JP5594658B2 - Substance distribution control method, device, cell culture method, cell differentiation control method - Google Patents
Substance distribution control method, device, cell culture method, cell differentiation control method Download PDFInfo
- Publication number
- JP5594658B2 JP5594658B2 JP2010011178A JP2010011178A JP5594658B2 JP 5594658 B2 JP5594658 B2 JP 5594658B2 JP 2010011178 A JP2010011178 A JP 2010011178A JP 2010011178 A JP2010011178 A JP 2010011178A JP 5594658 B2 JP5594658 B2 JP 5594658B2
- Authority
- JP
- Japan
- Prior art keywords
- flow
- cells
- multilayer
- cell
- culture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000009826 distribution Methods 0.000 title claims description 109
- 239000000126 substance Substances 0.000 title claims description 74
- 238000000034 method Methods 0.000 title claims description 69
- 230000024245 cell differentiation Effects 0.000 title claims description 24
- 238000004113 cell culture Methods 0.000 title claims description 23
- 210000004027 cell Anatomy 0.000 claims description 96
- 239000007788 liquid Substances 0.000 claims description 76
- 239000012528 membrane Substances 0.000 claims description 63
- 239000000758 substrate Substances 0.000 claims description 53
- 239000011148 porous material Substances 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 14
- 238000012258 culturing Methods 0.000 claims description 13
- 238000011144 upstream manufacturing Methods 0.000 claims description 11
- 210000001778 pluripotent stem cell Anatomy 0.000 claims description 10
- 239000000243 solution Substances 0.000 description 40
- 230000004069 differentiation Effects 0.000 description 31
- 210000004748 cultured cell Anatomy 0.000 description 28
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 23
- 238000012360 testing method Methods 0.000 description 22
- 238000002073 fluorescence micrograph Methods 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 12
- 229920002120 photoresistant polymer Polymers 0.000 description 12
- 238000004891 communication Methods 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000011324 bead Substances 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 8
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 239000005090 green fluorescent protein Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 102000004058 Leukemia inhibitory factor Human genes 0.000 description 7
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 7
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 229930002330 retinoic acid Natural products 0.000 description 7
- 229960001727 tretinoin Drugs 0.000 description 7
- 230000010412 perfusion Effects 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 235000013601 eggs Nutrition 0.000 description 5
- 210000002242 embryoid body Anatomy 0.000 description 5
- 210000001671 embryonic stem cell Anatomy 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000012780 transparent material Substances 0.000 description 5
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 102000016359 Fibronectins Human genes 0.000 description 3
- 108010067306 Fibronectins Proteins 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 239000012531 culture fluid Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 3
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 3
- -1 polydimethylsiloxane Polymers 0.000 description 3
- VUDQSRFCCHQIIU-UHFFFAOYSA-N 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one Chemical compound CCCCCC(=O)C1=C(O)C(Cl)=C(OC)C(Cl)=C1O VUDQSRFCCHQIIU-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000942967 Homo sapiens Leukemia inhibitory factor Proteins 0.000 description 2
- 102100032352 Leukemia inhibitory factor Human genes 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012136 culture method Methods 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- FPNZBYLXNYPRLR-UHFFFAOYSA-N 2-(4-carbamimidoylphenyl)-1h-indole-6-carboximidamide;hydron;dichloride Chemical compound Cl.Cl.C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FPNZBYLXNYPRLR-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 230000005653 Brownian motion process Effects 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 238000000116 DAPI staining Methods 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 101150012532 NANOG gene Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- OMOVVBIIQSXZSZ-UHFFFAOYSA-N [6-(4-acetyloxy-5,9a-dimethyl-2,7-dioxo-4,5a,6,9-tetrahydro-3h-pyrano[3,4-b]oxepin-5-yl)-5-formyloxy-3-(furan-3-yl)-3a-methyl-7-methylidene-1a,2,3,4,5,6-hexahydroindeno[1,7a-b]oxiren-4-yl] 2-hydroxy-3-methylpentanoate Chemical compound CC12C(OC(=O)C(O)C(C)CC)C(OC=O)C(C3(C)C(CC(=O)OC4(C)COC(=O)CC43)OC(C)=O)C(=C)C32OC3CC1C=1C=COC=1 OMOVVBIIQSXZSZ-UHFFFAOYSA-N 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005370 electroosmosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000008611 intercellular interaction Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000012342 propidium iodide staining Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 231100000820 toxicity test Toxicity 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/16—Microfluidic devices; Capillary tubes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/04—Filters; Permeable or porous membranes or plates, e.g. dialysis
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Dispersion Chemistry (AREA)
- Clinical Laboratory Science (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
本発明は、液体で満たされたマイクロ空間内の物質分布を制御する方法、該方法に用いられるデバイス、該方法を利用した細胞培養方法および細胞分化制御方法に関する。 The present invention relates to a method for controlling a substance distribution in a micro space filled with a liquid, a device used in the method, a cell culture method using the method, and a cell differentiation control method.
現在、多能性幹細胞、特に胚性幹細胞(embryonic stem cell)および人工多能性幹細胞(induced pluripotent stem cell)の研究が広く行われており、その研究成果は再生医療、細胞・組織工学、薬剤スクリーニングなどへの応用が期待されている。しかし現在、多能性幹細胞の分化効率は未だ数パーセントと低い状態であり、その改善が求められている。
最近の研究によって、細胞をとりまく微小環境(たとえば分化に影響する物質(例:分化制御因子等の液性因子)の濃度、細胞間相互作用、細胞外マトリックスとの間の相互作用、細胞への物理的刺激など)が細胞の分化の方向性に影響を与えることがわかってきている。そのため、分化効率の向上には、細胞をとりまく微小環境を精密に設計・制御することが重要と考えられる。
Currently, researches on pluripotent stem cells, especially embryonic stem cells and induced pluripotent stem cells, are widely conducted, and the results of such research include regenerative medicine, cell / tissue engineering, drugs Application to screening is expected. However, at present, the differentiation efficiency of pluripotent stem cells is still low at a few percent, and there is a need for improvement.
Recent research has shown that the concentration of microenvironments surrounding cells (for example, the concentration of substances that affect differentiation (eg, humoral factors such as differentiation regulators), cell-cell interactions, interactions with extracellular matrix, It has been found that physical stimuli, etc.) influence the direction of cell differentiation. Therefore, to improve differentiation efficiency, it is considered important to precisely design and control the microenvironment surrounding the cells.
従来、細胞の培養法としては、培養皿、培養プレート等の培養容器を用い、培養液中、静置・閉鎖環境下で培養する静置培養法が一般的である。しかし、静置培養では、栄養成分やその他任意の液性因子等の物質の供給を単調にしか行うことができず、培養環境内における物質分布を精密に制御することはできない。
他の細胞培養法として、培養容器内に、栄養成分や酸素を含んだ培養液を灌流させて培養する灌流培養法がある。灌流培養では、培養液の組成を調整することにより、培養容器内の物質分布の経時的制御が可能である。しかし、灌流下で培養を行うと、せん断応力による悪影響がある。たとえば流れによって生じるせん断応力が、細胞容器に付着している細胞を剥離させ、細胞が失われることがある。
このような問題に対し、内部にコンパートメントを備えた細胞培養チャンバーにおいて、コンパートメント内部を半透膜で上層と下層に区画し、下層に培養液を流通させつつ上層で細胞を培養する方法が提案されている(特許文献1、非特許文献1)。
しかし、上記の方法では、培養環境内に物質濃度勾配を形成するなど、物質分布を空間的に制御することはできない。
Conventionally, as a cell culture method, a stationary culture method in which a culture vessel such as a culture dish or a culture plate is used and cultured in a culture solution in a stationary / closed environment is generally used. However, in stationary culture, the supply of substances such as nutrient components and other arbitrary liquid factors can be performed only monotonously, and the distribution of substances in the culture environment cannot be precisely controlled.
As another cell culture method, there is a perfusion culture method in which a culture solution containing nutrient components and oxygen is perfused in a culture vessel. In perfusion culture, the distribution of substances in the culture vessel can be controlled over time by adjusting the composition of the culture solution. However, when culture is performed under perfusion, there is an adverse effect due to shear stress. For example, shear stress caused by flow may cause cells attached to the cell container to detach and cells may be lost.
To solve such problems, a method has been proposed in which a compartment is divided into an upper layer and a lower layer with a semipermeable membrane, and cells are cultured in the upper layer while circulating a culture solution in the lower layer. (Patent Document 1, Non-Patent Document 1).
However, in the above method, the substance distribution cannot be spatially controlled, for example, a substance concentration gradient is formed in the culture environment.
一方、マイクロ空間での流体の挙動は、マクロ空間での流体の挙動と大きく異なることが知られている。たとえば流路構造のマイクロ空間(マイクロ流路)に液体を流通させると、レイノルズ数が小さく、層流を形成しやすい。
最近、このマイクロ空間特有の現象を利用して物質濃度勾配を形成し、細胞培養に応用した研究が行われるようになっている。たとえば非特許文献2〜7では、層流を利用して、マイクロ空間内に物質濃度勾配を形成している。また、非特許文献8〜9では、物質の拡散を利用して、マイクロ空間内に物質濃度勾配を形成している。
しかし、層流場で培養を行うと、上記灌流培養と同様、せん断応力による悪影響がある。特に、層流を利用して物質濃度勾配を形成する方法では、濃度勾配を維持するにはある程度流速を速くする必要があるため、せん断応力の影響が大きい。また、多能性幹細胞の場合、該せん断応力により細胞が変質したり、分化の方向性が変わってしまうとの報告もある(たとえば非特許文献10)。
また、培養細胞が三次元構造体(たとえば胚様体や受精卵)を形成する場合には、該三次元構造体によって層流が乱れてしまうため、マイクロ空間における物質分布の精密な制御が困難となる。
また、物質の拡散を利用する方法では、拡散により物質分布(濃度)が経時的に一様となるため、マイクロ空間内に所定の物質分布を長期に渡って維持することはできない。そのため細胞の分化を精密に制御することもできない。
On the other hand, it is known that the behavior of the fluid in the micro space is greatly different from the behavior of the fluid in the macro space. For example, when a liquid is circulated in a micro space (micro channel) having a channel structure, the Reynolds number is small and a laminar flow is easily formed.
Recently, studies have been carried out in which a substance concentration gradient is formed by utilizing the phenomenon peculiar to the microspace and applied to cell culture. For example, in Non-Patent Documents 2 to 7, a substance concentration gradient is formed in the micro space using laminar flow. In Non-Patent Documents 8 to 9, a substance concentration gradient is formed in the micro space by utilizing diffusion of substances.
However, when the culture is performed in a laminar flow field, there is an adverse effect due to shear stress as in the case of the perfusion culture. In particular, in the method of forming a substance concentration gradient using laminar flow, it is necessary to increase the flow velocity to some extent in order to maintain the concentration gradient, and thus the influence of shear stress is large. In addition, in the case of pluripotent stem cells, there are reports that the cells are altered or the direction of differentiation is changed by the shear stress (for example, Non-Patent Document 10).
In addition, when the cultured cells form a three-dimensional structure (for example, an embryoid body or a fertilized egg), the laminar flow is disturbed by the three-dimensional structure, and thus it is difficult to precisely control the material distribution in the micro space. It becomes.
Further, in the method using the diffusion of the substance, the substance distribution (concentration) becomes uniform over time due to the diffusion, and therefore the predetermined substance distribution cannot be maintained in the micro space for a long time. Therefore, cell differentiation cannot be precisely controlled.
本発明は、上記事情に鑑みてなされたものであって、せん断応力による負荷を低減しながら、マイクロ空間内における物質分布を時間的にも空間的にも精密に制御できる物質分布制御方法、該方法に用いられるデバイス、該方法を利用した細胞培養方法および細胞分化制御方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a substance distribution control method capable of precisely controlling a substance distribution in a micro space in terms of time and space while reducing a load due to shear stress, An object is to provide a device used in the method, a cell culture method using the method, and a cell differentiation control method.
本発明者らは、鋭意検討を重ねた結果、マイクロ空間下に所定の孔径の多孔膜を介してマイクロ流路を配置し、下層のマイクロ流路内に、所定の物質分布を有するように形成された多層流を流通させると、上層のマイクロ空間に、多層流によるせん断応力による負荷を低減しながら、下層のマイクロ空間内と同様の物質分布を形成でき、しかもその物質分布を長期にわたって維持できることを見出し、本発明を完成させた。
本発明は以下の態様を有する。
[1]液体で満たされたマイクロ空間内の物質分布を制御する方法であって、
組成が異なるn種(nは2以上の整数)の液体をそれぞれ層流として合流させて幅方向にn個の層流が隣接する多層流を形成し、
該多層流を、前記マイクロ空間下に孔径1μm以上20μm以下の多孔膜を介して配置されたマイクロ流路に流通させることを特徴とする物質分布制御方法。
[2]前記マイクロ流路内においてレイノルズ数が2000未満となるように前記多層流を流通させる、[1]に記載の物質分布制御方法。
[3][1]または[2]に記載の物質分布制御方法に用いられるデバイスであって、
表面にそれぞれマイクロ流路構造が設けられた第一の基板および第二の基板を備え、
前記第一の基板表面のマイクロ流路構造は、多層流が流通する多層流流通部と、該多層流流通部の上流側に配置された多層流形成部と、該多層流流通部の下流側に配置された多層流排出部とを有し、
前記第二の基板表面のマイクロ流路構造は、前記多層流流通部と略同一パターンのマイクロ空間部と、該マイクロ空間部への液体の導入または導出のための導出入路部とを有し、
前記第一の基板と第二の基板とが、前記マイクロ流路構造が設けられた面を内側にして、前記多層流流通部および前記マイクロ空間部の位置が一致するように積層され、
前記多層流流通部と前記マイクロ空間部との間に孔径1μm以上20μm以下の多孔膜が挟持されているデバイス。
[4]液体で満たされたマイクロ空間内にて細胞を培養する方法であって、
組成が異なるn種(nは2以上の整数)の培養液をそれぞれ層流として合流させて幅方向にn個の層流が隣接する多層流を形成し、
該多層流を、前記マイクロ空間下に孔径1μm以上20μm以下の多孔膜を介して配置されたマイクロ流路に流通させることを特徴とする細胞培養方法。
[5]予備培養を行って前記多孔膜の前記マイクロ空間側に前記細胞を付着させた後、前記多層流の流通を開始する、[4]に記載の細胞培養方法。
[6]前記細胞が前記多孔膜に付着していない状態で前記多層流の流通を行う、[4]に記載の細胞培養方法。
[7]前記細胞が多能性幹細胞である、[4]〜[6]のいずれか一項に記載の細胞培養方法。
[8]前記細胞が三次元構造体を形成している、[6]に記載の細胞培養方法。
[9]液体で満たされたマイクロ空間内にて細胞の分化を制御する方法であって、
前記細胞の分化を制御する物質の種類または濃度が異なるn種(nは2以上の整数)の培養液をそれぞれ層流として合流させて幅方向にn個の層流が隣接する多層流を形成し、
該多層流を、前記マイクロ空間下に孔径1μm以上20μm以下の多孔膜を介して配置されたマイクロ流路に流通させることを特徴とする細胞分化制御方法。
[10]予備培養を行って前記多孔膜の前記マイクロ空間側に前記細胞を付着させた後、前記多層流の流通を開始する、[9]に記載の細胞分化制御方法。
[11]前記細胞が前記多孔膜に付着していない状態で前記多層流の流通を行う、[9]に記載の細胞分化制御方法。
[12]前記細胞が多能性幹細胞である、[9]〜[11]のいずれか一項に記載の細胞分化制御方法。
[13]前記細胞が三次元構造体を形成している、[11]に記載の細胞分化制御方法。
As a result of intensive studies, the present inventors have arranged a microchannel through a porous film having a predetermined pore size under a microspace, and formed a predetermined substance distribution in the lower microchannel. When the multi-layered flow is circulated, the same material distribution as in the lower micro-space can be formed in the upper micro-space while reducing the load due to the shear stress due to the multi-layer flow, and the material distribution can be maintained over a long period of time. The present invention was completed.
The present invention has the following aspects.
[1] A method for controlling a material distribution in a micro space filled with a liquid,
N types of liquids (n is an integer of 2 or more) having different compositions are joined together as a laminar flow to form a multilayer flow in which n laminar flows are adjacent in the width direction,
A substance distribution control method, characterized in that the multilayer flow is circulated through a microchannel disposed under a microspace through a porous membrane having a pore diameter of 1 μm or more and 20 μm or less .
[2] The substance distribution control method according to [1], wherein the multilayer flow is circulated so that the Reynolds number is less than 2000 in the microchannel.
[3] A device used in the substance distribution control method according to [1] or [2],
Comprising a first substrate and a second substrate each having a microchannel structure on the surface;
The microchannel structure on the surface of the first substrate includes a multi-layer flow distribution portion through which a multi-layer flow circulates, a multi-layer flow forming portion disposed upstream of the multi-layer flow distribution portion, and a downstream side of the multi-layer flow distribution portion. A multi-layer flow outlet disposed in the
The microchannel structure on the surface of the second substrate has a microspace portion having substantially the same pattern as the multilayer flow circulation portion, and a lead-in / inlet portion for introducing or leading out liquid to the microspace portion. ,
The first substrate and the second substrate are laminated so that the surface on which the microchannel structure is provided is on the inside, and the positions of the multilayer flow circulation portion and the micro space portion are matched,
A device in which a porous film having a pore diameter of 1 μm or more and 20 μm or less is sandwiched between the multilayer flow distribution part and the micro space part.
[4] A method for culturing cells in a microspace filled with liquid,
N types of culture solutions having different compositions (n is an integer of 2 or more) are joined together as a laminar flow to form a multilayer flow in which n laminar flows are adjacent in the width direction;
A cell culturing method, wherein the multilayer flow is circulated through a microchannel disposed under a microspace through a porous membrane having a pore diameter of 1 μm or more and 20 μm or less .
[5] The cell culture method according to [4], wherein pre-culture is performed to attach the cells to the micro space side of the porous membrane, and then the circulation of the multilayer flow is started.
[6] The cell culture method according to [4], wherein the multilayer flow is performed in a state where the cells are not attached to the porous membrane.
[7] The cell culture method according to any one of [4] to [6], wherein the cells are pluripotent stem cells.
[8] The cell culture method according to [6], wherein the cells form a three-dimensional structure.
[9] A method for controlling cell differentiation in a microspace filled with liquid,
The n-type (n is an integer of 2 or more) culture solutions having different types or concentrations of substances that control cell differentiation are combined as laminar flows to form a multi-layer flow in which n laminar flows are adjacent in the width direction. And
A method for controlling cell differentiation, characterized in that the multilayer flow is circulated through a microchannel disposed under a microspace through a porous membrane having a pore diameter of 1 μm or more and 20 μm or less .
[10] The cell differentiation control method according to [9], wherein pre-culture is performed to attach the cells to the microspace side of the porous membrane, and then the circulation of the multilayer flow is started.
[11] The cell differentiation control method according to [9], wherein the multilayer flow is circulated in a state where the cells are not attached to the porous membrane.
[12] The cell differentiation control method according to any one of [9] to [11], wherein the cell is a pluripotent stem cell.
[13] The method for controlling cell differentiation according to [11], wherein the cells form a three-dimensional structure.
本発明によれば、せん断応力による負荷を低減しながら、マイクロ空間内における物質分布を時間的にも空間的にも精密に制御できる物質分布制御方法、該方法に用いられるデバイス、該方法を利用した細胞培養方法および細胞分化制御方法を提供できる。 According to the present invention, a material distribution control method capable of precisely controlling a material distribution in a micro space both temporally and spatially while reducing a load due to shear stress, a device used in the method, and the method are used. Cell culture methods and cell differentiation control methods can be provided.
本発明の物質分布制御方法は、液体で満たされたマイクロ空間内の物質分布を制御する方法であって、組成が異なるn種(nは2以上の整数)の液体をそれぞれ層流として合流させて幅方向にn個の層流が隣接する多層流を形成し、該多層流を、前記マイクロ空間下に孔径1μm以上の多孔膜を介して配置されたマイクロ流路に流通させることを特徴とする。
上記多層流は、それぞれ組成(物質濃度)が異なるn種の層流がマイクロ流路の幅方向に順次積層したものであり、マイクロ流路の幅方向において物質濃度が変化している。このような物質分布を有する多層流をマイクロ流路に流通させると、n種の層流にそれぞれ含まれる物質が拡散により多孔膜を通過して上層のマイクロ空間内に移動する。その結果、各層流の上方のマイクロ空間内に、各層流と同じ物質濃度の領域が、各層流と略同じ幅で形成される。このようにして、上層のマイクロ空間内に多層流と同様の物質分布が形成される。
従来、流体中から膜を透過して流れのない液体中に移行した物質の濃度分布は、拡散により経時的に一様になるものと考えられていた。しかし本発明者らの知見によれば、孔径1μm以上の多孔膜を用いることで、意外にも、上層のマイクロ空間内に、下層のマイクロ流路を流通する多層流と同様の物質分布が形成されるとともに、該多層流を流通させている間は該物質分布が維持される。
そのため、本発明においては、n種の液体の組成や流量を調整するだけで、マイクロ空間内の物質分布を時間的にも空間的にも精密に(マイクロスケールレベルで)制御でき、また、24時間以上にわたるような長期的な制御も可能である。このことは、比較的時間を必要とする細胞の培養や分化の制御を行う上で有用である。たとえばマイクロ空間内で多能性細胞等の細胞を培養するとともに、該マイクロ空間内にて、培養細胞の分化を制御する物質の種類(分化誘導因子、分化抑制因子等)または濃度の分布を空間的および/または時間的に制御することにより、該細胞の分化を精密に制御することが可能である。
また、多層流の流通時、その流れによって生じるせん断応力は多孔膜によって軽減される。たとえばマイクロ空間を、該マイクロ空間内に存在する微粒子のブラウン運動を観察可能な高レベルの静的環境とすることも可能である。そのため、該マイクロ空間内では、接着力の弱い細胞であっても培養することが可能である。また、該せん断応力によって生じる、培養細胞の活性や分化への影響も抑制できる。
さらに、マイクロ空間にて培養する細胞が三次元構造体を形成する場合であっても、下層のマイクロ流路内の流れが乱れることはないので、マイクロ空間内における物質分布制御の精密性が維持される。
The substance distribution control method of the present invention is a method for controlling substance distribution in a micro space filled with a liquid, wherein n kinds of liquids (n is an integer of 2 or more) having different compositions are joined together as a laminar flow. A multilayer flow in which n laminar flows are adjacent to each other in the width direction, and the multilayer flow is circulated through a microchannel disposed under the microspace via a porous film having a pore diameter of 1 μm or more. To do.
In the multilayer flow, n types of laminar flows having different compositions (substance concentrations) are sequentially stacked in the width direction of the microchannel, and the substance concentration changes in the width direction of the microchannel. When a multilayer flow having such a material distribution is circulated through the microchannel, the substances contained in each of the n kinds of laminar flows pass through the porous film by diffusion and move into the upper microspace. As a result, a region having the same substance concentration as each laminar flow is formed in the micro space above each laminar flow with substantially the same width as each laminar flow. In this way, a material distribution similar to the multilayer flow is formed in the upper microspace.
Conventionally, it has been considered that the concentration distribution of a substance that has passed through a membrane and transferred from a fluid into a liquid that does not flow is uniform over time due to diffusion. However, according to the knowledge of the present inventors, by using a porous film having a pore diameter of 1 μm or more, surprisingly, a material distribution similar to a multilayer flow flowing through the lower microchannel is formed in the upper microspace. At the same time, the material distribution is maintained while the multilayer flow is being circulated.
Therefore, in the present invention, the substance distribution in the micro space can be precisely controlled (in the micro scale level) both in terms of time and space simply by adjusting the composition and flow rate of the n kinds of liquids. Long-term control over time is also possible. This is useful in controlling the culture and differentiation of cells that require a relatively long time. For example, while culturing cells such as pluripotent cells in a microspace, the type of substance that controls the differentiation of the cultured cells (differentiation inducing factor, differentiation inhibitory factor, etc.) or the distribution of concentration in the microspace By controlling the target and / or time, it is possible to precisely control the differentiation of the cells.
In addition, the shear stress generated by the flow of the multilayer flow is reduced by the porous film. For example, the micro space can be a high-level static environment in which the Brownian motion of fine particles existing in the micro space can be observed. Therefore, even in the micro space, it is possible to culture even a cell having a weak adhesive force. Moreover, the influence on the activity and differentiation of a cultured cell which arises by this shear stress can also be suppressed.
Furthermore, even when cells cultured in a microspace form a three-dimensional structure, the flow in the underlying microchannel is not disturbed, so the precision of controlling the material distribution in the microspace is maintained. Is done.
前記多層流の形成方法は特に限定されず、公知の方法を利用できる。たとえば、マイクロ流路の上流に、下流側末端で合流するn本のマイクロ流路(以下、層流形成用流路という。)を設け、各層流形成用流路にそれぞれ液体を導入することにより形成できる。すなわち、各層流形成用流路では、それぞれ、導入された液体が層流を形成し、下流側末端で合流する。その結果、n個の層流が幅方向に並んだ多層流が形成される。該多層流は、そのまま下流のマイクロ流路に供給され、マイクロ流路内を流通する。
nは、2以上の整数であればよく、上限は特に限定されない。好ましくは、多層流を構成する各層流の幅が10μmより小さくならない範囲で設定する。各層流の幅は、10〜1000μmが好ましく、50〜500μmがより好ましい。
The formation method of the said multilayer flow is not specifically limited, A well-known method can be utilized. For example, n microchannels (hereinafter referred to as laminar flow forming channels) that merge at the downstream end are provided upstream of the microchannels, and liquid is introduced into each laminar flow forming channel. Can be formed. That is, in each laminar flow forming flow path, the introduced liquid forms a laminar flow and merges at the downstream end. As a result, a multilayer flow in which n laminar flows are arranged in the width direction is formed. The multilayer flow is supplied as it is to the downstream micro-channel and circulates in the micro-channel.
n should just be an integer greater than or equal to 2, and an upper limit is not specifically limited. Preferably, the width of each laminar flow constituting the multi-layer flow is set within a range not smaller than 10 μm. The width of each laminar flow is preferably 10 to 1000 μm, and more preferably 50 to 500 μm.
本発明の物質分布制御方法は、たとえば下記のデバイスを用いて実施できる。
表面にそれぞれマイクロ流路構造が設けられた第一の基板および第二の基板を備え、
前記第一の基板表面のマイクロ流路構造(以下、下層流路ということがある。)は、多層流が流通する多層流流通部と、該多層流流通部の上流側に配置された多層流形成部と、該多層流流通部の下流側に配置された多層流排出部とを有し、
前記第二の基板表面のマイクロ流路構造(以下、上層流路ということがある。)は、前記多層流流通部と略同一パターンのマイクロ空間部と、該マイクロ空間部への液体の導入または導出のための導出入路部とを有し、
前記第一の基板と第二の基板とが、前記マイクロ流路構造が設けられた面を内側にして、前記多層流流通部および前記マイクロ空間部の位置が一致するように積層され、
前記多層流流通部と前記マイクロ空間部との間に孔径1μm以上の多孔膜が挟持されているデバイス。
該デバイスにおいては、下層流路の多層流形成部にn種の液体をそれぞれ導入することで多層流が形成され、該多層流は、多層流流通部を通過し、多層流排出部からデバイス外部に排出されるようになっている。
該デバイス内には、上層流路のマイクロ空間部と多孔膜とによりマイクロ空間が形成されており、該マイクロ空間の下に、多孔膜を介して多層流流通部が配置されている。マイクロ空間部と多層流流通部とは、略同一のパターンで形成されている。
そのため、前記マイクロ空間に液体を満たした状態で、下層流路の多層流形成部にn種の液体を導入すると多層流が形成され、該多層流がマイクロ空間下の多層流流通部を流通することとなる。多層流流通部とマイクロ空間との界面には所定の孔径の多孔膜が配置されているため、該多孔膜を介して、多層流を構成するn種の層流中の物質がそれぞれ上方に移動し、結果、マイクロ空間内に、その下を流れる多層流と同様の物質分布が形成される。
該デバイスにおいては、多層流流通部、マイクロ空間部が、それぞれ、本発明の物質分布制御方法におけるマイクロ流路、マイクロ空間に相当する。
The substance distribution control method of the present invention can be implemented using, for example, the following devices.
Comprising a first substrate and a second substrate each having a microchannel structure on the surface;
The first micro-channel structure on the surface of the first substrate (hereinafter sometimes referred to as a lower layer flow path) includes a multi-layer flow distribution section through which a multi-layer flow circulates and a multi-layer flow disposed upstream of the multi-layer flow distribution section. A forming portion, and a multilayer flow discharge portion disposed on the downstream side of the multilayer flow circulation portion,
The micro-channel structure on the surface of the second substrate (hereinafter sometimes referred to as the upper-layer channel) includes a micro space part having substantially the same pattern as the multilayer flow circulation part, and introduction of liquid into the micro space part or A derivation entry section for derivation,
The first substrate and the second substrate are laminated so that the surface on which the microchannel structure is provided is on the inside, and the positions of the multilayer flow circulation portion and the micro space portion are matched,
A device in which a porous film having a pore diameter of 1 μm or more is sandwiched between the multilayer flow distribution part and the micro space part.
In the device, a multi-layer flow is formed by introducing n kinds of liquids into the multi-layer flow forming portion of the lower layer flow path, and the multi-layer flow passes through the multi-layer flow circulation portion and passes from the multi-layer flow discharge portion to the outside of the device. It is supposed to be discharged.
In the device, a micro space is formed by the micro space portion of the upper layer flow path and the porous membrane, and a multilayer flow circulation portion is disposed under the micro space via the porous membrane. The micro space part and the multilayer flow circulation part are formed in substantially the same pattern.
Therefore, when n kinds of liquids are introduced into the multilayer flow forming portion of the lower layer flow channel with the liquid filled in the micro space, a multilayer flow is formed, and the multilayer flow circulates in the multilayer flow distribution portion under the micro space. It will be. Since a porous film having a predetermined pore diameter is arranged at the interface between the multilayer flow distribution part and the micro space, the substances in the n kinds of laminar flows constituting the multilayer flow move upward through the porous film. As a result, a material distribution similar to the multilayer flow flowing thereunder is formed in the micro space.
In the device, the multilayer flow circulation part and the micro space part respectively correspond to the micro flow path and the micro space in the material distribution control method of the present invention.
以下、図面に基づいて、上記デバイスの一実施形態を説明する。
図1〜3に本実施形態のデバイス1を示す。図1はデバイス1の斜視図であり、図2はデバイス1の分解斜視図であり、図3はデバイス1の上面図である。
デバイス1は、表面に下層流路21が形成された第一の基板2と、表面に上層流路31が形成された第二の基板3とが、下層流路21および上層流路31が形成された面を内側にして積層された積層体を備え、第一の基板2と第二の基板3との間の所定の位置に、孔径1μm以上の多孔膜4が挟持されている。
該積層体において、下層流路21上の、上層流路31と重複部分はすべて多孔膜4で被覆されている。これにより、下層流路21を流通する液体が、上層流路31に直接流入しないようになっている。
Hereinafter, an embodiment of the device will be described with reference to the drawings.
The device 1 of this embodiment is shown in FIGS. FIG. 1 is a perspective view of the device 1, FIG. 2 is an exploded perspective view of the device 1, and FIG. 3 is a top view of the device 1.
In the device 1, the first substrate 2 having the lower layer flow path 21 formed on the surface and the second substrate 3 having the upper layer flow path 31 formed on the surface form the lower layer flow path 21 and the upper layer flow path 31. A porous body 4 having a pore diameter of 1 μm or more is sandwiched at a predetermined position between the first substrate 2 and the second substrate 3.
In the laminated body, the upper layer channel 31 and the overlapping portion on the lower layer channel 21 are all covered with the porous film 4. Thereby, the liquid flowing through the lower layer channel 21 does not directly flow into the upper layer channel 31.
第一の基板2において、下層流路21は、多層流流通部211(図2、3中、位置A−A’と位置B−B’との間の部分)と、多層流流通部211の上流側に配置された、下流側末端で合流する3つの分岐流路部212a〜212cを有する多層流形成部と、多層流流通部211の下流側に配置された多層流排出部213とから構成される。
多層流形成部は、分岐流路部212a〜212cと、分岐流路部212a〜212cの合流点と多層流流通部211の上流側末端とを連絡する連絡流路部212dとから構成される。多層流形成部においては、分岐流路部212a〜212cのうち、2つまたは3つの上流側末端にそれぞれ組成の異なる液体を導入すると、各液体が層流を形成し、合流して2層または3層の多層流が形成されるようになっている。
多層流流通部211と、分岐流路部212bと、連絡流路部212dと、多層流排出部213とは、略同一直線上に配置されている。
In the first substrate 2, the lower layer flow path 21 includes a multilayer flow circulation portion 211 (a portion between the positions AA ′ and BB ′ in FIGS. 2 and 3) and the multilayer flow circulation portion 211. A multi-layer flow forming section having three branch flow path sections 212 a to 212 c that merge at the downstream end disposed on the upstream side, and a multi-layer flow discharge section 213 disposed on the downstream side of the multi-layer flow distribution section 211 Is done.
The multi-layer flow forming unit includes branch flow channel portions 212a to 212c, and a communication flow channel portion 212d that connects the junction of the branch flow channel portions 212a to 212c and the upstream end of the multi-layer flow circulation portion 211. In the multilayer flow forming section, when liquids having different compositions are introduced into two or three upstream ends of the branch flow path sections 212a to 212c, each liquid forms a laminar flow and merges into two layers or A three-layer multilayer flow is formed.
The multilayer flow distribution part 211, the branch flow path part 212b, the communication flow path part 212d, and the multilayer flow discharge part 213 are arranged on substantially the same straight line.
第二の基板3において、上層流路31は、多層流流通部211と略同一パターンのマイクロ空間部311(図2、3中、位置A−A’と位置B−B’との間の部分)と、マイクロ空間部311への液体の導入または導出のための2つの導出入路部312,313とから構成される。
導出入路部312,313は、それぞれ、マイクロ空間部311の長手方向の両端(多層流流通部211における多層流の流通方向の上流側末端および下流側末端)から、マイクロ空間部311の長手方向に対して一定の角度で屈曲させて形成されている。
マイクロ空間部311は、多層流流通部211と略同一パターンに形成されている。すなわち、多層流流通部211の長さ(多層流の流通方向の長さ)および幅と略同一の長さおよび幅で形成されている。
In the second substrate 3, the upper layer flow path 31 has a micro space portion 311 having substantially the same pattern as the multilayer flow distribution portion 211 (a portion between the position AA ′ and the position BB ′ in FIGS. 2 and 3). ) And two lead-in / take-in passage portions 312 and 313 for introducing or discharging the liquid to / from the micro space portion 311.
The lead-in / in channel portions 312 and 313 are respectively provided in the longitudinal direction of the micro space portion 311 from both ends in the longitudinal direction of the micro space portion 311 (the upstream end and the downstream end in the flow direction of the multilayer flow in the multilayer flow flow portion 211). Is bent at a certain angle.
The micro space portion 311 is formed in substantially the same pattern as the multilayer flow circulation portion 211. That is, it is formed with the length and width substantially the same as the length (length in the flow direction of the multilayer flow) and the width of the multilayer flow circulation portion 211.
第二の基板3には、第二の基板3を貫通する6つの貫通孔32〜37が形成されている。これらのうち、貫通孔32〜34は、分岐流路部212a〜212cの上流側末端に対応する位置に設けられ、貫通孔35は、多層流排出部213の下流側末端に対応する位置に設けられている。これにより、貫通孔32〜37を介して、各流路212a〜212cへの液体の導入および多層流排出部213からの液体(多層流)の排出を行うことができるようになっている。
貫通孔36,37はそれぞれ導出入路部312,313の末端に対応する位置に設けられている。これにより、貫通孔36,37を介して、マイクロ空間部311への液体の導入または排出を行うことができるようになっている。マイクロ空間部311にて細胞の培養または分化の制御を行う場合、該貫通孔36,37は、マイクロ空間部311への細胞の導入、または細胞の取出しにも利用できる。
Six through holes 32 to 37 that penetrate the second substrate 3 are formed in the second substrate 3. Among these, the through holes 32 to 34 are provided at positions corresponding to the upstream ends of the branch flow passage sections 212 a to 212 c, and the through holes 35 are provided at positions corresponding to the downstream ends of the multilayer flow discharge section 213. It has been. Thereby, the liquid can be introduced into each of the flow paths 212a to 212c and the liquid (multilayer flow) can be discharged from the multilayer flow discharge portion 213 through the through holes 32 to 37.
The through holes 36 and 37 are provided at positions corresponding to the ends of the lead-in / in passage portions 312 and 313, respectively. As a result, liquid can be introduced into or discharged from the micro space portion 311 through the through holes 36 and 37. When controlling the culture or differentiation of cells in the micro space portion 311, the through holes 36 and 37 can also be used for introducing cells into the micro space portion 311 or taking out cells.
以下、上述したデバイス1の構成要素それぞれについてより詳細に説明する。
多層流流通部211は、好ましくは、多層流流通部211内を流通する液体(多層流)のレイノルズ数が2000未満となるように、液体の物性(密度および粘性率)や流速を考慮しての幅および高さが設定される。該レイノルズ数が2000未満であれば、多層流の層流状態が安定で、隣接する層流間での物質移動がほとんど生じない状態でマイクロ流路を流通する。該レイノルズ数は、2000以下が好ましく、100以下がより好ましく、1以下がさらに好ましい。該レイノルズ数の下限は特に限定されない。
レイノルズ数は、従来、流体の挙動を説明する上で重要な指標の一つとして知られており、下記式により定義される。
Re=ρ×r×l/μ
[式中、Reはレイノルズ数であり、ρは液体の密度であり、rは流速であり、lは代表長さであり、μは液体の粘性率である。]
Hereinafter, each of the components of the device 1 described above will be described in more detail.
The multilayer flow circulation part 211 preferably takes into account the physical properties (density and viscosity) and flow rate of the liquid so that the Reynolds number of the liquid (multilayer flow) flowing in the multilayer flow circulation part 211 is less than 2000. Width and height are set. If the Reynolds number is less than 2000, the laminar flow state of the multilayer flow is stable, and the micro flow channel is circulated in a state in which mass transfer between adjacent laminar flows hardly occurs. The Reynolds number is preferably 2000 or less, more preferably 100 or less, and even more preferably 1 or less. The lower limit of the Reynolds number is not particularly limited.
The Reynolds number is conventionally known as one of important indexes for explaining the behavior of a fluid, and is defined by the following equation.
Re = ρ × r × l / μ
[Where Re is the Reynolds number, ρ is the density of the liquid, r is the flow velocity, l is the representative length, and μ is the viscosity of the liquid. ]
液体の密度ρ、粘性率μは、それぞれ流通時の温度条件下における密度、粘性率である。
多層流流通部211を流通する液体のレイノルズ数については以下の手順で求められる。まず、各層流を構成するn種の液体の密度をそれぞれρ1、ρ2…ρn、粘性率をそれぞれρ1、ρ2…ρn,μ1,μ2,…μnとし、各液体の密度および粘性率と、多層流流通部211における各液体の流量比から、多層流を構成する全液体の混合液の密度ρ’および粘性率μ’をそれぞれ算出する。該密度ρ’および粘性率μ’と、多層流流通部211における多層流の流速および代表長さから、多層流流通部211を流通する液体のレイノルズ数が求められる。
流速r(単位:μm/min)は、平均的な流速は平均的な流速=流量/流路の断面積により求められる。
代表長さlは、その長さを変えたときに流れが最も影響を受けやすい場所の断面積および周囲長さにより決定される。たとえばマイクロ流路の断面形状が高さh1と幅(深さ)wの矩形である場合、その代表長さlは下記式により求められる。
l=4×h1×w/2(h1+w)
The density ρ and viscosity μ of the liquid are density and viscosity, respectively, under temperature conditions during distribution.
About the Reynolds number of the liquid which distribute | circulates the multilayer flow distribution part 211, it calculates | requires in the following procedures. First, the density of n liquids constituting each laminar flow is ρ1, ρ2... Ρn, the viscosity is ρ1, ρ2... Ρn, μ1, μ2,. From the flow rate ratio of each liquid in the circulation part 211, the density ρ ′ and the viscosity μ ′ of the mixed liquid of all the liquids constituting the multilayer flow are calculated. From the density ρ ′ and the viscosity μ ′, the flow velocity and the representative length of the multilayer flow in the multilayer flow circulation portion 211, the Reynolds number of the liquid flowing through the multilayer flow circulation portion 211 is obtained.
As for the flow velocity r (unit: μm / min), the average flow velocity is obtained from the average flow velocity = the flow rate / the cross-sectional area of the flow path.
The representative length l is determined by the cross-sectional area and the perimeter of the location where the flow is most affected when the length is changed. For example, if the cross-sectional shape of the microchannel is rectangular in height h 1 and the width (depth) w, its characteristic length l is obtained by the following equation.
l = 4 × h 1 × w / 2 (h 1 + w)
レイノルズ数は、流路を流通する液体の物性(密度および粘性率)、流速、流路のサイズ(幅および高さ)により変動する。
そのため、多層流流通部211の幅および高さは、流通させる液体の物性や流速によっても異なり、特に限定されないが、幅広い範囲の密度または粘性率の液体に適用できることから、幅1〜100000μmの範囲内、高さ1〜10000μmの範囲内で設定することが好ましい。多層流流通部211の幅は、1〜1000μmがより好ましく、20〜1000μmがさらに好ましい。また、高さは、1〜1000μmがより好ましく、1〜500μmがさらに好ましい。幅および高さが上記範囲の上限値以下であるとレイノルズ数が小さく、層流の安定性が良好となる。下限値以上であると、当該流路構造を形成しやすい、細胞実験等への応用に適している、せん断応力を軽減できる等の利点がある。
The Reynolds number varies depending on the physical properties (density and viscosity) of the liquid flowing through the flow path, the flow velocity, and the size (width and height) of the flow path.
Therefore, the width and height of the multilayer flow circulation portion 211 vary depending on the physical properties and flow velocity of the liquid to be circulated, and are not particularly limited, but can be applied to liquids having a wide range of density or viscosity, so that the width ranges from 1 to 100000 μm. Of these, the height is preferably set within a range of 1 to 10,000 μm. As for the width | variety of the multilayer flow distribution part 211, 1-1000 micrometers is more preferable, and 20-1000 micrometers is further more preferable. Further, the height is more preferably 1 to 1000 μm, and further preferably 1 to 500 μm. If the width and height are not more than the upper limit of the above range, the Reynolds number is small, and the stability of the laminar flow is good. When it is at least the lower limit value, there are advantages such that it is easy to form the flow channel structure, it is suitable for application to cell experiments, and the shear stress can be reduced.
多層流流通部211の長さ(多層流の流通方向の長さ)は、特に限定されず、目的に応じて適宜設定できる。たとえば該長さを短くすると、隣接する層流との界面が明確な状態(層流間の物質濃度のコントラストが明確な状態)で多層流が多層流流通部211の上流側末端から下流側末端まで流通するため、その上層のマイクロ空間内の長手方向全体にわたって、コントラストが明確な物質分布を形成できる。また、該長さを長くすると、多層流が多層流流通部211内で流通する間に、隣接する層流との間で物質移動が生じてくる。これに伴って、その上層のマイクロ空間内に形成される物質分布が、長手方向下流側に近づくほど濃度勾配の緩やかなものとなる。 The length of the multilayer flow circulation portion 211 (length in the circulation direction of the multilayer flow) is not particularly limited, and can be set as appropriate according to the purpose. For example, when the length is shortened, the multilayer flow flows from the upstream end to the downstream end of the multilayer flow circulation section 211 in a state where the interface with the adjacent laminar flow is clear (the contrast of the substance concentration between the laminar flows is clear). Therefore, a substance distribution with a clear contrast can be formed over the entire longitudinal direction in the microspace of the upper layer. Further, when the length is increased, mass transfer occurs between the adjacent laminar flows while the multilayer flow circulates in the multilayer flow circulation portion 211. Along with this, the substance distribution formed in the micro space in the upper layer becomes gentler as the concentration gradient becomes closer to the downstream side in the longitudinal direction.
分岐流路部212a〜212cは、好ましくは、分岐流路部212a〜212c内を流通する液体のレイノルズ数が2000未満となるように、各分岐流路部を流通する液体の物性(密度および粘性率)や流速を考慮しての幅および高さが設定される。該レイノルズ数が2000未満であれば、分岐流路部212a〜212cに導入した液体が層流を形成するとともに、各層流が合流した際、各層流間での物質の移動がほとんど生じることなく安定した多層流が形成される。該レイノルズ数は、2000以下が好ましく、100以下がより好ましく、1以下がさらに好ましい。該レイノルズ数の下限は特に限定されない。
分岐流路部212a〜212cの幅および高さは、幅広い範囲の密度または粘性率の液体に適用できることから、幅0.1〜100000μmの範囲内、高さ0.1〜1000μmの範囲内で設定することが好ましい。流路212a〜212cの幅は、1〜1000μmがより好ましく、20〜1000μmがさらに好ましい。また、流路212a〜212cの高さは、1〜1000μmがより好ましく、1〜100μmがさらに好ましい。幅および高さが上記範囲の上限値以下であるとレイノルズ数が小さくなり、層流が形成されやすい。下限値以上であると、当該流路構造を形成しやすい、少量の流量で層流が形成可能である、使用する試薬などの使用量が減少する等の利点がある。
The branch flow channel portions 212a to 212c preferably have physical properties (density and viscosity) of the liquid flowing through each branch flow channel portion so that the Reynolds number of the liquid flowing through the branch flow channel portions 212a to 212c is less than 2000. The width and height are set in consideration of the rate) and the flow velocity. If the Reynolds number is less than 2000, the liquid introduced into the branch flow channel sections 212a to 212c forms a laminar flow, and when each laminar flow joins, it is stable with almost no movement of substances between the laminar flows. Multi-layered flow is formed. The Reynolds number is preferably 2000 or less, more preferably 100 or less, and even more preferably 1 or less. The lower limit of the Reynolds number is not particularly limited.
The width and height of the branch flow channel sections 212a to 212c can be applied to liquids having a wide range of densities or viscosities, and therefore are set within a width range of 0.1 to 100000 μm and a height range of 0.1 to 1000 μm. It is preferable to do. The width of the channels 212a to 212c is more preferably 1 to 1000 μm, and further preferably 20 to 1000 μm. Moreover, 1-1000 micrometers is more preferable and, as for the height of the flow paths 212a-212c, 1-100 micrometers is further more preferable. If the width and height are less than or equal to the upper limit of the above range, the Reynolds number becomes small and a laminar flow is likely to be formed. When it is at least the lower limit value, there are advantages such that the flow channel structure is easily formed, a laminar flow can be formed with a small flow rate, and the amount of reagents used is reduced.
分岐流路部212a〜212cのうち、両端の分岐流路部212a、212cの連絡流路部212dへの合流角度(図3中のθ1、θ2)は、1〜179度が好ましく、90〜179度がより好ましい。合流角度が上記範囲内であると、多層流を良好に形成できる。該合流角度の好ましい範囲は、分岐流路部が2つ、または4つ以上の場合においても同様である。
また、分岐流路部212a〜212cがそれぞれ隣接する流路との間でなす角度(流路212aと流路212bとがなす角度と、流路212aと流路212bとがなす角度)は、同等であることが好ましい。
Of the branch channel portions 212a to 212c, the joining angles (θ 1 and θ 2 in FIG. 3) of the branch channel portions 212a and 212c at both ends to the connecting channel portion 212d are preferably 1 to 179 degrees, 90 -179 degrees is more preferred. When the merging angle is within the above range, a multilayer flow can be formed satisfactorily. The preferable range of the merging angle is the same when there are two or four or more branch flow passage portions.
Further, the angles formed by the branched flow channel portions 212a to 212c with the adjacent flow channels (the angle formed by the flow channel 212a and the flow channel 212b and the angle formed by the flow channel 212a and the flow channel 212b) are the same. It is preferable that
連絡流路部212dは、幅方向の断面形状が多層流流通部211と同じに形成されている。これにより、連絡流路部212d内を通過した多層流がスムーズに多層流流通部211に供給されるようになっている。
また、多層流排出部213は、幅方向の断面形状が多層流流通部211と同じに形成されている。これにより、多層流流通部211内を流通する多層流がスムーズに排出されるようになっている。
The communication channel portion 212d is formed to have the same cross-sectional shape in the width direction as the multilayer flow circulation portion 211. As a result, the multilayer flow that has passed through the communication flow path section 212d is smoothly supplied to the multilayer flow distribution section 211.
Moreover, the multilayer flow discharge part 213 is formed in the same cross-sectional shape in the width direction as the multilayer flow circulation part 211. Thereby, the multilayer flow which distribute | circulates the inside of the multilayer flow distribution part 211 is discharged | emitted smoothly.
第一の基板2を構成する材料は特に限定されず、たとえば従来、マイクロ流路構造の形成に用いられている公知の材料のなかから目的に応じてから適宜選択できる。
たとえばマイクロ空間内の観察を行う場合、可視光を透過する透明材料が好ましい。透明材料として、たとえばポリジメチルシロキサン(以下、PDMSという)等のシリコーンゴム、アクリル樹脂、ガラス、ゲル等が挙げられる。また、透明材料以外では金属、Si等が挙げられる。
また、マイクロ空間内にて細胞の培養または分化制御を行う場合は、培養細胞に対して適合性を有する材料を用いることが好ましい。該材料としては、特に、デバイス外の大気中の酸素をマイクロ空間内に供給できる点から、酸素透過性を有する材料が好ましい。該材料としては、既知の任意の酸素透過性材料が使用可能であり、たとえば、酸素透過性コンタクトレンズなどに用いられている生体適合性の酸素透過性材料などを挙げることができる。特に、デバイス外部からマイクロ空間の培養細胞を観察できることから、酸素透過性を有する材料が、透明材料であることが好ましい。
生体適合性の酸素透過性材料として具体的には、シリコーンゴムが挙げられる。特に、生体適合性を有するとともに、透明性および酸素透過性を有し、さらに安価な材料であることから、PDMSが好ましい。
The material which comprises the 1st board | substrate 2 is not specifically limited, For example, it can select suitably from the well-known materials conventionally used for formation of a microchannel structure according to the objective.
For example, when performing observation in a micro space, a transparent material that transmits visible light is preferable. Examples of the transparent material include silicone rubber such as polydimethylsiloxane (hereinafter referred to as PDMS), acrylic resin, glass, gel, and the like. Moreover, metals, Si, etc. are mentioned other than a transparent material.
In addition, when cell culture or differentiation control is performed in a microspace, it is preferable to use a material that is compatible with cultured cells. As the material, in particular, a material having oxygen permeability is preferable because oxygen in the atmosphere outside the device can be supplied into the micro space. As the material, any known oxygen-permeable material can be used, and examples thereof include a biocompatible oxygen-permeable material used for an oxygen-permeable contact lens. In particular, since the cultured cells in the micro space can be observed from the outside of the device, the material having oxygen permeability is preferably a transparent material.
Specific examples of the biocompatible oxygen permeable material include silicone rubber. In particular, PDMS is preferable because it is biocompatible, has transparency and oxygen permeability, and is an inexpensive material.
マイクロ空間部311は、上述したように、多層流流通部211と略同一パターンに形成されている。すなわち、多層流流通部211の長さ(多層流の流通方向の長さ)および幅と略同一の長さおよび幅で形成されている。
マイクロ空間部311の高さ(多孔膜4表面に対して垂直方向における幅)は、マイクロ空間部311および多孔膜4により形成されるマイクロ空間内に物質分布が良好に形成できる点から、10000μm以下が好ましく、1000μm以下がより好ましい。
該高さの下限は、物質分布の制御の観点からは特に限定されず、目的に応じて適宜設定できる。たとえばマイクロ空間内にて細胞の培養または分化制御を行う場合には、培養細胞のサイズよりも高く設定する。
細胞のサイズは種類や接着状態によって異なる。たとえば哺乳動物の胚性幹細胞の大きさは、通常、接着時においては長径で約10〜20μm、短径で約5〜10μmであり、トリプシン等により剥離して浮遊させた状態では約5〜10μmの球体である。受精卵の大きさは、通常、ヒトは約130μm、マウスは約80μm、ウシやブタは約120〜130μmである。胚様体は、人工的に作る細胞塊であり、そのサイズは様々な手法によって変えられるものであり、特に限定されないが、通常、50μm〜1mm程度である。
As described above, the micro space portion 311 is formed in substantially the same pattern as the multilayer flow circulation portion 211. That is, it is formed with the length and width substantially the same as the length (length in the flow direction of the multilayer flow) and the width of the multilayer flow circulation portion 211.
The height of the micro space portion 311 (width in the direction perpendicular to the surface of the porous membrane 4) is 10,000 μm or less from the viewpoint that the material distribution can be satisfactorily formed in the micro space formed by the micro space portion 311 and the porous membrane 4. Is preferable, and 1000 μm or less is more preferable.
The lower limit of the height is not particularly limited from the viewpoint of controlling the substance distribution, and can be appropriately set according to the purpose. For example, when cell culture or differentiation control is performed in a micro space, the size is set higher than the size of the cultured cells.
The cell size varies depending on the type and adhesion state. For example, the size of a mammalian embryonic stem cell is usually about 10 to 20 μm in major axis and about 5 to 10 μm in minor axis at the time of adhesion, and about 5 to 10 μm when detached and suspended by trypsin or the like. It is a sphere. The size of a fertilized egg is usually about 130 μm for humans, about 80 μm for mice, and about 120 to 130 μm for cows and pigs. An embryoid body is an artificially produced cell mass whose size can be changed by various techniques and is not particularly limited, but is usually about 50 μm to 1 mm.
導出入路部312,313は、マイクロ空間部311と同じ高さに形成されている。
導出入路部312,313は、それぞれ、マイクロ空間部311の長手方向の両端(多層流流通部211における多層流の流通方向の上流側末端および下流側末端)から、マイクロ空間部311の長手方向に対して一定の角度で屈曲させて形成されている。
導出入路部312がマイクロ空間部311の長手方向となす角度(図3中のθ3)、導出入路部313がマイクロ空間部311の長手方向となす角度(図3中のθ4)は、それぞれ、0〜179度が好ましく、0〜90度がより好ましい。これらの角度が上記範囲内であると、マイクロ空間部311にて細胞の培養や分化の制御を行う場合に、該マイクロ空間部311に細胞を一様に播種しやすい。
The lead-in / in passage portions 312 and 313 are formed at the same height as the micro space portion 311.
The lead-in / in channel portions 312 and 313 are respectively provided in the longitudinal direction of the micro space portion 311 from both ends in the longitudinal direction of the micro space portion 311 (the upstream end and the downstream end in the flow direction of the multilayer flow in the multilayer flow flow portion 211). Is bent at a certain angle.
The angle (θ 3 in FIG. 3 ) formed by the lead-in / in passage portion 312 with the longitudinal direction of the micro space portion 311 and the angle (θ 4 in FIG. 3) formed by the lead-in / in passage portion 313 with the longitudinal direction of the micro space portion 311 are as follows. Respectively, 0 to 179 degrees is preferable, and 0 to 90 degrees is more preferable. When these angles are within the above range, cells can be uniformly seeded in the micro space portion 311 when cell culture or differentiation control is performed in the micro space portion 311.
第二の基板3を構成する材料は特に限定されず、たとえば前記第一の基板2を構成する材料として挙げたものと同様のものが挙げられ、特に透明材料が好ましい。ただしマイクロ空間内にて細胞の培養または分化制御を行う場合でも、第二の基板3には、上述した生体適合性や酸素透過性は必ずしも必要ではない。 The material which comprises the 2nd board | substrate 3 is not specifically limited, For example, the thing similar to what was mentioned as a material which comprises said 1st board | substrate 2 is mentioned, A transparent material is especially preferable. However, even when cell culture or differentiation control is performed in the micro space, the above-described biocompatibility and oxygen permeability are not necessarily required for the second substrate 3.
多孔膜4は、物質分布をマイクロ空間部311内に形成するためには、孔径が1μm以上である必要がある。ここで、「多孔膜」とは、当該膜を貫通する細孔を多数有する固体の膜である。多孔膜の孔径(細孔の孔径)は 電子顕微鏡(SEM)、レーザー顕微鏡等により測定できる。
多孔膜4の孔径は、1μm以上が好ましく、5μm以上がより好ましく、10μm以上がさらに好ましい。孔径が大きいほど、マイクロ空間に、マイクロ流路を流通する多層流の物質分布が反映されやすく、コントラストの明確な物質分布が形成されやすい。孔径の上限は、多層流により生じるせん断応力によるマイクロ空間への負荷を低減する観点から、50μm以下が好ましく、20μm以下がより好ましい。
マイクロ空間内にて細胞の培養または分化制御を行う場合は、さらに、培養細胞のサイズを考慮することが好ましい。すなわち、多孔膜4が有する細孔が大きすぎると、培養細胞がマイクロ流路に浸潤、流出するおそれがある。そのため、この場合は、多孔膜4として、培養細胞のサイズよりも孔径が小さいものを用いることが好ましい。該多孔膜4の孔径は、培養細胞のサイズの100%以下が好ましく、50%以下がより好ましい。ここで、培養細胞のサイズは単一細胞の直径を意味し、顕微鏡観察により測定できる。
たとえば胚性幹細胞(以下、ES細胞という。)、人工多能性幹細胞(以下、iPS細胞という。)等の多能性幹細胞のサイズは、一般的に、10〜20μm程度である。そのため、培養細胞が胚性幹細胞である場 合、多孔膜4の孔径は、15μm以下が好ましく、10μm以下がより好ましい。
また、胚様体、受精卵等の三次元構造体のサイズは、一般的に、50μm〜1mm程度である。そのため、培養細胞が三次元構造体を形成する場合、多孔膜4の孔径は、50μm以下が好ましく、10μm以下がより好ましい。
The porous film 4 needs to have a pore diameter of 1 μm or more in order to form a substance distribution in the micro space 311. Here, the “porous membrane” is a solid membrane having a large number of pores penetrating the membrane. The pore diameter of the porous membrane (pore diameter) can be measured with an electron microscope (SEM), a laser microscope or the like.
The pore diameter of the porous membrane 4 is preferably 1 μm or more, more preferably 5 μm or more, and further preferably 10 μm or more. The larger the pore size, the more easily the substance distribution of the multi-layer flow flowing through the micro flow path is reflected in the micro space, and the substance distribution with a clear contrast is easily formed. The upper limit of the pore diameter is preferably 50 μm or less, and more preferably 20 μm or less, from the viewpoint of reducing the load on the micro space due to the shear stress generated by the multilayer flow.
When cell culture or differentiation control is performed in a microspace, it is preferable to further consider the size of the cultured cells. That is, if the pores of the porous membrane 4 are too large, cultured cells may infiltrate and flow out of the microchannel. Therefore, in this case, it is preferable to use a porous membrane 4 having a pore size smaller than the size of the cultured cells. The pore diameter of the porous membrane 4 is preferably 100% or less, more preferably 50% or less of the size of the cultured cells. Here, the size of the cultured cell means the diameter of a single cell and can be measured by microscopic observation.
For example, the size of pluripotent stem cells such as embryonic stem cells (hereinafter referred to as ES cells) and induced pluripotent stem cells (hereinafter referred to as iPS cells) is generally about 10 to 20 μm. Therefore, when the cultured cells are embryonic stem cells, the pore diameter of the porous membrane 4 is preferably 15 μm or less, and more preferably 10 μm or less.
The size of a three-dimensional structure such as an embryoid body or a fertilized egg is generally about 50 μm to 1 mm. Therefore, when cultured cells form a three-dimensional structure, the pore diameter of the porous membrane 4 is preferably 50 μm or less, and more preferably 10 μm or less.
多孔膜4の空隙率は、1〜15%が好ましく、5〜10%がより好ましい。該範囲の下限値以上であるとマイクロ空間に物質分布が形成されやすく、上限値以下であると上層流路31内への下層流路21の流速の影響を充分に軽減できる。
多孔膜4の材質としては特に限定されず、従来、多孔膜の材料として用いられているものと同様であってよい。具体的には、ポリスチレン、ポリカーボネート、ポリエステル、ポリエチレン、ポリテトラフルオロエチレン(以下、PTFEという)等が挙げられる。
また、多孔膜4の表面に、細胞接着性を高める等の目的で、表面処理が施されていても良い。
多孔膜4の厚さは、物質の透過性の観点から、100μm以下が好ましく、20μm以下がより好ましい。
多孔膜4は、Whatman社等から販売されている市販品を利用できる。
The porosity of the porous film 4 is preferably 1 to 15%, more preferably 5 to 10%. If it is above the lower limit of the range, a substance distribution is likely to be formed in the microspace, and if it is below the upper limit, the influence of the flow velocity of the lower layer channel 21 into the upper layer channel 31 can be sufficiently reduced.
The material of the porous film 4 is not particularly limited, and may be the same as that conventionally used as the material of the porous film. Specific examples include polystyrene, polycarbonate, polyester, polyethylene, polytetrafluoroethylene (hereinafter referred to as PTFE), and the like.
Further, the surface of the porous membrane 4 may be subjected to a surface treatment for the purpose of improving cell adhesion.
The thickness of the porous film 4 is preferably 100 μm or less, more preferably 20 μm or less, from the viewpoint of substance permeability.
As the porous membrane 4, a commercial product sold by Whatman or the like can be used.
デバイス1は、第一の基板2と第二の基板3とを、下層流路21、31が形成された面を内側にして、多層流流通部211およびマイクロ空間部311の位置が一致するように配置し、多孔膜4を挟んで貼り合わせることにより作製できる。
第一の基板2、第二の基板3は、それぞれ、従来、マイクロリアクター等の流路構造を有するマイクロデバイスの製造に用いられている方法など、公知の微細加工法を利用して製造できる。該微細加工法としては、たとえばリソグラフィー法、エッチング法、切削、射出成型等が挙げられる。
リソグラフィー法を用いた製造方法の一例を挙げると、以下の工程(1)〜(5)を行うことにより第一の基板2を作製できる。
(1)まず、基板上に、スピンコーティングによりフォトレジストを塗布してフォトレジスト層を形成する。
(2)フォトレジスト層に対し、下層流路21に対応したパターンのマスクを介して露光し、現像することにより、フォトレジスト層をパターニングする。
(3)パターニングされたフォトレジスト層(鋳型)上に、UV硬化型または熱硬化型ポリマーのプレポリマーを塗布してプレポリマー層を形成する。
(4)プレポリマー層にUVを照射または加熱して硬化させてポリマー層とする。
(5)ポリマー層を剥離する。
このようにして得られるポリマー層の表面には、フォトレジスト層のパターンが反転したパターン(たとえばフォトレジスト層のパターンがラインパターンの場合はスペースパターン)で、フォトレジスト層の厚さと同じ高さ(深さ)の下層流路21が形成されている。このポリマー層を第一の基板2として使用できる。
第二の基板3は、マスクとして上層流路31に対応したパターンのマスクを用いる以外は上記(1)〜(5)と同様にしてポリマー層を得た後、さらに、該ポリマー層に貫通孔32〜37を開けることにより作製できる。
In the device 1, the first substrate 2 and the second substrate 3 are arranged so that the surfaces on which the lower layer flow paths 21 and 31 are formed are inward so that the positions of the multilayer flow circulation portion 211 and the micro space portion 311 coincide. It is possible to fabricate the film by attaching the film to each other and sandwiching the porous film 4 therebetween.
Each of the first substrate 2 and the second substrate 3 can be manufactured by using a known microfabrication method such as a method conventionally used for manufacturing a microdevice having a channel structure such as a microreactor. Examples of the fine processing method include a lithography method, an etching method, cutting, and injection molding.
If an example of the manufacturing method using the lithography method is given, the 1st board | substrate 2 can be produced by performing the following processes (1)-(5).
(1) First, a photoresist is applied on a substrate by spin coating to form a photoresist layer.
(2) The photoresist layer is patterned by exposing and developing the photoresist layer through a mask having a pattern corresponding to the lower layer flow path 21.
(3) A prepolymer layer of UV curable or thermosetting polymer is applied on the patterned photoresist layer (template) to form a prepolymer layer.
(4) The prepolymer layer is cured by irradiating or heating UV to form a polymer layer.
(5) The polymer layer is peeled off.
On the surface of the polymer layer obtained in this manner, a pattern in which the pattern of the photoresist layer is inverted (for example, a space pattern when the pattern of the photoresist layer is a line pattern), which is the same height as the thickness of the photoresist layer ( A lower depth channel 21 having a depth) is formed. This polymer layer can be used as the first substrate 2.
The second substrate 3 was obtained in the same manner as in the above (1) to (5) except that a mask having a pattern corresponding to the upper layer flow path 31 was used as a mask. It can be produced by opening 32 to 37.
次に、上記デバイス1のマイクロ空間部311内の物質分布制御方法の一実施形態を、図4を用いて説明する。図4は、2個の層流L1、L2が多層流流通部211の幅方向に隣接した多層流(2層流)が多層流流通部211を流通している状態における、デバイス1の位置A−A’の部分縦断面図である。
本実施形態では、分岐流路部212bを封鎖した状態で、分岐流路部212a、212cにそれぞれ液体L1、L2を導入することにより2層流を形成し、多層流流通部211に流通させている。すなわち、液体L1、L2をそれぞれ貫通孔32、34から分岐流路部212a、212cに導入すると、分岐流路部212a、212cにて各液体の層流が形成され、流路212a、212cの下流側末端で合流し、2個の層流が幅方向に並んだ多層流(2層流)が形成される。該2層流は、連絡流路部212dを通って多層流流通部211に供給され、多層流流通部211を流通し、多層流排出部213の下流側末端から貫通孔35を介してデバイス1外に排出される。
上記のようにして2層流を多層流流通部211に流通させると、多層流流通部211の上層のマイクロ空間部311内に、該2層流と同様の物質分布が形成される。
該液体L1、L2の組成や流量を調整するだけで、マイクロ空間部311内の物質分布を時間的にも空間的にも精密に制御できる。たとえば、液体L1として物質Aを濃度a1で含有する液体、液体L2として物質Aを濃度a2(a1<a2)で含有する液体を用いると、マイクロ空間部311内に、物質Aの濃度勾配が生じる。つまり、液体L1の層流の上方の部分は物質Aを比較的低濃度に含有する領域(低濃度領域)となり、液体L2の層流の上方の部分は物質Aを比較的高濃度に含有する領域(高濃度領域)となり、マイクロ空間部311内の幅方向に、物質Aの濃度勾配が生じる。
濃度a1、a2のいずれか一方または両方を変化させると、該濃度勾配を変化させることができる。
また、層流L1、L2それぞれの幅w1、w2を変化させると、マイクロ空間部311内における高濃度領域の幅と低濃度領域の幅も変化する。
層流L1、L2それぞれの幅w1、w2は、液体L1、L2の流量の比率を調節することで調節できる。たとえば液体L1の流量の比率を高めると、層流L1の幅w1が広くなる。各液体の流量の制御は、シリンジポンプ、電気浸透流ポンプ、その他機械的動作によるポンプ等の公知の液体供給装置を用いて実施できる。
また、液体L1、L2にそれぞれ配合する物質の種類を変更する、複数種の物質を組み合わせる、該複数種の物質の比率を変更する等により、マイクロ空間部311内に複雑な物質分布を形成できる。
また、液体L1、L2の組成を経時的に変化させることで、マイクロ空間部311内における物質分布を経時的に変化させることができる。一方、液体L1、L2の組成を変更しない場合は、当初の物質分布をそのまま維持できる。
Next, an embodiment of a material distribution control method in the micro space 311 of the device 1 will be described with reference to FIG. FIG. 4 illustrates the device 1 in a state in which two laminar flows L 1 and L 2 are adjacent to each other in the width direction of the multilayer flow circulation unit 211 (two-layer flow) are circulating in the multilayer flow circulation unit 211. It is a partial longitudinal cross-sectional view of position AA '.
In the present embodiment, a two-layer flow is formed by introducing liquids L 1 and L 2 into the branch flow channel portions 212 a and 212 c in a state where the branch flow channel portion 212 b is sealed, and then flows into the multilayer flow flow portion 211. I am letting. That is, when the liquids L 1 and L 2 are introduced from the through holes 32 and 34 into the branch flow channel portions 212a and 212c, laminar flows of the respective liquids are formed in the branch flow channel portions 212a and 212c, and the flow channels 212a and 212c. A multi-layer flow (two-layer flow) in which two laminar flows are aligned in the width direction is formed. The two-layer flow is supplied to the multilayer flow circulation portion 211 through the communication flow path portion 212d, flows through the multilayer flow circulation portion 211, and passes through the through hole 35 from the downstream end of the multilayer flow discharge portion 213. Discharged outside.
When the two-layer flow is circulated through the multilayer flow distribution unit 211 as described above, a material distribution similar to the two-layer flow is formed in the micro space portion 311 in the upper layer of the multilayer flow distribution unit 211.
By simply adjusting the composition and flow rate of the liquids L 1 and L 2 , the substance distribution in the micro space 311 can be precisely controlled both temporally and spatially. For example, when a liquid containing the substance A at the concentration a 1 is used as the liquid L 1 and a liquid containing the substance A at the concentration a 2 (a 1 <a 2 ) is used as the liquid L 2 , the substance is contained in the micro space portion 311. A concentration gradient occurs. That is, the upper portion of the laminar flow of the liquid L 1 region (low concentration region) which contains the relatively low concentration of substance A, and the upper portion of the laminar flow of the liquid L 2 is a relatively high concentration of substance A It becomes a contained region (high concentration region), and a concentration gradient of the substance A is generated in the width direction in the micro space portion 311.
When one or both of the concentrations a 1 and a 2 are changed, the concentration gradient can be changed.
Further, when the widths w 1 and w 2 of the laminar flows L 1 and L 2 are changed, the width of the high concentration region and the width of the low concentration region in the micro space portion 311 also change.
The widths w 1 and w 2 of the laminar flows L 1 and L 2 can be adjusted by adjusting the ratio of the flow rates of the liquids L 1 and L 2 . For example, when the ratio of the flow rate of the liquid L 1 is increased, the width w 1 of the laminar flow L 1 is increased. The flow rate of each liquid can be controlled using a known liquid supply device such as a syringe pump, an electroosmotic flow pump, or other mechanically operated pump.
In addition, by changing the types of substances blended in the liquids L 1 and L 2 , combining a plurality of kinds of substances, changing the ratio of the plurality of kinds of substances, and the like, a complicated substance distribution can be generated in the micro space portion 311. Can be formed.
In addition, by changing the composition of the liquids L 1 and L 2 over time, the substance distribution in the micro space 311 can be changed over time. On the other hand, when the composition of the liquids L 1 and L 2 is not changed, the original substance distribution can be maintained as it is.
本発明においては、上述したように、レイノルズ数が2000未満となるように2層流を多層流流通部211内に流通させることが好ましい。
レイノルズ数は、上述したように、多層流流通部211のサイズ(幅および高さ)のほか、液体の物性(密度ρ、粘性率μ)や流速rによっても調節できる。特に流速rは、分岐流路部212a、212cにそれぞれ導入する液体L1、L2の流量を変更する簡便な方法で調節でき、好ましい。
In the present invention, as described above, it is preferable to circulate the two-layer flow in the multilayer flow circulation portion 211 so that the Reynolds number is less than 2000.
As described above, the Reynolds number can be adjusted not only by the size (width and height) of the multilayer flow circulation portion 211 but also by the physical properties (density ρ, viscosity μ) of the liquid and the flow velocity r. In particular, the flow rate r can be adjusted by a simple method of changing the flow rates of the liquids L 1 and L 2 introduced into the branch flow channel portions 212a and 212c, respectively.
なお、本発明は上記実施形態に限定されるものではない。
たとえば上記実施形態では、デバイス1の第一の基板2に、連絡流路部212dに合流する分岐流路部(多層流を形成する各層流を形成するための流路)を3つ設けた例を示したが、分岐流路部の数は2であってもよく、4以上であってもよい。分岐流路部の数の上限は特に限定されず、使用する液体の数(n)に応じて適宜設定すればよい。デバイスの操作性を考慮すると5以下が好ましい。
また、連絡流路部212d、多層流流通部211および多層流排出部213が同一直線上に形成されている例を示したが本発明はこれに限定されない。たとえば。連絡流路部212d、多層流流通部211、多層流排出部213のうち、少なくとも1つが曲線状に形成されていてもよい。
また、連絡流路部212dと多層流流通部211と多層流排出部213との幅方向の断面形状が同一である例を示したが本発明はこれに限定されず、各流路の断面形状が異なっていてもよい。ただし層流の安定性の観点からは、同一であることが好ましい。
また、第二の基板3において、マイクロ空間部311の長手方向の両端にそれぞれ導出入路部312,313を設けているが、導出入路部312,313のいずれか一方のみであってもよい。
また、図4においては2層流を形成して物質濃度分布を制御する例を示したが本発明はこれに限定されない。たとえば分岐流路部212a〜212c全てに液体を導入すると、3層流を形成できる。この場合、2層流の場合よりも複雑な物質分布制御が可能である。たとえば多層流流通部211内に、高濃度領域−低濃度領域−高濃度領域の濃度勾配の物質分布、低濃度領域−高濃度領域−低濃度領域の濃度勾配の物質分布、物質A含有領域−物質B含有領域−物質C含有領域といった物質分布を形成できる。
The present invention is not limited to the above embodiment.
For example, in the above-described embodiment, the first substrate 2 of the device 1 is provided with three branch flow path portions (flow paths for forming each laminar flow forming a multi-layer flow) that merge with the communication flow path portion 212d. However, the number of branch flow path portions may be two or four or more. The upper limit of the number of branch flow path portions is not particularly limited, and may be set as appropriate according to the number (n) of liquids to be used. Considering the operability of the device, 5 or less is preferable.
Moreover, although the example where the communication flow path part 212d, the multilayer flow circulation part 211, and the multilayer flow discharge part 213 are formed on the same straight line has been shown, the present invention is not limited to this. For example. At least one of the communication flow path part 212d, the multilayer flow circulation part 211, and the multilayer flow discharge part 213 may be formed in a curved shape.
Moreover, although the example where the cross-sectional shape of the width direction of the communication flow path part 212d, the multilayer flow distribution part 211, and the multilayer flow discharge part 213 was the same was shown, this invention is not limited to this, The cross-sectional shape of each flow path May be different. However, from the viewpoint of the stability of the laminar flow, the same is preferable.
Further, in the second substrate 3, the lead-in / inway portions 312 and 313 are provided at both ends in the longitudinal direction of the micro space portion 311, respectively, but only one of the lead-in / inlet passage portions 312 and 313 may be provided. .
Moreover, although the example which forms 2 laminar flow and controls substance concentration distribution was shown in FIG. 4, this invention is not limited to this. For example, when a liquid is introduced into all the branch flow path portions 212a to 212c, a three-layer flow can be formed. In this case, it is possible to control the material distribution more complicated than in the case of the two-layer flow. For example, in the multi-layer flow distribution part 211, a high concentration region-low concentration region-high concentration region concentration gradient material distribution, low concentration region-high concentration region-low concentration region concentration gradient material distribution, substance A-containing region- A substance distribution such as a substance B-containing region-substance C-containing region can be formed.
本発明の物質分布制御方法に用いる液体は、層流を形成可能なものであれば特に限定されず、目的に応じて適宜設定できる。
たとえば前記液体として培養液を用いることにより、本発明の物質分布制御方法を、細胞の培養に利用することができる。
すなわち、マイクロ空間内に培養しようとする細胞(以下、培養細胞という。)を導入し、マイクロ流路に複数の培養液からなる層流から構成される多層流を流通させると、各層流を構成する培養液に含まれる栄養成分や酸素が多孔膜を介して上層のマイクロ空間内の培養細胞に供給される。また、マイクロ空間内にて培養細胞から排出された老廃物は、多孔膜を介して多層流内に拡散し、排出される。
このとき、多層流を構成する複数の培養液の組成(栄養成分の種類や濃度、酸素濃度等)を調整することにより、マイクロ空間内の物質分布を、実際の生体内にて培養細胞を取り巻く環境における物質分布と類似したものとすることができる。そのため、本発明によれば、従来に比べて、より生体内に近い環境で細胞を培養することができる。たとえば生体内においては複数の細胞がそれぞれ、隣接しつつも異なる環境下に存在している(たとえば肝臓細胞と膵臓細胞)が、本発明によれば、マイクロ空間内にこれに類似した環境を形成できる。
また、上述したように、多層流により生じるせん断応力のマイクロ空間への影響は多孔膜によって軽減されるため、該マイクロ空間内では、接着力の弱い細胞であっても培養することができる。また、培養細胞の活性等に対するせん断応力による影響も生じない。
さらに、該マイクロ空間にて培養する細胞が三次元構造体を形成する場合であっても、下層のマイクロ流路内の流れが乱れることはないので、マイクロ空間内における物質分布制御の精密性が維持される。
The liquid used in the material distribution control method of the present invention is not particularly limited as long as it can form a laminar flow, and can be appropriately set according to the purpose.
For example, by using a culture solution as the liquid, the substance distribution control method of the present invention can be used for cell culture.
That is, when a cell to be cultured in a micro space (hereinafter referred to as a cultured cell) is introduced and a multi-layer flow composed of a plurality of culture fluids is circulated through the micro channel, each laminar flow is configured. The nutrient components and oxygen contained in the culture solution to be supplied are supplied to the cultured cells in the upper microspace through the porous membrane. In addition, the waste discharged from the cultured cells in the micro space diffuses into the multilayer flow through the porous membrane and is discharged.
At this time, by adjusting the composition (type and concentration of nutrient components, oxygen concentration, etc.) of a plurality of culture solutions constituting the multilayer flow, the substance distribution in the micro space is surrounded by the cultured cells in the actual living body. It can be similar to the material distribution in the environment. Therefore, according to the present invention, cells can be cultured in an environment closer to the living body than in the past. For example, in a living body, a plurality of cells are present in different environments although they are adjacent to each other (for example, liver cells and pancreatic cells). According to the present invention, a similar environment is formed in a micro space. it can.
Further, as described above, since the influence of the shear stress generated by the multi-layer flow on the micro space is reduced by the porous film, even cells having weak adhesive force can be cultured in the micro space. In addition, there is no influence of shear stress on the activity of cultured cells.
Furthermore, even when cells cultured in the microspace form a three-dimensional structure, the flow in the underlying microchannel is not disturbed, so that the precision of substance distribution control in the microspace is improved. Maintained.
マイクロ空間にて培養する培養細胞としては、ヒト、マウス、ウシ、ブタ等の哺乳動物に由来する細胞が挙げられる。
特に、生命科学、再生医療、細胞・組織工学、発生工学など様々な分野において有用であるため、ES細胞、iPS細胞等の胚性幹細胞が好ましい。また、胚様体、受精卵等の三次元構造体を形成している細胞も好ましい。
本発明は、これら未分化の細胞だけでなく、肝細胞、小腸細胞等の各種臓器細胞、植物細胞、大腸菌、酵母等の培養にも利用できる。
培養細胞のマイクロ空間への導入は、たとえば前記デバイスを用いる場合は、マイクロ空間部への液体の導入または導出のための導出入路部を使用することにより実施できる。
Examples of cultured cells cultured in a micro space include cells derived from mammals such as humans, mice, cows, and pigs.
In particular, embryonic stem cells such as ES cells and iPS cells are preferred because they are useful in various fields such as life science, regenerative medicine, cell / tissue engineering, and developmental engineering. Also preferred are cells that form three-dimensional structures such as embryoid bodies and fertilized eggs.
The present invention can be used for culturing not only these undifferentiated cells but also various organ cells such as hepatocytes and small intestinal cells, plant cells, Escherichia coli, yeast and the like.
For example, when the device is used, the cultured cells can be introduced into the microspace by using a lead-in passage portion for introducing or leading the liquid to or from the microspace portion.
使用する培養液の組成およびその他の培養条件(培養温度、培養時間等)は、培養細胞に応じて適宜設定できる。
特に、培養液として、細胞の分化を制御する物質(以下、分化制御因子という。)の種類または濃度が異なる培養液を用いると、培養細胞の分化の制御を行うことができる。たとえば、マイクロ空間内で多能性細胞等の細胞を培養するとともに、該マイクロ空間内にて培養する細胞の分化制御因子の種類(たとえば分化誘導因子または分化抑制因子)や濃度を変えることにより、該マイクロ空間内の細胞の分化の程度を局所的に変えることができる。また、このとき、上述したように、多層流により生じるせん断応力のマイクロ空間への影響は多孔膜によって軽減されるため、細胞の分化に対するせん断応力による影響も生じない。
分化制御因子は、培養細胞の種類に応じて公知の分化制御因子のなかから適宜選択すればよい。
The composition of the culture solution to be used and other culture conditions (culture temperature, culture time, etc.) can be appropriately set according to the cultured cells.
In particular, when a culture solution having a different type or concentration of a substance that controls cell differentiation (hereinafter referred to as differentiation control factor) is used as the culture solution, differentiation of the cultured cell can be controlled. For example, by culturing cells such as pluripotent cells in a microspace, by changing the type of differentiation control factor (for example, differentiation inducing factor or differentiation inhibitory factor) and concentration of the cell cultured in the microspace, The degree of cell differentiation within the microspace can be locally varied. At this time, as described above, since the influence of the shear stress caused by the multilayer flow on the microspace is reduced by the porous film, the influence of the shear stress on the differentiation of the cells does not occur.
The differentiation regulator may be appropriately selected from known differentiation regulators according to the type of cultured cells.
上記のように細胞の培養または分化の制御を行う場合、マイクロ流路に多層流を流通させる前に、マイクロ空間内にて予備培養を行ってもよい。
特に、多孔膜に培養細胞を付着させた状態にて細胞の培養または分化の制御を行う場合は、予備培養を行って前記多孔膜の前記マイクロ空間側に前記細胞を付着させた後、前記多層流の流通を開始することが好ましい。
このとき、培養細胞が多孔膜に対して接着性を有さないものである場合は、予備培養を行う前に、細胞が接着する足場となるマトリックスの溶液をマイクロ空間内に導入し、該マトリックスを多孔膜表面に付着させておくことが好ましい。該マトリックスとしては、たとえばゼラチン、フィブロネクチン、コラーゲン,ゲル等が挙げられる。
培養細胞が多孔膜に対して接着性を有するものである場合は、培養細胞をそのまま培養液とともにマイクロ空間内に導入して予備培養を行えばよい。
胚様体、受精卵等の三次元構造を形成している細胞の場合は、通常、多孔膜に付着していない状態で培養または分化の制御が行われる。このように、培養細胞が多孔膜に付着していない状態で培養または分化の制御を行う場合は、予備培養を行ってもよく、行わなくてもよい。
When cell culture or differentiation control is performed as described above, preliminary culture may be performed in the micro space before the multilayer flow is circulated in the micro flow channel.
In particular, when cell culture or differentiation control is performed in a state in which cultured cells are attached to the porous membrane, the cells are attached to the microspace side of the porous membrane by performing pre-culture, and then the multilayer It is preferable to start the flow of the stream.
At this time, if the cultured cells are not adherent to the porous membrane, a matrix solution serving as a scaffold to which the cells adhere is introduced into the microspace before the preculture, and the matrix Is preferably adhered to the surface of the porous membrane. Examples of the matrix include gelatin, fibronectin, collagen, gel and the like.
In the case where the cultured cells have adhesiveness to the porous membrane, the cultured cells may be introduced into the microspace as it is together with the culture solution for pre-culture.
In the case of a cell forming a three-dimensional structure such as an embryoid body or a fertilized egg, culture or differentiation is usually controlled without being attached to the porous membrane. Thus, when culture | cultivation or differentiation control is performed in a state where cultured cells are not attached to the porous membrane, preliminary culture may or may not be performed.
以下、実施例により本発明をより詳細に説明する。ただし本発明は該実施例に限定されるものではない。
なお、後述する試験例において、蛍光観察および蛍光強度の測定は、位相差顕微鏡、微分干渉顕微鏡、共焦点顕微鏡を用いて行った。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.
In the test examples described later, fluorescence observation and fluorescence intensity measurement were performed using a phase contrast microscope, a differential interference microscope, and a confocal microscope.
<製造例1>
図1〜3に示す構成のデバイスを以下の手順で製造した。
まず、シリコン基板を用意し、該基板上に、スピンコーティングによりフォトレジスト(商品名「SU−8 2100」;マイクロケム社製)を塗布し、ベークしてフォトレジスト層を形成した。次いで、下層流路21のパターンのマスクを介して露光、現像を行い、フォトレジスト層にマスクのパターンを転写した。該フォトレジスト層(鋳型)上に、未硬化のPDMSを塗布してポリマー層を形成し、UV照射により硬化させた。硬化後、ポリマー層を剥離して第一の基板2(外径:長径50mm×短径20mm×厚さ5000μm、多層流流通部211:幅1mm×高さ200μm×長さ10000μm、分岐流路部212a〜212c:幅500μm×高さ200μm、分岐流路部212aの合流角度θ1:135度、分岐流路部212cの合流角度θ2:135度)を得た。
マスクを上層流路31のパターンのものに変更した以外は同じ操作を行い、剥離したポリマー層に貫通孔32〜37を開けて第二の基板3(外径:長径50mm×短径50mm×厚さ5000μm、マイクロ空間部311:幅1mm×高さ200μm×長さ15000μm、導出入路部312,313:幅1mm×高さ200μm、導出入路部312とマイクロ空間部311との角度θ3:60度、導出入路部313とマイクロ空間部311との角度θ4:60度)を得た。
<Production Example 1>
A device having the configuration shown in FIGS. 1 to 3 was manufactured by the following procedure.
First, a silicon substrate was prepared, and a photoresist (trade name “SU-8 2100”; manufactured by Microchem) was applied onto the substrate by spin coating, and baked to form a photoresist layer. Next, exposure and development were performed through the mask of the lower layer flow path 21 pattern, and the mask pattern was transferred to the photoresist layer. On the photoresist layer (mold), uncured PDMS was applied to form a polymer layer and cured by UV irradiation. After curing, the polymer layer is peeled off to form the first substrate 2 (outer diameter: major axis 50 mm × minor axis 20 mm × thickness 5000 μm, multilayer flow distribution part 211: width 1 mm × height 200 μm × length 10000 μm, branch channel part 212a to 212c: width 500 μm × height 200 μm, merging angle θ 1 of the branch channel portion 212a: 135 degrees, merging angle θ 2 of the branch channel portion 212c: 135 degrees).
The same operation was performed except that the mask was changed to the pattern of the upper layer flow path 31, and through-holes 32 to 37 were opened in the peeled polymer layer to form the second substrate 3 (outer diameter: major axis 50 mm × minor axis 50 mm × thickness). Length 5000 μm, micro space portion 311: width 1 mm × height 200 μm × length 15000 μm, lead-in passage portions 312, 313: width 1 mm × height 200 μm, angle θ 3 between lead-in passage portion 312 and micro space portion 311: 60 degrees, and the angle θ 4 between the lead-in / out path part 313 and the micro space part 311 was 60 degrees).
別途、多孔膜4として、以下に示す5種(いずれもwhatman社製「track etch membrane」(空隙率15%未満のポリカーボネート製の多孔膜))を用意し、各多孔膜にSiO2をスパッタリングによりコーティングした。
多孔膜A:孔径0.4μmの多孔膜。
多孔膜B:孔径1μmの多孔膜。
多孔膜C:孔径3μmの多孔膜。
多孔膜D:孔径5μmの多孔膜。
多孔膜E:孔径10μmの多孔膜。
第一の基板2、第二の基板3および多孔膜をO2プラズマ処理した後、第一の基板2と第二の基板3とを、下層流路21、31が形成された面を内側にして、多層流流通部211およびマイクロ空間部311の位置が一致するように配置し、多孔膜4を挟んで接着することによりデバイスを得た。
Separately, as the porous film 4, the following five types (all are "track etch membrane" manufactured by whatman (polycarbonate porous film having a porosity of less than 15%)) are prepared, and SiO 2 is sputtered on each porous film by sputtering. Coated.
Porous membrane A: porous membrane having a pore diameter of 0.4 μm.
Porous membrane B: A porous membrane having a pore diameter of 1 μm.
Porous membrane C: A porous membrane having a pore diameter of 3 μm.
Porous membrane D: A porous membrane having a pore diameter of 5 μm.
Porous membrane E: A porous membrane having a pore diameter of 10 μm.
After the first substrate 2, the second substrate 3, and the porous film are subjected to O 2 plasma treatment, the first substrate 2 and the second substrate 3 are placed with the surface on which the lower flow paths 21 and 31 are formed facing inward. Then, the multilayer flow distribution part 211 and the micro space part 311 are arranged so that the positions thereof coincide with each other, and the device is obtained by bonding with the porous film 4 interposed therebetween.
<製造例2>
下層流路21のパターンのうち、多層流流通部211を幅150μm×高さ150μm×長さ10000μm、分岐流路部212a〜212cを幅150μm×高さ150μmに変更した以外は製造例1と同様の手順で第一の基板2を得た。
また、上層流路31のパターンのうち、マイクロ空間部311を幅150μm×高さ150μm×長さ15000μm、導出入路部312,313を幅150μm×高さ150μmに変更した以外は製造例1と同様の手順で第二の基板3を得た。
得られた第一の基板および第二の基板、ならびに多孔膜Eを用いた以外は製造例1と同様にしてデバイスを得た。
<Production Example 2>
Of the pattern of the lower layer flow path 21, the same as in Production Example 1 except that the multilayer flow distribution section 211 is changed to 150 μm width × 150 μm height × 10000 μm length, and the branch flow path sections 212 a to 212 c are changed to 150 μm width × 150 μm height. Thus, the first substrate 2 was obtained.
In addition, in the pattern of the upper layer flow path 31, the micro space portion 311 is changed to the width of 150 μm × height 150 μm × length 15000 μm, and the lead-in / inlet passage portions 312, 313 are changed to width 150 μm × height 150 μm. A second substrate 3 was obtained in the same procedure.
A device was obtained in the same manner as in Production Example 1 except that the obtained first and second substrates and the porous film E were used.
<試験例1>
(1)
製造例1で製造した、多孔膜4の孔径がそれぞれ異なる5種のデバイスを用いて、以下の手順で、多孔膜4の孔径がマイクロ空間部311内の物質分布の形成に与える影響を評価した。
シリンジポンプを用いて、水および蛍光物質であるフルオレセインイソチオシアネート(FITC)の25μM水溶液をそれぞれ貫通孔32、34から流量2μL/minにて送液した。このとき、分岐流路部212a、分岐流路部212c、多層流流通部211内における液体の流速はそれぞれ 約20000μm/min、約20000μm/min、約20000μm/minであり、レイノルズ数はそれぞれ約0.095、約0.095、約0.11であった。
水およびFITCの25μM水溶液の送液を開始した時点から180s後に、上層流路31(マイクロ空間部311)内の蛍光観察と蛍光強度の測定を行い、各流路内のFITC分布を確認した。
多孔膜4として前記多孔膜B(孔径1μm)、多孔膜C(孔径3μm)、多孔膜D(孔径5μm)、多孔膜E(孔径10μm)をそれぞれ用いた場合の180s経過時点の上層流路31内の蛍光像をそれぞれ図5に示す。
これらの結果に示すとおり、多孔膜B〜Eを用いた例では、上層流路31のマイクロ空間部311にFITC分布が形成された。一方、孔径0.4μmの多孔膜Aを用いた例では、FITCはマイクロ空間部311内に拡散しなかった。
<Test Example 1>
(1)
Using the five types of devices manufactured in Production Example 1 and having different pore diameters of the porous membrane 4, the influence of the pore size of the porous membrane 4 on the formation of the substance distribution in the micro space portion 311 was evaluated by the following procedure. .
Using a syringe pump, water and a 25 μM aqueous solution of fluorescein isothiocyanate (FITC) as a fluorescent substance were fed from the through holes 32 and 34 at a flow rate of 2 μL / min, respectively. At this time, the flow rates of the liquid in the branch flow channel section 212a, the branch flow channel section 212c, and the multilayer flow circulation section 211 are about 20000 μm / min, about 20000 μm / min, and about 20000 μm / min, respectively, and the Reynolds number is about 0, respectively. 0.095, about 0.095, and about 0.11.
After 180 s from the start of feeding of a 25 μM aqueous solution of water and FITC, fluorescence observation and fluorescence intensity measurement were performed in the upper layer flow path 31 (microspace part 311), and the FITC distribution in each flow path was confirmed.
When the porous film B is used as the porous film B (pore diameter: 1 μm), porous film C (pore diameter: 3 μm), porous film D (pore diameter: 5 μm), and porous film E (pore diameter: 10 μm), the upper layer channel 31 at the time of 180 seconds has elapsed. The fluorescence images are shown in FIG.
As shown in these results, in the example using the porous membranes B to E, a FITC distribution was formed in the micro space portion 311 of the upper layer flow path 31. On the other hand, in the example using the porous film A having a pore diameter of 0.4 μm, the FITC did not diffuse into the micro space portion 311.
(2)
製造例1で製造したデバイスのうち、多孔膜Eを用いたデバイスを用いて以下の評価を行った。
まず、FITCの25μM水溶液を貫通孔34から導入し、デバイス内(上層流路31および下層流路21内)を満たした。
次に、シリンジポンプを用いて、水およびFITCの25μM水溶液をそれぞれ貫通孔32、34から流量2μL/minにて送液した。
水およびFITCの25μM水溶液の送液を開始した時点から一定時間毎(0s、30s、60s、90s、120s、150s、180sおよび30min経過時点)に、下層流路21(多層流流通部211)内および上層流路31(マイクロ空間部311)内の蛍光観察と蛍光強度の測定を行い、各流路内のFITC分布を確認した。
0s、30s、60s、90s、120s、150sおよび180s経過時点の上層流路31内の蛍光像をそれぞれ図6に示す。
また、下層流路21内、上層流路31内それぞれの蛍光強度の測定結果から、縦軸に30min経過時点の蛍光強度、横軸に流路の幅方向の位置をとったグラフを作成した。該グラフをそれぞれ蛍光像とともに図7、8に示す。図7が下層流路21内の蛍光像およびグラフであり、図8が上層流路31内の蛍光像およびグラフである。
なお、「流路の幅方向の位置」は、流路の縦断面を下流側から見て、該流路の左端の位置を0とした場合の幅方向の距離(μm)を示す。
これらの結果に示すとおり、上層流路31をFITC水溶液で満たした後に、下層流路21に水とFITC水溶液との2層流を流通させると、上層流路31のマイクロ空間部311内のFITC分布は、一様な状態から、下層流路21内のFITC分布に対応したものに変化した。また、該FITC分布はそのまま維持されていた。
(2)
The following evaluation was performed using the device using the porous film E among the devices manufactured in Production Example 1.
First, a 25 μM aqueous solution of FITC was introduced from the through hole 34 to fill the inside of the device (in the upper layer channel 31 and the lower layer channel 21).
Next, using a syringe pump, water and a 25 μM aqueous solution of FITC were fed from the through holes 32 and 34 at a flow rate of 2 μL / min, respectively.
In the lower layer flow path 21 (multi-layer flow circulation section 211) at regular intervals (when 0 s, 30 s, 60 s, 90 s, 120 s, 150 s, 180 s, and 30 min have elapsed) from the start of feeding of a 25 μM aqueous solution of water and FITC. And the fluorescence observation in the upper layer flow path 31 (micro space part 311) and the measurement of the fluorescence intensity were performed, and FITC distribution in each flow path was confirmed.
FIG. 6 shows fluorescence images in the upper flow path 31 at the time when 0 s, 30 s, 60 s, 90 s, 120 s, 150 s, and 180 s have elapsed.
Further, from the measurement results of the fluorescence intensity in the lower layer flow path 21 and the upper layer flow path 31, a graph was created in which the vertical axis represents the fluorescence intensity at the time when 30 minutes elapsed and the horizontal axis represents the position in the width direction of the flow path. The graphs are shown in FIGS. 7 and 8 together with fluorescent images. FIG. 7 is a fluorescent image and graph in the lower layer flow path 21, and FIG. 8 is a fluorescent image and graph in the upper layer flow path 31.
The “position in the width direction of the flow path” indicates a distance (μm) in the width direction when the left end position of the flow path is 0 when the vertical cross section of the flow path is viewed from the downstream side.
As shown in these results, when the upper layer flow path 31 is filled with the FITC aqueous solution and then a two-layer flow of water and the FITC aqueous solution is circulated through the lower layer flow path 21, the FITC in the micro space portion 311 of the upper layer flow path 31 is obtained. The distribution changed from a uniform state to one corresponding to the FITC distribution in the lower layer flow path 21. Further, the FITC distribution was maintained as it was.
<試験例2>
製造例1で製造したデバイスのうち、多孔膜Eを用いたデバイスを用い、水を貫通孔33から流量2μL/minにて送液し、FITCの25μM水溶液を貫通孔32、34からそれぞれ流量2μL/minにて送液した以外は、試験例1の(2)と同様の操作を行った。結果を図9に示す。図9(a)が多層流流通部211内の蛍光像およびグラフであり、図9(b)がマイクロ空間部311内の蛍光像およびグラフである。
該結果に示すとおり、下層流路21の多層流流通部211内には3層の多層流が形成され、その上層のマイクロ空間部311内には、多層流流通部211内のFITC分布に対応したFITC分布が形成された。
<Test Example 2>
Among the devices manufactured in Production Example 1, using a device using the porous membrane E, water was fed from the through hole 33 at a flow rate of 2 μL / min, and a 25 μM FITC aqueous solution was flowed from the through holes 32 and 34 at a flow rate of 2 μL. The same operation as (2) of Test Example 1 was performed except that the solution was fed at / min. The results are shown in FIG. FIG. 9A is a fluorescent image and a graph in the multilayer flow distribution part 211, and FIG. 9B is a fluorescent image and a graph in the micro space part 311.
As shown in the results, a three-layer flow is formed in the multi-layer flow circulation part 211 of the lower layer flow path 21, and the FITC distribution in the multi-layer flow circulation part 211 is accommodated in the upper micro space part 311. A FITC distribution was formed.
<試験例3>
製造例1で製造したデバイスのうち、多孔膜Eを用いたデバイスを用いて、以下の手順で、下層流路21(多層流流通部211)を流通する流れが上層流路31(マイクロ空間部311)に与える影響を評価した。
該デバイスの上層流路31内に、蛍光ビーズ(Polysciences, Inc製「Fluoresbrite Carboxylate YG microspheres」)を配合した水を満たした。
次に、シリンジポンプを用いて、蛍光ビーズ(Polysciences, Inc製「Fluoresbrite Carboxylate YG microspheres」)を配合した水を、貫通孔33から流量を変えて(0.2、0.4、1.0、2.0または4.0μL/min)にて送液し、下層流路21を流通させた。
送液を開始した時点から一定時間毎に、下層流路21の多層流流通部211内および上層流路31のマイクロ空間部311内の蛍光ビーズの画像をカメラ付き位相差顕微鏡により撮影し、その画像から、下層流路21内および上層流路31内の蛍光ビーズ(以下、まとめて流路内ビーズという。)の平均流速(μm/min)を求めた。その結果を図10のグラフに示す。該グラフの横軸は、下層流路21に送液した流量(μL/min)であり、縦軸は流路内ビーズの平均流速(μm/min)である。
該結果に示すとおり、上層流路31の流路内ビーズの平均流速は、下層流路21の流路内ビーズの平均流速に比べて大幅に小さく、特に下層流路21の流速が0.5μL/min以下の場合は0であった。該結果から、上層流路31においては、多孔膜により、下層流路21の流れの影響が大幅に軽減されることが確認できた。
<Test Example 3>
Among the devices manufactured in Production Example 1, using the device using the porous membrane E, the flow through the lower layer flow channel 21 (multilayer flow distribution unit 211) is changed to the upper layer flow channel 31 (microspace portion) by the following procedure. 311) was evaluated.
The upper layer flow path 31 of the device was filled with water blended with fluorescent beads (“Fluoresbrite Carbonylate YG microspheres” manufactured by Polysciences, Inc.).
Next, by using a syringe pump, water mixed with fluorescent beads (“Fluoresbrite Carboxylate YG microspheres” manufactured by Polysciences, Inc.) is changed from the through hole 33 (0.2, 0.4, 1.0, 2.0 or 4.0 μL / min), and the lower layer channel 21 was circulated.
Images of fluorescent beads in the multilayer flow distribution part 211 of the lower layer flow path 21 and the micro space part 311 of the upper layer flow path 31 are taken with a phase contrast microscope with a camera every predetermined time from the start of liquid feeding, From the image, the average flow velocity (μm / min) of the fluorescent beads in the lower layer channel 21 and the upper layer channel 31 (hereinafter collectively referred to as beads in the channel) was obtained. The result is shown in the graph of FIG. The horizontal axis of the graph is the flow rate (μL / min) sent to the lower layer flow path 21, and the vertical axis is the average flow rate (μm / min) of the beads in the flow path.
As shown in the results, the average flow rate of the beads in the upper layer flow channel 31 is much smaller than the average flow rate of the beads in the lower flow channel 21, and in particular, the flow rate of the lower flow channel 21 is 0.5 μL. In the case of / min or less, it was 0. From the results, it was confirmed that in the upper layer flow path 31, the influence of the flow of the lower layer flow path 21 is significantly reduced by the porous film.
<試験例4>
製造例2で製造したデバイスのうち、多孔膜Eを用いたデバイスを用いて、以下の手順でHepG2細胞(ヒト肝ガン由来細胞株;独立行政法人理化学研究所 cell bankより入手。)の培養を行った。
試験例4で用いたのと同じデバイスにUVを30分間照射して滅菌した後、上層流路31にフィブロネクチン溶液(25μg/mL)を満たし、1時間静置した。
次に、デバイス内をPBSおよび培養液で洗浄した。培養液としてはFBS含有Knock outDMEMを用いた。
次に、細胞を接着させるために、上層流路31内を細胞懸濁液(1.0×107cell/mL)で満たし、一晩インキュベーター内(温度:37℃)で静置した。
次に、前記培養液に蛍光物質であるSYBR Green(タカラバイオ社製)を添加してSYBR Green(+)培養液を調製した。該SYBR Green(+)培養液を貫通孔34から、SYBR Greenを添加していない培養液(SYBR Green(−)培養液)を貫通孔32から、シリンジポンプを用い、流量2μL/minでの送液(灌流)を開始し、培養(培養温度:37℃)を行った。
<Test Example 4>
Among the devices manufactured in Production Example 2, using a device using porous membrane E, HepG2 cells (human hepatoma-derived cell line; obtained from RIKEN cell bank) are cultured according to the following procedure. went.
The same device as used in Test Example 4 was sterilized by irradiation with UV for 30 minutes, and then the upper channel 31 was filled with a fibronectin solution (25 μg / mL) and allowed to stand for 1 hour.
Next, the inside of the device was washed with PBS and a culture solution. As the culture solution, FBS-containing Knock out DMEM was used.
Next, in order to adhere the cells, the upper flow path 31 was filled with a cell suspension (1.0 × 10 7 cells / mL) and allowed to stand overnight in an incubator (temperature: 37 ° C.).
Next, SYBR Green (manufactured by Takara Bio Inc.), which is a fluorescent substance, was added to the culture solution to prepare a SYBR Green (+) culture solution. The SYBR Green (+) culture solution is sent from the through-hole 34, and the culture solution not added with SYBR Green (SYBR Green (-) culture solution) is sent from the through-hole 32 at a flow rate of 2 μL / min using a syringe pump. The liquid (perfusion) was started and culture (culture temperature: 37 ° C.) was performed.
培養開始から12時間後、上層流路(マイクロ空間部)内にて細胞に取り込まれたSYBR Greenの蛍光観察および蛍光強度の測定を行った。測定結果から、縦軸にSYBR Greenの蛍光強度、横軸に流路の幅方向の位置をとったグラフを作成した。該グラフを蛍光像とともに図11に示す。図11(a)が、培養前であり、図11(b)が培養12時間後である。
該結果に示すとおり、下層の多層流流通部211内において、SYBR Green(+)培養液の層流が流通した部分に対応する領域の細胞は、灌流前に比べて蛍光強度が増大していた。該結果から、該領域の細胞は、SYBR Greenに曝露され、SYBR Greenを取り込んだことが確認できた。一方、SYBR Green(−)培養液の層流が流通した部分に対応する領域の細胞は、蛍光強度がほとんど変化しておらず、ほとんどSYBR Greenに曝露されなかったことが確認できた。
このように、本発明によれば、マイクロ空間内の物質分布を空間的に制御し、同じマイクロ空間内に存在する細胞に対し、局所的な物質曝露を行うことができる。
After 12 hours from the start of the culture, fluorescence observation and measurement of fluorescence intensity of SYBR Green taken into the cells in the upper flow path (micro space part) were performed. From the measurement results, a graph was created with the vertical axis representing the fluorescence intensity of SYBR Green and the horizontal axis representing the position in the width direction of the flow path. The graph is shown in FIG. 11 together with the fluorescence image. FIG. 11A shows the state before culturing, and FIG. 11B shows the state after 12 hours of culturing.
As shown in the results, the cells in the region corresponding to the portion where the laminar flow of the SYBR Green (+) culture solution circulated in the lower layer multi-layer flow circulation portion 211 had an increased fluorescence intensity as compared to before perfusion. . From the results, it was confirmed that the cells in the region were exposed to SYBR Green and took up SYBR Green. On the other hand, it was confirmed that the cells in the region corresponding to the portion through which the laminar flow of the SYBR Green (-) culture solution circulated had hardly changed the fluorescence intensity and was hardly exposed to SYBR Green.
As described above, according to the present invention, the substance distribution in the micro space can be spatially controlled, and the local substance exposure can be performed on the cells existing in the same micro space.
<試験例5>
製造例1で製造したデバイスのうち、多孔膜Eを用いたデバイスを用いて、以下の手順でマウスiPS細胞(iPS−MEF−Ng−20D−17細胞株;国立大学法人京都大学より入手。)の培養を行った。iPS−MEF−Ng−20D−17細胞株は、未分化マーカーであるNanog遺伝子のレポーター遺伝子として緑色蛍光たんぱく質(GFP)が発現しており、蛍光発色している細胞は未分化状態であると判断できる。
試験例4と同様にしてデバイスを滅菌した後、上層流路31にフィブロネクチン溶液(濃度25μg/mL)を満たし、1時間インキュベーター内(温度:37℃)で静置した。
次に、デバイス内を培養液で満たした。培養液としてはFBS含有Knock outDMEMを用いた。
次に、細胞を接着させるために、上層流路31内に細胞懸濁液(1.0×106cell/mL)を導入し、一晩インキュベーター内(温度:37℃)で静置した。
次に、前記培養液に、マウスiPS細胞の未分化維持因子である白血病抑制因子(LIF)を配合したLIF含有培養液(未分化維持培養液)と、前記培養液に、マウスiPS細胞の分化誘導因子であるレチノイン酸(RA)を配合したRA含有培養液(分化誘導培養液)とを調製した。該LIF含有培養液を貫通孔34から、RA含有培養液を貫通孔32から、シリンジポンプを用い、流量2μL/minでの送液(灌流)を開始し、培養(培養温度:37℃)を行った。
<Test Example 5>
Of the devices manufactured in Production Example 1, using a device using porous membrane E, mouse iPS cells (iPS-MEF-Ng-20D-17 cell line; obtained from Kyoto University) by the following procedure. Was cultured. In the iPS-MEF-Ng-20D-17 cell line, green fluorescent protein (GFP) is expressed as a reporter gene of the Nanog gene that is an undifferentiated marker, and it is judged that cells that are fluorescently colored are in an undifferentiated state. it can.
After sterilizing the device in the same manner as in Test Example 4, the upper flow path 31 was filled with a fibronectin solution (concentration 25 μg / mL) and allowed to stand in an incubator (temperature: 37 ° C.) for 1 hour.
Next, the inside of the device was filled with the culture solution. As the culture solution, FBS-containing Knock out DMEM was used.
Next, in order to adhere the cells, a cell suspension (1.0 × 10 6 cells / mL) was introduced into the upper flow path 31 and allowed to stand overnight in an incubator (temperature: 37 ° C.).
Next, an LIF-containing culture solution (undifferentiation maintenance culture solution) in which leukemia inhibitory factor (LIF), which is an undifferentiation maintenance factor of mouse iPS cells, is added to the culture solution, and differentiation of mouse iPS cells into the culture solution. An RA-containing culture solution (differentiation induction culture solution) containing retinoic acid (RA) as an inducer was prepared. Using a syringe pump, the LIF-containing culture solution is sent from the through-hole 34 and the RA-containing culture solution is sent from the through-hole 32 at a flow rate of 2 μL / min to start culture (culture temperature: 37 ° C.). went.
培養前および培養開始から5日後、上層流路31のマイクロ空間部311内について、GFP発現による蛍光(GFP蛍光)の観察および蛍光強度の測定を行い、縦軸にGFPの蛍光強度、横軸に流路の幅方向の位置をとったグラフを作成した。培養前および培養5日後のGFP蛍光像およびグラフをそれぞれ図12に示す。図12(a)が培養前であり、図12(b)が培養5日後である。
また、培養5日後、上層流路31のマイクロ空間部311内の細胞に対して4’,6−ジアミジノ−2−フェニルインドール二塩酸塩(DAPI)染色を行い、蛍光の観察および蛍光強度の測定を行い、縦軸にDAPIの蛍光強度、横軸に流路の幅方向の位置をとったグラフを作成した。該蛍光像およびグラフを図13に示す。このDAPI染色では生存している細胞の核が染色されるため、DAPIの蛍光を測定することにより、上層流路31内の生細胞を確認できる。該結果から、培養5日後、上層流路31内の生細胞密度はほぼ一定であることが確認できた。
これらの結果から、RA含有培養液の層流が流通した部分に対応する領域の細胞は分化が誘導され、一方、LIF含有培養液の層流が流通した部分に対応する領域の細胞は未分化の状態が維持されていることが確認できた。
このように、本発明によれば、マイクロ空間内の物質分布を空間的に制御し、同じマイクロ空間内に存在する多能性幹細胞に対して局所的な未分化維持および分化誘導を行うことが可能である。
なお、下層流路21内に細胞懸濁液(1.0×106cell/mL)を導入した以外は上記と同様の操作を行ったところ、培養5日後、下層流路21内の細胞の大半が死滅していた(ヨウ化プロピジウム(PI)染色(死細胞染色)により確認)。これは、流れのせん断応力の影響によるものと考えられる。
Before culturing and 5 days after the start of culturing, in the micro space 311 of the upper channel 31, fluorescence by GFP expression (GFP fluorescence) was observed and the fluorescence intensity was measured. The graph which took the position of the width direction of a channel was created. GFP fluorescence images and graphs before culture and after 5 days of culture are shown in FIG. 12, respectively. FIG. 12A shows the state before culturing, and FIG. 12B shows the state after 5 days of culturing.
Further, after 5 days of culture, the cells in the micro space 311 of the upper flow path 31 were stained with 4 ′, 6-diamidino-2-phenylindole dihydrochloride (DAPI) to observe fluorescence and measure fluorescence intensity. The graph was created with the vertical axis representing the fluorescence intensity of DAPI and the horizontal axis representing the position in the width direction of the flow path. The fluorescence image and graph are shown in FIG. Since the nuclei of living cells are stained by this DAPI staining, the living cells in the upper channel 31 can be confirmed by measuring DAPI fluorescence. From the results, it was confirmed that the viable cell density in the upper flow path 31 was almost constant after 5 days of culture.
From these results, the cells in the region corresponding to the portion where the laminar flow of the RA-containing culture fluid circulated are induced to differentiate, while the cells in the region corresponding to the portion where the laminar flow of the LIF-containing culture fluid circulated are undifferentiated. It was confirmed that the state of was maintained.
As described above, according to the present invention, it is possible to spatially control the substance distribution in the micro space and to perform local undifferentiation maintenance and differentiation induction on the pluripotent stem cells existing in the same micro space. Is possible.
In addition, when the same operation as described above was performed except that the cell suspension (1.0 × 10 6 cells / mL) was introduced into the lower layer channel 21, the cells in the lower layer channel 21 were removed after 5 days of culture. Most were dead (confirmed by propidium iodide (PI) staining (dead cell staining)). This is thought to be due to the influence of shear stress in the flow.
<試験例6>
LIF含有培養液を貫通孔33から流量2μL/minにて送液し、RA含有培養液を貫通孔32、34からそれぞれ流量2μL/minにて送液した以外は、試験例5と同様の操作を行った。
結果を図14〜15に示す。図14は、培養5日後の上層流路31(マイクロ空間部311)内のGFP蛍光観察結果を示す蛍光像およびグラフ((a)蛍光像、(b)グラフ)であり、図15は、培養5日後の上層流路31(マイクロ空間部311)内のDAPI蛍光観察結果を示す蛍光像およびグラフ((a)蛍光像、(b)グラフ)である。
これらの結果から、RA含有培養液の層流(3層のうち両端の層流)が流通した部分に対応する領域の細胞は分化が誘導され、一方、LIF含有培養液の層流(3層のうち中央の層流)が流通した部分に対応する領域の細胞は未分化の状態が維持されていることが確認できた。
<Test Example 6>
The same operation as in Test Example 5 except that the LIF-containing culture solution was fed from the through-hole 33 at a flow rate of 2 μL / min, and the RA-containing culture solution was fed from the through-holes 32 and 34 at a flow rate of 2 μL / min. Went.
The results are shown in FIGS. FIG. 14 is a fluorescence image and a graph ((a) fluorescence image, (b) graph) showing a GFP fluorescence observation result in the upper flow path 31 (microspace part 311) after 5 days of culture, and FIG. It is the fluorescence image and graph ((a) fluorescence image, (b) graph) which show the DAPI fluorescence observation result in the upper layer flow path 31 (micro space part 311) after five days.
From these results, differentiation was induced in the cells in the region corresponding to the portion where the laminar flow of the RA-containing culture solution (laminar flow at both ends of the three layers) circulated, while the laminar flow of the LIF-containing culture solution (three layers) It was confirmed that the cells in the region corresponding to the portion where the central laminar flow) was maintained in an undifferentiated state.
近年、再生医療や生命科学への応用として、多能性幹細胞をはじめとする細胞組織の培養研究が盛んに行われているものの、実用可能な分化誘導法は確立されていない。特に従来の実験手法で扱える静的で一様な培養環境では、分化誘導を時空間的に精密に制御することができない。本発明は、このような問題に対し、細胞組織の微小環境を精密に制御する技術を与えるものであり、再生医療分野や動物細胞を用いる薬物動態・毒性試験分野において有用である。 In recent years, culture research on cell tissues including pluripotent stem cells has been actively conducted as an application to regenerative medicine and life sciences, but no practical differentiation induction method has been established. In particular, in a static and uniform culture environment that can be handled by conventional experimental methods, differentiation induction cannot be precisely controlled in space and time. The present invention provides a technique for precisely controlling the microenvironment of the cell tissue for such a problem, and is useful in the field of regenerative medicine and the pharmacokinetic / toxicity test field using animal cells.
1…デバイス、2…第一の基板、3…第二の基板、4…多孔膜、21…下層流路、31…上層流路、32〜37…貫通孔、211…多層流流通部、212a〜212c…分岐流路部、212d…連絡流路部、213…多層流排出部、311…マイクロ空間部、312〜313…導出入路部 DESCRIPTION OF SYMBOLS 1 ... Device, 2 ... 1st board | substrate, 3 ... 2nd board | substrate, 4 ... Porous film, 21 ... Lower layer flow path, 31 ... Upper layer flow path, 32-37 ... Through-hole, 211 ... Multilayer flow distribution part, 212a -212c ... Branch channel part, 212d ... Communication channel part, 213 ... Multilayer flow discharge part, 311 ... Micro space part, 312-313 ... Lead-in / out part
Claims (13)
組成が異なるn種(nは2以上の整数)の液体をそれぞれ層流として合流させて幅方向にn個の層流が隣接する多層流を形成し、
該多層流を、前記マイクロ空間下に孔径1μm以上20μm以下の多孔膜を介して配置されたマイクロ流路に流通させることを特徴とする物質分布制御方法。 A method for controlling material distribution in a microspace filled with liquid,
N types of liquids (n is an integer of 2 or more) having different compositions are joined together as a laminar flow to form a multilayer flow in which n laminar flows are adjacent in the width direction,
A substance distribution control method, characterized in that the multilayer flow is circulated through a microchannel disposed under a microspace through a porous membrane having a pore diameter of 1 μm or more and 20 μm or less .
表面にそれぞれマイクロ流路構造が設けられた第一の基板および第二の基板を備え、
前記第一の基板表面のマイクロ流路構造は、多層流が流通する多層流流通部と、該多層流流通部の上流側に配置された多層流形成部と、該多層流流通部の下流側に配置された多層流排出部とを有し、
前記第二の基板表面のマイクロ流路構造は、前記多層流流通部と略同一パターンのマイクロ空間部と、該マイクロ空間部への液体の導入または導出のための導出入路部とを有し、
前記第一の基板と第二の基板とが、前記マイクロ流路構造が設けられた面を内側にして、前記多層流流通部および前記マイクロ空間部の位置が一致するように積層され、
前記多層流流通部と前記マイクロ空間部との間に孔径1μm以上20μm以下の多孔膜が挟持されているデバイス。 A device used in the material distribution control method according to claim 1 or 2,
Comprising a first substrate and a second substrate each having a microchannel structure on the surface;
The microchannel structure on the surface of the first substrate includes a multi-layer flow distribution portion through which a multi-layer flow circulates, a multi-layer flow forming portion disposed upstream of the multi-layer flow distribution portion, and a downstream side of the multi-layer flow distribution portion. A multi-layer flow outlet disposed in the
The microchannel structure on the surface of the second substrate has a microspace portion having substantially the same pattern as the multilayer flow circulation portion, and a lead-in / inlet portion for introducing or leading out liquid to the microspace portion. ,
The first substrate and the second substrate are laminated so that the surface on which the microchannel structure is provided is on the inside, and the positions of the multilayer flow circulation portion and the micro space portion are matched,
A device in which a porous film having a pore diameter of 1 μm or more and 20 μm or less is sandwiched between the multilayer flow distribution part and the micro space part.
組成が異なるn種(nは2以上の整数)の培養液をそれぞれ層流として合流させて幅方向にn個の層流が隣接する多層流を形成し、
該多層流を、前記マイクロ空間下に孔径1μm以上20μm以下の多孔膜を介して配置されたマイクロ流路に流通させることを特徴とする細胞培養方法。 A method of culturing cells in a microspace filled with liquid,
N types of culture solutions having different compositions (n is an integer of 2 or more) are joined together as a laminar flow to form a multilayer flow in which n laminar flows are adjacent in the width direction;
A cell culturing method, wherein the multilayer flow is circulated through a microchannel disposed under a microspace through a porous membrane having a pore diameter of 1 μm or more and 20 μm or less .
前記細胞の分化を制御する物質の種類または濃度が異なるn種(nは2以上の整数)の培養液をそれぞれ層流として合流させて幅方向にn個の層流が隣接する多層流を形成し、
該多層流を、前記マイクロ空間下に孔径1μm以上20μm以下の多孔膜を介して配置されたマイクロ流路に流通させることを特徴とする細胞分化制御方法。 A method for controlling cell differentiation in a microspace filled with liquid,
The n-type (n is an integer of 2 or more) culture solutions having different types or concentrations of substances that control cell differentiation are combined as laminar flows to form a multi-layer flow in which n laminar flows are adjacent in the width direction. And
A method for controlling cell differentiation, characterized in that the multilayer flow is circulated through a microchannel disposed under a microspace through a porous membrane having a pore diameter of 1 μm or more and 20 μm or less .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010011178A JP5594658B2 (en) | 2010-01-21 | 2010-01-21 | Substance distribution control method, device, cell culture method, cell differentiation control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010011178A JP5594658B2 (en) | 2010-01-21 | 2010-01-21 | Substance distribution control method, device, cell culture method, cell differentiation control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011147387A JP2011147387A (en) | 2011-08-04 |
JP5594658B2 true JP5594658B2 (en) | 2014-09-24 |
Family
ID=44534999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010011178A Expired - Fee Related JP5594658B2 (en) | 2010-01-21 | 2010-01-21 | Substance distribution control method, device, cell culture method, cell differentiation control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5594658B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019146531A1 (en) | 2018-01-24 | 2019-08-01 | 横河電機株式会社 | Apparatus for diffusing additive for culture, culture container, culture system, and method for producing cell |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2972117B1 (en) * | 2011-03-04 | 2013-12-20 | Centre Nat Rech Scient | MICROFLUIDIC SYSTEM FOR CONTROLLING A PROFILE OF CONCENTRATION OF MOLECULES LIKELY TO STIMULATE A TARGET |
FR2974360B1 (en) * | 2011-04-22 | 2014-09-12 | Centre Nat Rech Scient | MICROFLUIDIC SYSTEM FOR CONTROLLING A MAP OF CONCENTRATION OF MOLECULES LIKELY TO STIMULATE A TARGET |
JP5943456B2 (en) * | 2011-09-30 | 2016-07-05 | 一般財団法人生産技術研究奨励会 | Method and apparatus for controlling differentiation of biological object |
US20140248698A1 (en) * | 2011-10-21 | 2014-09-04 | Arkray, Inc. | Method for culturing pluripotency-maintained singly dispersed cells by means of laminar flow |
WO2019222872A1 (en) * | 2018-05-21 | 2019-11-28 | 深圳华大生命科学研究院 | High-throughput organs-on-a-chip, and preparation method therefor and application thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0292270A (en) * | 1988-09-30 | 1990-04-03 | Terumo Corp | Device for cell culture |
JP3725147B2 (en) * | 1999-08-25 | 2005-12-07 | 東洋紡績株式会社 | Cell culture module having a vascular network-like structure |
CN101061213B (en) * | 2004-05-19 | 2012-12-19 | 麻省理工学院 | Perfused three-dimensional cell/tissue disease models |
US9023642B2 (en) * | 2006-07-07 | 2015-05-05 | The University Of Houston System | Method and apparatus for a miniature bioreactor system for long-term cell culture |
JP4982768B2 (en) * | 2008-03-12 | 2012-07-25 | 学校法人東京女子医科大学 | Microchannel system for particle processing and particle processing method |
-
2010
- 2010-01-21 JP JP2010011178A patent/JP5594658B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019146531A1 (en) | 2018-01-24 | 2019-08-01 | 横河電機株式会社 | Apparatus for diffusing additive for culture, culture container, culture system, and method for producing cell |
US12270018B2 (en) | 2018-01-24 | 2025-04-08 | Yokogawa Electric Corporation | Culture additive diffusion mechanism, culture container, culture system, and method of producing cells |
Also Published As
Publication number | Publication date |
---|---|
JP2011147387A (en) | 2011-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shin et al. | Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels | |
Khademhosseini et al. | Microscale technologies for tissue engineering and biology | |
US9121847B2 (en) | Three-dimensional microfluidic platforms and methods of use thereof | |
Vickerman et al. | Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging | |
Sivagnanam et al. | Exploring living multicellular organisms, organs, and tissues using microfluidic systems | |
JP5594658B2 (en) | Substance distribution control method, device, cell culture method, cell differentiation control method | |
Lin et al. | Spatial manipulation with microfluidics | |
Sugihara et al. | A new perfusion culture method with a self-organized capillary network | |
Tabata et al. | Multiscale microenvironmental perturbation of pluripotent stem cell fate and self-organization | |
Sala et al. | Microfluidic lab-on-a-chip for studies of cell migration under spatial confinement | |
Gumuscu et al. | Compartmentalized 3D tissue culture arrays under controlled microfluidic delivery | |
Dolega et al. | Facile bench-top fabrication of enclosed circular microchannels provides 3D confined structure for growth of prostate epithelial cells | |
Pitingolo et al. | Gelatin-coated microfluidic channels for 3D microtissue formation: on-chip production and characterization | |
Sasaki et al. | Fabrication of a Gelatin-Based Microdevice for Vascular Cell Culture | |
Bulut et al. | Three‐dimensional vessels‐on‐a‐chip based on hiPSC‐derived vascular endothelial and smooth muscle cells | |
Cheng et al. | Microfluidic platform for human placenta-derived multipotent stem cells culture and applied for enhanced neuronal differentiation | |
Xu et al. | Development of disposable PDMS micro cell culture analog devices with photopolymerizable hydrogel encapsulating living cells | |
Torabi et al. | Cassie–Baxter surfaces for reversible, barrier-free integration of microfluidics and 3D cell culture | |
Cernik et al. | Luminal surface plasma treatment of closed cylindrical microchannels: A tool toward the creation of on-chip vascular endothelium | |
Aydin et al. | Tumor-microenvironment-on-Chip platform for assessing drug response in 3D dynamic culture | |
Iriondo et al. | Simple-Flow: A 3D-Printed Multiwell Flow Plate to Coculture Primary Human Lung Cells at the Air–Liquid Interface | |
Kaisar et al. | In vitro BBB models: Working with static platforms and microfluidic systems | |
Togo et al. | Development of a simple spheroid production method using fluoropolymers with reduced chemical and physical damage | |
Cho et al. | Assembly of hydrogel units for 3D microenvironment in a poly (dimethylsiloxane) channel | |
Tan et al. | Controlled microscale diffusion gradients in quiescent extracellular fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140708 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140728 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5594658 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |