direction of the pumping pipe 3 and the transfer flow path 5, and a gas-liquid separation chamber 10 and, if necessary, a second gas-liquid separation. The chambers 11 are arranged at appropriate positions, respectively, and each of the gas-liquid separation chambers 10 and 11 has an appropriate structure with a small volume, and the downstream side of the gas-liquid separation chamber 10 (when the second gas-liquid separation chamber 11 is provided) Is provided with an oblique downcomer 12 on the downstream side of the second gas-liquid separation chamber 11.

この場合において、揚水管3の上部には、移送流路5との接続用として曲率半径が揚水管3の内径の1〜2倍(本実施例においては、1.5倍程度)のベンド管9を設けるようにしている。   In this case, a bend pipe having a radius of curvature of 1 to 2 times (in the present embodiment, about 1.5 times) an inner diameter of the pump pipe 3 for connection with the transfer flow path 5 is provided above the pump pipe 3. 9 is provided.

気液分離室10の位置は、揚水管3の平面中心位置から気液分離室10のスリット開始端までの平面方向の距離が、揚水管3の内径(以下、「D」と略す。)の3〜7倍(本実施例においては5.5倍)となるような位置とする。
図4(a)は、スリット位置をDの2.35倍と5.5倍に変えた場合における給気量と送水量の計測結果を示す。
図4(a)に示すように、スリット位置が5.5倍の方が、給気量0.17〜0.43m/minの範囲で送水量が比較的大きい。
揚水管の上部には曲率半径が1.5Dのベンドを設けており、スリット位置は最短で1.5Dとなるが、ベンド直後では管の上部以外にも気泡が多く存在し、抜け切れていなかったが、5.5Dまで長くすると滞留時間が長くなることで気泡の合体が進み、スリットよりそのほとんどが開放された。
第2の気液分離室11は、気液分離室10の下流側で、かつ、下流側で、かつ、下降管12に対して上流側とし、可能な限り下降管12の頂上部付近に配置する。
The position of the gas-liquid separation chamber 10 is such that the distance in the plane direction from the plane center position of the pumping pipe 3 to the slit start end of the gas-liquid separation chamber 10 is the inner diameter of the pumping pipe 3 (hereinafter abbreviated as “D”). The position is set to be 3 to 7 times (5.5 times in this embodiment).
FIG. 4A shows the measurement results of the air supply amount and the water supply amount when the slit position is changed to 2.35 times and 5.5 times D.
As shown in FIG. 4A, when the slit position is 5.5 times, the water supply amount is relatively large in the range of the air supply amount 0.17 to 0.43 m 3 / min.
A bend with a radius of curvature of 1.5D is provided at the top of the pumping pipe, and the slit position is 1.5D at the shortest. However, immediately after the bend, there are many bubbles other than the top of the pipe and they are not completely removed. However, when the length was increased to 5.5D, the residence time became longer, and the coalescence of bubbles progressed, and most of the bubbles were opened from the slit.
The second gas-liquid separation chamber 11 is located on the downstream side of the gas-liquid separation chamber 10, on the downstream side, and on the upstream side of the downcomer pipe 12, and as close to the top of the downcomer pipe 12 as possible. To do.

気液分離室10は、気液分離室10の円筒部分10aと下降管の途中12aまでの内径は揚水管3よりも大径(本実施例においては、Dの1.1〜1.2倍)とし、その他の管とはなだらかに径が変化するようなテーパ管13で接続する。
この気液分離室10は、移送流路5の断面上部に、幅がDの0.05〜0.2倍(本実施例においては10分の1程度)で、長さがDの3〜7倍(本実施例においては5倍程度)のスリット状の開口10bを設ける。
実験データを図4(b)及び図4(c)に示す。
図4(b)は、スリット幅をDの0.1倍と0.6倍に変えた場合、図4(c)はスリット長をDの2.0倍と4.6倍に変えた場合における給気量と送水量の計測結果を示す。
図4(b)に示すように、スリット幅がDの0.1倍の方が、給気量0.17〜0.35m/minの範囲で送水量がより大きい。
また、図4(c)に示すように、スリット長がDの4.6倍の方が、給気量0.17〜0.43m/minの範囲で送水量がより大きい。
これは、水流の乱れが小さく残存する気泡が少なかったことによると考えられる。
さらに、気液分離室10は、その外周部に開口10bの外周を囲う外筒となる四角柱ダクト10cを設け、四角柱ダクト10cには、開口10bの上部側にガイドプレート10dを設けた構造とする。
The gas-liquid separation chamber 10 has an inner diameter between the cylindrical portion 10a of the gas-liquid separation chamber 10 and the middle 12a of the downcomer pipe that is larger than the pumping pipe 3 (in this embodiment, 1.1 to 1.2 times D). ), And other pipes are connected by a tapered pipe 13 whose diameter changes gently.
The gas-liquid separation chamber 10 has a width of 0.05 to 0.2 times D (about 1/10 in this embodiment) and a length of 3 to 3 at the top of the cross section of the transfer channel 5. The slit-shaped opening 10b is provided 7 times (in this embodiment, about 5 times).
Experimental data are shown in FIG. 4 (b) and FIG. 4 (c).
4B shows the case where the slit width is changed to 0.1 times and 0.6 times D, and FIG. 4C shows the case where the slit length is changed to 2.0 times and 4.6 times D. Shows the measurement results of air supply and water supply.
As shown in FIG. 4B, when the slit width is 0.1 times D, the water supply amount is larger in the range of the air supply amount 0.17 to 0.35 m 3 / min.
Moreover, as shown in FIG.4 (c), when the slit length is 4.6 times of D, a water supply amount is larger in the range of air supply amount 0.17-0.43 m < 3 > / min.
This is considered to be due to the fact that the water flow is less disturbed and there are few remaining bubbles.
Further, the gas-liquid separation chamber 10 is provided with a rectangular column duct 10c which is an outer cylinder surrounding the outer periphery of the opening 10b on the outer periphery thereof, and the rectangular column duct 10c is provided with a guide plate 10d on the upper side of the opening 10b. And

第2の気液分離室11は、移送流路5の断面上部に、長孔状の開口11aを設け、その外周部に開口11aを囲う角形又は円形の外筒11bを設けた構造とする。   The second gas-liquid separation chamber 11 has a structure in which a long hole-like opening 11a is provided in the upper portion of the cross section of the transfer flow path 5, and a rectangular or circular outer cylinder 11b surrounding the opening 11a is provided on the outer periphery thereof.

下降管12は、下流側に斜め30〜60度(本実施例においては、45度)に設けた構造とする。   The downcomer 12 has a structure provided at an angle of 30 to 60 degrees (45 degrees in this embodiment) on the downstream side.

以上、本発明のエアリフトポンプについて、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   The air lift pump of the present invention has been described above based on the embodiments thereof. However, the present invention is not limited to the configurations described in the above embodiments, and the configuration is appropriately changed without departing from the spirit of the present invention. It is something that can be done.

本発明のエアリフトポンプは、エネルギ効率が高く、装置を小型化できるという特性を有していることから、液体や固形物を含んだ混合液を移送させるためのエアリフトポンプの用途に広く用いることができる。   Since the air lift pump of the present invention has characteristics of high energy efficiency and miniaturization of the apparatus, it is widely used for applications of an air lift pump for transferring a liquid mixture containing liquid or solid matter. it can.

1 槽
1A 槽
2 液体類
3 揚水管
3a 空気室
3b 気孔(空気投入部)
4 導管
4a 導管の開口端
4b 導管の開口端
5 移送流路
6 気泡
7 流出路部
8 空気供給源
9 ベンド管
10 気液分離室
10a 気液分離室の円筒部分
10b スリット状の開口
10c 四角柱ダクト
10d ガイドプレート
11 第2の気液分離室
11a 長孔状の開口
11b 外筒
12 下降管
12a 下降管の途中
13 テーパ管
1 tank 1A tank 2 liquids 3 pumping pipe 3a air chamber 3b pores (air input part)
4 Conduit 4a Open end of conduit 4b Open end of conduit 5 Transfer channel 6 Bubble 7 Outflow channel 8 Air supply source 9 Bend tube 10 Gas-liquid separation chamber 10a Cylindrical portion of gas-liquid separation chamber 10b Slit-shaped opening 10c Square pillar Duct 10d Guide plate 11 Second gas-liquid separation chamber 11a Long hole-shaped opening 11b Outer cylinder 12 Downcomer pipe 12a In the middle of the downcomer 13 Taper pipe

Claims (6)

揚水管と、該揚水管に設けられた空気投入部と、揚水管に接続した水平方向に気液二相流を移送する水平部を有する移送流路と、該移送流路に空気と液体類とを各々分離するための気液分離室とを備えるようにした槽内に収容されている液体類を移送するためのエアリフトポンプにおいて、前記槽内に収容されている移送対象の液体類の自由表面と、前記移送流路の水平部の上端の設置高さと一致するように、前記移送流路を設置し、揚水部の平面位置から気液分離室の気泡開放用開口の上流端までの距離が、揚水管の内径の4〜7倍となるように設定するようにしたことを特徴とするエアリフトポンプ。 A pumping pipe, an air input part provided in the pumping pipe, a transfer channel having a horizontal part for transferring a gas-liquid two-phase flow in a horizontal direction connected to the pumping pipe, and air and liquids in the transfer channel an air lift pump for transferring the liquid compound contained in the bath was so that a gas-liquid separation chamber for each separating bets, liquid such transportation target contained in the tank and the free surface, the so installation height of the upper end of the horizontal portion of the transfer channel and match, set up the transfer channel, to the upstream end of the cell opening for opening of the gas-liquid separating chamber from the plane position of the pumping unit air lift pump, characterized in that the distance has to so that set so as to be 4-7 times the internal diameter of the riser pipe. 揚水管と移送流路との接続部に曲率半径が揚水管の内径の1〜2倍のベンド管を用いたことを特徴とする請求項1記載のエアリフトポンプ。   2. An air lift pump according to claim 1, wherein a bend pipe having a radius of curvature of 1 to 2 times the inner diameter of the water pump pipe is used at a connecting portion between the water pump pipe and the transfer flow path. 気液分離室を、移送流路の断面上部に、長さが揚水管の内径の3〜7倍のスリット状の開口を開け、その外周部に開口を囲う外筒を設けて構成したことを特徴とする請求項1記載のエアリフトポンプ。 The gas-liquid separation chamber is constructed by opening a slit-like opening 3 to 7 times the inner diameter of the pumped pipe in the upper section of the transfer channel, and providing an outer cylinder surrounding the opening on the outer periphery. air lift pump according to claim 1 or 2 wherein. 気液分離室の下流側に斜め30〜60度の下降管を設けたことを特徴とする請求項1、2は3記載のエアリフトポンプ。 Air lift pump according to claim 1, 2 or 3, wherein in that a downcomer oblique 30-60 ° on the downstream side of the gas-liquid separation chamber. 気液分離室及び下降管の内径を揚水管の内径の1.1〜1.2倍に設定したことを特徴とする請求項記載のエアリフトポンプ。 5. The air lift pump according to claim 4 , wherein the inner diameters of the gas-liquid separation chamber and the downcomer are set to 1.1 to 1.2 times the inner diameter of the pumping pipe. 気液分離室の下流側に隣接して第2の気液分離室を設け、該第2の気液分離室を、移送流路の断面上部に長孔状の開口を設け、その外周部に開口を囲う外筒を設けて構成したことを特徴とする請求項1、2、3、4記載のエアリフトポンプ。 A second gas-liquid separation chamber is provided adjacent to the downstream side of the gas-liquid separation chamber. air lift pump according to claim 1, 2, 3, 4 or 5, wherein in that which is configured by providing an outer tube surrounding the opening.
JP2010235794A 2010-10-20 2010-10-20 Air lift pump Expired - Fee Related JP5595219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010235794A JP5595219B2 (en) 2010-10-20 2010-10-20 Air lift pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010235794A JP5595219B2 (en) 2010-10-20 2010-10-20 Air lift pump

Publications (2)

Publication Number Publication Date
JP2012087696A JP2012087696A (en) 2012-05-10
JP5595219B2 true JP5595219B2 (en) 2014-09-24

Family

ID=46259579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235794A Expired - Fee Related JP5595219B2 (en) 2010-10-20 2010-10-20 Air lift pump

Country Status (1)

Country Link
JP (1) JP5595219B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110738A (en) * 2008-11-10 2010-05-20 Yonezaki:Kk Grease trap
JP5420985B2 (en) * 2009-06-19 2014-02-19 株式会社クボタ Air lift pump device
JP5436350B2 (en) * 2010-06-16 2014-03-05 株式会社クボタ Air lift pump device and sewage treatment facility

Also Published As

Publication number Publication date
JP2012087696A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
BRPI0716259A2 (en) process for mixing a liquid or a mixture of a liquid and a fine particulate solid present in an essentially self-sealed vessel, jet nozzle, use of a jet nozzle, and process for mixing another liquid or another mixture within a liquid or a mixture of a liquid and a fine particulate solid
CN102267734B (en) Enclosed circulating air floatation method and apparatus
ES2626500T3 (en) Apparatus and procedure for biological wastewater treatment
JP2008172248A (en) Pumping and dispensing system for coating semiconductor wafer
CN101537321B (en) Vertical gas-liquid two-phase fluid mixing and stabilizing device
KR101197748B1 (en) Vortex Disperser
JP5595219B2 (en) Air lift pump
WO2018148305A1 (en) Improved venturi apparatus and method of use
AU2013286194B2 (en) Multiphase flow mixing apparatus and method of mixing
JPH1066962A (en) Sewage treating device
US20180162757A1 (en) Venturi apparatus and method of use
CN102300630B (en) Downflow Mixers With Gas Injection Devices And/or Baffles
JP5020902B2 (en) Method and apparatus for reducing dissolved oxygen
US8066027B2 (en) Vacuum activated closed loop system
WO2017124128A1 (en) Jet aeration and mixing nozzle
CN112604321B (en) A large-scale pre-dispersed micro-nano bubble supported liquid membrane extraction device
CN112604320B (en) A pre-dispersed micro-nano bubble supported liquid membrane generator
JP6462830B1 (en) Gas-liquid contact device
CN106669224A (en) Extraction apparatus
CN112789411B (en) Gas lift pump
JP7105446B2 (en) Reactor
JPS6190000A (en) Air lift pump
CN105819533A (en) Novel air floatation treatment device
JP4437436B2 (en) Separation apparatus, separation system provided with the same, and method of using the separation apparatus
CN105621747A (en) Coagulation and air floatation integrated oil field waste water deep treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140805

R150 Certificate of patent or registration of utility model

Ref document number: 5595219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees