JP5585402B2 - Flow measuring device - Google Patents
Flow measuring device Download PDFInfo
- Publication number
- JP5585402B2 JP5585402B2 JP2010251467A JP2010251467A JP5585402B2 JP 5585402 B2 JP5585402 B2 JP 5585402B2 JP 2010251467 A JP2010251467 A JP 2010251467A JP 2010251467 A JP2010251467 A JP 2010251467A JP 5585402 B2 JP5585402 B2 JP 5585402B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- repetitions
- measured
- measurement
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Description
本発明は、超音波を利用してガスなどの流量を計測する流量計測装置に関するものである。 The present invention relates to a flow rate measuring device that measures a flow rate of gas or the like using ultrasonic waves.
従来、この種の流量計測装置は、図3に示すように流体管路18に第1の超音波振動子19と第2の超音波振動子20が流体の流れ方向に相対して配置されている。そして、第1の超音波振動子19への送信回路21、第2の超音波振動子20で受信した超音波を信号処理する受信回路22、受信回路22にて超音波を検知した後、第1の超音波振動子からの送信と第2の超音波振動子3での受信を複数回繰り返す繰り返し手段23、繰り返し手段23による繰り返し回数、すなわち計測分解能を設定する分解能設定手段24、間欠計測の開始を指示するトリガ手段25、トリガ手段25の出力周期を設定する周期設定手段26、繰り返し手段23により行なわれる複数回の超音波伝搬の所要時間を計測する計測手段27、計測手段27の計測値から流量を求める流量演算手段28と、上記各要素を制御する計測制御手段29とを備え、計測制御手段29は、予め定められた値を周期設定手段26および分解能設定手段24に設定し、その結果得られた値に基づいて、計測流量を求める通常計測手段30と、通常計測手段30よりも短い周期を周期設定手段26に設定するとともに、粗い分解能を分解能設定手段24に設定し、その結果得られた値に基づいて、流量を推定する探索計測手段31と、計測流量と推定流量との差から計測周期または計測分解能を設定する判定手段32、流量演算手段28により求められた流量値を積分することにより積算流量を求める積算手段33から構成される(例えば、特許文献1参照)。
Conventionally, in this type of flow rate measuring device, as shown in FIG. 3, a first
しかしながら、前記従来の流量計測装置では、通常計測手段よりも短い周期で且つ粗い分解能により探索計測を行なうため、流量の計測精度が低くなる。そのため流体の流体管路からの漏れを判別する必要がある流量が小さい場合では探索計測による流体の漏れを判別することができない。且つ、計測流量が小さくなることで通常計測手段の分解能を細かくするため、流量が小さい場合では消費電力の低減ができないという課題を有していた。 However, in the conventional flow rate measuring device, the search measurement is performed with a shorter period and with a coarser resolution than that of the normal measuring means, so the flow rate measurement accuracy is lowered. Therefore, when the flow rate of the fluid that needs to be determined from the fluid conduit is small, it is not possible to determine the fluid leakage by the search measurement. In addition, since the resolution of the normal measuring means is made finer by decreasing the measurement flow rate, there is a problem that the power consumption cannot be reduced when the flow rate is small.
本発明は、前記従来の課題を解決するもので、流体の漏れを判別可能とし、且つ消費電力を低減することを目的とする。 SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to make it possible to determine fluid leakage and reduce power consumption.
前記従来の課題を解決するために、本発明の流量計測装置は、被測定流体が流れる流体管路に設けられた超音波信号を送受信する第1の振動子及び第2の振動子と、前記振動子間の超音波信号の伝搬時間を計測する計時手段と、前記計時手段による計測が終了する毎に前記第1の振動子および第2の振動子の送受信を切替える切替手段と、前記振動子間相互の超音波伝搬を複数回行なう繰り返し手段と、前記繰り返し手段の回数を設定する繰り返し設定手段と、前記計時手段と前記繰り返し手段の出力から伝搬時間の平均値を算出する時間演算手段と、前記時間演算手段で算出した伝搬時間から流量を算出する流量演算手段と、前記繰り返し設定手段に設定された繰り返し回数、且つ、所定の計測周期で計測流量を算出する通常計測手段と、前記通常計測手段よりも多い繰り返し回数、且つ長い計測周期で、推定流量を算出する流量推定手段と、を備え、前記繰り返し設定手段は、前記計測流量と前記推定流量の差に応じて前記通常計測手段での繰り返し回数を設定するものである。
In order to solve the conventional problem, a flow rate measuring device according to the present invention includes a first vibrator and a second vibrator that transmit and receive an ultrasonic signal provided in a fluid pipe through which a fluid to be measured flows, Time measuring means for measuring the propagation time of the ultrasonic signal between the vibrators, switching means for switching transmission / reception of the first vibrator and the second vibrator every time measurement by the time measuring means is completed, and the vibrator Repetitive means for performing ultrasonic propagation between the plurality of times, repetitive setting means for setting the number of repetitive means, time calculating means for calculating an average value of propagation times from the outputs of the time measuring means and the repetitive means, A flow rate calculation means for calculating a flow rate from the propagation time calculated by the time calculation means, a number of repetitions set in the repetition setting means, and a normal measurement means for calculating a measured flow rate at a predetermined measurement cycle; A flow rate estimating unit that calculates an estimated flow rate with a larger number of repetitions and a longer measurement cycle than the normal measurement unit, and the repeat setting unit performs the normal measurement according to a difference between the measured flow rate and the estimated flow rate. The number of repetitions by means is set.
これによって、流量が小さい場合でも、高い計測精度で推定流量を算出し、推定流量が流体の漏れの可能性がある所定の値以下では通常計測手段の繰り返し回数を多くすることで流体の漏れを判別することができる。また、流体の漏れの可能性がある所定の値以上では通常計測手段の繰り返し回数を少なくすることで通常計測手段の頻度を減らすことができる。その結果、消費電力を低減することができる。 As a result, even when the flow rate is small, the estimated flow rate is calculated with high measurement accuracy, and if the estimated flow rate is less than a predetermined value that may cause fluid leakage, fluid leakage can be reduced by increasing the number of repetitions of the normal measurement means. Can be determined. In addition, the frequency of the normal measurement means can be reduced by reducing the number of repetitions of the normal measurement means above a predetermined value that may cause fluid leakage. As a result, power consumption can be reduced.
本発明の流量計測装置は、低流量時においても流体の漏れを判別しつつ、消費電力を低減することができる。 The flow measuring device of the present invention can reduce power consumption while discriminating fluid leakage even at low flow rates.
第1の発明は、被測定流体が流れる流体管路に設けられた超音波信号を送受信する第1の振動子及び第2の振動子と、前記振動子間の超音波信号の伝搬時間を計測する計時手段と、前記計時手段による計測が終了する毎に前記第1の振動子および第2の振動子の送受信を切替える切替手段と、前記振動子間相互の超音波伝搬を複数回行なう繰り返し手段と、前記繰り返し手段の回数を設定する繰り返し設定手段と、前記計時手段と前記繰り返し手段の出力から伝搬時間の平均値を算出する時間演算手段と、前記時間演算手段で算出した伝搬時間から流量を算出する流量演算手段と、前記繰り返し設定手段に設定された繰り返し回数、且つ、所定の計測周期で計測流量を算出する通常計測手段と、前記通常計測手段よりも多い繰り返し回数、且つ、長い計測周期で、推定流量を算出する流量推定手段と、を備え、前記繰り返し設定手段は、前記計測流量と前記推定流量の差に応じて前記通常計測手段での繰り返し回数を設定するものである。
1st invention measures the propagation time of the ultrasonic signal between the 1st vibrator and the 2nd vibrator which transmit and receive the ultrasonic signal provided in the fluid channel through which the fluid under measurement flows, and the vibrator Clocking means, switching means for switching transmission / reception of the first vibrator and second vibrator every time measurement by the timekeeping means is completed, and repeating means for performing ultrasonic propagation between the vibrators a plurality of times A repetition setting means for setting the number of repetition means, a time calculation means for calculating an average value of the propagation time from the outputs of the timing means and the repetition means, and a flow rate from the propagation time calculated by the time calculation means. A flow rate calculation means to calculate, a repeat count set in the repeat setting means, a normal measurement means to calculate a measured flow rate at a predetermined measurement cycle, a repeat count greater than the normal measurement means, and A flow rate estimating means for calculating an estimated flow rate with a long measurement cycle, wherein the repeat setting means sets the number of repetitions in the normal measurement means according to the difference between the measured flow rate and the estimated flow rate. is there.
これにより、高い計測精度で推定流量を算出することができる。その結果、流体の漏れを判別することができるとともに通常計測の頻度を低減できる。 Thereby, the estimated flow rate can be calculated with high measurement accuracy. As a result, it is possible to determine fluid leakage and reduce the frequency of normal measurement.
第2の発明は、特に、第1の発明において、前記計測流量が所定流量以上、且つ、前記計測流量と前記推定流量の差が所定値未満の場合、前記繰り返し設定手段に設定する繰り返し回数を少なくするものである。 In a second aspect of the invention, in particular, in the first aspect of the invention, when the measured flow rate is equal to or greater than a predetermined flow rate and the difference between the measured flow rate and the estimated flow rate is less than a predetermined value, the number of repetitions set in the repetition setting unit is set. It's something to reduce.
これにより、通常計測手段の動作頻度を低減でき、消費電力を低減することができる。 Thereby, the operation frequency of a normal measurement means can be reduced and power consumption can be reduced.
第3の発明は、特に、第1の発明において、前記計測流量が所定流量以上、且つ、前記計測流量と前記推定流量の差が所定値以上の場合、前記繰り返し設定手段に設定する繰り返し回数を多くするものである。 In a third aspect of the invention, in particular, in the first aspect of the invention, when the measured flow rate is equal to or greater than a predetermined flow rate and the difference between the measured flow rate and the estimated flow rate is equal to or greater than a predetermined value, the number of repetitions set in the repetition setting unit is set. To do more.
これにより、計測流量の変化が大きい場合には通常計測手段の繰り返し回数を多くすることで流量計測に対する計測精度が向上する。 As a result, when the change in the measured flow rate is large, the measurement accuracy for the flow rate measurement is improved by increasing the number of repetitions of the normal measurement means.
第4の発明は、特に、第1の発明において、前記判定手段は、前記計測流量が所定流量未満、且つ、前記計測流量と前記推定流量との差が所定値未満の場合、前記繰り返し設定手段に設定する繰り返し回数を少なくするものである。
According to a fourth aspect of the invention, in particular, in the first aspect of the invention, the determination unit is configured to repeat the setting unit when the measured flow rate is less than a predetermined flow rate and the difference between the measured flow rate and the estimated flow rate is less than a predetermined value. The number of repetitions set to is reduced.
これにより、計測流量が小さく、且つ、計測流量と推定流量の差が小さい、即ち計測精度の誤差が小さい場合は、流体の漏れの可能性が低いため、通常計測手段の動作頻度を低減でき、消費電力を低減することができる。 Thereby, when the measured flow rate is small and the difference between the measured flow rate and the estimated flow rate is small, i.e., the error in measurement accuracy is small, the possibility of fluid leakage is low, so the operation frequency of the normal measurement means can be reduced, Power consumption can be reduced.
第5の発明は、特に、第1の発明において、前記判定手段は、前記計測流量が所定流量未満、且つ、前記計測流量と前記推定流量との差が所定値以上の場合、前記繰り返し設定手段に設定する繰り返し回数を多くするものである。 In a fifth aspect of the invention, in particular, in the first aspect of the invention, the determination unit is configured to repeat the setting unit when the measured flow rate is less than a predetermined flow rate and a difference between the measured flow rate and the estimated flow rate is a predetermined value or more. The number of repetitions set to is increased.
これにより、計測流量が小さく、且つ、計測流量と推定流量の差が大きい、即ち計測精度の誤差が大きい場合には流体の漏れの可能性が高いため、通常計測手段の繰り返し回数を多くすることで流量計測に対する計測精度を向上する。 As a result, when the measured flow rate is small and the difference between the measured flow rate and the estimated flow rate is large, that is, when the measurement accuracy error is large, the possibility of fluid leakage is high, so the number of repetitions of the normal measurement means should be increased. Improve measurement accuracy for flow rate measurement.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の実施の形態1を示す流量計測装置のブロック図、図2は同装置の動作を示すフローチャートである。図1において、被測定流体が流れる流体管路1に第1の超音波振動子2と第2の超音波振動子3を流体が流れ方向に相対して配置され、第1の超音波振動子2または第2の超音波振動子3への送信手段4、第1の超音波振動子2または第2の超音波振動子3で受信した超音波を受信検知する受信手段5、第1の超音波振動子2および第2の超音波振動子3間での超音波の送受信までの時間を計測する計時手段6、受信手段5で受信した後に第1の超音波振動子2、第2の超音波振動子3間での超音波の送受信を複数回繰り返す繰り返し手段7、繰り返し手段7により超音波の送受信を繰り返す際に超音波の送信、受信を切り替える切替手段8、計時手段6と繰り返し手段7による複数回の超音波の送受信から伝搬時間の平均値を算出する時間演算手段9、時間演算手段9の計測値から流量を算出する流量演算手段10と、各要素を制御する計測制御手段11を備える。
(Embodiment 1)
FIG. 1 is a block diagram of a flow rate measuring apparatus showing Embodiment 1 of the present invention, and FIG. 2 is a flowchart showing the operation of the apparatus. In FIG. 1, a first
計測制御手段11は、通常計測手段12と流量推定手段13、及び、通常計測手段12と流量推定手段13の計測値とを判定する判定手段14とを含む。
The
また、通常計測手段12の計測値から流体の漏れを判別する漏れ判別手段15、流体管路1内を通過した流体量を積算する積算手段16を備える。通常計測手段12と流量推定手段13は、判定手段14に従って、繰り返し設定手段17に繰り返し手段7に設定する繰り返し回数を出力する。
Further, there are provided a leakage determination means 15 for determining a fluid leakage from the measurement value of the normal measurement means 12 and an integration means 16 for integrating the amount of fluid that has passed through the fluid pipe 1. The
以上のように構成された流量計測装置について、以下その動作、作用を説明する。 The operation and action of the flow rate measuring apparatus configured as described above will be described below.
まず、切替手段8で、第1の超音波振動子2を送信側、第2の超音波振動子3を受信側に設定する。そして、送信手段4により送出されたバースト信号により第1の超音波振動子2から送信された超音波は流体管路1の中の被測定流体を伝搬し、第2の超音波振動子3で受信され受信手段5で検知し、計時手段6で超音波の送受信までの伝搬時間(順方向の伝搬時間t1)を計測する。
First, the switching means 8 sets the first
次に、切替手段8で、第1の超音波振動子2を受信側、第2の超音波振動子3を送信側に設定する。そして、繰り返し手段7を介し、再び送信手段4からバースト信号が送出さ
れ第2の超音波振動子3から超音波を発信し、流体管路1の中の被測定流体を伝搬し、第1の超音波振動子2で受信され受信手段5で検知し計時手段6にて伝搬時間(逆方向の伝搬時間t2)を計測し、計測された2つの伝搬時間(t1、t2)の差を算出する。この時、繰り返し手段7で予め定められた回数だけ繰り返され、伝搬時間の差の平均値を時間演算手段9にて算出する。
Next, the switching means 8 sets the first
ここで、被測定流体の音速をC、流体の流れの速度をVとおくと、流れの順方向の超音波の伝搬速度は(C+V)、逆方向の伝搬速度は(C−V)となる。第1の超音波振動子2と第2の超音波振動子3の間の距離をL、超音波伝搬軸と管路の中心軸とがなす角度をθとおくと、順方向の伝搬時間t1、逆方向の伝搬時間t2は、
t1=L/(C+Vcosθ) 式(1)
t2=L/(C−Vcosθ) 式(2)
となる。ここで、t1とt2の差は小さな値となり、単発現象として計測するには十分な分解能を得るのは困難である。したがって、複数回の超音波の送受信繰り返しを実行し、その平均値を求める方式を取る。繰り返し手段7による繰り返し回数をnとおくと、伝搬時間T1とT2は、
T1=n×L/(C+Vcosθ) 式(3)
T2=n×L/(C−Vcosθ) 式(4)
となり式(3)、(4)より、
V=n×L/2cosθ(1/T1−1/T2) 式(5)
となり、Lとθが既知ならばT1とT2を測定すれば流速Vが求められる。この流速Vより流量Qは、通過面積をS、補正係数をKとすれば、
Q=K×S×V 式(6)
となる。
Here, assuming that the sound velocity of the fluid to be measured is C and the velocity of the fluid flow is V, the propagation velocity of the ultrasonic wave in the forward direction is (C + V) and the propagation velocity in the reverse direction is (C−V). . When the distance between the first
t1 = L / (C + V cos θ) Equation (1)
t2 = L / (C−V cos θ) Equation (2)
It becomes. Here, the difference between t1 and t2 is a small value, and it is difficult to obtain sufficient resolution for measurement as a single phenomenon. Therefore, a method is adopted in which transmission / reception of ultrasonic waves is repeated a plurality of times and the average value is obtained. If the number of repetitions by the repetition means 7 is n, the propagation times T1 and T2 are
T1 = n × L / (C + V cos θ) Equation (3)
T2 = n × L / (C−V cos θ) Equation (4)
From Equations (3) and (4)
V = n × L / 2 cos θ (1 / T1-1 / T2) Equation (5)
If L and θ are known, the flow velocity V can be obtained by measuring T1 and T2. From this flow velocity V, if the flow rate Q is S and the correction coefficient is K,
Q = K × S × V Formula (6)
It becomes.
そして、式(3)、(4)から明らかな様に繰り返し回数nを増やせば、流量Qの分解能を高めることができる。流量演算手段10は、時間演算手段9における(T1−T2)および式(5)、式(6)の演算処理を実行して流量を算出している。 Then, as apparent from the equations (3) and (4), the resolution of the flow rate Q can be increased by increasing the number of repetitions n. The flow rate calculation means 10 calculates the flow rate by executing the calculation processes of (T1-T2), the expressions (5), and (6) in the time calculation means 9.
通常計測手段12の指示により、上記した流量演算により所定の周期ti、繰り返し回数niごとに算出される流量を計測流量と呼ぶ。通常計測手段12における繰り返し回数は、m回を初期値とし、繰り返し設定手段17により、繰り返し回数を設定でき、状況に応じて変更が可能である。更に、流量推定手段13により通常計測手段12の周期tiより長い間隔2ti、多い繰り返し回数ni+aごとに算出される流量を推定流量と呼ぶ。流量推定手段13における繰り返し回数の初期値はm+a回、周期はti+bと定める。即ち、流量推定手段13で設定された繰り返し回数よりも多く、且つ、周期は長く設定している。
The flow rate calculated for each predetermined cycle ti and the number of repetitions ni by the above-described flow rate calculation in accordance with the instruction from the normal measurement means 12 is referred to as a measured flow rate. The number of repetitions in the
流量推定手段13で推定流量を算出する手順は通常計測手段12による方法と基本的に同じである。流量推定手段13は、計測流量が小さく、通常計測手段12における繰り返し回数niを少なくした場合に、計測精度が落ち、流体の漏れを漏れ判別手段15にて判別できないことを防ぐために高い計測精度で流量を推定することが目的であるため、通常計測手段12よりも多い繰り返し回数で実行し、消費電力低減のため通常計測手段12より長い周期で実行するのである。 The procedure for calculating the estimated flow rate by the flow rate estimation means 13 is basically the same as the method by the normal measurement means 12. The flow rate estimation means 13 has a high measurement accuracy in order to prevent the measurement accuracy from dropping when the measurement flow rate is small and the number of repetitions ni in the normal measurement means 12 is reduced, and the leakage discrimination means 15 cannot discriminate fluid leakage. Since the purpose is to estimate the flow rate, the flow is executed with a number of repetitions larger than that of the normal measurement means 12, and is executed with a longer cycle than the normal measurement means 12 in order to reduce power consumption.
判定手段14は、通常計測手段12で算出されて計測流量と流量推定手段13で算出された推定流量から所定の流量に応じた繰り返し回数で通常計測が実行されているか判定し、繰り返し設定手段17に繰り返し回数を出力する。積算手段16は、流体管路1内を流れる流体量が所定流量以上の場合に流れた流体量を積算し積算値として記憶する。
The
ここで、計測流量の所定流量とは、流体管路1内を通過する流体量の積算の有無を判断する閾値であり、流体の流量域を、計測流量が所定流量以下であり流量0として流体量の積算を行なわない第1の流量域と、計測流量が所定流量以上であり流体量の積算を行う第2の流量域に区分している。 Here, the predetermined flow rate of the measured flow rate is a threshold value for determining whether or not the amount of fluid passing through the fluid conduit 1 is integrated, and the fluid flow rate region is defined as a flow rate of 0 when the measured flow rate is equal to or lower than the predetermined flow rate. The flow rate is divided into a first flow rate region in which the amount is not integrated and a second flow region in which the measured flow rate is equal to or higher than a predetermined flow rate and the fluid amount is integrated.
流量が小さい場合は伝搬時間t1と伝搬時間t2との差が小さく計測誤差が大きくなる要因となるため、第1の流量域では、高い計測精度による計測が必要となる。 When the flow rate is small, the difference between the propagation time t1 and the propagation time t2 is small and the measurement error becomes large. Therefore, measurement with high measurement accuracy is required in the first flow rate region.
そこで、通常計測手段12による計測流量と流量推定手段13による推定流量との差と、計測流量から、判定手段14は、下記の方法で繰り返し設定手段17に繰り返し回数を出力する。
Therefore, from the difference between the measured flow rate by the
図2は、繰り返し回数の増減の方法を示すフローチャートで、まず、繰り返し回数として、初期値を繰り返し回数として設定する(S1)。 FIG. 2 is a flowchart showing a method of increasing / decreasing the number of repetitions. First, an initial value is set as the number of repetitions as the number of repetitions (S1).
次に、計測流量が所定流量以上かどうかを判定し(S2)、計測流量が所定流量以上の場合、計測流量と推定流量との差を所定値と比較し(S3)、この差が所定値未満の場合、通常計測手段12による計測精度は多少落としても構わないため判定手段14は繰り返し設定手段17に出力する繰り返し回数を少なくする(S4)。逆に、計測流量と推定流量との差が所定値以上の場合、計測流量の計測精度が低くなっている可能性があるため判定手段14は繰り返し設定手段17に出力する繰り返し回数を多くする(S5)。
Next, it is determined whether or not the measured flow rate is equal to or higher than the predetermined flow rate (S2). If the measured flow rate is equal to or higher than the predetermined flow rate, the difference between the measured flow rate and the estimated flow rate is compared with a predetermined value (S3). If it is less, the measurement accuracy by the
また、計測流量が所定流量未満の場合、計測流量と推定流量との差を所定値と比較(S6)し、この差が所定値未満の場合、流量推定手段13による推定流量は高い計測精度で計測を実施しているため、判定手段14は流体の漏れの可能性が低いと判定することで、繰り返し設定手段17に出力する繰り返し回数を少なくする(S7)。逆に、計測流量と推定流量との差が所定値以上の場合、判定手段14は流体の漏れの可能性が高いと判定することで、繰り返し設定手段17に出力する繰り返し回数を多くする(S8)。
If the measured flow rate is less than the predetermined flow rate, the difference between the measured flow rate and the estimated flow rate is compared with a predetermined value (S6). If this difference is less than the predetermined value, the estimated flow rate by the flow rate estimating means 13 is high in measurement accuracy. Since measurement is being performed, the
なお、推定流量を計測する流量推定手段13における計測精度は、通常計測手段12の計測精度よりも高ければよいので、流量推定手段13における繰り返し回数は、通常計測手段12に設定された繰り返し回数より多く設定すればよく、通常計測手段12に設定された繰り返し回数に応じて、変更してもよい。
In addition, since the measurement accuracy in the flow rate estimation unit 13 that measures the estimated flow rate may be higher than the measurement accuracy of the
また、繰り返し回数の上限を定め、通常計測手段12に設定された繰り返し回数が上限を超える場合は、通常計測手段12と流量推定手段13の繰り返し回数を上限回数に設定するようにすると、必要以上の繰り返しを防止でき、省電力化が可能となる。なお、流量が大きい場合は、繰り返し回数が少なくても精度が高いので、この繰り返し回数の上限を、計測流量が多いほど少なく設定することで、更に省電力化が図れる。
In addition, when the upper limit of the number of repetitions is set and the number of repetitions set in the
その結果、上記に示すように所定の流量に応じて、通常計測手段12の動作頻度を変更することで、消費電力を低減することができる。 As a result, the power consumption can be reduced by changing the operation frequency of the normal measuring means 12 according to a predetermined flow rate as described above.
以上のように、本発明にかかる流量計測装置は、流量に応じて繰り返し回数を設定することで、流体の漏れを判別しつつ消費電力を低減することができるので、超音波式ガスメータ全般に適用できるものである。 As described above, the flow rate measuring device according to the present invention can reduce power consumption while discriminating fluid leakage by setting the number of repetitions according to the flow rate, and therefore can be applied to all ultrasonic gas meters. It can be done.
1 流体管路
2 第1の超音波振動子(第1の振動子)
3 第2の超音波振動子(第2の振動子)
4 送信手段
5 受信手段
6 計時手段
7 繰り返し手段
8 切替手段
9 時間演算手段
10 流量演算手段
12 通常計測手段
13 流量推定手段
17 繰り返し設定手段
DESCRIPTION OF SYMBOLS 1
3 Second ultrasonic transducer (second transducer)
4 Transmitting means 5 Receiving means 6 Timing means 7
Claims (5)
前記振動子間の超音波信号の伝搬時間を計測する計時手段と、
前記計時手段による計測が終了する毎に前記第1の振動子および第2の振動子の送受信を切替える切替手段と、
前記振動子間相互の超音波伝搬を複数回行なう繰り返し手段と、
前記繰り返し手段の回数を設定する繰り返し設定手段と、
前記計時手段と前記繰り返し手段の出力から伝搬時間の平均値を算出する時間演算手段と、
前記時間演算手段で算出した伝搬時間から流量を算出する流量演算手段と、
前記繰り返し設定手段に設定された繰り返し回数、且つ、所定の計測周期で計測流量を算出する通常計測手段と、
前記通常計測手段よりも多い繰り返し回数、且つ、長い計測周期で、推定流量を算出する流量推定手段と、を備え、
前記繰り返し設定手段は、前記計測流量と前記推定流量の差に応じて前記通常計測手段での繰り返し回数を設定する流量計測装置。 A first vibrator and a second vibrator for transmitting and receiving an ultrasonic signal provided in a fluid pipe through which a fluid to be measured flows;
Time measuring means for measuring the propagation time of the ultrasonic signal between the vibrators;
Switching means for switching transmission and reception of the first vibrator and the second vibrator every time measurement by the time measuring means is completed;
Repeating means for performing ultrasonic propagation between the vibrators a plurality of times,
Repetition setting means for setting the number of repetition means;
Time calculating means for calculating an average value of propagation time from outputs of the time measuring means and the repeating means;
Flow rate calculation means for calculating a flow rate from the propagation time calculated by the time calculation means;
Normal measurement means for calculating the measurement flow rate at a predetermined number of times and the number of repetitions set in the repetition setting means;
A flow rate estimating means for calculating an estimated flow rate with a larger number of repetitions and a longer measurement cycle than the normal measuring means,
The repetitive setting unit is a flow rate measuring device that sets the number of repetitions in the normal measurement unit in accordance with a difference between the measured flow rate and the estimated flow rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010251467A JP5585402B2 (en) | 2010-11-10 | 2010-11-10 | Flow measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010251467A JP5585402B2 (en) | 2010-11-10 | 2010-11-10 | Flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012103088A JP2012103088A (en) | 2012-05-31 |
JP5585402B2 true JP5585402B2 (en) | 2014-09-10 |
Family
ID=46393670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010251467A Active JP5585402B2 (en) | 2010-11-10 | 2010-11-10 | Flow measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5585402B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400201B (en) * | 2013-07-15 | 2017-05-31 | 清华大学 | Solution is the method for the state estimation problem of target to the maximum with measuring point natural rate of interest |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08122117A (en) * | 1994-10-19 | 1996-05-17 | Matsushita Electric Ind Co Ltd | Flow rate measuring device |
JP3759989B2 (en) * | 1996-03-22 | 2006-03-29 | 愛知時計電機株式会社 | Ultrasonic flow meter |
JP2000283820A (en) * | 1999-03-30 | 2000-10-13 | Aichi Tokei Denki Co Ltd | Gas meter |
JP3432210B2 (en) * | 1999-05-11 | 2003-08-04 | 松下電器産業株式会社 | Flow measurement device |
JP4779198B2 (en) * | 2000-10-27 | 2011-09-28 | パナソニック株式会社 | Gas security device |
JP2002350202A (en) * | 2001-05-30 | 2002-12-04 | Matsushita Electric Ind Co Ltd | Flow measurement device |
JP4082246B2 (en) * | 2003-03-12 | 2008-04-30 | 松下電器産業株式会社 | Flowmeter |
JP4285056B2 (en) * | 2003-04-15 | 2009-06-24 | パナソニック株式会社 | Fluid flow measuring device |
JP2005037251A (en) * | 2003-07-15 | 2005-02-10 | Matsushita Electric Ind Co Ltd | Apparatus for measuring fluid flow |
JP2005077197A (en) * | 2003-08-29 | 2005-03-24 | Matsushita Electric Ind Co Ltd | Apparatus for measuring flow rate |
-
2010
- 2010-11-10 JP JP2010251467A patent/JP5585402B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012103088A (en) | 2012-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5753970B2 (en) | Flow measuring device | |
JP5402620B2 (en) | Flow measuring device | |
JP5796154B2 (en) | Flow measuring device | |
WO2011040027A1 (en) | Flow rate measuring device | |
WO2012081195A1 (en) | Flow volume measuring device | |
JP4556253B2 (en) | Flowmeter | |
JP5130085B2 (en) | Ultrasonic flow meter | |
JP5585402B2 (en) | Flow measuring device | |
JP5141613B2 (en) | Ultrasonic flow meter | |
JP5113343B2 (en) | Ultrasonic flow meter | |
JP3443658B2 (en) | Flow measurement device | |
JP4734822B2 (en) | Flow measuring device | |
JP4760115B2 (en) | Fluid flow measuring device | |
JP3838209B2 (en) | Flow measuring device | |
JP4650574B2 (en) | Ultrasonic flow meter | |
JP5990770B2 (en) | Ultrasonic measuring device | |
JP6767628B2 (en) | Flow measuring device | |
JP3945530B2 (en) | Flow measuring device | |
JP5548951B2 (en) | Flow measuring device | |
JP3443657B2 (en) | Flow measurement device | |
JP5229349B2 (en) | Fluid flow measuring device | |
JP4821240B2 (en) | Fluid flow measuring device | |
JP2008180566A (en) | Flow velocity or flow rate measuring device, and program therefor | |
WO2012157261A1 (en) | Ultrasonic flow meter | |
JP4689278B2 (en) | Flow velocity or flow rate measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130912 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20131015 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20140108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140415 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20140418 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140624 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140707 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5585402 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |