[go: up one dir, main page]

JP5585294B2 - Plasma processing apparatus and thin film manufacturing method using the same - Google Patents

Plasma processing apparatus and thin film manufacturing method using the same Download PDF

Info

Publication number
JP5585294B2
JP5585294B2 JP2010184700A JP2010184700A JP5585294B2 JP 5585294 B2 JP5585294 B2 JP 5585294B2 JP 2010184700 A JP2010184700 A JP 2010184700A JP 2010184700 A JP2010184700 A JP 2010184700A JP 5585294 B2 JP5585294 B2 JP 5585294B2
Authority
JP
Japan
Prior art keywords
plasma
cathode electrode
electrode
anode electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010184700A
Other languages
Japanese (ja)
Other versions
JP2012044023A (en
Inventor
桂太郎 坂本
文保 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010184700A priority Critical patent/JP5585294B2/en
Publication of JP2012044023A publication Critical patent/JP2012044023A/en
Application granted granted Critical
Publication of JP5585294B2 publication Critical patent/JP5585294B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、プラズマ中で発生した不要物質の影響を抑制したプラズマ処理装置およびそれを用いた薄膜の製造方法に関する。   The present invention relates to a plasma processing apparatus that suppresses the influence of unnecessary substances generated in plasma, and a thin film manufacturing method using the same.

近年、環境意識の高まりにより太陽光発電が注目されてきており、各種の太陽電池が開発、実用化されてきている。中でもシリコン原料の使用量が少なく大量生産に向いている薄膜シリコン型太陽電池は生産規模が拡大されつつある。しかし、薄膜シリコン型太陽電池には光照射により経時的に発電効率が低下する、いわゆる光劣化という克服されていない問題があり、エネルギー変換効率向上へ向けたさらなる改善が求められている。   In recent years, solar power generation has attracted attention due to increasing environmental awareness, and various types of solar cells have been developed and put into practical use. In particular, the production scale of thin-film silicon solar cells, which use less silicon raw materials and are suitable for mass production, is being expanded. However, thin-film silicon solar cells have an unsolved problem of so-called photodegradation in which power generation efficiency decreases with time due to light irradiation, and further improvements for improving energy conversion efficiency are required.

薄膜シリコン型太陽電池に用いられる水素化アモルファスシリコン(a−Si:H)薄膜は、シランガス(SiH)を原料としたプラズマCVD法により成膜されることが多い。シランガスはプラズマ内で分解され、主要成膜種であるSiHラジカルなどが生成し、成膜種が基板に到達することにより薄膜が形成される。ところが、プラズマ内ではSiHラジカルなどの成膜種以外に、高次シラン(Si、m≧4)やパーティクルといった不要物質も生成される。このような不要物質が膜中に混入することが原因となり光劣化を引き起こすといわれている。このような不要物質が膜中に混入すると、結合手を4個持つシリコン原子1つにつき2つの水素原子および2つのシリコン原子と結合しているシリコン原子の数が増加する。すなわち、いわゆるSi−H結合濃度が膜中で増加する。非特許文献1によると、膜中のSi−H結合濃度と光劣化の度合いには相関関係があり、光劣化を防ぐためには膜中Si−H結合濃度を小さくする必要があるとされている。よって、光劣化を防止するためには高次シランやパーティクルといった不要物質を膜中に混入させない工夫が必要である。 A hydrogenated amorphous silicon (a-Si: H) thin film used for a thin film silicon type solar cell is often formed by a plasma CVD method using silane gas (SiH 4 ) as a raw material. Silane gas is decomposed in the plasma, SiH 3 radicals, which are the main film formation species, are generated, and the film formation species reaches the substrate to form a thin film. However, unnecessary substances such as higher-order silane (Si m H n , m ≧ 4) and particles are also generated in the plasma in addition to the film-forming species such as SiH 3 radicals. It is said that such unnecessary substances are mixed into the film and cause photodegradation. When such an unnecessary substance is mixed in the film, the number of silicon atoms bonded to two hydrogen atoms and two silicon atoms increases per one silicon atom having four bonds. That is, the so-called Si—H 2 bond concentration increases in the film. According to Non-Patent Document 1, there is a correlation between the Si—H 2 bond concentration in the film and the degree of photodegradation, and in order to prevent photodegradation, it is necessary to reduce the Si—H 2 bond concentration in the film. ing. Therefore, in order to prevent photodegradation, it is necessary to devise a method for preventing unnecessary substances such as higher order silane and particles from being mixed into the film.

図10は従来の一般的な平行平板型プラズマCVD装置の概略断面図である。真空容器1の内部にはカソード電極3と接地電極22が対向して配置され、真空容器1に接続した真空排気装置6により容器内を低圧に保つ。カソード電極3にはシャワーヘッド状のガス供給口8が設けられ、真空容器1内にガス供給口8からシランガスなどの原料ガスを供給した上で、カソード電極3に接続した電源10により電力を供給してプラズマ2を発生させる。プラズマ2によって原料ガスを分解することにより発生した成膜種を用いて、接地電極21上に保持した基板4上に薄膜を形成する。   FIG. 10 is a schematic sectional view of a conventional general parallel plate type plasma CVD apparatus. Inside the vacuum vessel 1, the cathode electrode 3 and the ground electrode 22 are arranged to face each other, and the inside of the vessel is kept at a low pressure by the vacuum exhaust device 6 connected to the vacuum vessel 1. The cathode electrode 3 is provided with a showerhead-like gas supply port 8, and after supplying a raw material gas such as silane gas from the gas supply port 8 into the vacuum vessel 1, power is supplied by a power source 10 connected to the cathode electrode 3. Then, plasma 2 is generated. A thin film is formed on the substrate 4 held on the ground electrode 21 by using a film-forming species generated by decomposing the source gas by the plasma 2.

図10のような一般的な平行平板型プラズマCVD装置の場合、接地電極22上に設置した基板4表面の近傍までプラズマ2が広がって存在する。上述した高次シランやパーティクルといった不要物質は主にプラズマの内部で生成されるため、不要物質が膜中に混入する頻度は高くなってしまう。そのため、プラズマを基板表面近傍から遠ざけることや発生した不用物質を速やかに排気するなどといった改良がこれまでになされてきた。   In the case of a general parallel plate type plasma CVD apparatus as shown in FIG. 10, the plasma 2 spreads to the vicinity of the surface of the substrate 4 placed on the ground electrode 22. Since unnecessary substances such as higher-order silane and particles described above are mainly generated inside the plasma, the frequency with which unnecessary substances are mixed into the film increases. For this reason, improvements have been made so far, such as keeping the plasma away from the vicinity of the substrate surface and quickly exhausting the generated unwanted substances.

例えば特許文献1では、カソード電極と基板との間に接地電位のメッシュ電極を配置する構成をとり、プラズマをカソード電極とメッシュ電極との間に閉じ込めている。これにより、基板近傍にはプラズマが存在せず、プラズマからの正イオンによる基板へのイオン衝撃を避けることができるため、得られる薄膜の膜質を向上できるとしている。さらにプラズマ内で生成された不要物質の膜中への混入も避けることができる。また特許文献2では、カソード電極の基板側に多数の凹部を設け、その凹部が所定パターンで配置されたスポット型凹部およびスポット型凹部を相互に連通する溝型凹部から構成され、さらにガス導入用の穴およびガス排気用の穴の両方を設けた構成について述べている。これにより、電極表面の各スポット型凹部付近でスポット状の高密度プラズマが生成され、一方基板表面近傍のプラズマは弱くなるため、膜中への不要物質の混入を低減することができる。また、カソード電極のガス排気用の穴へのガスの流れにより、不要物質の除去を可能としている。   For example, Patent Document 1 has a configuration in which a mesh electrode having a ground potential is disposed between a cathode electrode and a substrate, and plasma is confined between the cathode electrode and the mesh electrode. Thereby, no plasma exists in the vicinity of the substrate, and ion bombardment to the substrate by positive ions from the plasma can be avoided, so that the quality of the obtained thin film can be improved. Furthermore, it is possible to avoid mixing unnecessary substances generated in the plasma into the film. Further, in Patent Document 2, a plurality of recesses are provided on the substrate side of the cathode electrode, and the recesses are configured by spot-type recesses arranged in a predetermined pattern and groove-type recesses that communicate the spot-type recesses with each other. The structure in which both the holes and the holes for exhausting the gas are provided is described. As a result, spot-like high-density plasma is generated in the vicinity of each spot-type recess on the electrode surface, while the plasma in the vicinity of the substrate surface becomes weak, so that contamination of unnecessary substances into the film can be reduced. Further, unnecessary substances can be removed by the flow of gas to the gas exhaust hole of the cathode electrode.

しかしながら、特許文献1の方法ではカソード電極と基板との間のメッシュ電極に膜が付着することが避けられず、付着した膜が剥がれて落下して異常放電を起こしたり、基板への異物混入の原因になったりなどする。また、メッシュ電極の開口率が大きすぎるとプラズマの閉じ込めが不十分となるため、メッシュ電極の開口率をあまり大きくできない。このために成膜速度が制限され、またメッシュ電極への膜付着により成膜速度がさらに低下してしまうという問題もあった。また、特許文献2の方法ではプラズマが完全に電極近傍に閉じ込められるわけではなく、基板近傍にも弱いながらプラズマが発生してしまうため、膜中への不要物質の混入を完全には防ぐことができなかった。   However, in the method of Patent Document 1, it is inevitable that a film adheres to the mesh electrode between the cathode electrode and the substrate, and the adhered film peels off and drops, causing abnormal discharge, or contamination of the substrate with foreign matter. It may cause a problem. Further, if the mesh electrode has an excessively high aperture ratio, plasma confinement becomes insufficient, so that the mesh electrode cannot have a very large aperture ratio. For this reason, there has been a problem that the film forming speed is limited, and the film forming speed is further lowered due to film adhesion to the mesh electrode. Further, in the method of Patent Document 2, the plasma is not completely confined in the vicinity of the electrode, and the plasma is generated although it is weak in the vicinity of the substrate. Therefore, it is possible to completely prevent an unnecessary substance from being mixed into the film. could not.

そこで我々は鋭意検討の結果、図11および図12に示すように、カソード電極3と基板4との間にアノード電極14を設け、複数の凹部23あるいは複数の排気孔18を備えたカソード電極3と、カソード電極3の凹部23あるいは排気孔18に対向する位置に貫通孔15を備えたアノード電極14とを近接して対向させ、凹部23あるいは排気孔18の内部にプラズマ2を安定に形成することにより、カソード電極3の近傍にのみプラズマ2を発生させ、基板4の近傍にはプラズマを発生させない状態が実現できることを見出した。図11はカソード電極3に凹部23を設けた場合、図12はカソード電極3に排気孔18を設けた場合についてそれぞれ示す。その結果、アノード電極3の作用によりプラズマ2を凹部23あるいは排気孔18の内部に局在させることが可能となり、膜中への不要物質の低減効果があることが明らかとなった。しかし、カソード電極3に設けた全ての凹部23あるいは全ての排気孔18の内部に再現性良く均一にプラズマを点灯させることが難しいという問題点が浮上した。同様の問題点については特許文献2でも取り上げられており、特許文献2ではスポット型凹部を相互に溝型凹部により連結することにより、解決しようとしている。このような溝型凹部を用いて凹部同士あるいは排気孔同士を連結する手段を適用した場合、凹部あるいは排気孔へのプラズマ点灯状態の均一性は若干改善されるが、完全に均一点灯させることは困難であった。   Therefore, as a result of intensive studies, as shown in FIGS. 11 and 12, the anode electrode 14 is provided between the cathode electrode 3 and the substrate 4, and the cathode electrode 3 having a plurality of recesses 23 or a plurality of exhaust holes 18 is provided. And the anode electrode 14 provided with the through hole 15 at a position facing the concave portion 23 or the exhaust hole 18 of the cathode electrode 3 in close proximity to each other, and the plasma 2 is stably formed inside the concave portion 23 or the exhaust hole 18. As a result, it has been found that a state in which the plasma 2 is generated only in the vicinity of the cathode electrode 3 and no plasma is generated in the vicinity of the substrate 4 can be realized. FIG. 11 shows the case where the cathode electrode 3 is provided with the recess 23, and FIG. 12 shows the case where the cathode electrode 3 is provided with the exhaust hole 18. As a result, it has become clear that the plasma 2 can be localized inside the recess 23 or the exhaust hole 18 by the action of the anode electrode 3, and there is an effect of reducing unnecessary substances in the film. However, a problem has arisen that it is difficult to light plasma uniformly in all the recesses 23 or all the exhaust holes 18 provided in the cathode electrode 3 with good reproducibility. The same problem is also taken up in Patent Document 2, and in Patent Document 2, an attempt is made to solve the problem by connecting the spot-type concave portions to each other by the groove-type concave portions. When such a groove-type recess is used to connect the recesses or the exhaust holes, the uniformity of the plasma lighting state to the recesses or the exhaust holes is slightly improved, It was difficult.

特開平6−49648号公報Japanese Patent Laid-Open No. 6-49648 特開2007−214296号公報JP 2007-214296 A

応用物理 第71巻 第7号(2002)、p.823−832Applied Physics Vol. 71, No. 7 (2002), p. 823-832

本発明の目的は、複数の凹部または複数の排気孔を備えるカソード電極の近傍のみにプラズマを発生させ、基板近傍のプラズマ発生を抑制し、かつカソード電極の全ての凹部または全ての排気孔に均一にプラズマを生成させることが可能なプラズマ処理装置、およびそれを用いた薄膜の製造方法を提供することにある。   An object of the present invention is to generate plasma only in the vicinity of a cathode electrode having a plurality of recesses or a plurality of exhaust holes, to suppress the generation of plasma in the vicinity of the substrate, and to be uniform in all the recesses or all the exhaust holes of the cathode electrode. An object of the present invention is to provide a plasma processing apparatus capable of generating plasma and a method of manufacturing a thin film using the same.

上記目的を達成するために、本発明は、内部を減圧に保持する真空排気装置を備えた真空容器内に、カソード電極と、該カソード電極に対向して基板を保持する基板保持機構と、該カソード電極と該基板保持機構との間にアノード電極とを備え、該カソード電極に電源が接続されたプラズマ処理装置であって、前記カソード電極は被成膜基板側に開口したプラズマ保持部と該プラズマ保持部を連結する連結部とからなり、前記アノード電極は前記カソード電極のプラズマ保持部に対向する位置に貫通孔が形成されており、前記カソード電極および/または前記アノード電極は両電極間の距離を増減する可動機構を有し、前記可動機構はプラズマ点火時にカソード電極とアノード電極との距離を広げ、プラズマ処理中はカソード電極とアノード電極を近接させて配置させる可動機構であるプラズマ処理装置を提供する。 In order to achieve the above object, the present invention provides a cathode electrode, a substrate holding mechanism for holding a substrate facing the cathode electrode, and a substrate holding mechanism in a vacuum container equipped with an evacuation device that holds the inside at a reduced pressure. A plasma processing apparatus comprising an anode electrode between a cathode electrode and the substrate holding mechanism, wherein a power source is connected to the cathode electrode, wherein the cathode electrode has a plasma holding portion opened to a film formation substrate side and the plasma holding unit The anode electrode has a through hole formed at a position facing the plasma holding portion of the cathode electrode, and the cathode electrode and / or the anode electrode is between the two electrodes. distance have a movable mechanism to increase or decrease, the movable mechanism is spread distance between the cathode electrode and the anode electrode during plasma ignition, the plasma processing cathode electrode and an anode To provide a plasma processing apparatus which is a movable mechanism which is disposed in close proximity to pole.

また、本発明の好ましい形態によれば、前記プラズマ保持部が被成膜基板側のみが開口した凹形状である、プラズマ処理装置を提供する。   Moreover, according to the preferable form of this invention, the said plasma holding | maintenance part provides the plasma processing apparatus which is the concave shape opened only to the film-forming substrate side.

また、本発明の好ましい形態によれば、前記カソード電極が中空であり、前記プラズマ保持部が中空の部分に連通した筒状であり、前記真空排気装置が前記カソード電極の中空の部分に接続されている、プラズマ処理装置を提供する。   According to a preferred embodiment of the present invention, the cathode electrode is hollow, the plasma holding part is in a cylindrical shape communicating with the hollow part, and the vacuum exhaust device is connected to the hollow part of the cathode electrode. A plasma processing apparatus is provided.

また、本発明の好ましい形態によれば、前記いずれかのプラズマ処理装置の基板保持機構に被成膜基板を配置し、真空容器内にガスを導入して、前記カソード電極と前記アノード電極を遠ざけた状態でプラズマを点火した後、前記カソード電極と前記アノード電極を接近させる、薄膜の製造方法を提供する。   Further, according to a preferred embodiment of the present invention, a deposition target substrate is disposed on the substrate holding mechanism of any of the plasma processing apparatuses, and a gas is introduced into a vacuum vessel to keep the cathode electrode and the anode electrode away from each other. A method for producing a thin film is provided in which the cathode electrode and the anode electrode are brought close to each other after the plasma is ignited in a heated state.

本発明によれば、以下に説明するとおり、カソード電極近傍にのみプラズマを発生させ基板近傍でのプラズマ発生を抑制することにより膜中への不要物質の混入を防止し、またカソード電極面内で安定かつ均一にプラズマを生成可能であるため均一性に優れた薄膜を形成することができるプラズマ処理装置および薄膜の製造方法を得ることができる。   According to the present invention, as described below, plasma is generated only in the vicinity of the cathode electrode to suppress the generation of plasma in the vicinity of the substrate, thereby preventing unwanted substances from being mixed into the film. Since plasma can be generated stably and uniformly, a plasma processing apparatus and a thin film manufacturing method capable of forming a thin film with excellent uniformity can be obtained.

本発明のプラズマ処理装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the plasma processing apparatus of this invention. 本発明のプラズマ処理装置におけるカソード電極の一例を示す平面図である。It is a top view which shows an example of the cathode electrode in the plasma processing apparatus of this invention. 本発明のプラズマ処理装置の別の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the plasma processing apparatus of this invention. 本発明のプラズマ処理装置の一例の動作を示す概略断面図である。It is a schematic sectional drawing which shows operation | movement of an example of the plasma processing apparatus of this invention. 本発明のプラズマ処理装置の別の一例の動作を示す概略断面図である。It is a schematic sectional drawing which shows operation | movement of another example of the plasma processing apparatus of this invention. 本発明のプラズマ処理装置のさらに別の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the plasma processing apparatus of this invention. 本発明のプラズマ処理装置のさらに別の一例の動作を示す概略断面図である。It is a schematic sectional drawing which shows operation | movement of another example of the plasma processing apparatus of this invention. 本発明のプラズマ処理装置におけるアノード電極位置可変機構の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the anode electrode position variable mechanism in the plasma processing apparatus of this invention. 本発明のプラズマ処理装置におけるアノード電極位置可変機構の他の一例の動作を示す概略断面図である。It is a schematic sectional drawing which shows operation | movement of another example of the anode electrode position variable mechanism in the plasma processing apparatus of this invention. 従来の一般的な平行平板型プラズマCVD装置の概略断面図である。It is a schematic sectional drawing of the conventional common parallel plate type plasma CVD apparatus. カソード電極に凹部を備え、カソード電極と基板との間にアノード電極を設ける構成を持つ、従来のプラズマCVD装置の概略断面図である。It is a schematic sectional drawing of the conventional plasma CVD apparatus which has a structure which equips a cathode electrode with a recessed part and provides an anode electrode between a cathode electrode and a board | substrate. カソード電極に排気孔を備え、カソード電極と基板との間にアノード電極を設ける構成を持つ、従来のプラズマCVD装置の概略断面図である。It is a schematic sectional view of a conventional plasma CVD apparatus having a configuration in which an exhaust hole is provided in a cathode electrode and an anode electrode is provided between the cathode electrode and a substrate.

以下、本発明の最良の実施形態の例を、図面を参照しながら説明する。   Hereinafter, examples of the best mode of the present invention will be described with reference to the drawings.

図1は、本発明のプラズマ処理装置の一例を示す概略断面図である。本発明のプラズマ処理装置は、真空容器1の内部に、プラズマ2を発生させるためのカソード電極3と、カソード電極3に対向して基板4を保持するための基板保持機構5を備える。真空容器1には真空排気装置6が接続されており、真空容器1の内部を減圧に保持することができる。ガス供給管7から供給される原料ガスは、カソード電極3に設けたガス供給口8から真空容器1の内部へ供給される。カソード電極3は絶縁物9により真空容器1とは電気的に絶縁して固定されている。カソード電極3には電源10が電気的に接続されており、電源10によってカソード電極3に供給される電力により、プラズマ2を発生させる。   FIG. 1 is a schematic sectional view showing an example of the plasma processing apparatus of the present invention. The plasma processing apparatus of the present invention includes a cathode electrode 3 for generating plasma 2 and a substrate holding mechanism 5 for holding the substrate 4 so as to face the cathode electrode 3 inside the vacuum vessel 1. An evacuation device 6 is connected to the vacuum vessel 1 so that the inside of the vacuum vessel 1 can be held at a reduced pressure. The source gas supplied from the gas supply pipe 7 is supplied to the inside of the vacuum vessel 1 from the gas supply port 8 provided in the cathode electrode 3. The cathode electrode 3 is fixed by being electrically insulated from the vacuum vessel 1 by an insulator 9. A power source 10 is electrically connected to the cathode electrode 3, and plasma 2 is generated by the power supplied to the cathode electrode 3 by the power source 10.

カソード電極3と基板保持機構5との間には、アノード電極14を備える。カソード電極3には基板4側に開口したプラズマ保持部13が形成され、またアノード電極14にはカソード電極3のプラズマ保持部13に相対する位置に貫通孔15が形成されている。プラズマ保持部13はアノード電極14の貫通孔15とで形成される空間内(以降単に「プラズマ保持部内」と記す)にプラズマ2を生成及び保持する役割を持つ。プラズマ処理中はカソード電極3とアノード電極14を接近させて配置することで、プラズマ2をプラズマ保持部内に入り込ませた状態で局在させることができる。すなわち、カソード電極3近傍にのみプラズマ2を発生させ、基板4近傍でのプラズマ発生を抑制することが可能となる。しかし、カソード電極3とアノード電極14を接近させて配置した場合、プラズマ点火時に全てのプラズマ保持部内に均一にプラズマ2を生成することが難しいという問題が生じる。そこで本発明では、プラズマ点火時にカソード電極3とアノード電極14との間の距離を変化させることにより、この問題を解決する。すなわち、プラズマ点火時にはカソード電極3とアノード電極14との間の距離を広げた状態として、カソード電極3とアノード電極14との間に単一のプラズマを生成し、その後カソード電極3とアノード電極14とを近接させることで、全てのプラズマ保持部内にプラズマ2が入り込んでいき、最終的にプラズマ2は各プラズマ保持部内に分散された状態で保持される。   An anode electrode 14 is provided between the cathode electrode 3 and the substrate holding mechanism 5. A plasma holding portion 13 opened to the substrate 4 side is formed in the cathode electrode 3, and a through hole 15 is formed in the anode electrode 14 at a position facing the plasma holding portion 13 of the cathode electrode 3. The plasma holding unit 13 has a role of generating and holding the plasma 2 in a space formed by the through hole 15 of the anode electrode 14 (hereinafter simply referred to as “inside the plasma holding unit”). During the plasma processing, the cathode electrode 3 and the anode electrode 14 are disposed close to each other, so that the plasma 2 can be localized in a state where it enters the plasma holding portion. That is, it is possible to generate the plasma 2 only in the vicinity of the cathode electrode 3 and suppress the generation of plasma in the vicinity of the substrate 4. However, when the cathode electrode 3 and the anode electrode 14 are arranged close to each other, there arises a problem that it is difficult to uniformly generate the plasma 2 in all the plasma holding portions at the time of plasma ignition. Therefore, the present invention solves this problem by changing the distance between the cathode electrode 3 and the anode electrode 14 during plasma ignition. That is, at the time of plasma ignition, the distance between the cathode electrode 3 and the anode electrode 14 is increased, and a single plasma is generated between the cathode electrode 3 and the anode electrode 14, and then the cathode electrode 3 and the anode electrode 14. , The plasma 2 enters all of the plasma holding units, and finally the plasma 2 is held in a dispersed state in each plasma holding unit.

基板保持機構5にはヒーターなどの基板加熱機構11を備えていてもよい。また、カソード電極3の側面にはカソード電極と1mm程度の空間を挟んでアースシールド12を設けることが好ましい。アースシールド12を設けることにより、カソード電極3の側面での不要なプラズマ生成を防ぐことができる。電源10としては高周波電源、パルス電源、DC電源など任意のものを使用してよく、高周波電源を用いる場合の周波数も任意のものを選択して構わないが、VHF帯の高周波電源を用いると低電子温度かつ高密度のプラズマを生成しやすいため好適である。また高周波電源の出力にパルス変調や振幅変調などをかけても良い。   The substrate holding mechanism 5 may include a substrate heating mechanism 11 such as a heater. Further, it is preferable to provide a ground shield 12 on the side surface of the cathode electrode 3 with a space of about 1 mm from the cathode electrode. By providing the earth shield 12, unnecessary plasma generation on the side surface of the cathode electrode 3 can be prevented. The power source 10 may be an arbitrary power source such as a high frequency power source, a pulse power source, or a DC power source, and an arbitrary frequency may be selected when the high frequency power source is used. This is suitable because it is easy to generate a plasma having an electron temperature and a high density. Further, pulse modulation or amplitude modulation may be applied to the output of the high frequency power source.

図1は、カソード電極3が平板状の導体からなり、プラズマ保持部がカソード電極3に設けた複数の貫通穴により形成される場合の例を示すものである。図2は、前記カソード電極3の一例を示す平面図である。図2に示すように、前記カソード電極3は、基板4側に開口したプラズマ保持部13と、プラズマ保持部13を連結する連結部21とからなる。プラズマ保持部13の開口形状は図2のような円形の他、楕円形、正方形、長方形、渦巻き型など、任意の形状で構わない。またプラズマ保持部13は図1の場合基板4側に開口を持つ貫通孔からなるが、被成膜基板側に開口を備えるものであればこのような形状に限定されるものではない。また、連結部21はカソード電極3の基板4側におけるプラズマ保持部13以外の部分である。   FIG. 1 shows an example in which the cathode electrode 3 is made of a flat conductor and the plasma holding part is formed by a plurality of through holes provided in the cathode electrode 3. FIG. 2 is a plan view showing an example of the cathode electrode 3. As shown in FIG. 2, the cathode electrode 3 includes a plasma holding unit 13 that is open to the substrate 4 side and a connecting unit 21 that connects the plasma holding unit 13. The opening shape of the plasma holding unit 13 may be an arbitrary shape such as an ellipse, a square, a rectangle, or a spiral, in addition to a circle as shown in FIG. In the case of FIG. 1, the plasma holding unit 13 includes a through hole having an opening on the substrate 4 side. However, the shape is not limited to such a shape as long as the opening is provided on the film formation substrate side. The connecting portion 21 is a portion other than the plasma holding portion 13 on the substrate 4 side of the cathode electrode 3.

また、本発明においては、図3に示すように前記プラズマ保持部13は被成膜基板側のみが開口した凹形状であることが好ましい。このような形状にすることで、カソード電極3における被成膜基板とは反対側での不要なプラズマ生成が防止でき、また前記プラズマ保持部内での安定なプラズマの生成状態の保持が可能となる。プラズマ保持部13の形状は加工のしやすさおよび放電安定生成の観点から断面形状が円形である円筒状凹部が好ましいが、プラズマ保持部13の断面形状が三角形や四角形などの多角形、楕円形状や星型など、任意の形状であっても構わない。また、プラズマ保持部13の断面形状がプラズマ保持部13の深さ方向で異なっていても構わない。プラズマ保持部13の寸法については任意のものを選ぶことができるが、例えばプラズマ保持部13の形状が円筒状の場合、プラズマ保持部13の内径は好ましくは2mm以上30mm以下、より好ましくは5mm以上20mm以下がよい。プラズマ保持部内にプラズマ2を安定かつ均一に生成するという観点から、プラズマ保持部13の内径が小さすぎるとプラズマ2がプラズマ保持部内に入り込まないため好ましくなく、またプラズマ保持部13の内径が大きすぎるとプラズマ保持部13の内部でプラズマ2を均一に生成することが難しくなるため好ましくない。また、プラズマ保持部13の深さについては浅すぎるとプラズマ保持部内にプラズマ2が入り込まず、また深すぎると電極サイズが大きくなりすぎてしまうため、好ましくは5mm以上30mm以下、より好ましくは10mm以上20mm以下がよい。プラズマ保持部13の配置についても任意の並べ方を選択できるが、プラズマ2をカソード電極3の面内で均一に生成できるという観点から、プラズマ保持部13を図2に示すような正方形格子状あるいは図示はしないが正三角形格子状に均等に配置することが好ましい。また、プラズマ2のカソード電極3面内における均一性を調整するためにプラズマ保持部13の配置を意図的に不均一にすることもなんら差し支えない。   Further, in the present invention, as shown in FIG. 3, it is preferable that the plasma holding unit 13 has a concave shape opened only on the deposition substrate side. By adopting such a shape, unnecessary plasma generation on the opposite side of the cathode electrode 3 from the deposition target substrate can be prevented, and stable plasma generation state can be maintained in the plasma holding unit. . The shape of the plasma holding unit 13 is preferably a cylindrical recess having a circular cross-sectional shape from the viewpoint of ease of processing and stable generation of discharge, but the cross-sectional shape of the plasma holding unit 13 is a polygon such as a triangle or a quadrangle, or an elliptical shape. Or any other shape such as a star shape. Further, the cross-sectional shape of the plasma holding unit 13 may be different in the depth direction of the plasma holding unit 13. For example, when the shape of the plasma holding unit 13 is cylindrical, the inner diameter of the plasma holding unit 13 is preferably 2 mm or more and 30 mm or less, more preferably 5 mm or more. 20 mm or less is good. From the viewpoint of generating the plasma 2 stably and uniformly in the plasma holding unit, it is not preferable that the inner diameter of the plasma holding unit 13 is too small because the plasma 2 does not enter the plasma holding unit, and the inner diameter of the plasma holding unit 13 is too large. It is not preferable because it is difficult to uniformly generate the plasma 2 inside the plasma holding unit 13. Further, if the depth of the plasma holding portion 13 is too shallow, the plasma 2 does not enter the plasma holding portion, and if it is too deep, the electrode size becomes too large. Therefore, it is preferably 5 mm or more and 30 mm or less, more preferably 10 mm or more. 20 mm or less is good. Although any arrangement of the plasma holding units 13 can be selected, the plasma holding unit 13 is formed in a square lattice shape as shown in FIG. Although not, it is preferable to arrange them equally in an equilateral triangular lattice. In addition, in order to adjust the uniformity of the plasma 2 in the surface of the cathode electrode 3, the arrangement of the plasma holding unit 13 may be intentionally nonuniform.

前記カソード電極3と前記基板保持機構5との間には、アノード電極14を備える。アノード電極14は電気的に接地電位とすることが好ましい。アノード電極14の厚さとしては薄すぎると使用中に反りが発生したりプラズマの局在化が不十分になったりするため好ましくなく、また厚すぎるとプラズマ処理に必要な活性種が十分基板へ供給されないため好ましくない。よって、アノード電極14の厚さは3mm以上15mm以下、好ましくは5mm以上10mm以下がよい。アノード電極14はカソード電極3および基板保持機構5とは略平行に配置する。また、アノード電極14にはカソード電極3のプラズマ保持部13に相対する位置に貫通孔15が形成されている。アノード電極14に形成された貫通孔15の断面形状は、カソード電極3のプラズマ保持部13の断面形状と同じで構わないが、異なっていてもよい。また、アノード電極14の厚さ方向において貫通孔15の断面形状が同一でも、また変化していても構わない。本発明におけるプラズマ処理装置では、プラズマ処理中はカソード電極3とアノード電極14を接近させて配置することで、プラズマ保持部内に発生したプラズマ2を局在させることができる。このときアノード電極14を接地電位としておけば、カソード電極3からの高周波電界はアノード電極14によりシールドされるため、アノード電極14と基板3との間の空間にプラズマ2を生成させないことが可能となり、好ましい。   An anode electrode 14 is provided between the cathode electrode 3 and the substrate holding mechanism 5. The anode electrode 14 is preferably electrically grounded. If the thickness of the anode electrode 14 is too thin, it is not preferable because warpage occurs during use or plasma localization is insufficient, and if it is too thick, the active species necessary for the plasma treatment are sufficient for the substrate. Since it is not supplied, it is not preferable. Therefore, the thickness of the anode electrode 14 is 3 mm or more and 15 mm or less, preferably 5 mm or more and 10 mm or less. The anode electrode 14 is disposed substantially parallel to the cathode electrode 3 and the substrate holding mechanism 5. A through hole 15 is formed in the anode electrode 14 at a position facing the plasma holding portion 13 of the cathode electrode 3. The cross-sectional shape of the through hole 15 formed in the anode electrode 14 may be the same as the cross-sectional shape of the plasma holding unit 13 of the cathode electrode 3, but may be different. Further, the cross-sectional shape of the through hole 15 may be the same or changed in the thickness direction of the anode electrode 14. In the plasma processing apparatus of the present invention, the plasma 2 generated in the plasma holding unit can be localized by arranging the cathode electrode 3 and the anode electrode 14 close to each other during the plasma processing. At this time, if the anode electrode 14 is set to the ground potential, the high-frequency electric field from the cathode electrode 3 is shielded by the anode electrode 14, so that it is possible to prevent the plasma 2 from being generated in the space between the anode electrode 14 and the substrate 3. ,preferable.

しかし、カソード電極3とアノード電極14を近接させて配置した場合、その状態でプラズマを点火しようとすると全てのプラズマ保持部内に均一にプラズマ2を生成することが困難であり、一部のプラズマ保持部内にプラズマ2が発生しなかったり、位置によってプラズマ2の発光強度が異なったりしてしまう。そこで本発明におけるプラズマ処理装置では、カソード電極3と前記アノード電極14との間の距離を変化させるためのアノード電極位置可変機構16を備えることを特徴とする。アノード電極位置可変機構16としては、アノード電極14の位置をカソード電極3と基板4との間で移動させることができるものであれば本発明に適用することができるが、例えば図1に示すように、ベローズを用いた直線導入機構の軸にアノード電極14を固定し、図示しないエアシリンダやボールネジを用いた直線運動機構などを用いて駆動し、アノード電極14の位置を変化させるものなどをあげることができる。このようなアノード電極位置可変機構16を備えていると、次に述べる方法でプラズマの均一生成が実現できる。   However, when the cathode electrode 3 and the anode electrode 14 are arranged close to each other, it is difficult to uniformly generate the plasma 2 in all the plasma holding portions when trying to ignite the plasma in that state, and a part of the plasma holding The plasma 2 is not generated in the part, or the emission intensity of the plasma 2 varies depending on the position. Therefore, the plasma processing apparatus according to the present invention includes an anode electrode position varying mechanism 16 for changing the distance between the cathode electrode 3 and the anode electrode 14. The anode electrode position varying mechanism 16 can be applied to the present invention as long as the position of the anode electrode 14 can be moved between the cathode electrode 3 and the substrate 4. For example, as shown in FIG. Furthermore, the anode electrode 14 is fixed to the shaft of the linear introduction mechanism using the bellows, and is driven using a linear motion mechanism using an air cylinder or a ball screw (not shown) to change the position of the anode electrode 14. be able to. If such an anode electrode position varying mechanism 16 is provided, uniform plasma generation can be realized by the method described below.

プラズマを全てのプラズマ保持部内において均一な生成状態とするためには、まずアノード電極14を図1の装置の場合、図4に示すようにカソード電極3から遠ざけてカソード電極3とアノード電極14との間の距離を広げる(図3、図6、図8の装置の場合は、図1の装置の場合の図4に当たるのは、それぞれ、図5、図7、図9である。以降の説明についても同じ)。このとき、プラズマ点火時におけるアノード電極14とカソード電極3との距離は5mm以上、好ましくは10mm以上離すことがプラズマ均一点火の点から好ましい。カソード電極3とアノード電極14とを離した状態でプラズマを生成すると、プラズマはカソード電極3とアノード電極14との間の空間で単一の連結された状態となる。プラズマが個々に分断された状態ではないため、プラズマは自律的に均一化された状態で生成される。その後、アノード位置可変機構16を作動させて、図1のようにカソード電極3とアノード電極14との間の距離を近接させる。このときのカソード電極3とアノード電極14との間の距離は、0.5mm以上3mm以下、より好ましくは0.7mm以上2mm以下であることが、プラズマをプラズマ保持部内(カソード電極3のプラズマ保持部13とアノード電極14の貫通孔15とで形成される空間)に局在化させるという観点から好ましい。なお、アノード電極14を可動状態においても確実に電気的に接地された状態を保つために、真空容器壁面等の固定接地電位面とアノード電極を電気的に接続する可撓性接地部材17により接続すれば、より好ましい。   In order to make the plasma uniform in all plasma holding portions, first, in the case of the apparatus of FIG. 1, the anode electrode 14 is moved away from the cathode electrode 3 as shown in FIG. (In the case of the apparatus shown in FIGS. 3, 6, and 8, FIGS. 5, 7, and 9 correspond to FIG. 4 in the case of the apparatus shown in FIG. 1, respectively.) The same for). At this time, the distance between the anode electrode 14 and the cathode electrode 3 at the time of plasma ignition is preferably 5 mm or more, preferably 10 mm or more from the viewpoint of plasma uniform ignition. When the plasma is generated in a state where the cathode electrode 3 and the anode electrode 14 are separated from each other, the plasma is in a single connected state in the space between the cathode electrode 3 and the anode electrode 14. Since the plasma is not in an individually divided state, the plasma is generated in an autonomously uniformed state. Thereafter, the anode position varying mechanism 16 is operated to bring the distance between the cathode electrode 3 and the anode electrode 14 closer as shown in FIG. At this time, the distance between the cathode electrode 3 and the anode electrode 14 is 0.5 mm or more and 3 mm or less, more preferably 0.7 mm or more and 2 mm or less. This is preferable from the viewpoint of localization in a space formed by the portion 13 and the through-hole 15 of the anode electrode 14. In order to ensure that the anode electrode 14 is electrically grounded even in a movable state, the anode electrode 14 is connected by a flexible grounding member 17 that electrically connects a fixed ground potential surface such as a vacuum vessel wall surface and the anode electrode. This is more preferable.

図6は本発明におけるプラズマ処理装置の別の一例を示す概略断面図である。カソード電極3は中空であり、この中空空間により排気室19を形成している。また、前記プラズマ保持部13は排気室19に連通した筒状である。さらに、前記真空排気装置6はカソード電極3の中空の部分、すなわち排気室19に接続されている。このとき、プラズマ保持部13の形状は加工のしやすさおよび放電安定生成の観点から断面形状が円形である円筒状が好ましいが、プラズマ保持部13の断面形状が三角形や四角形などの多角形、楕円形状や星型など、任意の形状であっても構わない。また、プラズマ保持部13の断面形状がプラズマ保持部13の深さ方向で異なっていても構わない。プラズマ保持部13の寸法については任意のものを選ぶことができるが、例えばプラズマ保持部13の形状が円筒状の場合、プラズマ保持部13の内径は好ましくは2mm以上30mm以下、より好ましくは5mm以上20mm以下がよい。プラズマ保持部内にプラズマ2を安定かつ均一に生成するという観点から、プラズマ保持部13の内径が小さすぎるとプラズマ2がプラズマ保持部内に入り込まないため好ましくない。また、プラズマ保持部13の内径が小さすぎると排気コンダクタンスが小さくなってカソード電極2からの排気能力が低下してしまうため、好ましくない。また、プラズマ保持部13の内径が大きすぎるとカソード電極3の面内でプラズマ2を均一に生成することが難しくなるため好ましくない。プラズマ保持部13の深さについては、浅すぎると排気室19の内部までプラズマ2が入り込み、排気室19内部の壁面が汚れたり、電源10から投入した電力の損失が増えたりするため好ましくない。またプラズマ保持部13の深さが深すぎると、プラズマ保持部13の排気コンダクタンスが小さくなり排気能力が低下したり、カソード電極3のサイズが大きくなりすぎたりするため好ましくない。よって、プラズマ保持部13の深さは好ましくは8mm以上40mm以下、より好ましくは13mm以上30mm以下がよい。プラズマ保持部13の配置については任意の並べ方を選択できるが、プラズマ2をカソード電極3の面内で均一に生成できるという観点から、プラズマ保持部13を正方形格子状あるいは正三角形格子状に均等に配置することが好ましい。また、プラズマ2のカソード電極3における面内均一性を調整するためにプラズマ保持部13の配置を意図的に不均一にすることもなんら差し支えない。   FIG. 6 is a schematic sectional view showing another example of the plasma processing apparatus in the present invention. The cathode electrode 3 is hollow, and an exhaust chamber 19 is formed by this hollow space. The plasma holding unit 13 has a cylindrical shape communicating with the exhaust chamber 19. Further, the vacuum exhaust device 6 is connected to a hollow portion of the cathode electrode 3, that is, an exhaust chamber 19. At this time, the shape of the plasma holding unit 13 is preferably a cylindrical shape with a circular cross-sectional shape from the viewpoint of ease of processing and stable generation of discharge, but the cross-sectional shape of the plasma holding unit 13 is a polygon such as a triangle or a quadrangle, An arbitrary shape such as an elliptical shape or a star shape may be used. Further, the cross-sectional shape of the plasma holding unit 13 may be different in the depth direction of the plasma holding unit 13. For example, when the shape of the plasma holding unit 13 is cylindrical, the inner diameter of the plasma holding unit 13 is preferably 2 mm or more and 30 mm or less, more preferably 5 mm or more. 20 mm or less is good. From the viewpoint of stably and uniformly generating the plasma 2 in the plasma holding unit, it is not preferable that the inner diameter of the plasma holding unit 13 is too small because the plasma 2 does not enter the plasma holding unit. Further, if the inner diameter of the plasma holding portion 13 is too small, the exhaust conductance becomes small and the exhaust capability from the cathode electrode 2 is lowered, which is not preferable. Further, if the inner diameter of the plasma holding portion 13 is too large, it is difficult to uniformly generate the plasma 2 within the surface of the cathode electrode 3, which is not preferable. If the depth of the plasma holding unit 13 is too shallow, the plasma 2 may enter the exhaust chamber 19 and the wall surface inside the exhaust chamber 19 may become dirty or the loss of power supplied from the power supply 10 may increase. In addition, if the depth of the plasma holding unit 13 is too deep, the exhaust conductance of the plasma holding unit 13 becomes small, the exhaust capacity is lowered, and the size of the cathode electrode 3 becomes too large. Therefore, the depth of the plasma holding part 13 is preferably 8 mm or more and 40 mm or less, more preferably 13 mm or more and 30 mm or less. Arbitrary arrangements can be selected for the arrangement of the plasma holding unit 13, but from the viewpoint that the plasma 2 can be generated uniformly in the plane of the cathode electrode 3, the plasma holding unit 13 is evenly arranged in a square lattice shape or an equilateral triangular lattice shape. It is preferable to arrange. Moreover, in order to adjust the in-plane uniformity of the plasma 2 at the cathode electrode 3, it is possible to intentionally make the arrangement of the plasma holding portions 13 non-uniform.

カソード電極3にプラズマ保持部13を形成し、プラズマ保持部内(カソード電極3のプラズマ保持部13とアノード電極14の貫通孔15とで形成される空間)にプラズマ2を形成することにより、プラズマ内で発生した不用物質をプラズマ保持部13へ向かう排気流れにより速やかに真空容器1内から排出可能であるということは、不要物質の膜中への混入防止の観点から好ましい構成である。   The plasma holding part 13 is formed on the cathode electrode 3, and the plasma 2 is formed in the plasma holding part (a space formed by the plasma holding part 13 of the cathode electrode 3 and the through hole 15 of the anode electrode 14). It is a preferable configuration from the viewpoint of preventing unwanted substances from being mixed into the film so that the unnecessary substances generated in step 1 can be quickly discharged from the vacuum container 1 by the exhaust flow toward the plasma holding unit 13.

図6に示すプラズマ処理装置においても、カソード電極3とアノード電極14との間の距離を変化させるためのアノード電極位置可変機構16を備える。アノード電極位置可変機構16により、次に述べる方法でプラズマの均一生成の実現が可能となる。プラズマ2を全ての貫通孔15において均一に生成するためには、まずアノード電極14を図7に示すようにカソード電極3から遠ざけてカソード電3とアノード電極14との間の距離を広げる。プラズマ点火時におけるアノード電極14とカソード電極3との距離は5mm以上、好ましくは10mm以上離すことがプラズマ均一点火の点から好ましい。カソード電極3とアノード電極14とを離した状態でプラズマを生成すると、プラズマ2はカソード電極3とアノード電極14との間の空間で単一の連結された状態となる。プラズマ2が個々に分断された状態ではないため、プラズマ2は自律的に均一化された状態で生成される。その後、アノード位置可変機構16を作動させて、図6のようにカソード電極3とアノード電極14との間の距離を近接させる。このときのカソード電極3とアノード電極14との間の距離は、0.5mm以上3mm以下、より好ましくは0.7mm以上2mm以下であることが、プラズマ2をカソード電極3のプラズマ保持部内に局在化させるという観点から好ましい。なお、アノード電極14を可動状態においても確実に電気的に接地された状態を保つために、真空容器1の壁面等の固定接地電位面とアノード電極14を電気的に接続する可撓性接地部材17により接続すれば、より好ましい。   The plasma processing apparatus shown in FIG. 6 also includes an anode electrode position varying mechanism 16 for changing the distance between the cathode electrode 3 and the anode electrode 14. The anode electrode position varying mechanism 16 makes it possible to achieve uniform plasma generation in the following manner. In order to generate the plasma 2 uniformly in all the through-holes 15, first, the anode electrode 14 is moved away from the cathode electrode 3 as shown in FIG. 7, and the distance between the cathode 3 and the anode 14 is increased. The distance between the anode electrode 14 and the cathode electrode 3 during plasma ignition is preferably 5 mm or more, and more preferably 10 mm or more from the viewpoint of plasma uniform ignition. When the plasma is generated in a state where the cathode electrode 3 and the anode electrode 14 are separated from each other, the plasma 2 becomes a single connected state in the space between the cathode electrode 3 and the anode electrode 14. Since the plasma 2 is not in an individually divided state, the plasma 2 is generated in an autonomously uniformed state. Thereafter, the anode position varying mechanism 16 is operated to bring the distance between the cathode electrode 3 and the anode electrode 14 closer as shown in FIG. At this time, the distance between the cathode electrode 3 and the anode electrode 14 is 0.5 mm or more and 3 mm or less, and more preferably 0.7 mm or more and 2 mm or less, so that the plasma 2 is localized in the plasma holding portion of the cathode electrode 3. It is preferable from the viewpoint of being present. A flexible ground member that electrically connects the fixed ground potential surface such as the wall surface of the vacuum vessel 1 and the anode electrode 14 in order to ensure that the anode electrode 14 is electrically grounded even in the movable state. 17 is more preferable.

図8および図9は本発明のプラズマ処理装置におけるアノード電極位置可変機構16の他の一例を示す概略断面図である。図1および図3〜7における電極位置可変機構16はカソード電極3の方向からアノード電極14を支持する構造であったが、例えば図8に示すように基板4の方向からアノード電極14を支持する構造であってもよい。図8はカソード電極3とアノード電極14とを接近させたとき、また図9はカソード電極3とアノード電極14を遠ざけたときの状態を示す。なお、電極位置可変機構16はこのような構成に限ったものではない。   8 and 9 are schematic sectional views showing another example of the anode electrode position varying mechanism 16 in the plasma processing apparatus of the present invention. The electrode position varying mechanism 16 in FIGS. 1 and 3 to 7 has a structure that supports the anode electrode 14 from the direction of the cathode electrode 3, but supports the anode electrode 14 from the direction of the substrate 4 as shown in FIG. 8, for example. It may be a structure. FIG. 8 shows a state in which the cathode electrode 3 and the anode electrode 14 are brought close to each other, and FIG. 9 shows a state in which the cathode electrode 3 and the anode electrode 14 are moved away from each other. The electrode position varying mechanism 16 is not limited to such a configuration.

本発明は、成膜、エッチング、表面処理など、各種プラズマ処理を行う装置に適用することが可能であるが、特に処理中に不要な副生成物が形成されてしまう工程において威力を発揮する。例えばハロゲンガスを用いたドライエッチングでは処理中の膜剥がれや内部構造物の劣化によるパーティクルの発生がありプロセスに悪影響を及ぼすため、その除去手段として活用できる。しかし、特にプラズマCVD装置に適用することが好適である。プラズマCVDではプラズマ中で生成した活性種の反応を膜形成表面のみに制限することが難しく気相中での活性種の結合反応が生じて、微粒子などの不要物質が発生しやすい。このような状況下では、本発明のようにカソード電極近傍にのみプラズマを発生させ基板近傍でのプラズマ発生を抑制することにより不要物質の膜中への混入を防ぐ効果が顕著に現れてくると考えられる。   The present invention can be applied to an apparatus that performs various plasma treatments such as film formation, etching, and surface treatment. However, it is particularly effective in a process in which unnecessary by-products are formed during the treatment. For example, in dry etching using a halogen gas, there is a film peeling during processing or generation of particles due to deterioration of internal structures, which adversely affects the process. However, it is particularly suitable to apply to a plasma CVD apparatus. In plasma CVD, it is difficult to limit the reaction of active species generated in the plasma to only the film-forming surface, and a binding reaction of active species in the gas phase occurs, and unnecessary substances such as fine particles are likely to be generated. Under such circumstances, when the plasma is generated only in the vicinity of the cathode electrode and the generation of the plasma in the vicinity of the substrate is suppressed as in the present invention, the effect of preventing the mixing of unnecessary substances into the film becomes prominent. Conceivable.

(実施例1)
次に、上で述べたプラズマ処理装置をプラズマCVDによるアモルファスシリコン薄膜の形成に適用した場合について説明する。
Example 1
Next, the case where the plasma processing apparatus described above is applied to the formation of an amorphous silicon thin film by plasma CVD will be described.

図3および図5に示す装置を用いてアモルファスシリコン薄膜を形成した。複数のプラズマ保持部13を設けたカソード電極3において、プラズマ保持部13の形状を円筒状凹部とし、プラズマ保持部13の内径を10mm、深さを15mmとした。厚さ10mmのアノード電極14を用い、アノード電極14の表面におけるカソード電極3の複数のプラズマ保持部13に対向する位置に貫通孔15を設けた。貫通孔15の内径は10mmとした。基板4としてガラス基板を基板保持機構5に設置し、カソード電極3と基板4表面との間の距離を45mmとした。原料ガスとしてシランガス30sccmをガス供給管7を通じてカソード電極3に設けたガス供給口8から真空容器1の内部へ供給し、真空容器1内部の圧力を30Paに調節した。電源10は周波数60MHzの高周波電源を用いた。まず、図2のようにアノード電極位置可変機構16を用いてカソード電極3とアノード電極14との間隔を広げ、間隔を30mmに設定した。カソード電極3に50Wの電力を供給したところ、プラズマ2がカソード電極3とアノード電極14の間の空間に形成された。その後、アノード電極位置可変機構16を用いてカソード電極3とアノード電極14との間隔を狭め、間隔を1mmに設定した。このとき、プラズマ2はカソード電極3のプラズマ保持部13とアノード電極14の貫通孔15とで形成される多数の独立した空間に入り込んで分散した状態で存在するように変化し、全てのプラズマ保持部内において均一かつ安定にプラズマ2を発生させることができた。
(実施例2)
図6および図7に示す装置を用いてアモルファスシリコン薄膜を形成した。複数のプラズマ保持部13を設けたカソード電極3において、カソード電極3の内部に中空の排気室19を設け、プラズマ保持部13の形状を排気室19に連通した円筒状とし、プラズマ保持部13の内径を10mm、深さを15mmとした。厚さ10mmのアノード電極14を用い、アノード電極14の表面におけるカソード電極3の複数のプラズマ保持部13に対向する位置に貫通孔15を設けた。貫通孔15の内径は10mmとした。基板4としてガラス基板を基板保持機構5に設置し、カソード電極3と基板4との間の距離を45mmとした。原料ガスとしてシランガス30sccmをガス供給管7を通じてカソード電極3に設けたガス供給口8から真空容器1の内部へ供給し、真空容器1内部の圧力を30Paに調節した。電源10は周波数60MHzの高周波電源を用いた。まず、図2のようにアノード電極位置可変機構16を用いてカソード電極3とアノード電極14との間隔を広げ、間隔を30mmに設定した。カソード電極3に50Wの電力を供給したところ、プラズマがカソード電極3とアノード電極14の間の空間に形成された。その後、アノード電極位置可変機構16を用いてカソード電極3とアノード電極14との間隔を狭め、間隔を1mmに設定した。このとき、プラズマ2はカソード電極3のプラズマ保持部13とアノード電極14の貫通孔15との間に挟まれて形成される多数の独立した空間に入り込んで分散した状態で存在するように変化し、全てのプラズマ保持部内において均一かつ安定にプラズマを発生させることができた。
(比較例)
図11に示す装置を用いてアモルファスシリコン薄膜を形成した。複数の凹部23を設けたカソード電極3において、凹部23の形状を円筒状とし、凹部23の内径を10mm、深さを15mmとした。厚さ10mmのアノード電極14を用い、アノード電極14の表面におけるカソード電極3の複数の凹部23に対向する位置に貫通孔15を設けた。アノード電極14の貫通孔15の内径は10mmとした。基板4としてガラス基板を基板保持機構5に設置し、カソード電極3と基板4との間の距離を45mmとした。原料ガスとしてシランガス30sccmをガス供給管7を通じてカソード電極3に設けたガス供給口8から真空容器1の内部へ供給し、真空容器1内部の圧力を30Paに調節した。電源10は周波数60MHzの高周波電源を用いた。カソード電極3とアノード電極14との間隔は1mmで固定である。カソード電極3に50Wの電力を供給したところ、プラズマはカソード電極3の凹部23とアノード電極14の貫通孔15との間に挟まれて形成される多数の独立した空間に入り込んで分散した状態で発生した。しかし、一部の貫通孔15においてプラズマが点灯していなかった。電力を変化させたり圧力を変化させたりするなどの変動を与えてみたが、最終的に圧力30Pa、電力50Wに戻したとき、全ての凹部23および貫通孔15で均一にプラズマを形成することはできなかった。
An amorphous silicon thin film was formed using the apparatus shown in FIGS. In the cathode electrode 3 provided with a plurality of plasma holding portions 13, the shape of the plasma holding portion 13 was a cylindrical recess, the inner diameter of the plasma holding portion 13 was 10 mm, and the depth was 15 mm. The anode electrode 14 having a thickness of 10 mm was used, and through holes 15 were provided at positions facing the plurality of plasma holding portions 13 of the cathode electrode 3 on the surface of the anode electrode 14. The inner diameter of the through hole 15 was 10 mm. A glass substrate was placed as the substrate 4 on the substrate holding mechanism 5, and the distance between the cathode electrode 3 and the surface of the substrate 4 was 45 mm. A silane gas of 30 sccm as a source gas was supplied to the inside of the vacuum vessel 1 from the gas supply port 8 provided in the cathode electrode 3 through the gas supply pipe 7, and the pressure inside the vacuum vessel 1 was adjusted to 30 Pa. The power supply 10 was a high frequency power supply having a frequency of 60 MHz. First, as shown in FIG. 2, the gap between the cathode electrode 3 and the anode electrode 14 was increased using the anode electrode position varying mechanism 16, and the gap was set to 30 mm. When electric power of 50 W was supplied to the cathode electrode 3, plasma 2 was formed in the space between the cathode electrode 3 and the anode electrode 14. Thereafter, the gap between the cathode electrode 3 and the anode electrode 14 was narrowed by using the anode electrode position varying mechanism 16, and the gap was set to 1 mm. At this time, the plasma 2 changes so as to enter and disperse in a large number of independent spaces formed by the plasma holding portion 13 of the cathode electrode 3 and the through holes 15 of the anode electrode 14, and all the plasma holding Plasma 2 could be generated uniformly and stably in the part.
(Example 2)
An amorphous silicon thin film was formed using the apparatus shown in FIGS. In the cathode electrode 3 provided with a plurality of plasma holding portions 13, a hollow exhaust chamber 19 is provided inside the cathode electrode 3, and the shape of the plasma holding portion 13 is a cylindrical shape communicating with the exhaust chamber 19. The inner diameter was 10 mm and the depth was 15 mm. The anode electrode 14 having a thickness of 10 mm was used, and through holes 15 were provided at positions facing the plurality of plasma holding portions 13 of the cathode electrode 3 on the surface of the anode electrode 14. The inner diameter of the through hole 15 was 10 mm. A glass substrate was placed on the substrate holding mechanism 5 as the substrate 4, and the distance between the cathode electrode 3 and the substrate 4 was 45 mm. A silane gas of 30 sccm as a source gas was supplied to the inside of the vacuum vessel 1 from the gas supply port 8 provided in the cathode electrode 3 through the gas supply pipe 7, and the pressure inside the vacuum vessel 1 was adjusted to 30 Pa. The power supply 10 was a high frequency power supply having a frequency of 60 MHz. First, as shown in FIG. 2, the gap between the cathode electrode 3 and the anode electrode 14 was increased using the anode electrode position varying mechanism 16, and the gap was set to 30 mm. When electric power of 50 W was supplied to the cathode electrode 3, plasma was formed in the space between the cathode electrode 3 and the anode electrode 14. Thereafter, the gap between the cathode electrode 3 and the anode electrode 14 was narrowed by using the anode electrode position varying mechanism 16, and the gap was set to 1 mm. At this time, the plasma 2 changes so as to enter and disperse in a large number of independent spaces formed between the plasma holding portion 13 of the cathode electrode 3 and the through hole 15 of the anode electrode 14. It was possible to generate plasma uniformly and stably in all plasma holding portions.
(Comparative example)
An amorphous silicon thin film was formed using the apparatus shown in FIG. In the cathode electrode 3 provided with a plurality of recesses 23, the shape of the recesses 23 was cylindrical, the inner diameter of the recesses 23 was 10 mm, and the depth was 15 mm. The anode electrode 14 having a thickness of 10 mm was used, and through holes 15 were provided at positions facing the plurality of recesses 23 of the cathode electrode 3 on the surface of the anode electrode 14. The inner diameter of the through hole 15 of the anode electrode 14 was 10 mm. A glass substrate was placed on the substrate holding mechanism 5 as the substrate 4, and the distance between the cathode electrode 3 and the substrate 4 was 45 mm. A silane gas of 30 sccm as a source gas was supplied to the inside of the vacuum vessel 1 from the gas supply port 8 provided in the cathode electrode 3 through the gas supply pipe 7, and the pressure inside the vacuum vessel 1 was adjusted to 30 Pa. The power supply 10 was a high frequency power supply having a frequency of 60 MHz. The interval between the cathode electrode 3 and the anode electrode 14 is fixed at 1 mm. When power of 50 W is supplied to the cathode electrode 3, the plasma enters and disperses in a number of independent spaces formed between the recesses 23 of the cathode electrode 3 and the through holes 15 of the anode electrode 14. Occurred. However, plasma was not lit in some through holes 15. I tried to give fluctuations such as changing the electric power and changing the pressure, but when the pressure was finally returned to 30 Pa and electric power 50 W, it was impossible to form plasma uniformly in all the recesses 23 and the through holes 15. could not.

本発明は、プラズマ処理装置のうちのプラズマCVD装置に限られるものではなく、プラズマエッチング装置やプラズマ表面改質装置などその他の装置にも応用することができるが、その応用範囲がこれらに限られるものではない。
The present invention is not limited to the plasma CVD apparatus among the plasma processing apparatuses, but can be applied to other apparatuses such as a plasma etching apparatus and a plasma surface modification apparatus, but the application range is limited thereto. It is not a thing.

1 真空容器
2 プラズマ
3 カソード電極
4 基板
5 基板保持機構
6 真空排気装置
7 ガス供給管
8 ガス供給口
9 絶縁物
10 電源
11 基板加熱機構
12 アースシールド
13 プラズマ保持部
14 アノード電極
15 貫通孔
16 アノード電極位置可変機構
17 可撓性接地部材
18 排気孔
19 排気室
20 排気配管
21 連結部
22 接地電極
23 凹部
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Plasma 3 Cathode electrode 4 Substrate 5 Substrate holding mechanism 6 Vacuum exhaust apparatus 7 Gas supply pipe 8 Gas supply port 9 Insulator 10 Power supply 11 Substrate heating mechanism 12 Earth shield 13 Plasma holding part 14 Anode electrode 15 Through-hole 16 Anode Electrode position variable mechanism 17 Flexible grounding member 18 Exhaust hole 19 Exhaust chamber 20 Exhaust piping 21 Connecting portion 22 Ground electrode 23 Recessed portion

Claims (4)

内部を減圧に保持する真空排気装置を備えた真空容器内に、カソード電極と、該カソード電極に対向して基板を保持する基板保持機構と、該カソード電極と該基板保持機構との間にアノード電極とを備え、該カソード電極に電源が接続されたプラズマ処理装置であって、
前記カソード電極は被成膜基板側に開口したプラズマ保持部と該プラズマ保持部を連結する連結部とからなり、前記アノード電極は前記カソード電極のプラズマ保持部に対向する位置に貫通孔が形成されており、前記カソード電極および/または前記アノード電極は両電極間の距離を増減する可動機構を有し、前記可動機構はプラズマ点火時にカソード電極とアノード電極との距離を広げ、プラズマ処理中はカソード電極とアノード電極を近接させて配置させる可動機構である前記プラズマ処理装置。
Inside a vacuum vessel equipped with a vacuum exhaust device that holds the inside at a reduced pressure, a cathode electrode, a substrate holding mechanism that holds the substrate facing the cathode electrode, and an anode between the cathode electrode and the substrate holding mechanism And a plasma processing apparatus having a power source connected to the cathode electrode,
The cathode electrode includes a plasma holding portion opened to the film formation substrate side and a connecting portion for connecting the plasma holding portion, and the anode electrode has a through hole formed at a position facing the plasma holding portion of the cathode electrode. and said cathode electrode and / or the anode electrode have a moving mechanism for increasing or decreasing the distance between the electrodes, wherein the movable mechanism is spread distance between the cathode electrode and the anode electrode during plasma ignition, the plasma processing cathode The said plasma processing apparatus which is a movable mechanism which arrange | positions an electrode and an anode electrode closely .
前記プラズマ保持部が被成膜基板側のみが開口した凹形状である請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the plasma holding unit has a concave shape in which only the deposition substrate side is opened. 前記カソード電極が中空であり、前記プラズマ保持部が中空の部分に連通した筒状であり、
前記真空排気装置が前記カソード電極の中空の部分に接続されている
請求項1に記載のプラズマ処理装置。
The cathode electrode is hollow, and the plasma holding part is in a cylindrical shape communicating with a hollow part,
The plasma processing apparatus according to claim 1, wherein the vacuum exhaust apparatus is connected to a hollow portion of the cathode electrode.
請求項1〜3のいずれかに記載のプラズマ処理装置の基板保持機構に被成膜基板を配置し、真空容器内にガスを導入して、前記カソード電極と前記アノード電極を遠ざけた状態でプラズマを点火した後、前記カソード電極と前記アノード電極を接近させる、薄膜の製造方法。
A plasma deposition substrate is disposed in the substrate holding mechanism of the plasma processing apparatus according to any one of claims 1 to 3 and gas is introduced into a vacuum vessel so that the cathode electrode and the anode electrode are separated from each other. After igniting, the cathode electrode and the anode electrode are brought close to each other.
JP2010184700A 2010-08-20 2010-08-20 Plasma processing apparatus and thin film manufacturing method using the same Expired - Fee Related JP5585294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010184700A JP5585294B2 (en) 2010-08-20 2010-08-20 Plasma processing apparatus and thin film manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184700A JP5585294B2 (en) 2010-08-20 2010-08-20 Plasma processing apparatus and thin film manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2012044023A JP2012044023A (en) 2012-03-01
JP5585294B2 true JP5585294B2 (en) 2014-09-10

Family

ID=45899981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184700A Expired - Fee Related JP5585294B2 (en) 2010-08-20 2010-08-20 Plasma processing apparatus and thin film manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP5585294B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9144858B2 (en) * 2011-11-18 2015-09-29 Recarbon Inc. Plasma generating system having movable electrodes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175427A (en) * 1987-01-16 1988-07-19 Nec Corp Dry etching apparatus
JPH04297578A (en) * 1991-03-26 1992-10-21 Shimadzu Corp Plasma treating device
JP4859472B2 (en) * 2006-02-08 2012-01-25 独立行政法人物質・材料研究機構 Plasma process equipment

Also Published As

Publication number Publication date
JP2012044023A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
US8518284B2 (en) Plasma treatment apparatus and method for plasma-assisted treatment of substrates
JP5589839B2 (en) Plasma processing apparatus and method for producing amorphous silicon thin film using the same
JP4212210B2 (en) Surface treatment equipment
US8097082B2 (en) Nonplanar faceplate for a plasma processing chamber
KR101839414B1 (en) Plasma processing apparatus and plasma control method
US20100024729A1 (en) Methods and apparatuses for uniform plasma generation and uniform thin film deposition
JP4292002B2 (en) Plasma processing equipment
KR101496841B1 (en) Compound plasma reactor
JP2006120926A (en) Plasma processing equipment
JP5089669B2 (en) Thin film forming equipment
JP4212215B2 (en) Surface treatment equipment
WO2011104803A1 (en) Plasma generator
JP5614180B2 (en) Plasma CVD equipment
JP5585294B2 (en) Plasma processing apparatus and thin film manufacturing method using the same
JP5030850B2 (en) Plasma processing equipment
JP5329796B2 (en) Plasma processing equipment
JP2008248281A (en) Plasma generator and thin film deposition apparatus using the same
JP3144165B2 (en) Thin film generator
JP4194466B2 (en) Plasma process apparatus and electronic device manufacturing method using the same
KR101775361B1 (en) Plasma process apparatus
CN210469844U (en) Electrode assembly and plasma generator using the same
JP5691740B2 (en) Plasma processing equipment
JP2005353636A (en) Plasma processing apparatus
KR20120025656A (en) Apparatus for generation plasma
JP2011222991A (en) Plasma cvd device and thin-film substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R151 Written notification of patent or utility model registration

Ref document number: 5585294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees