[go: up one dir, main page]

JP5589302B2 - Component built-in substrate and manufacturing method thereof - Google Patents

Component built-in substrate and manufacturing method thereof Download PDF

Info

Publication number
JP5589302B2
JP5589302B2 JP2009103689A JP2009103689A JP5589302B2 JP 5589302 B2 JP5589302 B2 JP 5589302B2 JP 2009103689 A JP2009103689 A JP 2009103689A JP 2009103689 A JP2009103689 A JP 2009103689A JP 5589302 B2 JP5589302 B2 JP 5589302B2
Authority
JP
Japan
Prior art keywords
component
resin
substrate
layer
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009103689A
Other languages
Japanese (ja)
Other versions
JP2010141282A (en
Inventor
元昭 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009103689A priority Critical patent/JP5589302B2/en
Publication of JP2010141282A publication Critical patent/JP2010141282A/en
Application granted granted Critical
Publication of JP5589302B2 publication Critical patent/JP5589302B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は部品内蔵基板及びその製造方法に関するものであり、例えば、システムインパッケージ或いはモジュールに用いる部品内蔵基板を、低背化、小面積化及び低コスト化するための構成に関するものである。   The present invention relates to a component-embedded substrate and a method for manufacturing the same, for example, a configuration for reducing the height, area, and cost of a component-embedded substrate used in a system-in-package or module.

近年、電子機器に対する小型化、高性能化及び低価格化等の要求に伴い、プリント配線板の微細化、多層化、及び電子部品の高密度実装化が急速に進み、プリント配線板に対して半導体チップなどの電子部品を多層回路基板内に内蔵する部品内蔵基板の開発が行われている。   In recent years, along with demands for downsizing, high performance, and low prices for electronic devices, miniaturization of printed wiring boards, multilayering, and high-density mounting of electronic components have rapidly advanced. Development of a component-embedded substrate in which an electronic component such as a semiconductor chip is embedded in a multilayer circuit substrate is underway.

これは、部品を薄いコア基板に実装した後、部品搭載エリアを開口したビルドアップ基板用のビルドアップ絶縁材料、又は、プリプレグ(ガラスファイバクロス含有樹脂或いはカーボンファイバクロス含有樹脂のBステージ状態)等の絶縁材料で積層・硬化して形成するものが主流である(例えば、特許文献1或いは特許文献2参照)。   This is because a build-up insulating material for a build-up substrate in which a component mounting area is opened after mounting the component on a thin core substrate, or a prepreg (glass fiber cloth-containing resin or carbon fiber cloth-containing resin B-stage state), etc. The mainstream is to laminate and harden these insulating materials (see, for example, Patent Document 1 or Patent Document 2).

この場合、コア基板に実装された半導体素子等の内蔵部品は、部品搭載部を開口したプリプレグ等で埋め込む際に、側面からのプリプレグの樹脂と上面からのプリプレグの樹脂により表面及び側面が埋め込まれることになる。   In this case, when the built-in component such as a semiconductor element mounted on the core substrate is embedded with the prepreg or the like having the component mounting portion opened, the surface and the side surface are embedded by the prepreg resin from the side surface and the prepreg resin from the upper surface. It will be.

なお、プリプレグを用いない場合に、半導体チップを搭載した実装基板を貫通ピラーを設けた枠状樹脂基板を介して積層することも提案されている。その場合、枠状樹脂基板の熱や応力に起因する変形による半導体チップの信頼性の低下を防止するために、半導体チップを枠状樹脂基板を構成する樹脂より低弾性の樹脂で覆うことも提案されている(例えば、特許文献3参照)。   In addition, when not using a prepreg, it is also proposed to laminate | stack the mounting board | substrate which mounted the semiconductor chip via the frame-shaped resin board | substrate which provided the penetration pillar. In that case, in order to prevent deterioration of the reliability of the semiconductor chip due to deformation caused by heat and stress of the frame-shaped resin substrate, it is also proposed to cover the semiconductor chip with a resin having lower elasticity than the resin constituting the frame-shaped resin substrate. (For example, see Patent Document 3).

特開2004−163722号公報JP 2004-163722 A 特開2008−244191号公報JP 2008-244191 A 特開2006−120935号公報JP 2006-120935 A

しかし、高密度システムインパッケージ或いはモジュールは、部品内蔵基板を用いることによって面積は小さくなるが、システムインパッケージ或いはモジュールの厚さが厚くなるという問題が新たに生ずる。   However, although the area of the high-density system-in-package or module is reduced by using the component-embedded substrate, there arises a new problem that the thickness of the system-in-package or module is increased.

即ち、部品内蔵基板の表面実装部に薄い半導体チップだけではなくコンデンサ、抵抗或いは水晶発振子等の背の高い電子部品を実装すると、背の高い電子部品によってシステムインパッケージ或いはモジュールの厚さが厚くなる。   That is, when not only a thin semiconductor chip but also a tall electronic component such as a capacitor, resistor, or crystal oscillator is mounted on the surface mounting portion of the component-embedded substrate, the thickness of the system-in-package or module is increased by the tall electronic component. Become.

部品内蔵基板を用いない場合は、薄くできるが、面積は大きいままであり、システムインパッケージ或いはモジュールの低背化と小面積化の両立が課題である。また、部品内蔵基板を製造後に機械加工により「ざぐり」を形成し、実装高さを低くしシステムインパッケージ、又は、モジュールの低背化を図る方法も考えられるが、「ざぐり」工程は非常に高コストという問題がある。   When the component-embedded substrate is not used, the thickness can be reduced, but the area remains large, and it is a problem to achieve both reduction in the height of the system-in-package or module and reduction in area. Another possible method is to form a counterbore by machining after manufacturing the component-embedded board to lower the mounting height and reduce the height of the system-in-package or module. There is a problem of high cost.

そこで、本発明者は、部品内蔵基板製造後に「ざぐり」を形成しない方法として、予め開口部を形成したプリント板基材を接着性を有する樹脂シート、例えば、Bステージのプリプレグ等で貼り合わせる方法を試みた。   Therefore, the present inventor, as a method of not forming the “spot” after manufacturing the component-embedded substrate, is a method of bonding a printed board substrate in which an opening is formed in advance with an adhesive resin sheet, for example, a B-stage prepreg Tried.

しかし、樹脂シートを構成する接着樹脂の流動性が高い場合は、開口部の接続端子の領域にまで接着樹脂が流れ出すという問題がある。   However, when the fluidity of the adhesive resin constituting the resin sheet is high, there is a problem that the adhesive resin flows out to the connection terminal region of the opening.

したがって、本発明は、部品内蔵基板を用いたシステムインパッケージ或いはモジュールの低背化、小面積化且つ低コスト化を可能にすることを目的とする。   Accordingly, an object of the present invention is to enable a system-in-package or module using a component-embedded substrate to have a low profile, a small area, and a low cost.

本発明の一観点からは、内蔵部品を搭載した部品内蔵基板の基板最表面実装部より低い層に外付け部品を接続する端子を有する部品内蔵基板であって、前記外付け部品を接続する端子の露出部を囲む表面実装部の下層を構成する流動性樹脂シートを構成する樹脂のJIS規格C6521の試験方法による樹脂フローが15%未満であり、且つ、他の全ての層のボンディング用の樹脂シートより樹脂の流動性が低い樹脂シートである部品内蔵基板が提供される。 From one aspect of the present invention, there is provided a component built-in substrate having a terminal for connecting an external component to a layer lower than the substrate outermost surface mounting portion of the component built-in substrate on which the built-in component is mounted, and the terminal for connecting the external component The resin flow according to the test method of JIS standard C6521 of the resin constituting the fluid resin sheet constituting the lower layer of the surface mounting portion surrounding the exposed portion of the resin is less than 15%, and the resin for bonding of all other layers There is provided a component-embedded substrate that is a resin sheet having a lower resin fluidity than the sheet.

また、本発明の別の観点からは、内蔵部品を搭載した部品内蔵基板の基板最表面実装部より低い層に外付け部品を接続する端子を有する部品内蔵基板であって、前記外付け部品を接続する端子の露出部を囲む表面実装部の下層を構成する流動性樹脂シートの内の内蔵部品の上部及び側面に接する部分の少なくとも一部に、前記流動性樹脂シートより硬化前に流動性が高くなる樹脂が含まれている部品内蔵基板が提供される。   According to another aspect of the present invention, there is provided a component-embedded substrate having a terminal for connecting the external component to a layer lower than the substrate top surface mounting portion of the component-embedded substrate on which the built-in component is mounted, At least a part of the portion in contact with the upper part and the side surface of the built-in component of the fluid resin sheet constituting the lower layer of the surface mounting portion surrounding the exposed portion of the terminal to be connected has fluidity before curing from the fluid resin sheet. Provided is a component-embedded substrate that contains a resin that becomes higher.

また、本発明の別の観点からは、部品内蔵基板の中間層となる回路を形成した繊維強化樹脂層に半硬化のボンディング用の第1の樹脂シートを重ねた状態で予め内蔵部品の実装位置に対応する第1の開口部を形成する工程と、前記部品内蔵基板の表面層となる回路を形成した繊維強化樹脂層に前記第1の樹脂シートを構成する樹脂よりも流動性が低くJIS規格C6521の試験方法による樹脂フローが15%未満の樹脂を用いた半硬化のボンディング用の第2の樹脂シートを重ねた状態で予め外付け部品用の第2の開口部を形成する工程と、前記第2の開口部を形成した表面層及び前記第1の開口部を形成した中間層を前記内蔵部品を搭載した下層基板上に一括積層して圧接する工程とを有する部品内蔵基板の製造方法が提供される。 Further, from another viewpoint of the present invention, the mounting position of the built-in component in advance in a state where the first resin sheet for semi-curing bonding is superimposed on the fiber reinforced resin layer on which the circuit serving as the intermediate layer of the component built-in substrate is formed. Forming a first opening corresponding to the above and a fiber reinforced resin layer in which a circuit serving as a surface layer of the component-embedded substrate is formed, and has a lower fluidity than the resin constituting the first resin sheet. Forming a second opening for an external component in advance in a state where the second resin sheet for semi-curing bonding using a resin having a resin flow of less than 15% according to the test method of C6521 is stacked; method for manufacturing a component-embedded substrate and a step of pressing collectively stacking an intermediate layer forming the second surface layer to form an opening of and the first opening on the lower substrate mounted with the internal parts Provided.

さらに、本発明の別の観点からは、部品内蔵基板の中間層となる回路を形成した繊維強化樹脂層に半硬化のボンディング用の樹脂シートを重ねた状態で予め内蔵部品の実装位置に対応する第1の開口部を形成する工程と、前記部品内蔵基板の表面層となる回路を形成した繊維強化樹脂層に半硬化のボンディング用の樹脂シートを重ねた状態で予め外付け部品用の第2の開口部を形成する工程と、前記内蔵部品の上部に前記樹脂シートより硬化前に流動性が高くなる高流動性樹脂を設ける工程と、前記第の開口部を形成した表面層及び前記第の開口部を形成した中間層を前記内蔵部品を搭載した下層基板上に一括積層して圧接する工程とを有する部品内蔵基板の製造方法が提供される。 Further, according to another aspect of the present invention, the mounting position of the built-in component is previously coped with a semi-cured bonding resin sheet superimposed on a fiber reinforced resin layer on which a circuit serving as an intermediate layer of the component built-in substrate is formed. A step of forming a first opening, and a second for external components in advance in a state where a semi-cured bonding resin sheet is superimposed on a fiber reinforced resin layer on which a circuit serving as a surface layer of the component-embedded substrate is formed. A step of providing a high fluidity resin having higher fluidity before curing than the resin sheet on the upper part of the built-in component, a surface layer on which the second opening is formed, and the first There is provided a method of manufacturing a component-embedded substrate including a step of collectively laminating and press-contacting an intermediate layer in which one opening is formed on a lower substrate on which the built-in component is mounted.

開示の部品内蔵基板及びその製造方法によれば、表面層における開口部の接続端子の領域にまで接着樹脂が流れ出すことがない。また、内蔵部品の蓋部(上部)の役割を果たすため、良好な樹脂埋め込み性を有する接着性の樹脂シートや樹脂シートより硬化前に流動性が高くなる樹脂を部品内蔵基板に適用することにより、低背化システムインパッケージ、又は、モジュールを実現することができる。   According to the disclosed component-embedded substrate and the manufacturing method thereof, the adhesive resin does not flow out to the connection terminal region of the opening in the surface layer. In addition, by applying an adhesive resin sheet having a good resin embedding property or a resin having higher fluidity before curing than the resin sheet to the built-in component lid (upper part), it is applied to the component built-in substrate. A low-profile system-in-package or a module can be realized.

また、「ざぐり」工程を必要としない部品内蔵基板を用いているので、高密度システムインパッケージ或いはモジュールにおいて、低背化と小面積化の両立が低コストで可能となる。   Further, since the component-embedded substrate that does not require the “spot” step is used, it is possible to achieve both a reduction in height and a reduction in area in a high-density system-in-package or module at a low cost.

本発明の実施の形態の説明図である。It is explanatory drawing of embodiment of this invention. ボイド発生とボイド対策の説明図である。It is explanatory drawing of a void generation | occurrence | production and a void countermeasure. 本発明の実施例1の部品内蔵基板の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle of the component built-in board | substrate of Example 1 of this invention. 本発明の実施例1の部品内蔵基板の図3以降の製造工程の説明図である。It is explanatory drawing of the manufacturing process after FIG. 3 of the component built-in board | substrate of Example 1 of this invention. 本発明の実施例2の部品内蔵基板の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle of the component built-in board | substrate of Example 2 of this invention. 本発明の実施例2の部品内蔵基板の図5以降の製造工程の説明図である。It is explanatory drawing of the manufacturing process after FIG. 5 of the component built-in board | substrate of Example 2 of this invention. 本発明の実施例3の部品内蔵基板の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle of the component built-in board | substrate of Example 3 of this invention. 本発明の実施例3の部品内蔵基板の図7以降の製造工程の説明図である。It is explanatory drawing of the manufacturing process after FIG. 7 of the component built-in board | substrate of Example 3 of this invention. 本発明の実施例4の部品内蔵基板の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle of the component built-in board | substrate of Example 4 of this invention. 本発明の実施例4の部品内蔵基板の図9以降の製造工程の説明図である。It is explanatory drawing of the manufacturing process after FIG. 9 of the component built-in board | substrate of Example 4 of this invention. 本発明の実施例5の部品内蔵基板の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle of the component built-in board | substrate of Example 5 of this invention. 本発明の実施例5の部品内蔵基板の図11以降の製造工程の説明図である。It is explanatory drawing of the manufacturing process after FIG. 11 of the component built-in board | substrate of Example 5 of this invention. 本発明の実施例6の部品内蔵基板の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle of the component built-in board | substrate of Example 6 of this invention. 本発明の実施例6の部品内蔵基板の図13以降の製造工程の説明図である。It is explanatory drawing of the manufacturing process after FIG. 13 of the component built-in board | substrate of Example 6 of this invention. 本発明の実施例7の部品内蔵基板の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle of the component built-in board | substrate of Example 7 of this invention. 本発明の実施例7の部品内蔵基板の図15以降の製造工程の説明図である。It is explanatory drawing of the manufacturing process after FIG. 15 of the component built-in board | substrate of Example 7 of this invention.

ここで、図1及び図2を参照して本発明の実施の形態の部品内蔵基板を説明する。図1は本発明の実施の形態の説明図であり、図1(a)に示すように、1層分のガラス繊維強化樹脂或いはカーボン繊維強化樹脂等の繊維強化樹脂2,8からなる両面銅張り積層板の両側に配線3,9を形成した中間層1を1枚と表面層7を1枚準備する。なお、中間層1には、高背表面実装部品を実装するための実装分品用端子4を形成しておく。   Here, a component built-in substrate according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an explanatory view of an embodiment of the present invention, and as shown in FIG. 1 (a), double-sided copper comprising fiber reinforced resins 2, 8 such as glass fiber reinforced resin or carbon fiber reinforced resin for one layer. One intermediate layer 1 and one surface layer 7 on which wirings 3 and 9 are formed on both sides of the tension laminate are prepared. The intermediate layer 1 is provided with mounting parts 4 for mounting a high-profile surface mounting component.

中間層1には樹脂フローが15%以上のBステージの高流動性の第1の樹脂シート5を、表面層7には樹脂フローが15%未満のBステージの低流動性の第2の樹脂シート10を貼り付ける。また、中間層1には内蔵部品実装部を開口して開口部6を形成し、表面層7には基板完成後に実装する背の高い高背表面実装部品の搭載場所を開口して開口部11を形成する。   The intermediate layer 1 is a B-stage high fluidity first resin sheet 5 with a resin flow of 15% or more, and the surface layer 7 is a B-stage low fluidity second resin with a resin flow of less than 15%. A sheet 10 is pasted. The intermediate layer 1 has a built-in component mounting portion opened to form an opening 6, and the surface layer 7 has a mounting place for a tall, high-profile surface mounting component to be mounted after completion of the substrate. Form.

ここで述べる樹脂の流動性については、JIS規格C6521の試験方法による樹脂フローが15%未満のものを低流動性とし、同試験で樹脂フローが15%以上のもの高流動性とするものであり、以下同じである。尚、通常の一般的なプリプレグは、同試験において樹脂フローが20〜40%である。また、樹脂の流動性について加熱時の溶融粘度で表すと、低流動性というのは、積層時の溶融粘度が50000poise以上、高流動性というのは、積層時の溶融粘度が20000poise未満と表すことができる。   Regarding the fluidity of the resin described here, a resin flow of less than 15% according to the test method of JIS standard C6521 is regarded as a low fluidity, and a resin flow of 15% or more in the same test is regarded as a high fluidity. The same shall apply hereinafter. In addition, the normal general prepreg has a resin flow of 20 to 40% in the same test. In addition, when the flowability of the resin is expressed by the melt viscosity at the time of heating, the low flowability means that the melt viscosity at the time of lamination is 50000 poise or more, and the high flowability means that the melt viscosity at the time of lamination is less than 20000 poise. Can do.

樹脂の流動性の低い樹脂シートとしては、シリカ(SiO)、アルミナ(Al)、タルク(MgSiO)等の無機フィラーを70wt%以上混合したエポキシ樹脂等の熱硬化樹脂シート、又は、無機フィラーを含有しない場合は、ポリイミド樹脂等の熱可塑性樹脂シートを選択することができる。また、樹脂分の流動性の低いガラスクロス或いはカーボンファイバクロスを含有したプリプレグでも良い。 As a resin sheet having low resin fluidity, a thermosetting resin sheet such as an epoxy resin in which 70 wt% or more of an inorganic filler such as silica (SiO 2 ), alumina (Al 2 O 3 ), and talc (MgSiO) is mixed, or When an inorganic filler is not contained, a thermoplastic resin sheet such as a polyimide resin can be selected. Further, a prepreg containing a glass cloth or carbon fiber cloth having a low resin content may be used.

次いで、ガラス繊維強化樹脂或いはカーボン繊維強化樹脂等の繊維強化樹脂13からなる多層積層したコア基板12を準備する。このコア基板12に設けた配線14に例えば、ベアチップ等の内蔵部品15をフリップチップ実装する。フリップチップ実装方法としては、公知のNCP(Non Conductive Paste)を用いた圧接工法、超音波接合工法、半田ボールを用いる方法、電極に半田を付着させる方法、等を用いることができる。一般的にNCPを用いた圧接工法以外は、フリップチップ実装後にアンダーフィルで充填を行う。なお、図においては、コア基板12は、2層分の繊維強化樹脂13を積層した3層積層基板としているが、積層数は任意である。   Next, a multi-layered core substrate 12 made of fiber reinforced resin 13 such as glass fiber reinforced resin or carbon fiber reinforced resin is prepared. For example, a built-in component 15 such as a bare chip is flip-chip mounted on the wiring 14 provided on the core substrate 12. As a flip-chip mounting method, a pressure welding method using a known NCP (Non Conductive Paste), an ultrasonic bonding method, a method using a solder ball, a method of attaching solder to an electrode, or the like can be used. In general, except for the pressure welding method using NCP, filling is performed with underfill after flip chip mounting. In the figure, the core substrate 12 is a three-layer laminated substrate in which two layers of fiber reinforced resin 13 are laminated, but the number of laminated layers is arbitrary.

次いで、図1(b)に示すように、3つのパーツの表面層7、中間層1、コア基板12を互いに位置合わせした状態で重ねて一括積層する。一括積層の条件としては、2〜7MPa、150〜200℃の中から選ぶ。その後、所定の位置をドリルで加工しスルーホールを形成する。次に、スルーホールめっきを行ってスルービアを形成し、ソルダーレジストを形成することで部品内蔵基板が完成する。   Next, as shown in FIG. 1B, the surface layer 7, the intermediate layer 1, and the core substrate 12 of the three parts are stacked and stacked together in an aligned state. The condition for batch lamination is selected from 2 to 7 MPa and 150 to 200 ° C. Thereafter, a predetermined position is processed with a drill to form a through hole. Next, through-hole plating is performed to form through vias, and a solder resist is formed to complete the component built-in substrate.

完成した部品内蔵基板は、表面実装部品の実装場所に側面からの樹脂の染み出しが少なく、既に形成してある実装部品用端子4を第2の樹脂シートに由来する樹脂が覆うことを防ぐことができる。この部品内蔵基板の表面層7の実装部にベアチップ等の低背表面実装部品16をフリップチップ実装するとともに、開口部11に露出する実装部品用端子4には、コンデンサ或いは水晶発振子等の高背表面実装部品17を実装する。   The completed component-embedded substrate has less resin oozing out from the side surface at the mounting location of the surface mounting component, and prevents the resin derived from the second resin sheet from covering the already formed mounting component terminals 4 Can do. A low-profile surface mounting component 16 such as a bare chip is flip-chip mounted on the mounting portion of the surface layer 7 of the component-embedded substrate, and a mounting component terminal 4 exposed to the opening 11 has a capacitor or a crystal oscillator or the like. The back surface mounting component 17 is mounted.

但し、第2の樹脂シートの樹脂フローが小さすぎる場合には、実装部品用端子4の領域にまで第2の樹脂シートに由来する樹脂が流れ出さないが、内蔵部品15の蓋部(上部)に用いる場合には、樹脂不足が生じるという問題があるのでこの事情を図2を参照して説明する。   However, when the resin flow of the second resin sheet is too small, the resin derived from the second resin sheet does not flow up to the area of the mounting component terminals 4, but the lid portion (upper part) of the built-in component 15. In the case of using for this, there is a problem that a resin shortage occurs, so this situation will be described with reference to FIG.

図2(a)は、ボイド発生の説明図であり、第2の樹脂シートの樹脂フローが小さすぎる場合には、内蔵部品15の上部において樹脂不足が生じ、硬化後の硬化樹脂層18にボイド19が形成される場合がある。   FIG. 2A is an explanatory diagram of void generation. When the resin flow of the second resin sheet is too small, resin shortage occurs in the upper part of the built-in component 15, and voids are formed in the cured resin layer 18 after curing. 19 may be formed.

そこで、図2(b)に示すように、内蔵部品15の上部に対応する位置に樹脂フローが15%以上のBステージの高流動性樹脂シート20を貼り付ける。3つのパーツの表面層7、中間層1、コア基板12を互いに位置合わせした状態で重ねて一括積層した場合、この高流動性樹脂シート20に由来する樹脂が内蔵部品15の上面及び側面を良好に埋め込むことになり、ボイドは発生しない。   Therefore, as shown in FIG. 2B, a B-stage high-fluidity resin sheet 20 having a resin flow of 15% or more is attached to a position corresponding to the upper part of the built-in component 15. When the surface layer 7, the intermediate layer 1, and the core substrate 12 of the three parts are stacked and stacked together in a state of alignment with each other, the resin derived from the high-fluidity resin sheet 20 provides good top and side surfaces of the built-in component 15. The void will not be generated.

また、スルーホール及びスルービアの形成は必須ではなく、スルーホール及びスルービアを形成しない方法として、上下の配線層の接続に印刷法で形成する突起状の銀ペーストバンプを用いる方法、即ち、所謂「B2 it」法(必要ならば、特開2005−322871号公報参照)を用いても良い。 In addition, the formation of through holes and through vias is not essential, and as a method of not forming through holes and through vias, a method of using protruding silver paste bumps formed by a printing method to connect upper and lower wiring layers, that is, so-called “B The2 it” method (see JP-A-2005-328771, if necessary) may be used.

また、ソルダーレジスト形成前に、公知のビルドアッププロセスを用いて、ビルドアップ多層配線をさらに形成しても良い。この場合には、ドライフィルム型絶縁膜ではなく、ガラスクロス等を含んだ比較的ハードな絶縁樹脂シートを用い、高背表面実装部品の実装箇所に対応する位置に開口部を設けておけば良い。   Further, before forming the solder resist, a build-up multilayer wiring may be further formed using a known build-up process. In this case, instead of a dry film type insulating film, a relatively hard insulating resin sheet including glass cloth or the like may be used, and an opening may be provided at a position corresponding to a mounting position of a high-profile surface mounting component. .

また、高流動性樹脂シートを用いる代わりにコア基板12上に実装したベアチップ等の内蔵部品15の上部にのみ流動性樹脂シートより硬化前に流動性が高くなる樹脂を塗布しても良い。このような硬化前に流動性が高くなる樹脂としては、硬化前の溶融粘度が20000poise未満が好ましい。例えば、樹脂としては、エポキシ樹脂、シアネートエステル樹脂、等が好ましい。また、シリカ、アルミナ、タルク等の無機フィラーを含有していても良い。   Further, instead of using the high fluidity resin sheet, a resin having higher fluidity may be applied to the upper part of the built-in component 15 such as a bare chip mounted on the core substrate 12 before curing than the fluidity resin sheet. As such a resin having high fluidity before curing, the melt viscosity before curing is preferably less than 20000 poise. For example, the resin is preferably an epoxy resin, a cyanate ester resin, or the like. Moreover, you may contain inorganic fillers, such as a silica, an alumina, and a talc.

以上を前提として、次に、図3及び図4を参照して、本発明の実施例1の部品内蔵基板の製造工程を説明する。まず、図3(a)に示すように、例えば、0.1mm厚さの1層分のガラス繊維強化樹脂22,32からなる両面銅張り積層板の両側に配線23,33を形成した中間層21を1枚と表面層31を1枚準備する。なお、中間層21には表面実装端子24を形成し、表面層31には配線33と同時にパッド34を形成する。   Based on the above, next, the manufacturing process of the component built-in substrate according to the first embodiment of the present invention will be described with reference to FIGS. First, as shown in FIG. 3A, for example, an intermediate layer in which wirings 23 and 33 are formed on both sides of a double-sided copper-clad laminate made of glass fiber reinforced resin 22 and 32 for one layer having a thickness of 0.1 mm. One sheet 21 and one surface layer 31 are prepared. A surface mounting terminal 24 is formed on the intermediate layer 21, and a pad 34 is formed simultaneously with the wiring 33 on the surface layer 31.

この中間層21には例えば、樹脂フローが40%で0.1mm厚さのBステージのプリプレグ25を貼り付ける。また、中間層21には、内蔵部品実装部に対応する箇所をプリプレグ25と一緒に開口して開口部26を形成する。一方、表面層31には例えば、樹脂フローが1%で0.06mm厚さのBステージの低流動性プリプレグ35を貼り付ける。
この表面層31には基板完成後に実装する背の高い表面実装部品の搭載場所となる開口部36を低流動性プリプレグ35と一緒に開口する。
For example, a B-stage prepreg 25 having a resin flow of 40% and a thickness of 0.1 mm is attached to the intermediate layer 21. In the intermediate layer 21, a portion corresponding to the built-in component mounting portion is opened together with the prepreg 25 to form an opening 26. On the other hand, for example, a B-stage low-fluidity prepreg 35 having a resin flow of 1% and a thickness of 0.06 mm is attached to the surface layer 31.
In this surface layer 31, an opening 36 serving as a mounting place for a tall surface mounting component to be mounted after completion of the substrate is opened together with the low fluidity prepreg 35.

また、例えば、0.2mm厚さの2層分のガラス繊維強化樹脂42からなる3層積層基板41をコア基板として準備する。なお、3層積層基板41には配線43とともに、Si半導体素子45に設けたAuバンプ46と接続するパッド44を形成しておく。   For example, a three-layer laminated substrate 41 made of glass fiber reinforced resin 42 for two layers having a thickness of 0.2 mm is prepared as a core substrate. A pad 44 connected to the Au bump 46 provided on the Si semiconductor element 45 is formed on the three-layer laminated substrate 41 together with the wiring 43.

この3層積層基板41に例えば、5×5mmのサイズで厚さ0.08mmのSi半導体素子45をNCP47を用いた圧接工法で接合して部品搭載コア層とする。この圧接工法の条件は、例えば、温度を200℃とし、1バンプ当たりの荷重を45gとする。なお、NCP47を用いるため、アンダーフィル工程は不要となる。   For example, a Si semiconductor element 45 having a size of 5 × 5 mm and a thickness of 0.08 mm is joined to the three-layer laminated substrate 41 by a pressure welding method using NCP47 to form a component mounting core layer. The conditions of this pressure welding method are, for example, a temperature of 200 ° C. and a load per bump of 45 g. In addition, since NCP47 is used, an underfill process becomes unnecessary.

次いで、図3(b)に示すように、Si半導体素子45を搭載した3層積層基板41上に中間層21及び表面層31を互いに位置合わせして順次重ねて、例えば、3MPa、180℃で一括積層する。なお、プリプレグ25及び低流動性プリプレグ35はそれぞれ硬化樹脂層27,37となる。   Next, as shown in FIG. 3B, the intermediate layer 21 and the surface layer 31 are aligned and sequentially stacked on the three-layer laminated substrate 41 on which the Si semiconductor element 45 is mounted, for example, at 3 MPa and 180 ° C. Laminate all together. The prepreg 25 and the low fluidity prepreg 35 become the cured resin layers 27 and 37, respectively.

次いで、図4(c)に示すように、所定の位置をドリルで加工しスルーホールを形成したのち、スルーホールめっきを行いスルービア48を形成する。   Next, as shown in FIG. 4C, after a predetermined position is processed with a drill to form a through hole, through-hole plating is performed to form a through via 48.

次いで、図4(d)に示すように、積層基板の両面にソルダーレジスト49を形成したのち、ソルダーレジスト49から露出する配線33,43に、ニッケルめっき、続けて金めっき(いずれも図示を省略)の表面処理を行うことによって、部品内蔵基板が完成する。   Next, as shown in FIG. 4D, after forming the solder resist 49 on both surfaces of the multilayer substrate, the wiring 33 and 43 exposed from the solder resist 49 are nickel-plated and then gold-plated (both not shown) The component-embedded substrate is completed by performing the surface treatment of).

このように作製した部品内蔵基板は、表面実装部品の実装場所に側面からの樹脂の染み出しがなく、既に形成してある表面実装端子部を樹脂が覆うことを防いでいることを確認できた。   It was confirmed that the component-embedded board produced in this way had no resin oozing out from the side surface at the mounting location of the surface-mounted component, and prevented the resin from covering the surface-mounted terminal portion that had already been formed. .

また、部品内蔵基板の断面観察を行ったところ、Si半導体素子45の周囲に樹脂不足に起因するボイド等は観察されなかった。これは、Si半導体素子45の上部の蓋に相当するBステージの低流動性プリプレグ35は、樹脂フローが1%で流動性は低いが、中間層21のプリプレグ25は樹脂フローが40%であり流動性が高いため、中間層21のプリプレグ25からSi半導体素子45の上部にまで、樹脂が供給できたものと考えられる。   Further, when the cross section of the component built-in substrate was observed, no voids or the like due to the lack of resin were observed around the Si semiconductor element 45. This is because the B-stage low-fluidity prepreg 35 corresponding to the upper lid of the Si semiconductor element 45 has a resin flow of 1% and low fluidity, but the prepreg 25 of the intermediate layer 21 has a resin flow of 40%. Since the fluidity is high, it is considered that the resin could be supplied from the prepreg 25 of the intermediate layer 21 to the upper part of the Si semiconductor element 45.

次に、図5及び図6を参照して、本発明の実施例2の部品内蔵基板の製造工程を説明する。まず、図5(a)に示すように、例えば、0.1mm厚さの1層分のガラス繊維強化樹脂22,32からなる両面銅張り積層板の両側に配線23,33を形成した中間層21を1枚と表面層31を1枚準備する。なお、中間層21には表面実装端子24を形成し、表面層31には配線33と同時にパッド34を形成する。   Next, with reference to FIG.5 and FIG.6, the manufacturing process of the component built-in board | substrate of Example 2 of this invention is demonstrated. First, as shown in FIG. 5A, for example, an intermediate layer in which wirings 23 and 33 are formed on both sides of a double-sided copper-clad laminate made of glass fiber reinforced resin 22 and 32 having a thickness of 0.1 mm. One sheet 21 and one surface layer 31 are prepared. A surface mounting terminal 24 is formed on the intermediate layer 21, and a pad 34 is formed simultaneously with the wiring 33 on the surface layer 31.

この中間層21には例えば、樹脂フローが25%で0.06mm厚さのBステージのプリプレグ25を貼り付ける。また、中間層21には、内蔵部品実装部に対応する箇所をプリプレグ25と一緒に開口して開口部26を形成する。   For example, a B-stage prepreg 25 having a resin flow of 25% and a thickness of 0.06 mm is attached to the intermediate layer 21. In the intermediate layer 21, a portion corresponding to the built-in component mounting portion is opened together with the prepreg 25 to form an opening 26.

一方、表面層31には例えば、樹脂フローが1%で0.06mm厚さのBステージの低流動性プリプレグ35を貼り付ける。この表面層31には基板完成後に実装する背の高い表面実装部品の搭載場所となる開口部36を低流動性プリプレグ35と一緒に開口する。
また、表面層31のBステージの低流動性プリプレグ35の更にその上に、内蔵部品実装部に対応する領域のみに例えば、樹脂フローが40%でBステージの0.04mm厚さの熱硬化性エポキシ樹脂からなる高流動性樹脂層38を貼り付ける。
On the other hand, for example, a B-stage low-fluidity prepreg 35 having a resin flow of 1% and a thickness of 0.06 mm is attached to the surface layer 31. In this surface layer 31, an opening 36 serving as a mounting place for a tall surface mounting component to be mounted after completion of the substrate is opened together with the low fluidity prepreg 35.
Further, on the low-flow prepreg 35 of the B stage of the surface layer 31, for example, only in the region corresponding to the built-in component mounting portion, for example, the resin flow is 40% and the thermosetting of 0.04 mm thickness of the B stage. A high fluidity resin layer 38 made of an epoxy resin is attached.

また、例えば、0.2mm厚さの2層分のガラス繊維強化樹脂42からなる3層積層基板41をコア基板として準備する。なお、3層積層基板41には配線43とともに、Si半導体素子45に設けたAuバンプ46と接続するパッド44を形成しておく。   For example, a three-layer laminated substrate 41 made of glass fiber reinforced resin 42 for two layers having a thickness of 0.2 mm is prepared as a core substrate. A pad 44 connected to the Au bump 46 provided on the Si semiconductor element 45 is formed on the three-layer laminated substrate 41 together with the wiring 43.

この3層積層基板41に例えば、7×7mmのサイズで厚さ0.09mmのSi半導体素子45をNCP47を用いた圧接工法で接合して部品搭載コア層とする。この圧接工法の条件は、例えば、温度を200℃とし、1バンプ当たりの荷重を45gとする。なお、NCP47を用いるため、アンダーフィル工程は不要となる。   For example, a Si semiconductor element 45 having a size of 7 × 7 mm and a thickness of 0.09 mm is joined to the three-layer laminated substrate 41 by a pressure welding method using NCP47 to form a component mounting core layer. The conditions of this pressure welding method are, for example, a temperature of 200 ° C. and a load per bump of 45 g. In addition, since NCP47 is used, an underfill process becomes unnecessary.

次いで、図5(b)に示すように、Si半導体素子45を搭載した3層積層基板41上に中間層21及び表面層31を互いに位置合わせして順次重ねて、例えば、3MPa、180℃で一括積層する。なお、プリプレグ25、低流動性プリプレグ35及び高流動性樹脂層38はそれぞれ硬化樹脂層27,37,39となる。   Next, as shown in FIG. 5B, the intermediate layer 21 and the surface layer 31 are aligned and sequentially stacked on the three-layer laminated substrate 41 on which the Si semiconductor element 45 is mounted, for example, at 3 MPa and 180 ° C. Laminate all together. The prepreg 25, the low fluidity prepreg 35, and the high fluidity resin layer 38 become the cured resin layers 27, 37, and 39, respectively.

次いで、図6(c)に示すように、所定の位置をドリルで加工しスルーホールを形成したのち、スルーホールめっきを行いスルービア48を形成する。   Next, as shown in FIG. 6C, after a predetermined position is processed with a drill to form a through hole, through hole plating is performed to form a through via 48.

次いで、図6(d)に示すように、積層基板の両面にソルダーレジスト49を形成したのち、ソルダーレジスト49から露出する配線33,43に、ニッケルめっき、続けて金めっき(いずれも図示を省略)の表面処理を行うことによって、部品内蔵基板が完成する。   Next, as shown in FIG. 6D, after forming the solder resist 49 on both surfaces of the laminated substrate, the wiring 33 and 43 exposed from the solder resist 49 are nickel-plated and then gold-plated (both not shown) The component-embedded substrate is completed by performing the surface treatment of).

このように作製した部品内蔵基板は、表面実装部品の実装場所に側面からの樹脂の染み出しがなく、既に形成してある表面実装端子部を樹脂が覆うことを防いでいることを確認できた。   It was confirmed that the component-embedded board produced in this way had no resin oozing out from the side surface at the mounting location of the surface-mounted component, and prevented the resin from covering the surface-mounted terminal portion that had already been formed. .

また、部品内蔵基板の断面観察を行ったところ、Si半導体素子45の周囲に樹脂不足に起因するボイド等は観察されなかった。これは、Si半導体素子45に対応する位置に設けた熱硬化性エポキシ樹脂からなる高流動性樹脂層38の流動性が高いため、この熱硬化性エポキシ樹脂によりSi半導体素子45の上部及び側面に樹脂が供給できたものと考えられる。   Further, when the cross section of the component built-in substrate was observed, no voids or the like due to the lack of resin were observed around the Si semiconductor element 45. This is because the fluidity of the high fluidity resin layer 38 made of a thermosetting epoxy resin provided at a position corresponding to the Si semiconductor element 45 is high. It is thought that the resin could be supplied.

次に、図7及び図8を参照して、本発明の実施例3の部品内蔵基板の製造工程を説明する。まず、図7(a)に示すように、例えば、0.1mm厚さの1層分のガラス繊維強化樹脂22,32からなる両面銅張り積層板の両側に配線23,33を形成した中間層21を1枚と表面層31を1枚準備する。なお、中間層21には表面実装端子24を形成し、表面層31には配線33と同時にパッド34を形成する。また、中間層21の表裏に設けた配線23はスルービア(図示は省略)で予め接続しておくとともに、表面層31の表裏に設けた配線33もスルービア(図示は省略)で予め接続しておく。なお、ここでいうスルービアは後述する突起状の銀ペーストバンプで形成しても良いし、或いは、スルーホール形成後にめっきで形成しても良い。   Next, with reference to FIG.7 and FIG.8, the manufacturing process of the component built-in board | substrate of Example 3 of this invention is demonstrated. First, as shown in FIG. 7A, for example, an intermediate layer in which wirings 23 and 33 are formed on both sides of a double-sided copper-clad laminate made of glass fiber reinforced resin 22 and 32 having a thickness of 0.1 mm. One sheet 21 and one surface layer 31 are prepared. A surface mounting terminal 24 is formed on the intermediate layer 21, and a pad 34 is formed simultaneously with the wiring 33 on the surface layer 31. Further, the wirings 23 provided on the front and back of the intermediate layer 21 are connected in advance by through vias (not shown), and the wirings 33 provided on the front and back of the surface layer 31 are also connected in advance by through vias (not shown). . The through via referred to here may be formed by a protruding silver paste bump described later, or may be formed by plating after forming the through hole.

この中間層21の表面のビア部には、平均高さが例えば、0.12mmの突起状の銀ペーストバンプ28を予め形成しておくとともに、中間層21の裏面には例えば、樹脂フローが30%で0.1mm厚さのBステージのプリプレグ25を貼り付ける。また、中間層21には、内蔵部品実装部に対応する箇所をプリプレグ25と一緒に開口して開口部26を形成する。   A protruding silver paste bump 28 having an average height of, for example, 0.12 mm is formed in advance in the via portion on the surface of the intermediate layer 21, and a resin flow of, for example, 30 is provided on the back surface of the intermediate layer 21. A B-stage prepreg 25 having a thickness of 0.1 mm is attached. In the intermediate layer 21, a portion corresponding to the built-in component mounting portion is opened together with the prepreg 25 to form an opening 26.

一方、表面層31には例えば、樹脂フローが2%で0.05mm厚さのBステージの熱可塑性ポリイミド樹脂層51を貼り付ける。この表面層31には基板完成後に実装する背の高い表面実装部品の搭載場所となる開口部36を熱可塑性ポリイミド樹脂層51と一緒に開口する。また、表面層31のBステージの熱可塑性ポリイミド樹脂層51の更にその上に、内蔵部品実装部に対応する領域のみに例えば、樹脂フローが40%でBステージの0.05mm厚さの熱硬化性エポキシ樹脂層52を貼り付ける。   On the other hand, for example, a B-stage thermoplastic polyimide resin layer 51 having a resin flow of 2% and a thickness of 0.05 mm is attached to the surface layer 31. In the surface layer 31, an opening 36 serving as a mounting place for a tall surface mounting component to be mounted after completion of the substrate is opened together with the thermoplastic polyimide resin layer 51. Further, on the surface layer 31 of the B-stage thermoplastic polyimide resin layer 51, only on the region corresponding to the built-in component mounting portion, for example, the resin flow is 40% and the B-stage thermosetting is 0.05 mm thick. A sticky epoxy resin layer 52 is attached.

また、例えば、0.2mm厚さの2層分のガラス繊維強化樹脂62からなる3層積層基板61をコア基板として準備する。この3層積層基板61には配線63とともに、Si半導体素子67に設けたAuバンプ68と接続するパッド64を形成しておく。なお、3層積層基板62も突起状の銀ペーストバンプ65でビア接続してあるとともに、この3層積層基板61の部品搭載側の面のビア部にも予め平均高さが例えば、0.18mmの突起状の銀ペーストバンプ66を予め形成しておく。   Further, for example, a three-layer laminated substrate 61 made of two layers of glass fiber reinforced resin 62 having a thickness of 0.2 mm is prepared as a core substrate. A pad 64 connected to the Au bump 68 provided on the Si semiconductor element 67 is formed on the three-layer laminated substrate 61 together with the wiring 63. The three-layer laminated substrate 62 is also connected via vias with protruding silver paste bumps 65. The average height of the three-layer laminated substrate 61 on the component mounting side surface is 0.18 mm in advance, for example. The protruding silver paste bump 66 is formed in advance.

この3層積層基板61に例えば、Auバンプ68を形成した6×6mmのサイズで厚さ0.1mmのSi半導体素子67を載置し、加熱してはんだ接合する。その後、アンダーフィル材を例えば、100℃で充填したのち、150℃、1時間で硬化させてアンダーフィル樹脂69とする。   For example, a Si semiconductor element 67 having a size of 6 × 6 mm and a thickness of 0.1 mm on which Au bumps 68 are formed is placed on the three-layer laminated substrate 61 and heated and soldered. Then, after filling an underfill material at, for example, 100 ° C., it is cured at 150 ° C. for 1 hour to form an underfill resin 69.

次いで、図7(b)に示すように、Si半導体素子67を搭載した3層積層基板61上に中間層21及び表面層31を互いに位置合わせして順次重ねて、例えば、3MPa、200℃で一括積層する。なお、プリプレグ25、熱可塑性ポリイミド樹脂層51及び熱硬化性エポキシ樹脂層52はそれぞれ硬化樹脂層27,53,54となる。   Next, as shown in FIG. 7B, the intermediate layer 21 and the surface layer 31 are aligned and sequentially stacked on the three-layer laminated substrate 61 on which the Si semiconductor element 67 is mounted, for example, at 3 MPa and 200 ° C. Laminate all together. The prepreg 25, the thermoplastic polyimide resin layer 51, and the thermosetting epoxy resin layer 52 become the cured resin layers 27, 53, and 54, respectively.

また、3層積層基板61の表面に設けた配線63と中間層21の裏面に設けた配線23は銀ペーストバンプ66で接続され、中間層21の表面に設けた配線23と表面層31の裏面に設けた配線33とは銀ペーストバンプ28で接続される。   Further, the wiring 63 provided on the surface of the three-layer laminated substrate 61 and the wiring 23 provided on the back surface of the intermediate layer 21 are connected by silver paste bumps 66, and the wiring 23 provided on the surface of the intermediate layer 21 and the back surface of the surface layer 31. Are connected to the wiring 33 provided by the silver paste bump 28.

次いで、図8(c)に示すように、積層基板の両面にソルダーレジスト70を形成したのち、ソルダーレジスト70から露出する配線33,63に、ニッケルめっき、続けて金めっき(いずれも図示を省略)の表面処理を行うことによって、部品内蔵基板が完成する。   Next, as shown in FIG. 8C, after forming the solder resist 70 on both surfaces of the laminated substrate, the wiring 33 and 63 exposed from the solder resist 70 are nickel-plated and then gold-plated (both not shown) The component-embedded substrate is completed by performing the surface treatment of).

作製した実施例3の部品内蔵基板は、表面実装部品の実装場所に側面からの樹脂の染み出しがなく、既に形成してある表面実装端子部を樹脂が覆うことを防いでいることを確認できた。また、この部品内蔵基板の断面観察を行ったところ、Si半導体素子67の周囲に樹脂不足に起因するボイド等は観察されなかった。   The produced component-embedded substrate of Example 3 has confirmed that the resin does not bleed out from the side surface at the mounting location of the surface-mounted component, and the resin prevents the surface-mounted terminal portion already formed from being covered. It was. Further, when the cross section of the component built-in substrate was observed, no voids or the like due to the lack of resin were observed around the Si semiconductor element 67.

次に、図9及び図10を参照して、本発明の実施例4の部品内蔵基板の製造工程を説明する。まず、図9(a)に示すように、例えば、0.1mm厚さの1層分のガラス繊維強化樹脂22,32からなる両面銅張り積層板の両側に配線23,33を形成した中間層21を1枚と表面層31を1枚準備する。なお、中間層21には表面実装端子24を形成し、表面層31には配線33と同時にパッド34を形成する。また、中間層21の表裏に設けた配線23はスルービア(図示は省略)で予め接続しておくとともに、表面層31の表裏に設けた配線33もスルービア(図示は省略)で予め接続しておく。なお、ここでいうスルービアも後述する突起状の銀ペーストバンプで形成しても良いし、或いは、スルーホール形成後にめっきで形成しても良い。   Next, with reference to FIG. 9 and FIG. 10, a manufacturing process of the component built-in substrate according to the fourth embodiment of the present invention will be described. First, as shown in FIG. 9A, for example, an intermediate layer in which wirings 23 and 33 are formed on both sides of a double-sided copper-clad laminate made of glass fiber reinforced resin 22 and 32 having a thickness of 0.1 mm. One sheet 21 and one surface layer 31 are prepared. A surface mounting terminal 24 is formed on the intermediate layer 21, and a pad 34 is formed simultaneously with the wiring 33 on the surface layer 31. Further, the wirings 23 provided on the front and back of the intermediate layer 21 are connected in advance by through vias (not shown), and the wirings 33 provided on the front and back of the surface layer 31 are also connected in advance by through vias (not shown). . The through via referred to here may be formed by a protruding silver paste bump described later, or may be formed by plating after forming the through hole.

この中間層21の表面のビア部には、平均高さが例えば、0.12mmの突起状の銀ペーストバンプ28を予め形成しておくとともに、中間層21の裏面には例えば、樹脂フローが30%で0.1mm厚さのBステージのプリプレグ25を貼り付ける。また、中間層21には、内蔵部品実装部に対応する箇所をプリプレグ25と一緒に開口して開口部26を形成する。   A protruding silver paste bump 28 having an average height of, for example, 0.12 mm is formed in advance in the via portion on the surface of the intermediate layer 21, and a resin flow of, for example, 30 is provided on the back surface of the intermediate layer 21. A B-stage prepreg 25 having a thickness of 0.1 mm is attached. In the intermediate layer 21, a portion corresponding to the built-in component mounting portion is opened together with the prepreg 25 to form an opening 26.

一方、表面層31には例えば、樹脂フローが2%で0.05mm厚さのBステージのシリカフィラーを80wt%含有させたフィラー入り熱硬化性エポキシ樹脂層55を貼り付ける。この表面層31には基板完成後に実装する背の高い表面実装部品の搭載場所となる開口部36をフィラー入り熱硬化性エポキシ樹脂層55と一緒に開口する。また、表面層31のBステージのフィラー入り熱硬化性エポキシ樹脂層55の更にその上に、内蔵部品実装部に対応する領域のみに例えば、樹脂フローが40%でBステージの0.05mm厚さの熱硬化性エポキシ樹脂層52を貼り付ける。   On the other hand, a filler-containing thermosetting epoxy resin layer 55 containing, for example, 80% by weight of B stage silica filler having a resin flow of 2% and a thickness of 0.05 mm is attached to the surface layer 31. In the surface layer 31, an opening 36 serving as a mounting place for a tall surface mounting component to be mounted after completion of the substrate is opened together with a thermosetting epoxy resin layer 55 containing a filler. Further, on the B-stage filler-containing thermosetting epoxy resin layer 55 of the surface layer 31, for example, only in the region corresponding to the built-in component mounting portion, the resin flow is 40% and the B-stage thickness is 0.05 mm. The thermosetting epoxy resin layer 52 is affixed.

また、例えば、0.2mm厚さの2層分のガラス繊維強化樹脂62からなる3層積層基板61をコア基板として準備する。この3層積層基板61には配線63とともに、Si半導体素子67に設けたAuバンプ68と接続するパッド64を形成しておく。なお、3層積層基板62も突起状の銀ペーストバンプ65でビア接続してあるとともに、この3層積層基板61の部品搭載側の面のビア部にも予め平均高さが例えば、0.18mmの突起状の銀ペーストバンプ66を予め形成しておく。   Further, for example, a three-layer laminated substrate 61 made of two layers of glass fiber reinforced resin 62 having a thickness of 0.2 mm is prepared as a core substrate. A pad 64 connected to the Au bump 68 provided on the Si semiconductor element 67 is formed on the three-layer laminated substrate 61 together with the wiring 63. The three-layer laminated substrate 62 is also connected via vias with protruding silver paste bumps 65. The average height of the three-layer laminated substrate 61 on the component mounting side surface is 0.18 mm in advance, for example. The protruding silver paste bump 66 is formed in advance.

この3層積層基板61に例えば、Auバンプ68を形成した6×6mmのサイズで厚さ0.1mmのSi半導体素子67を載置し、加熱してはんだ接合する。その後、アンダーフィル材を例えば、100℃で充填したのち、150℃、1時間で硬化させてアンダーフィル樹脂69とする。   For example, a Si semiconductor element 67 having a size of 6 × 6 mm and a thickness of 0.1 mm on which Au bumps 68 are formed is placed on the three-layer laminated substrate 61 and heated and soldered. Then, after filling an underfill material at, for example, 100 ° C., it is cured at 150 ° C. for 1 hour to form an underfill resin 69.

次いで、図9(b)に示すように、Si半導体素子67を搭載した3層積層基板61上に中間層21及び表面層31を互いに位置合わせして順次重ねて、例えば、3MPa、170℃で一括積層する。なお、プリプレグ25、熱硬化性エポキシ樹脂層52及びフィラー入り熱硬化性エポキシ樹脂層55はそれぞれ硬化樹脂層27,54,56となる。   Next, as shown in FIG. 9B, the intermediate layer 21 and the surface layer 31 are aligned and sequentially stacked on the three-layer laminated substrate 61 on which the Si semiconductor element 67 is mounted, for example, at 3 MPa and 170 ° C. Laminate all together. The prepreg 25, the thermosetting epoxy resin layer 52, and the filler-containing thermosetting epoxy resin layer 55 become the cured resin layers 27, 54, and 56, respectively.

また、3層積層基板61の表面に設けた配線63と中間層21の裏面に設けた配線23は銀ペーストバンプ66で接続され、中間層21の表面に設けた配線23と表面層31の裏面に設けた配線33とは銀ペーストバンプ28で接続される。   Further, the wiring 63 provided on the surface of the three-layer laminated substrate 61 and the wiring 23 provided on the back surface of the intermediate layer 21 are connected by silver paste bumps 66, and the wiring 23 provided on the surface of the intermediate layer 21 and the back surface of the surface layer 31. Are connected to the wiring 33 provided by the silver paste bump 28.

次いで、図10(c)に示すように、積層基板の両面にソルダーレジスト70を形成したのち、ソルダーレジスト70から露出する配線33,63に、ニッケルめっき、続けて金めっき(いずれも図示を省略)の表面処理を行うことによって、部品内蔵基板が完成する。   Next, as shown in FIG. 10C, after forming the solder resist 70 on both surfaces of the laminated substrate, the wiring 33 and 63 exposed from the solder resist 70 are nickel-plated and then gold-plated (both not shown) The component-embedded substrate is completed by performing the surface treatment of).

作製した実施例4の部品内蔵基板は、表面実装部品の実装場所に側面からの樹脂の染み出しがなく、既に形成してある表面実装端子部を樹脂が覆うことを防いでいることを確認できた。また、この部品内蔵基板の断面観察を行ったところ、Si半導体素子67の周囲に樹脂不足に起因するボイド等は観察されなかった。   The fabricated component-embedded substrate of Example 4 has confirmed that there is no leakage of resin from the side surface at the mounting location of the surface-mounted component, and that the resin prevents the surface-mounted terminal portion already formed from being covered. It was. Further, when the cross section of the component built-in substrate was observed, no voids or the like due to the lack of resin were observed around the Si semiconductor element 67.

以上を前提として、次に、図11及び図12を参照して、本発明の実施例5の部品内蔵基板の製造工程を説明する。まず、図11(a)に示すように、例えば、0.1mm厚さの1層分のガラス繊維強化樹脂22,32からなる両面銅張り積層板の両側に配線23,33を形成した中間層21を1枚と表面層31を1枚準備する。なお、中間層21には表面実装端子24を形成し、表面層31には配線33と同時にパッド34を形成する。   Based on the above, the manufacturing process of the component built-in substrate according to the fifth embodiment of the present invention will be described next with reference to FIGS. First, as shown in FIG. 11 (a), for example, an intermediate layer in which wirings 23 and 33 are formed on both sides of a double-sided copper-clad laminate made of glass fiber reinforced resin 22 and 32 having a thickness of 0.1 mm. One sheet 21 and one surface layer 31 are prepared. A surface mounting terminal 24 is formed on the intermediate layer 21, and a pad 34 is formed simultaneously with the wiring 33 on the surface layer 31.

この中間層21、表面層31には例えば、樹脂フローが3%で0.1mm厚さのBステージの低流動性プリプレグ71,72を貼り付ける。また、中間層21には、内蔵部品実装部に対応する箇所を低流動性プリプレグ71と一緒に開口して開口部26を形成する。一方、表面層31には基板完成後に実装する背の高い表面実装部品の搭載場所となる開口部36を低流動性プリプレグ72と一緒に開口する。   For example, B-stage low-fluidity prepregs 71 and 72 having a resin flow of 3% and a thickness of 0.1 mm are attached to the intermediate layer 21 and the surface layer 31. In the intermediate layer 21, a portion corresponding to the built-in component mounting portion is opened together with the low fluidity prepreg 71 to form the opening 26. On the other hand, in the surface layer 31, an opening 36 serving as a mounting place for a tall surface mounting component to be mounted after completion of the substrate is opened together with the low fluidity prepreg 72.

また、例えば、0.2mm厚さの2層分のガラス繊維強化樹脂42からなる3層積層板41をコア基板として準備する。なお、3層積層板41には配線43とともに、Si半導体素子45に設けたAuバンプ46と接続するパッド44を形成しておく。   Further, for example, a three-layer laminate 41 made of glass fiber reinforced resin 42 for two layers having a thickness of 0.2 mm is prepared as a core substrate. A pad 44 connected to the Au bump 46 provided on the Si semiconductor element 45 is formed on the three-layer laminate 41 together with the wiring 43.

この3層積層板41に例えば、5×5mmのサイズで厚さ0.08mmのSi半導体素子45をNCP47を用いた圧接工法で接合して部品搭載コア層とする。この圧接工法の条件は、例えば、温度を200℃とし、1バンプ当たりの荷重を45gとする。なお、NCP47を用いるため、アンダーフィル工程は不要となる。   For example, a Si semiconductor element 45 having a size of 5 × 5 mm and a thickness of 0.08 mm is joined to the three-layer laminate 41 by a pressure welding method using NCP47 to form a component mounting core layer. The conditions of this pressure welding method are, for example, a temperature of 200 ° C. and a load per bump of 45 g. In addition, since NCP47 is used, an underfill process becomes unnecessary.

次いで、Si半導体素子45を実装後、例えば、ポッティング法を用いてこのSi半導体素子45の上部のみに硬化前の溶融粘度が4000poiseとなる、シリカフィラー40wt%含有したシアネートエステル樹脂からなる高流動性樹脂73を形成する。なお、この場合の高流動性樹脂73の厚さ数μm〜数十μmとする。   Next, after mounting the Si semiconductor element 45, for example, by using a potting method, the melt viscosity before curing is 4000 poise only on the upper part of the Si semiconductor element 45. Resin 73 is formed. In this case, the high fluidity resin 73 has a thickness of several μm to several tens of μm.

次いで、図11(b)に示すように、Si半導体素子45を搭載した3層積層板41上に中間層21及び表面層31を互いに位置合わせして順次重ねて、例えば、3MPa、180℃で一括積層する。なお、低流動性プリプレグ71,72、及び、高流動性樹脂73はそれぞれ硬化樹脂層81,82,83となる。   Next, as shown in FIG. 11B, the intermediate layer 21 and the surface layer 31 are aligned with each other and sequentially stacked on the three-layer laminate 41 on which the Si semiconductor element 45 is mounted, for example, at 3 MPa and 180 ° C. Laminate all together. The low-fluidity prepregs 71 and 72 and the high-fluidity resin 73 become cured resin layers 81, 82, and 83, respectively.

次いで、図12(c)に示すように、所定の位置をドリルで加工しスルーホールを形成したのち、スルーホールめっきを行いスルービア48を形成する。   Next, as shown in FIG. 12C, after a predetermined position is processed with a drill to form a through hole, through-hole plating is performed to form a through via 48.

次いで、図12(d)に示すように、積層基板の両面にソルダーレジスト49を形成したのち、ソルダーレジスト49から露出する配線33,43に、ニッケルめっき、続けて金めっき(いずれも図示を省略)の表面処理を行うことによって、部品内蔵基板が完成する。   Next, as shown in FIG. 12D, after forming the solder resist 49 on both surfaces of the laminated substrate, the wiring 33 and 43 exposed from the solder resist 49 are nickel-plated and then gold-plated (both not shown) The component-embedded substrate is completed by performing the surface treatment of).

このように作製した部品内蔵基板は、表面実装部品の実装場所に側面からの樹脂の染み出しがなく、既に形成してある表面実装端子部を樹脂が覆うことを防いでいることを確認できた。   It was confirmed that the component-embedded board produced in this way had no resin oozing out from the side surface at the mounting location of the surface-mounted component, and prevented the resin from covering the surface-mounted terminal portion that had already been formed. .

また、部品内蔵基板の断面観察を行ったところ、Si半導体素子45の周囲に樹脂不足に起因するボイド等は観察されなかった。また、Si半導体素子45の上部に塗布したシリカフィラー40wt%含有したシアネートエステル樹脂からなる高流動性樹脂73が、Si半導体素子45の上部及び側面の一部に樹脂が供給できていることを確認した。   Further, when the cross section of the component built-in substrate was observed, no voids or the like due to the lack of resin were observed around the Si semiconductor element 45. Further, it is confirmed that the high fluidity resin 73 made of cyanate ester resin containing 40 wt% of silica filler applied to the upper part of the Si semiconductor element 45 can supply the resin to the upper part of the Si semiconductor element 45 and a part of the side surface. did.

次に、図13及び図14を参照して、本発明の実施例6の部品内蔵基板の製造工程を説明する。まず、図13(a)に示すように、例えば、0.1mm厚さの1層分のガラス繊維強化樹脂22,32からなる両面銅張り積層板の両側に配線23,33を形成した中間層21を1枚と表面層31を1枚準備する。なお、中間層21には表面実装端子24を形成し、表面層31には配線33と同時にパッド34を形成する。   Next, with reference to FIG.13 and FIG.14, the manufacturing process of the component built-in board | substrate of Example 6 of this invention is demonstrated. First, as shown in FIG. 13A, for example, an intermediate layer in which wirings 23 and 33 are formed on both sides of a double-sided copper-clad laminate made of glass fiber reinforced resin 22 and 32 having a thickness of 0.1 mm. One sheet 21 and one surface layer 31 are prepared. A surface mounting terminal 24 is formed on the intermediate layer 21, and a pad 34 is formed simultaneously with the wiring 33 on the surface layer 31.

この中間層21、表面層31には例えば、樹脂フローが1%で0.1mm厚さのBステージの低流動性プリプレグ74,75を貼り付ける。また、中間層21には、内蔵部品実装部に対応する箇所を低流動性プリプレグ74と一緒に開口して開口部26を形成する。一方、表面層31には基板完成後に実装する背の高い表面実装部品の搭載場所となる開口部36を低流動性プリプレグ75と一緒に開口する   For example, low-flow prepregs 74 and 75 of B stage having a resin flow of 1% and a thickness of 0.1 mm are attached to the intermediate layer 21 and the surface layer 31. Further, the opening portion 26 is formed in the intermediate layer 21 by opening a portion corresponding to the built-in component mounting portion together with the low fluidity prepreg 74. On the other hand, in the surface layer 31, an opening 36 serving as a mounting place for a tall surface mounting component to be mounted after completion of the substrate is opened together with the low fluidity prepreg 75.

また、表面層31のBステージの低流動性プリプレグ75の更にその上に、内蔵部品実装部に対応する領域のみに例えば、樹脂フローが40%でBステージの0.04mm厚さの熱硬化性エポキシ樹脂からなる高流動性樹脂層38を貼り付ける。   Further, on the low-flow prepreg 75 of the B stage of the surface layer 31, for example, only in the region corresponding to the built-in component mounting portion, for example, the resin flow is 40% and the thermosetting of 0.04 mm thickness of the B stage. A high fluidity resin layer 38 made of an epoxy resin is attached.

また、例えば、0.2mm厚さの2層分のガラス繊維強化樹脂42からなる3層積層板41をコア基板として準備する。なお、3層積層板41には配線43とともに、Si半導体素子45に設けたAuバンプ46と接続するパッド44を形成しておく。   Further, for example, a three-layer laminate 41 made of glass fiber reinforced resin 42 for two layers having a thickness of 0.2 mm is prepared as a core substrate. A pad 44 connected to the Au bump 46 provided on the Si semiconductor element 45 is formed on the three-layer laminate 41 together with the wiring 43.

この3層積層板41に例えば、7×7mmのサイズで厚さ0.09mmのSi半導体素子45をNCP47を用いた圧接工法で接合して部品搭載コア層とする。この圧接工法の条件は、例えば、温度を200℃とし、1バンプ当たりの荷重を45gとする。なお、NCP47を用いるため、アンダーフィル工程は不要となる。   For example, a Si semiconductor element 45 having a size of 7 × 7 mm and a thickness of 0.09 mm is joined to the three-layer laminate 41 by a pressure welding method using NCP47 to form a component mounting core layer. The conditions of this pressure welding method are, for example, a temperature of 200 ° C. and a load per bump of 45 g. In addition, since NCP47 is used, an underfill process becomes unnecessary.

次いで、Si半導体素子45を実装後、例えば、ポッティング法を用いてこのSi半導体素子45の上部のみに硬化前の溶融粘度が5000poiseとなる、シリカフィラー20wt%、及び、アルミナフィラー5wt%を含有したエポキシ樹脂からなる高流動性樹脂76を形成する。なお、この場合の高流動性樹脂76の厚さは数μm〜数十μmとする。   Next, after mounting the Si semiconductor element 45, for example, by using a potting method, only the upper part of the Si semiconductor element 45 contains 20 wt% of silica filler and 5 wt% of alumina filler in which the melt viscosity before curing is 5000 poise. A highly fluid resin 76 made of an epoxy resin is formed. In this case, the thickness of the high fluidity resin 76 is several μm to several tens of μm.

次いで、図13(b)に示すように、Si半導体素子45を搭載した3層積層板41上に中間層21及び表面層31を互いに位置合わせして順次重ねて、例えば、3MPa、200℃で一括積層する。なお、低流動性プリプレグ74,75は硬化樹脂層84,85になるとともに、高流動性樹脂層38及び高流動性樹脂76が混合して硬化樹脂層86となる。   Next, as shown in FIG. 13B, the intermediate layer 21 and the surface layer 31 are aligned and sequentially stacked on the three-layer laminated plate 41 on which the Si semiconductor element 45 is mounted, for example, at 3 MPa and 200 ° C. Laminate all together. The low-fluidity prepregs 74 and 75 become the cured resin layers 84 and 85, and the high-fluidity resin layer 38 and the high-fluidity resin 76 are mixed to form the cured resin layer 86.

次いで、図14(c)に示すように、所定の位置をドリルで加工しスルーホールを形成したのち、スルーホールめっきを行いスルービア48を形成する。   Next, as shown in FIG. 14C, after a predetermined position is processed with a drill to form a through hole, through-hole plating is performed to form a through via 48.

次いで、図14(d)に示すように、積層基板の両面にソルダーレジスト49を形成したのち、ソルダーレジスト49から露出する配線33,43に、ニッケルめっき、続けて金めっき(いずれも図示を省略)の表面処理を行うことによって、部品内蔵基板が完成する。   Next, as shown in FIG. 14D, after forming the solder resist 49 on both surfaces of the multilayer substrate, the wiring 33 and 43 exposed from the solder resist 49 are nickel-plated and then gold-plated (both not shown) The component-embedded substrate is completed by performing the surface treatment of).

このように作製した部品内蔵基板は、表面実装部品の実装場所に側面からの樹脂の染み出しがなく、既に形成してある表面実装端子部を樹脂が覆うことを防いでいることを確認できた。   It was confirmed that the component-embedded board produced in this way had no resin oozing out from the side surface at the mounting location of the surface-mounted component, and prevented the resin from covering the surface-mounted terminal portion that had already been formed. .

また、部品内蔵基板の断面観察を行ったところ、Si半導体素子45の周囲に樹脂不足に起因するボイド等は観察されなかった。また、Si半導体素子45の上部に塗布したシリカフィラー20wt%、及び、アルミナフィラー5wt%を含有したエポキシ樹脂からなる高流動性樹脂76が、Si半導体素子45の上部及び側面の一部に樹脂が供給できていることを確認した。   Further, when the cross section of the component built-in substrate was observed, no voids or the like due to the lack of resin were observed around the Si semiconductor element 45. Further, a high fluidity resin 76 made of an epoxy resin containing 20 wt% of silica filler and 5 wt% of alumina filler applied to the upper portion of the Si semiconductor element 45 has a resin on the upper portion and part of the side surface of the Si semiconductor element 45. It was confirmed that it could be supplied.

次に、図15及び図16を参照して、本発明の実施例7の部品内蔵基板の製造工程を説明する。まず、図15(a)に示すように、例えば、0.1mm厚さの1層分のガラス繊維強化樹脂22,32からなる両面銅張り積層板の両側に配線23,33を形成した中間層21を1枚と表面層31を1枚準備する。   Next, with reference to FIG.15 and FIG.16, the manufacturing process of the component built-in board | substrate of Example 7 of this invention is demonstrated. First, as shown in FIG. 15A, for example, an intermediate layer in which wirings 23 and 33 are formed on both sides of a double-sided copper-clad laminate made of glass fiber reinforced resin 22 and 32 having a thickness of 0.1 mm. One sheet 21 and one surface layer 31 are prepared.

なお、中間層21には表面実装端子24を形成し、表面層31には配線33と同時にパッド34を形成する。また、中間層21の表裏に設けた配線23はスルービア(図示は省略)で予め接続しておくとともに、表面層31の表裏に設けた配線33もスルービア(図示は省略)で予め接続しておく。ここでいうスルービアは、次に説明する突起状の銀ペーストバンプでも形成しても良いし、スルーホール形成後にめっきで形成しても良い。   A surface mounting terminal 24 is formed on the intermediate layer 21, and a pad 34 is formed simultaneously with the wiring 33 on the surface layer 31. Further, the wirings 23 provided on the front and back of the intermediate layer 21 are connected in advance by through vias (not shown), and the wirings 33 provided on the front and back of the surface layer 31 are also connected in advance by through vias (not shown). . The through via here may be formed by a protruding silver paste bump described below, or may be formed by plating after forming the through hole.

この中間層21の表面のビア部には、平均高さが例えば、0.12mmの突起状の銀ペーストバンプ28を予め形成しておくとともに、中間層21、表面層31には例えば、樹脂フローが2%で0.1mm厚さのBステージの低流動性プリプレグ77,78を貼り付ける。また、中間層21には、内蔵部品実装部に対応する箇所を低流動性プリプレグ77と一緒に開口して開口部26を形成する。一方、表面層31には基板完成後に実装する背の高い表面実装部品の搭載場所となる開口部36を低流動性プリプレグ78と一緒に開口する。   Protruding silver paste bumps 28 having an average height of, for example, 0.12 mm are formed in advance in the via portion on the surface of the intermediate layer 21, and the intermediate layer 21 and the surface layer 31 have, for example, a resin flow 2% and 0.1 mm thick B stage low flow prepregs 77 and 78 are attached. In the intermediate layer 21, a portion corresponding to the built-in component mounting portion is opened together with the low-fluidity prepreg 77 to form an opening portion 26. On the other hand, in the surface layer 31, an opening 36 serving as a mounting place for a tall surface mounting component to be mounted after completion of the substrate is opened together with the low fluidity prepreg 78.

また、例えば、0.2mm厚さの2層分のガラス繊維強化樹脂62からなる3層積層板61をコア基板として準備する。この3層積層板61には配線63とともに、Si半導体素子67に設けたAuバンプ68と接続するパッド64を形成しておく。なお、3層積層基板62も突起状の銀ペーストバンプ65でビア接続してあるとともに、この3層積層板61の部品搭載側の面のビア部にも予め平均高さが例えば、0.18mmの突起状の銀ペーストバンプ66を予め形成しておく。   Further, for example, a three-layer laminate 61 made of two layers of glass fiber reinforced resin 62 having a thickness of 0.2 mm is prepared as a core substrate. On this three-layer laminated plate 61, pads 64 connected to Au bumps 68 provided on the Si semiconductor element 67 are formed together with wiring 63. The three-layer laminated board 62 is also connected via vias with protruding silver paste bumps 65, and the average height of the three-layer laminated board 61 on the component mounting side surface is, for example, 0.18 mm in advance. The protruding silver paste bump 66 is formed in advance.

この3層積層板61に例えば、Auバンプ68を形成した6×6mmのサイズで厚さ0.1mmのSi半導体素子67を載置し、加熱してはんだ接合する。その後、アンダーフィル材を例えば、100℃で充填したのち、150℃、1時間で硬化させてアンダーフィル樹脂69とする。   For example, a Si semiconductor element 67 having a size of 6 × 6 mm and a thickness of 0.1 mm on which Au bumps 68 are formed is placed on the three-layer laminated plate 61, and is heated and soldered. Then, after filling an underfill material at, for example, 100 ° C., it is cured at 150 ° C. for 1 hour to form an underfill resin 69.

次いで、Si半導体素子67を実装し、アンダーフィル硬化後、例えば、ポッティング法を用いてこのSi半導体素子67の上部のみに硬化前の溶融粘度が3500poiseとなる、シリカフィラー30wt%含有したシアネートエステル樹脂からなる高流動性樹脂79を形成する。なお、この場合の高流動性樹脂79の厚さは数μm〜数十μmとする。   Next, after mounting the Si semiconductor element 67 and curing the underfill, for example, using a potting method, a cyanate ester resin containing 30 wt% of silica filler in which the melt viscosity before curing is 3500 poise only on the upper part of the Si semiconductor element 67 A high fluidity resin 79 is formed. In this case, the thickness of the high fluidity resin 79 is several μm to several tens of μm.

次いで、図15(b)に示すように、Si半導体素子67を搭載した3層積層板61上に中間層21及び表面層31を互いに位置合わせして順次重ねて、例えば、3MPa、200℃で一括積層する。なお、低流動性プリプレグ77,78及び高流動性樹脂79はそれぞれ硬化樹脂層87,88,89となる。   Next, as shown in FIG. 15B, the intermediate layer 21 and the surface layer 31 are aligned with each other on the three-layer laminated plate 61 on which the Si semiconductor element 67 is mounted, and sequentially stacked, for example, at 3 MPa and 200 ° C. Laminate all together. The low-fluidity prepregs 77 and 78 and the high-fluidity resin 79 become cured resin layers 87, 88, and 89, respectively.

また、3層積層基板61の表面に設けた配線63と中間層21の裏面に設けた配線23は銀ペーストバンプ66で接続され、中間層21の表面に設けた配線23と表面層31の裏面に設けた配線33とは銀ペーストバンプ28で接続される。   Further, the wiring 63 provided on the surface of the three-layer laminated substrate 61 and the wiring 23 provided on the back surface of the intermediate layer 21 are connected by silver paste bumps 66, and the wiring 23 provided on the surface of the intermediate layer 21 and the back surface of the surface layer 31. Are connected to the wiring 33 provided by the silver paste bump 28.

次いで、図16(c)に示すように、積層基板の両面にソルダーレジスト70を形成したのち、ソルダーレジスト70から露出する配線33,63に、ニッケルめっき、続けて金めっき(いずれも図示を省略)の表面処理を行うことによって、部品内蔵基板が完成する。   Next, as shown in FIG. 16C, after forming the solder resist 70 on both surfaces of the multilayer substrate, the wiring 33 and 63 exposed from the solder resist 70 are nickel-plated and then gold-plated (both are not shown) The component-embedded substrate is completed by performing the surface treatment of).

作製した実施例7の部品内蔵基板は、表面実装部品の実装場所に側面からの樹脂の染み出しがなく、既に形成してある表面実装端子部を樹脂が覆うことを防いでいることを確認できた。また、この部品内蔵基板の断面観察を行ったところ、Si半導体素子67の周囲に樹脂不足に起因するボイド等は観察されなかった。   The manufactured component-embedded substrate of Example 7 has confirmed that the resin does not bleed out from the side surface at the mounting location of the surface-mounted component and prevents the resin from covering the surface-mounted terminal portion that has already been formed. It was. Further, when the cross section of the component built-in substrate was observed, no voids or the like due to the lack of resin were observed around the Si semiconductor element 67.

ここで、実施例1乃至実施例7を含む本発明の実施の形態に関して、以下の付記を開示する。
(付記1) 内蔵部品を搭載した部品内蔵基板の基板最表面実装部より低い層に外付け部品を接続する端子を有する部品内蔵基板であって、前記外付け部品を接続する端子の露出部を囲む表面実装部の下層を構成する流動性樹脂シートを構成する樹脂のJIS規格C6521の試験方法による樹脂フローが15%未満であり、且つ、他の全ての層のボンディング用の樹脂シートより樹脂の流動性が低い樹脂シートである部品内蔵基板。
(付記2) 前記内蔵部品の少なくとも側面の一部が、前記低流動性樹脂シートより流動性の高い樹脂で覆われている付記1に記載の部品内蔵基板。
(付記3) 内蔵部品を搭載した部品内蔵基板の基板最表面実装部より低い層に外付け部品を接続する端子を有する部品内蔵基板であって、前記外付け部品を接続する端子の露出部を囲む表面実装部の下層を構成する流動性樹脂シートの内の前記内蔵部品の上部及び側面と接する部分の一部に、前記流動性樹脂シートより硬化前に流動性が高くなる高流動性樹脂が含まれている部品内蔵基板。
(付記4) 前記流動性樹脂シート及び前記高流動性樹脂の少なくとも一方が、無機物を含んでいる付記3に記載の部品内蔵基板。
(付記5) 部品内蔵基板の中間層となる回路を形成した繊維強化樹脂層に半硬化のボンディング用の第1の樹脂シートを重ねた状態で予め内蔵部品の実装位置に対応する第1の開口部を形成する工程と、前記部品内蔵基板の表面層となる回路を形成した繊維強化樹脂層に前記第1の樹脂シートよりも流動性が低くJIS規格C6521の試験方法による樹脂フローが15%未満の樹脂を用いた半硬化のボンディング用の第2の樹脂シートを重ねた状態で外付け部品用の第2の開口部を形成する工程と、前記第2の開口部を形成した表面層及び前記第1の開口部を形成した中間層を前記内蔵部品を搭載した下層基板上に一括積層して圧接する工程と、を有する部品内蔵基板の製造方法。
(付記6) 前記第2の樹脂シートの前記内蔵部品に対向する位置に、前記第2の樹脂シートより流動性の高い第3の樹脂シートを部分的に貼り付けた付記5に記載の部品内蔵基板の製造方法。
(付記7) 前記第2の樹脂シートが、熱硬化性の樹脂シート或いは熱可塑性の樹脂シートのいずれかである付記5または付記6に記載の部品内蔵基板の製造方法。
(付記8) 部品内蔵基板の中間層となる回路を形成した繊維強化樹脂層に半硬化のボンディング用の樹脂シートを重ねた状態で予め内蔵部品の実装位置に対応する第1の開口部を形成する工程と、前記部品内蔵基板の表面層となる回路を形成した繊維強化樹脂層に半硬化のボンディング用の樹脂シートを重ねた状態で予め外付け部品用の第2の開口部を形成する工程と、前記内蔵部品の上部に前記樹脂シートより硬化前に流動性が高くなる高流動性樹脂を設ける工程と、前記第2の開口部を形成した表面層及び前記第1の開口部を形成した中間層を、前記内蔵部品を搭載した下層基板上に一括積層して圧接する工程と、を有する部品内蔵基板の製造方法。
(付記9) 前記樹脂シートの前記内蔵部品に対向する位置に、前記樹脂シートより流動性の高い第2の樹脂シートを部分的に貼り付けた付記8に記載の部品内蔵基板の製造方法。
Here, the following supplementary notes are disclosed with respect to the embodiments of the present invention including Examples 1 to 7.
(Supplementary note 1) A component-embedded substrate having a terminal for connecting an external component to a lower layer than the substrate outermost surface mounting portion of the component-embedded substrate on which the built-in component is mounted, and an exposed portion of the terminal connecting the external component The resin flow by the test method of JIS standard C6521 of the resin constituting the flowable resin sheet constituting the lower layer of the surrounding surface mounting part is less than 15%, and the resin flow is less than the resin sheet for bonding of all other layers. A component-embedded substrate that is a resin sheet with low fluidity.
(Supplementary note 2) The component-embedded substrate according to supplementary note 1, wherein at least a part of a side surface of the built-in component is covered with a resin having higher fluidity than the low-fluidity resin sheet.
(Supplementary note 3) A component-embedded substrate having a terminal for connecting an external component to a lower layer than the substrate outermost surface mounting portion of the component-embedded substrate on which the built-in component is mounted, and an exposed portion of the terminal connecting the external component A high fluidity resin having higher fluidity before curing than the fluidity resin sheet is formed on a part of the fluidity resin sheet constituting the lower layer of the surrounding surface mounting portion and in contact with the upper and side surfaces of the built-in component. The component-embedded board included.
(Supplementary note 4) The component-embedded substrate according to supplementary note 3, wherein at least one of the fluid resin sheet and the high fluid resin includes an inorganic substance.
(Additional remark 5) The 1st opening corresponding to the mounting position of a built-in component beforehand in the state which piled up the 1st resin sheet for semi-curing bonding on the fiber reinforced resin layer which formed the circuit used as the intermediate | middle layer of a component built-in board | substrate. And a fiber reinforced resin layer on which a circuit serving as a surface layer of the component-embedded substrate has a lower fluidity than the first resin sheet, and a resin flow by a test method of JIS standard C6521 is less than 15% Forming a second opening for an external component in a state where a second resin sheet for semi-curing bonding using the resin is stacked, a surface layer having the second opening formed thereon, and And a step of collectively laminating and pressing the intermediate layer having the first opening on the lower substrate on which the built-in component is mounted.
(Supplementary note 6) The component built-in according to supplementary note 5, in which a third resin sheet having a higher fluidity than the second resin sheet is partially pasted at a position facing the built-in component of the second resin sheet. A method for manufacturing a substrate.
(Additional remark 7) The manufacturing method of the component built-in board of Additional remark 5 or Additional remark 6 whose said 2nd resin sheet is either a thermosetting resin sheet or a thermoplastic resin sheet.
(Supplementary Note 8) First opening corresponding to mounting position of built-in component is formed in advance in a state where a semi-cured bonding resin sheet is overlapped on a fiber reinforced resin layer on which a circuit serving as an intermediate layer of the component built-in substrate is formed. And a step of forming a second opening for an external component in advance in a state where a semi-cured bonding resin sheet is superimposed on a fiber reinforced resin layer on which a circuit serving as a surface layer of the component-embedded substrate is formed. And a step of providing a high fluidity resin having higher fluidity before curing than the resin sheet on the built-in component, and a surface layer in which the second opening is formed and the first opening. And a step of collectively laminating and pressing the intermediate layer on the lower substrate on which the built-in component is mounted.
(Additional remark 9) The manufacturing method of the component built-in board of Additional remark 8 which affixed the 2nd resin sheet whose fluidity | liquidity is higher than the said resin sheet partially in the position facing the said internal component of the said resin sheet.

1 中間層
2 繊維強化樹脂
3 配線
4 実装部品用端子
5 第1の樹脂シート
6 開口部
7 表面層
8 繊維強化樹脂
9 配線
10 第2の樹脂シート
11 開口部
12 コア基板
13 繊維強化樹脂
14 配線
15 内蔵部品
16 低背表面実装部品
17 高背表面実装部品
18 硬化樹脂層
19 ボイド
20 高流動性樹脂シート
21 中間層
22 ガラス繊維強化樹脂
23 配線
24 表面実装端子
25 プリプレグ
26 開口部
27 硬化樹脂層
28 銀ペーストバンプ
31 表面層
32 ガラス繊維強化樹脂
33 配線
34 パッド
35 低流動性プリプレグ
36 開口部
37 硬化樹脂層
38 高流動性樹脂層
39 硬化樹脂層
41,61 3層積層基板
42,62 ガラス繊維強化樹脂
43,63 配線
44,64 パッド
45,67 Si半導体素子
46,68 Auバンプ
47 NCP
48 スルービア
49,70 ソルダーレジスト
51 熱可塑性ポリイミド樹脂層
52 熱硬化性エポキシ樹脂層
53 硬化樹脂層
54 硬化樹脂層
55 フィラー入り熱硬化性エポキシ樹脂層
56 硬化樹脂層
65,66 銀ペーストバンプ
69 アンダーフィル樹脂
71,72,74,75,77,78 低流動性プリプレグ
73,76,79 高流動性樹脂
81,82,83,84,85,86,87,88,89 硬化樹脂層
DESCRIPTION OF SYMBOLS 1 Intermediate layer 2 Fiber reinforced resin 3 Wiring 4 Terminal 5 for mounting components 1st resin sheet 6 Opening part 7 Surface layer 8 Fiber reinforced resin 9 Wiring 10 2nd resin sheet 11 Opening part 12 Core substrate 13 Fiber reinforced resin 14 Wiring 15 Built-in component 16 Low-profile surface mount component 17 High-profile surface mount component 18 Cured resin layer 19 Void 20 High fluidity resin sheet 21 Intermediate layer 22 Glass fiber reinforced resin 23 Wiring 24 Surface mount terminal 25 Prepreg 26 Opening 27 Cured resin layer 28 Silver paste bump 31 Surface layer 32 Glass fiber reinforced resin 33 Wiring 34 Pad 35 Low fluidity prepreg 36 Opening 37 Cured resin layer 38 High fluidity resin layer 39 Cured resin layer 41, 61 Three-layer laminated substrate 42, 62 Glass fiber Reinforced resin 43, 63 Wiring 44, 64 Pad 45, 67 Si semiconductor element 46, 68 Au bump 47 NC
48 through vias 49, 70 solder resist 51 thermoplastic polyimide resin layer 52 thermosetting epoxy resin layer 53 cured resin layer 54 cured resin layer 55 filled thermosetting epoxy resin layer 56 cured resin layer 65, 66 silver paste bump 69 underfill Resin 71, 72, 74, 75, 77, 78 Low fluidity prepreg 73, 76, 79 High fluidity resin 81, 82, 83, 84, 85, 86, 87, 88, 89 Cured resin layer

Claims (7)

内蔵部品を搭載した部品内蔵基板の基板最表面実装部より低い層に外付け部品を接続する端子を有する部品内蔵基板であって、
前記外付け部品を接続する端子の露出部を囲む表面実装部の下層を構成する流動性樹脂シートを構成する樹脂のJIS規格C6521の試験方法による樹脂フローが15%未満であり、且つ、他の全ての層のボンディング用の樹脂シートより樹脂の流動性が低い樹脂シートである部品内蔵基板。
A component-embedded substrate having a terminal for connecting an external component to a lower layer than the substrate outermost surface mounting portion of the component-embedded substrate on which the built-in component is mounted,
The resin flow by the test method of JIS standard C6521 of the resin constituting the flowable resin sheet constituting the lower layer of the surface mounting portion surrounding the exposed portion of the terminal connecting the external component is less than 15%, and other A component-embedded substrate, which is a resin sheet having a lower resin fluidity than all layers of bonding resin sheets.
前記内蔵部品の少なくとも側面の一部が、前記低流動性樹脂シートより流動性の高い樹脂で覆われている請求項1に記載の部品内蔵基板。   The component built-in board according to claim 1, wherein at least a part of the side surface of the built-in component is covered with a resin having higher fluidity than the low-fluidity resin sheet. 内蔵部品を搭載した部品内蔵基板の基板最表面実装部より低い層に外付け部品を接続する端子を有する部品内蔵基板であって、
前記外付け部品を接続する端子の露出部を囲む表面実装部の下層を構成する流動性樹脂シートの内の前記内蔵部品の上部及び側面と接する部分の一部に、前記流動性樹脂シートより硬化前に流動性が高くなる高流動性樹脂が含まれている部品内蔵基板。
A component-embedded substrate having a terminal for connecting an external component to a lower layer than the substrate outermost surface mounting portion of the component-embedded substrate on which the built-in component is mounted,
Hardened from the fluid resin sheet to a part of the fluid resin sheet constituting the lower layer of the surface mounting portion surrounding the exposed portion of the terminal connecting the external component and in contact with the upper and side surfaces of the built-in component A component-embedded board that contains a high-fluidity resin with high fluidity before.
部品内蔵基板の中間層となる回路を形成した繊維強化樹脂層に半硬化のボンディング用の第1の樹脂シートを重ねた状態で予め内蔵部品の実装位置に対応する第1の開口部を形成する工程と、 前記部品内蔵基板の表面層となる回路を形成した繊維強化樹脂層に前記第1の樹脂シートよりも流動性が低くJIS規格C6521の試験方法による樹脂フローが15%未満の樹脂を用いた半硬化のボンディング用の第2の樹脂シートを重ねた状態で予め外付け部品用の第2の開口部を形成する工程と、
前記第2の開口部を形成した表面層及び前記第1の開口部を形成した中間層を前記内蔵部品を搭載した下層基板上に一括積層して圧接する工程と、
を有する部品内蔵基板の製造方法。
A first opening corresponding to a mounting position of a built-in component is formed in advance in a state where a semi-cured first resin sheet for bonding is superimposed on a fiber reinforced resin layer on which a circuit serving as an intermediate layer of the component built-in substrate is formed. And a fiber reinforced resin layer on which a circuit serving as a surface layer of the component-embedded substrate is formed, and a resin having a flowability lower than that of the first resin sheet and a resin flow of less than 15% according to a test method of JIS standard C6521 is used. Forming a second opening for an external component in advance in a state where the second resin sheet for semi-curing bonding that has been overlapped,
A step of pressing collectively stacking an intermediate layer forming the second surface layer to form an opening of and the first opening on the lower substrate mounted with the internal components,
A method of manufacturing a component-embedded substrate having
前記第2の樹脂シートの前記内蔵部品に対向する位置に、前記第2の樹脂シートより流動性の高い第3の樹脂シートを部分的に貼り付けた請求項に記載の部品内蔵基板の製造方法。 5. The component-embedded substrate according to claim 4 , wherein a third resin sheet having a higher fluidity than the second resin sheet is partially attached to a position of the second resin sheet facing the built-in component. Method. 前記第2の樹脂シートが、熱硬化性の樹脂シート或いは熱可塑性の樹脂シートのいずれかである請求項または請求項に記載の部品内蔵基板の製造方法。 The second resin sheet, component-embedded board fabrication method according to claim 4 or claim 5 is any one of a resin sheet of a thermosetting resin sheet or a thermoplastic. 部品内蔵基板の中間層となる回路を形成した繊維強化樹脂層に半硬化のボンディング用の樹脂シートを重ねた状態で予め内蔵部品の実装位置に対応する第1の開口部を形成する工程と、
前記部品内蔵基板の表面層となる回路を形成した繊維強化樹脂層に半硬化のボンディング用の樹脂シートを重ねた状態で予め外付け部品用の第2の開口部を形成する工程と、
前記内蔵部品の上部に前記樹脂シートより硬化前に流動性が高くなる高流動性樹脂を設ける工程と、
前記第2の開口部を形成した表面層及び前記第1の開口部を形成した中間層を、前記内蔵部品を搭載した下層基板上に一括積層して圧接する工程と、
を有する部品内蔵基板の製造方法。
Forming a first opening corresponding to a mounting position of a built-in component in a state in which a semi-cured bonding resin sheet is superimposed on a fiber reinforced resin layer on which a circuit serving as an intermediate layer of the component built-in substrate is formed;
Forming a second opening for an external component in advance in a state where a semi-cured resin sheet for bonding is superimposed on a fiber reinforced resin layer on which a circuit serving as a surface layer of the component-embedded substrate is formed;
Providing a high-fluidity resin having higher fluidity before curing than the resin sheet on the built-in component;
A step of laminating and pressing the surface layer in which the second opening is formed and the intermediate layer in which the first opening is formed on a lower substrate on which the built-in component is mounted;
A method of manufacturing a component-embedded substrate having
JP2009103689A 2008-11-12 2009-04-22 Component built-in substrate and manufacturing method thereof Expired - Fee Related JP5589302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009103689A JP5589302B2 (en) 2008-11-12 2009-04-22 Component built-in substrate and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008289438 2008-11-12
JP2008289438 2008-11-12
JP2009103689A JP5589302B2 (en) 2008-11-12 2009-04-22 Component built-in substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010141282A JP2010141282A (en) 2010-06-24
JP5589302B2 true JP5589302B2 (en) 2014-09-17

Family

ID=42351115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009103689A Expired - Fee Related JP5589302B2 (en) 2008-11-12 2009-04-22 Component built-in substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5589302B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293692B2 (en) * 2010-06-29 2013-09-18 エルナー株式会社 Flex-rigid wiring board and manufacturing method thereof
JP6124513B2 (en) * 2012-05-17 2017-05-10 新光電気工業株式会社 Semiconductor device and manufacturing method thereof
WO2014007129A1 (en) 2012-07-05 2014-01-09 株式会社村田製作所 Substrate with built-in component
KR20140081193A (en) 2012-12-21 2014-07-01 삼성전기주식회사 Hybrid substrate with high density and low density substrate area and manufacturing method thereof
JP2016207952A (en) * 2015-04-28 2016-12-08 富士通株式会社 Component built-in board
WO2020166550A1 (en) 2019-02-14 2020-08-20 株式会社村田製作所 Method for manufacturing electronic component module, and electronic component module

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750816B2 (en) * 1993-06-22 1995-05-31 日本電気株式会社 Printed wiring board and manufacturing method thereof
JPH0946050A (en) * 1995-07-26 1997-02-14 Matsushita Electric Works Ltd Multilayered substrate
JPH11251748A (en) * 1998-03-03 1999-09-17 Hitachi Chem Co Ltd Manufacture of printed board for mounting semiconductor
JP2002270712A (en) * 2001-03-14 2002-09-20 Sony Corp Semiconductor element integrated multi-layer wiring board, semiconductor element integrated device, and manufacturing method therefor
JP2003243797A (en) * 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd Module component
JP3922977B2 (en) * 2002-06-19 2007-05-30 三菱樹脂株式会社 Multilayer wiring board with built-in semiconductor device
JP2007049004A (en) * 2005-08-11 2007-02-22 Cmk Corp Printed wiring board and manufacturing method thereof
JP5114041B2 (en) * 2006-01-13 2013-01-09 日本シイエムケイ株式会社 Semiconductor device built-in printed wiring board and manufacturing method thereof
KR20140033245A (en) * 2006-05-24 2014-03-17 다이니폰 인사츠 가부시키가이샤 Wiring board with built-in component and method for manufacturing wiring board with built-in component
JP4939916B2 (en) * 2006-12-21 2012-05-30 株式会社フジクラ Multilayer printed wiring board and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010141282A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
US9391027B2 (en) Embedded semiconductor device package and method of manufacturing thereof
US8035979B2 (en) Printed wiring board with built-in semiconductor element, and process for producing the same
KR100792352B1 (en) Bottom substrate of package on package and manufacturing method thereof
US7882627B2 (en) Method of manufacturing a multilayer wiring board
US20100288535A1 (en) Electronic component-embedded printed circuit board comprising cooling member and method of manufacturing the same
US7619317B2 (en) Carrier structure for semiconductor chip and method for manufacturing the same
US7943001B2 (en) Process for producing multilayer board
KR20110045098A (en) Electronic component built-in wiring board and its manufacturing method
KR20090130727A (en) Electronic component embedded printed circuit board and manufacturing method
JP5589302B2 (en) Component built-in substrate and manufacturing method thereof
JP2013197245A (en) Printed wiring board
KR20130001143A (en) Printed wiring board and method for manufacturing printed wiring board
CN102281712A (en) Laminated circuit board, bonding sheet, laminated-circuit-board producing method, and bonding-sheet producing method
JP2005191156A (en) Wiring plate containing electric component, and its manufacturing method
WO2007069427A1 (en) Module having built-in electronic component and method for manufacturing such module
KR101109356B1 (en) Manufacturing method of embedded printed circuit board
JP2009016377A (en) Multilayer wiring board and multilayer wiring board manufacturing method
JP4694007B2 (en) Manufacturing method of three-dimensional mounting package
JP2009016378A (en) Multilayer wiring board and multilayer wiring board manufacturing method
JP5176676B2 (en) Manufacturing method of component-embedded substrate
JP4407527B2 (en) Manufacturing method of module with built-in components
JP2008181921A (en) Substrate with built-in electronic component and electronic equipment using the same, and method of manufacturing substrate with built-in electronic component
JP2007221117A (en) Substrate incorporated with components, and its manufacturing method
JP2005175020A (en) Wiring board, electronic circuit element and its manufacturing method, and display
KR20100028209A (en) Printed circuit board

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5589302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees