[go: up one dir, main page]

JP5585178B2 - Fluid control device - Google Patents

Fluid control device Download PDF

Info

Publication number
JP5585178B2
JP5585178B2 JP2010092421A JP2010092421A JP5585178B2 JP 5585178 B2 JP5585178 B2 JP 5585178B2 JP 2010092421 A JP2010092421 A JP 2010092421A JP 2010092421 A JP2010092421 A JP 2010092421A JP 5585178 B2 JP5585178 B2 JP 5585178B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
plug
tension member
voltage
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010092421A
Other languages
Japanese (ja)
Other versions
JP2011220492A (en
Inventor
宗篤 柿木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2010092421A priority Critical patent/JP5585178B2/en
Publication of JP2011220492A publication Critical patent/JP2011220492A/en
Application granted granted Critical
Publication of JP5585178B2 publication Critical patent/JP5585178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Lift Valve (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

本発明は、流体の制御を行う装置に係り、特に、ディーゼル自動車用の燃料噴射装置において使用することが出来る流体制御装置に関する。   The present invention relates to a fluid control device, and more particularly to a fluid control device that can be used in a fuel injection device for a diesel vehicle.

近年、圧縮着火内燃機関である、ディーゼル自動車用の燃料供給装置(燃料噴射装置)として、コモンレール装置(コモンレールシステム)が用いられるようになり、一般的になっている。   In recent years, a common rail device (common rail system) has come to be used as a fuel supply device (fuel injection device) for a diesel automobile, which is a compression ignition internal combustion engine.

コモンレール装置は、1.超高圧の燃料が噴射出来る、2.燃料噴射量の制御が容易である、などの理由から、燃料の微粒化を行い、燃料と空気との混合を促進し、黒煙やPM(微粒子)を低減することが可能となっている。また、コモンレール装置は、燃料の噴射量や時期を変えることで、燃焼温度を低減させ、NOx(窒素酸化物)を低減することが可能となっている。   Common rail devices are: 1. Super high pressure fuel can be injected. For reasons such as easy control of the fuel injection amount, it is possible to atomize the fuel, promote mixing of the fuel and air, and reduce black smoke and PM (fine particles). Further, the common rail device can reduce the combustion temperature and NOx (nitrogen oxide) by changing the fuel injection amount and timing.

現在のコモンレール装置では、燃料を噴射する穴を開閉するニードルを動かすために、ソレノイドを有する電磁弁を使用している。また、コモンレール装置には、より応答性の高い装置として、ピエゾ素子(圧電素子)を用いたピエゾアクチュエータでニードルを動かすものもある。   In the current common rail device, an electromagnetic valve having a solenoid is used to move a needle that opens and closes a hole for injecting fuel. Further, as a common rail device, there is a device that moves a needle by a piezo actuator using a piezo element (piezoelectric element) as a more responsive device.

ソレノイドによるニードルの駆動では、ソレノイドへの通電に応じて、ニードルを動かすようにニードルに油圧をかける仕組みのものが多い。また、ピエゾ素子によるニードルの駆動は、特許文献1に開示されるもののように、ピエゾ素子によるニードルの直接駆動を採用する仕組みとなっている。   In many cases, the drive of a needle by a solenoid applies a hydraulic pressure to the needle so as to move the needle in response to energization of the solenoid. Further, the driving of the needle by the piezo element is a mechanism that employs the direct driving of the needle by the piezo element as disclosed in Patent Document 1.

特開2006−316779号公報JP 2006-316777 A 特開2008−215186号公報JP 2008-215186 A 特開2006−101691号公報JP 2006-101691 A

まず、ソレノイドによるニードル駆動の問題点を挙げる。   First, problems with needle drive by solenoids are listed.

ソレノイドによるニードルの駆動では、ソレノイドを上下することで、制御室へ流入する油圧、油量を調整している。そのため、ソレノイド→制御室→ニードルのように、段階的なニードルの制御(間接駆動)を行っているといえ、応答性が悪くなる可能性が否定できない。また、ニードルの駆動に油圧を介していることから減衰運動の発生が考えられる。   In driving the needle by a solenoid, the hydraulic pressure and the amount of oil flowing into the control chamber are adjusted by moving the solenoid up and down. For this reason, it can be said that stepwise needle control (indirect drive) is performed as solenoid → control room → needle, but the possibility of poor response cannot be denied. In addition, since the needle is driven via hydraulic pressure, it is considered that the damping motion is generated.

次に、ピエゾ素子によるニードル駆動の問題点を挙げる。   Next, the problem of needle driving by a piezo element will be listed.

ソレノイドのように、間接駆動を行ってはいないため、ソレノイドによるニードル駆動のような問題点はないが、以下の事象がピエゾ素子を使用するために発生する。   Since the indirect drive is not performed unlike the solenoid, there is no problem like the needle drive by the solenoid, but the following event occurs because the piezo element is used.

まず、特許文献2の[発明が解決しようとする課題]においても取り上げられているように、ピエゾ素子を積層したピエゾスタックの個体間ばらつきや、経時劣化が考えられる。また、特許文献3の[発明の詳細な説明]の[背景技術]において、ピエゾスタックはピエゾ素子を重ねて層状に配置されているために、ピエゾスタックに制御電圧を印加した場合、ピエゾスタック内に引っ張り応力が発生し、亀裂が発生するとしている。   First, as taken up in [Problems to be Solved by the Invention] in Patent Document 2, there are variations between individual piezo stacks in which piezo elements are stacked, and deterioration over time. Further, in [Background Art] of [Detailed Description of the Invention] in Patent Document 3, since the piezo stack is arranged in a layered manner with the piezo elements stacked, when a control voltage is applied to the piezo stack, It is said that a tensile stress is generated and a crack is generated.

このような問題は、ピエゾ素子を「層状」に重ねたために発生したと特許文献3の[背景技術](段落0004)に記載されている。   It is described in [Background Art] (paragraph 0004) of Patent Document 3 that such a problem occurs because the piezo elements are stacked in a “layered state”.

そこで、本発明の目的は、圧電素子を用いて、より高速で、高応答な流体の制御を行う装置を提供し、又、圧電素子が応力によって破損する危険性が少ない流体制御装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a device that controls a fluid at a higher speed and with a higher response using a piezoelectric element, and also provides a fluid control device that reduces the risk of the piezoelectric element being damaged by stress. There is.

上記目的を達成するために、本発明は、流体が流れる管と、前記管の途中に形成された孔を上流側から閉塞する栓と、電圧の印加により伸長する第1圧電素子と、前記第1圧電素子の一端部を固定すると共に前記管によって支持された第1固定材と、前記第1圧電素子の他端部と前記栓とを繋ぐ線状の第1張力材と、前記第1固定材及び前記第1圧電素子を貫通して形成されて前記第1張力材と流体とを通過させる第1挿通孔と、前記栓に対して前記第1圧電素子とは反対側に対向配置されて電圧の印加により伸長する第2圧電素子と、前記第2圧電素子の一端部を固定すると共に前記管によって支持された第2固定材と、前記第2圧電素子の他端部と前記栓とを繋ぐ線状の第2張力材と、前記第2固定材及び前記第2圧電素子を貫通して形成されて前記第2張力材と流体とを通過させる第2挿通孔と、を備え前記第1圧電素子に電圧を印加することで前記第1圧電素子を伸長させると共に、前記第2圧電素子への電圧印加を解除することで前記第2圧電素子を縮退させ、前記第1圧電素子によって前記第1張力材を引っ張ることで前記栓を開栓し、前記第1圧電素子への電圧印加を解除することで前記第1圧電素子を縮退させると共に、前記第2圧電素子に電圧を印加することで前記第2圧電素子を伸長させ、前記第2圧電素子によって前記第2張力材を引っ張ることで前記栓を閉栓するものである。 In order to achieve the above object, the present invention provides a pipe through which a fluid flows , a plug that closes a hole formed in the middle of the pipe from the upstream side, a first piezoelectric element that extends by application of a voltage, and the first A first fixing member that fixes one end of one piezoelectric element and is supported by the tube, a linear first tension member that connects the other end of the first piezoelectric element and the plug, and the first fixing A first insertion hole formed through the material and the first piezoelectric element to allow the first tension material and fluid to pass therethrough, and opposed to the plug on the opposite side of the first piezoelectric element. A second piezoelectric element that is elongated by application of a voltage; a second fixing member that fixes one end of the second piezoelectric element and is supported by the tube; and the other end of the second piezoelectric element and the plug. A linear second tension member to be connected, and the second fixing member and the second piezoelectric element are penetrated. Is provided with a second insertion hole for passing said second tension member and the fluid, Rutotomoni is extended the first piezoelectric element by applying a voltage to the first piezoelectric element, said second piezoelectric element The second piezoelectric element is degenerated by releasing the voltage application to the first piezoelectric element, the plug is opened by pulling the first tension member by the first piezoelectric element, and the voltage application to the first piezoelectric element is performed. The first piezoelectric element is degenerated by releasing, the second piezoelectric element is extended by applying a voltage to the second piezoelectric element, and the second tension member is pulled by the second piezoelectric element. The stopper is closed .

ここで、前記第1及び第2圧電素子は、単一の結晶からなっても良い。 Here, the first and second piezoelectric elements may be made of a single crystal.

また、前記栓が、第3圧電素子からなっても良い。 The stopper may be a third piezoelectric element.

また、前記栓の一部又は全部を保護材で覆っても良い。 It may also cover some or all of the pre-hexene with a protective material.

また、前記栓と前記保護材との間に緩衝材を挟み込んでも良い。   Further, a buffer material may be sandwiched between the stopper and the protective material.

本発明によれば、圧電素子を用いて、より高速で、高応答な流体の制御を行う装置を提供し、又、圧電素子が応力によって破損する危険性が少ない流体制御装置を提供することが出来るという優れた効果を奏する。   According to the present invention, it is possible to provide a device that controls a fluid at a higher speed and with a higher response using a piezoelectric element, and to provide a fluid control device that reduces the risk of the piezoelectric element being damaged by stress. There is an excellent effect of being able to.

本発明の一実施形態に係る流体制御装置の概略斜視図である。1 is a schematic perspective view of a fluid control device according to an embodiment of the present invention. 本発明の一実施形態に係る流体制御装置の側断面図であり、(a)は「閉栓」状態を示し、(b)は「開栓」状態を示す。It is a sectional side view of the fluid control apparatus which concerns on one Embodiment of this invention, (a) shows a "capped" state, (b) shows a "capped" state. 張力材と圧電素子との接続の変形例を示す斜視図である。It is a perspective view which shows the modification of the connection of a tension | tensile_strength material and a piezoelectric element. 圧電素子の構造の変形例を示す斜視図である。It is a perspective view which shows the modification of the structure of a piezoelectric element. 他の実施形態に係る流体制御装置の側断面図であり、(a)は「閉栓」状態を示し、(b)は「開栓」状態を示す。It is a sectional side view of the fluid control apparatus which concerns on other embodiment, (a) shows a "capped" state, (b) shows a "capped" state. 栓の変形例を示す側断面図である。It is a sectional side view which shows the modification of a stopper. 流体制御装置からなる流体制御弁の構造を示す概略斜視図である。It is a schematic perspective view which shows the structure of the fluid control valve which consists of a fluid control apparatus. 流体制御装置からなる流体制御弁の構造を示す概略斜視図である。It is a schematic perspective view which shows the structure of the fluid control valve which consists of a fluid control apparatus. 図8に示す流体制御弁の側断面図であり、(a)は「開栓」状態を示し、(b)は「閉栓」状態を示す。FIG. 9 is a side cross-sectional view of the fluid control valve shown in FIG. 8, where (a) shows an “open” state and (b) shows a “closed” state.

以下、本発明の好適な実施形態を添付図面に基づいて詳述する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本実施形態に係る流体制御装置10は、例えば、車両に搭載されるディーゼル機関のコモンレール式燃料噴射装置において使用される。   The fluid control device 10 according to the present embodiment is used in, for example, a common rail fuel injection device of a diesel engine mounted on a vehicle.

図1及び図2に示すように、本実施形態に係る流体制御装置10は、流体が流れる流路11の途中に形成された孔12を上流側から閉塞する栓(弁体)13と、電圧の印加により伸長する圧電素子14と、圧電素子14の一端部(図示例では、下端部)を固定する固定材15と、圧電素子14の他端部(図示例では、上端部)と栓13(図示例では、栓13の上端部)とを繋ぐ張力材16とを最小構成要素として備えた機構である。なお、図2中、符号17は圧電素子14に電圧を印加するための電気回路を示す。   As shown in FIGS. 1 and 2, the fluid control apparatus 10 according to the present embodiment includes a plug (valve element) 13 that closes a hole 12 formed in the middle of a flow path 11 through which fluid flows from the upstream side, and a voltage. The piezoelectric element 14 that is expanded by the application of, a fixing member 15 that fixes one end (lower end in the illustrated example) of the piezoelectric element 14, the other end (upper end in the illustrated example) of the piezoelectric element 14, and the plug 13. This is a mechanism provided with a tension member 16 that connects (in the illustrated example, the upper end of the stopper 13) as a minimum component. In FIG. 2, reference numeral 17 denotes an electric circuit for applying a voltage to the piezoelectric element 14.

流路11は、コモンレール(蓄圧器)に接続され、例えば、固定材15が取り付けられるケーシング(図示せず)の内部に形成される。流路11の途中に孔12が設けられており、孔12は上流側から下流側に向かい縮径されるテーパ状のシート面18を有している。   The flow path 11 is connected to a common rail (pressure accumulator) and formed, for example, inside a casing (not shown) to which the fixing material 15 is attached. A hole 12 is provided in the middle of the flow path 11, and the hole 12 has a tapered sheet surface 18 that is reduced in diameter from the upstream side toward the downstream side.

本実施形態の栓13は逆円錐台形に形成されている。つまり、張力材16が取り付けられた部分(上端部)を栓13の基端側とすると、栓13は先端側に向かい幅(外径)が小さくなるような形状とされる。栓13によって孔12を閉塞する際には、栓13の外周面が孔12のシート面18に密着(当接)するようになっている。栓13は、例えば金属材料(例えば、鉄、アルミニウムなど)からなる。   The stopper 13 of this embodiment is formed in an inverted frustoconical shape. That is, when the portion (upper end) to which the tension member 16 is attached is the base end side of the plug 13, the plug 13 is shaped so that the width (outer diameter) decreases toward the distal end side. When the hole 12 is closed by the plug 13, the outer peripheral surface of the plug 13 is in close contact (contact) with the sheet surface 18 of the hole 12. The stopper 13 is made of, for example, a metal material (for example, iron, aluminum, etc.).

本実施形態の圧電素子14はピエゾ素子からなる。電気回路17をONして圧電素子14に電圧を印加することで圧電素子14を伸長させ、電気回路17をOFFして圧電素子14への印加電圧を解除することで圧電素子14を縮退させるようになっている。圧電素子14には、張力材16を圧電素子14の上端部に取り付けるために、張力材16を通す挿通穴19が圧電素子14の上面と下面とを貫通して形成されている。本実施形態の圧電素子(ピエゾ素子)14は、単一の結晶からなり、円錐台形に形成されている。   The piezoelectric element 14 of the present embodiment is a piezo element. The piezoelectric element 14 is extended by turning on the electric circuit 17 and applying a voltage to the piezoelectric element 14, and the piezoelectric element 14 is degenerated by turning off the electric circuit 17 and releasing the applied voltage to the piezoelectric element 14. It has become. In the piezoelectric element 14, in order to attach the tension member 16 to the upper end portion of the piezoelectric element 14, an insertion hole 19 through which the tension member 16 passes is formed through the upper surface and the lower surface of the piezoelectric element 14. The piezoelectric element (piezo element) 14 of this embodiment is made of a single crystal and is formed in a truncated cone shape.

本実施形態の張力材16は、線状に形成されている。本実施形態では、圧電素子14の上面に円板状の接続材20が固定されており、その接続材20の下面に張力材16の上端部が固定されている。張力材16は、例えば金属材料(例えば、鉄、アルミニウムなど)からなる。   The tension member 16 of the present embodiment is formed in a linear shape. In the present embodiment, the disk-shaped connecting material 20 is fixed to the upper surface of the piezoelectric element 14, and the upper end portion of the tension material 16 is fixed to the lower surface of the connecting material 20. The tension member 16 is made of, for example, a metal material (for example, iron, aluminum, etc.).

本実施形態の固定材15は、四角板状に形成された一対の固定板21を有する。本実施形態では、一方の固定板21を他方の固定板21に対して圧電素子14の伸縮方向と直交する方向(図示例では、左右方向)に離間して配置することで、固定板21間の隙間22に圧電素子14と栓13とを繋ぐ張力材16を通すようになっている。圧電素子14の下端部を各固定板21の上面に固定し、電気回路17をONして圧電素子14に電圧を印加することで、圧電素子14を固定板21から上方向に変位させることが可能となる。固定板21は、例えば金属材料(例えば、鉄、アルミニウムなど)からなる。   The fixing member 15 of the present embodiment has a pair of fixing plates 21 formed in a square plate shape. In the present embodiment, one fixed plate 21 is disposed apart from the other fixed plate 21 in a direction perpendicular to the expansion / contraction direction of the piezoelectric element 14 (in the illustrated example, the left-right direction). The tension member 16 that connects the piezoelectric element 14 and the plug 13 is passed through the gap 22. The piezoelectric element 14 can be displaced upward from the fixed plate 21 by fixing the lower end portion of the piezoelectric element 14 to the upper surface of each fixed plate 21, turning on the electric circuit 17 and applying a voltage to the piezoelectric element 14. It becomes possible. The fixed plate 21 is made of, for example, a metal material (for example, iron, aluminum, etc.).

本実施形態では、圧電素子14及び固定板21は流路11外部に配置されており、張力材16が、流路11を構成する壁部分を貫通する貫通穴23に挿通されている。貫通穴23と張力材16との間のクリアランスを比較的小さくし、或いは、貫通穴23と張力材16との間にシール材(図示せず)を介設することで、貫通穴23を通じて流路11外部に漏れる流体の量を最小限とすることが好ましい。   In the present embodiment, the piezoelectric element 14 and the fixing plate 21 are disposed outside the flow path 11, and the tension member 16 is inserted through a through hole 23 that penetrates a wall portion constituting the flow path 11. The clearance between the through hole 23 and the tension member 16 is made relatively small, or a seal material (not shown) is interposed between the through hole 23 and the tension member 16, thereby allowing the flow through the through hole 23. It is preferable to minimize the amount of fluid leaking outside the passage 11.

本実施形態に係る流体制御装置10の作動を図2により説明する。   The operation of the fluid control apparatus 10 according to this embodiment will be described with reference to FIG.

図2(a)に示すように、流体の流路11中に栓13を配置して、流路11の途中に設けられた孔12を栓13で閉塞することで、栓13より手前側(上流側)の流路11内の流体の圧力を高めることが出来る。ここで、図2(b)に示すように、電気回路17をONして圧電素子14に電圧を印加することで、圧電素子14を固定板21から上方向に変位させ(圧電素子14を伸長させ)、圧電素子14に接続された張力材16を上方向に引っ張り上げて、栓13を孔12のシート面18から離間させることで、栓13を開栓する。つまり、張力材16によって張力をもって栓13を引っ張り上げて栓(弁体)13を開栓(開弁)するのである。栓13を開栓して孔12を開放することによって、圧力が保たれた上流側の流路11から、孔12を通じて流路11外部に流体が出ていくことになる。   As shown in FIG. 2A, a plug 13 is disposed in the fluid flow path 11 and the hole 12 provided in the middle of the flow path 11 is closed with the plug 13 so that the front side ( The pressure of the fluid in the flow path 11 on the upstream side can be increased. Here, as shown in FIG. 2B, by turning on the electric circuit 17 and applying a voltage to the piezoelectric element 14, the piezoelectric element 14 is displaced upward from the fixed plate 21 (the piezoelectric element 14 is expanded). The plug 13 is opened by pulling up the tension member 16 connected to the piezoelectric element 14 upward and separating the plug 13 from the sheet surface 18 of the hole 12. That is, the plug 13 is pulled up with tension by the tension member 16 to open (open) the plug (valve element) 13. By opening the plug 13 and opening the hole 12, the fluid flows out of the flow path 11 through the hole 12 from the upstream flow path 11 where the pressure is maintained.

そして、図2(a)に示すように、電気回路17をOFFして圧電素子14への電圧印加を解除することで、圧電素子14を縮退させる。すると、張力材16が圧電素子14によって引っ張られなくなるので、栓13が流体の流れ(圧力)によって孔12側へと押されて、栓13が自ずと閉栓する。つまり、流体の流れ(圧力)を利用して栓(弁体)13を閉栓(閉弁)するのである。   Then, as shown in FIG. 2A, the electric circuit 17 is turned off to release the voltage application to the piezoelectric element 14, thereby degenerating the piezoelectric element 14. Then, since the tension member 16 is not pulled by the piezoelectric element 14, the plug 13 is pushed toward the hole 12 by the fluid flow (pressure), and the plug 13 is naturally closed. That is, the plug (valve element) 13 is closed (closed) using the flow (pressure) of the fluid.

なお、流路11を流れる流体には、固体、液体、固液二相流、気液二相流、固気二相流などを用いることが出来る。   In addition, solid, liquid, a solid-liquid two-phase flow, a gas-liquid two-phase flow, a solid-gas two-phase flow etc. can be used for the fluid which flows through the flow path 11.

圧電素子14は、低い周波数から、100MHz程度までの振動を発生することが可能で、孔12(噴射孔)の開閉時間を短くすることで、ごく微量の流量(噴射量、噴射時間)に制御することが出来る。   The piezoelectric element 14 can generate vibrations from a low frequency up to about 100 MHz, and is controlled to a very small flow rate (injection amount, injection time) by shortening the opening / closing time of the hole 12 (injection hole). I can do it.

ところで、現在では、ディーゼル機関のコモンレール式燃料噴射装置においては、燃料をおよそ200MPa(2000気圧)に加圧して噴射を行っている。そのため、本実施形態に係る流体制御装置10をコモンレール式燃料噴射装置において使用した場合、圧電素子14にも200MPa程度の流体圧力(燃料圧力)が加わることになる。また、その200MPa程度の流体圧力(燃料圧力)に抗して、圧電素子14は、張力材16を引っ張り上げることになる。一般的な圧電素子14は、静的荷重においては、少なくとも400MPa以上の荷重に耐えることが出来、繰り返し荷重においては、σmin/σmax=0.05のとき、100MPa程度では未破壊となることが知られている。このため、電圧印加時には、これよりも低い値を示すことが予想されるが、材料自体の改良によって、以上に示したような、圧電素子14の適用は可能である。   By the way, at present, in a common rail fuel injection device of a diesel engine, fuel is pressurized to approximately 200 MPa (2000 atm) and injection is performed. Therefore, when the fluid control device 10 according to this embodiment is used in a common rail fuel injection device, a fluid pressure (fuel pressure) of about 200 MPa is also applied to the piezoelectric element 14. Further, the piezoelectric element 14 pulls up the tension member 16 against the fluid pressure (fuel pressure) of about 200 MPa. It is known that a general piezoelectric element 14 can withstand a load of at least 400 MPa under a static load, and in a repeated load, when σmin / σmax = 0.05, it is not broken at about 100 MPa. It has been. For this reason, when a voltage is applied, it is expected to show a lower value than this, but the piezoelectric element 14 as described above can be applied by improving the material itself.

本実施形態によれば、流体が流れる流路11の途中に形成された孔12を上流側から閉塞する栓13と、電圧の印加により伸長する圧電素子14と、圧電素子14の一端部を固定する固定材15と、圧電素子14の他端部と栓13とを繋ぐ張力材16とを備え、圧電素子14に電圧を印加することで圧電素子14を伸長させ、圧電素子14によって張力材16を引っ張ることで栓13を開栓するようにして流体制御装置10を構成したので、圧電素子14によって栓13(ニードル)を直接駆動することが出来、或いは、流体(燃料)の供給を直接制御することが出来、圧電素子14を用いて、より高速で、高応答な流体の制御を行う装置を提供することが可能になる。   According to the present embodiment, the plug 13 that closes the hole 12 formed in the middle of the flow path 11 through which the fluid flows from the upstream side, the piezoelectric element 14 that expands when a voltage is applied, and one end of the piezoelectric element 14 are fixed. And a tension member 16 that connects the other end of the piezoelectric element 14 to the plug 13. The piezoelectric element 14 is extended by applying a voltage to the piezoelectric element 14, and the tension element 16 is expanded by the piezoelectric element 14. Since the fluid control device 10 is configured so as to open the plug 13 by pulling, the plug 13 (needle) can be directly driven by the piezoelectric element 14 or the supply of fluid (fuel) is directly controlled. It is possible to provide a device that controls the fluid at a higher speed and with a higher response by using the piezoelectric element 14.

また、本実施形態では、圧電素子14が単一の結晶からなるので、ピエゾ素子を重ねて層状に配置した際に層間に生じ得る引っ張り応力の問題点はないので、圧電素子14が応力によって破損する危険性が少ない流体制御装置10を提供することが可能となる。   Further, in the present embodiment, since the piezoelectric element 14 is made of a single crystal, there is no problem of tensile stress that can occur between layers when the piezoelectric elements are stacked and arranged in layers, so that the piezoelectric element 14 is damaged by stress. Therefore, it is possible to provide the fluid control device 10 with a low risk of occurrence.

また、圧電素子14、張力材16、固定材15及び栓13の微細加工精度、張力材16の制作材料によって、ミリメートルオーダーからナノメートルオーダーまで流体制御装置10を構成することが可能であることから、流体制御装置10をコモンレール式燃料噴射装置において使用した場合、これまでにない燃料噴射量の流量制御が可能となる。さらに、構成要素(圧電素子14、張力材16、固定材15及び栓13)を微小化し、燃料出口に流体制御装置10を配置することで、より高速で、高応答な流体の制御を行う装置を提供することが出来る。   In addition, the fluid control device 10 can be configured from the millimeter order to the nanometer order by the fine processing accuracy of the piezoelectric element 14, the tension material 16, the fixing material 15 and the stopper 13, and the production material of the tension material 16. When the fluid control device 10 is used in a common rail fuel injection device, it is possible to control the flow rate of an unprecedented fuel injection amount. Further, the device (the piezoelectric element 14, the tension member 16, the fixing member 15, and the plug 13) is miniaturized, and the fluid control device 10 is disposed at the fuel outlet, thereby controlling the fluid with higher speed and higher response. Can be provided.

以下、流体制御装置10の最小構成要素の補足を挙げ、説明を行う。   Hereinafter, the supplement of the minimum component of the fluid control apparatus 10 is mentioned and demonstrated.

〔圧電素子と張力材との接続〕
圧電素子14に設けられる張力材16を通す挿通穴19は、圧電素子14の張力材16が通過する箇所に開ければ良く、張力材16が圧電素子14の中間部に取り付けられている場合も考えられる(図3(b)参照)。その場合、挿通穴19は、圧電素子14の上面と下面とを貫通している必要はなく、圧電素子14の下面から中間部まで延びていれば良い。
[Connection between piezoelectric element and tension material]
The insertion hole 19 through which the tension member 16 provided in the piezoelectric element 14 passes may be formed at a location where the tension member 16 of the piezoelectric element 14 passes, and the tension member 16 may be attached to an intermediate portion of the piezoelectric element 14. (See FIG. 3B). In that case, the insertion hole 19 does not need to penetrate the upper surface and the lower surface of the piezoelectric element 14, and may extend from the lower surface of the piezoelectric element 14 to the intermediate portion.

圧電素子14と張力材16とを接続するために、張力材16を直接圧電素子14に取り付けても良く(図3(a)及び(b)参照)、張力材16を圧電素子14と接続材20とで挟み込む形にして圧電素子14に取り付けても良い。   In order to connect the piezoelectric element 14 and the tension member 16, the tension member 16 may be directly attached to the piezoelectric element 14 (see FIGS. 3A and 3B), and the tension member 16 is connected to the piezoelectric element 14 and the connection member. 20 may be attached to the piezoelectric element 14 in a sandwiched manner.

張力材16の上端部を圧電素子14の上面に張り付けても良く(図3(a)参照)、張力材16の上端部を圧電素子14内部に埋め込んでも良い(図3(b)参照)。また、張力材16は圧電素子14に張り付くような形状ではなく、画鋲のうち、針の部分が長くなったような形状の張力材16を圧電素子14の上方から挿通穴19に差し込むことも考えられる(図3(c)参照)。これらの場合、圧電素子14と張力材16とを繋ぐための接続材20は必要なくなる。   The upper end portion of the tension member 16 may be attached to the upper surface of the piezoelectric element 14 (see FIG. 3A), or the upper end portion of the tension member 16 may be embedded in the piezoelectric element 14 (see FIG. 3B). In addition, the tension member 16 is not shaped to stick to the piezoelectric element 14, and it is also conceivable to insert the tension member 16 having a shape in which the needle portion of the thumbtack is long into the insertion hole 19 from above the piezoelectric element 14. (See FIG. 3C). In these cases, the connecting member 20 for connecting the piezoelectric element 14 and the tension member 16 is not necessary.

〔圧電素子〕
圧電素子14は、円錐台形である必要はない。例えば、圧電素子14を、円筒形又は円柱形(図4(a)参照)、直方体形又は立方体形(図4(b)参照)、逆円錐台形(図4(c)参照)、四角錐台形(図4(d)参照)などの形状とすることが考えられる。
〔Piezoelectric element〕
The piezoelectric element 14 need not be frustoconical. For example, the piezoelectric element 14 has a cylindrical shape or a columnar shape (see FIG. 4A), a rectangular parallelepiped shape or a cubic shape (see FIG. 4B), an inverted frustoconical shape (see FIG. 4C), a square frustum shape. It is conceivable to adopt a shape such as (see FIG. 4D).

また、本発明では、基本的に圧電素子14は、単一の結晶からなることが望ましいが、圧電素子14を応力が加わらない範囲で層状に構成することも出来る。   In the present invention, it is basically desirable that the piezoelectric element 14 is made of a single crystal, but the piezoelectric element 14 can also be configured in layers within a range where no stress is applied.

〔固定材〕
固定材15(固定板21)の存在は必須である。圧電素子14を固定板21から下方向に変位させたいときは、固定板21を圧電素子14の上部に取り付ければ良い。
[Fixing material]
The presence of the fixing material 15 (fixing plate 21) is essential. In order to displace the piezoelectric element 14 downward from the fixed plate 21, the fixed plate 21 may be attached to the upper portion of the piezoelectric element 14.

〔張力材〕
張力材16は、線状になるものなら、その素材の構成原子の種類は問わない。例えば、張力材16を、鉄のワイヤー、アルミ線、フッ素樹脂の線、アラミド繊維の線などから構成することが考えられる。
[Tension material]
As long as the tension member 16 is linear, the type of constituent atoms of the material is not limited. For example, the tension member 16 may be composed of an iron wire, an aluminum wire, a fluororesin wire, an aramid fiber wire, or the like.

また、圧電素子14をナノスケール(ナノメートルオーダー)で加工した場合、張力材16として、カーボンナノチューブを使用すると、その高い引張強度から、高圧力下などの条件で圧力に抗して栓13の移動を行うのに適していると考えられる。   Further, when the piezoelectric element 14 is processed on a nanoscale (on the order of nanometers), if a carbon nanotube is used as the tension material 16, the high tensile strength of the plug 13 resists pressure under conditions such as high pressure. It is considered suitable for performing the movement.

また、張力材16を比較的太く棒状に形成して、その張力材16によって栓13を押すことで栓13を閉栓するようにしても良い。   Alternatively, the tension member 16 may be formed in a relatively thick bar shape, and the stopper 13 may be closed by pushing the stopper 13 with the tension member 16.

〔栓〕
図5に示すように、栓13自体を圧電素子で構成することも可能である。この場合、栓13への電圧印加で、栓13の移動(変形)が可能になるため、極微少量の流量制御が可能になる。この場合、圧電素子14への電圧印加と、栓13自体への電圧印加とを独立に行うことで、より複雑な栓13の位置制御を行うことが出来る。栓13への電力供給は張力材16を導電性素材から構成することにより可能となる。なお、図5中、符号24は栓13に電圧を印加するための電気回路を示す。
〔plug〕
As shown in FIG. 5, the plug 13 itself can be formed of a piezoelectric element. In this case, since the stopper 13 can be moved (deformed) by applying a voltage to the stopper 13, a very small amount of flow can be controlled. In this case, more complicated position control of the plug 13 can be performed by independently applying a voltage to the piezoelectric element 14 and a voltage to the plug 13 itself. Power can be supplied to the plug 13 by configuring the tension member 16 from a conductive material. In FIG. 5, reference numeral 24 indicates an electric circuit for applying a voltage to the plug 13.

例えば、電気回路17による圧電素子14への電圧印加を行わず、電気回路24によって栓13自体への電圧印加のみを行うことで栓13を伸長させて栓13を孔12のシート面18に密着させることにより、栓13により孔12を閉塞し(図5(a)参照)、電気回路24による栓13自体への電圧印加を解除することで栓13を縮退させて、栓13と孔12のシート面18との間に隙間を生じさせることで(図5(b)参照)、極微少量の流量制御が可能になる。   For example, the voltage is not applied to the piezoelectric element 14 by the electric circuit 17 but only the voltage is applied to the plug 13 itself by the electric circuit 24 to extend the plug 13 so that the plug 13 is in close contact with the sheet surface 18 of the hole 12. As a result, the hole 12 is blocked by the plug 13 (see FIG. 5A), the voltage applied to the plug 13 itself by the electric circuit 24 is released, the plug 13 is degenerated, and the plug 13 and the hole 12 are By creating a gap between the sheet surface 18 (see FIG. 5B), a very small amount of flow rate can be controlled.

また、栓13自体を圧電素子で構成した場合、栓13と孔12のシート面18との接触によって、栓13に傷が出来る可能性がある。そこで、図6に示すように、栓13の外部を保護する保護材25で、栓13の一部又は全部を覆うことも考えられる。保護材25は、例えば金属材料(例えば、鉄、アルミニウムなど)からなる。また、栓13と保護材25との間に緩衝材26を挟み込み、衝撃を吸収することも可能である(図6(a)参照)。   Further, when the plug 13 itself is formed of a piezoelectric element, there is a possibility that the plug 13 may be damaged by contact between the plug 13 and the sheet surface 18 of the hole 12. Therefore, as shown in FIG. 6, it is conceivable to cover part or all of the plug 13 with a protective material 25 that protects the outside of the plug 13. The protective material 25 is made of, for example, a metal material (for example, iron, aluminum, etc.). It is also possible to absorb the impact by inserting a buffer material 26 between the stopper 13 and the protective material 25 (see FIG. 6A).

〔その他〕
流体制御装置10の最小構成要素としては、上述したものを挙げたが、その他、現在燃料噴射装置に用いられている、バネ材の使用も可能である。例えば、栓13を孔12側に付勢して閉栓するために、バネ材を用いることが考えられる。
[Others]
Although the above-mentioned thing was mentioned as the minimum component of the fluid control apparatus 10, the use of the spring material currently used for the fuel injection apparatus is also possible. For example, it is conceivable to use a spring material in order to urge the plug 13 toward the hole 12 to close it.

以下、流体制御装置10からなる流体制御弁10Aの構造を図7から図9に基づいて説明する。なお、図1から図6と実質的に同一の構成要素には同一の符号を付してその説明を省略する。また、図7(b)の下部分は図7(a)の下部分と同様であるので図示省略する。   Hereinafter, the structure of the fluid control valve 10A including the fluid control device 10 will be described with reference to FIGS. Components that are substantially the same as those in FIGS. 1 to 6 are denoted by the same reference numerals, and description thereof is omitted. The lower part of FIG. 7B is the same as the lower part of FIG.

図7に示すように、先に説明した、圧電素子14、張力材16、固定材15及び栓13などから構成される、流体制御のための最小構成要素に、栓13と密着出来る部分(孔12のシート面18)と、固定材15を支えることの出来る部分を持つ管27(図示例では、円管)(或いは筒)を組み合わせることで、流体制御弁10Aを作ることが出来る。   As shown in FIG. 7, the portion (hole) that can be in close contact with the stopper 13 on the minimum component for fluid control, including the piezoelectric element 14, the tension member 16, the fixing member 15, the stopper 13, and the like described above. The fluid control valve 10 </ b> A can be made by combining the 12 seat surfaces 18) and the tube 27 (in the illustrated example, a circular tube) (or a cylinder) having a portion capable of supporting the fixing material 15.

図7(a)においては、圧電素子14及び固定材15を流路11内に配置している。固定材15は、管27によって支持される円板状の固定板28からなり、その中心部に張力材16と流体とが同時に通過する挿通穴29が設けられている。また、圧電素子14の中心部に張力材16と流体とが同時に通過する挿通穴30を設け、張力材16の上端部を圧電素子14の上面に張り付けている。   In FIG. 7A, the piezoelectric element 14 and the fixing material 15 are disposed in the flow path 11. The fixing member 15 includes a disk-like fixing plate 28 supported by a tube 27, and an insertion hole 29 through which the tension member 16 and the fluid pass simultaneously is provided at the center thereof. Further, an insertion hole 30 through which the tension member 16 and the fluid pass simultaneously is provided at the center of the piezoelectric element 14, and the upper end portion of the tension member 16 is attached to the upper surface of the piezoelectric element 14.

図7(a)では、圧電素子14及び固定板28の中心部に張力材16と流体とが同時に通過する挿通穴30、29をそれぞれ設けたが、図7(b)では、圧電素子14及び固定板28の中心部にそれぞれ設けられた張力材16及び流体が通過する挿通穴30、29以外にも、圧電素子14及び固定板28に、流体が通過する流体通過穴31、32をそれぞれ設けている。   In FIG. 7A, insertion holes 30 and 29 through which the tension member 16 and the fluid pass simultaneously are provided in the central portions of the piezoelectric element 14 and the fixing plate 28, respectively, but in FIG. In addition to the tension member 16 and the insertion holes 30 and 29 through which the fluid passes provided at the center of the fixing plate 28, the piezoelectric element 14 and the fixing plate 28 are provided with fluid passage holes 31 and 32 through which the fluid passes, respectively. ing.

図7に示されるような流体制御弁10Aは、圧電素子14、張力材16、管27の加工方法次第で、ミリスケールから、ナノスケール程度の微小なものまで、作成することが可能であると考えられる。   The fluid control valve 10A as shown in FIG. 7 can be made from a millimeter scale to a nanoscale minute one depending on the processing method of the piezoelectric element 14, the tension member 16, and the tube 27. Conceivable.

図8及び図9に示す流体制御弁10Aは、圧電素子14、張力材16及び固定材15などから構成される、最小構成要素を二個用い、一つの栓13を二つの張力材16が引っ張るように、最小構成要素(圧電素子14、張力材16、固定材15)を管27内に対向配置したものである。即ち、栓13を中心に、圧電素子14とは反対方向に対向圧電素子14Aを配置し、対向圧電素子14Aの一端部(図示例では、上端部)を対向固定材15A(対向固定板28Aの下端部)に固定し、対向圧電素子14Aの他端部(図示例では、下端部)と栓13(栓13の下端部)とを対向張力材16Aで繋いでいる。また、栓13自体を圧電素子から構成している。さらに、栓13への電力供給は、導電性素材から構成した張力材16により行う。なお、図8中、符号33は対向圧電素子14Aに電圧を印加するための電気回路を示す。   The fluid control valve 10A shown in FIGS. 8 and 9 uses two minimum components composed of the piezoelectric element 14, the tension member 16, the fixing member 15, and the like, and the two tension members 16 pull the one plug 13. As described above, the minimum components (the piezoelectric element 14, the tension member 16, and the fixing member 15) are disposed so as to face each other in the tube 27. That is, the opposing piezoelectric element 14A is disposed around the plug 13 in the direction opposite to the piezoelectric element 14, and one end portion (the upper end portion in the illustrated example) of the opposing piezoelectric element 14A is connected to the opposing fixing material 15A (the opposing fixing plate 28A). The other end portion (lower end portion in the illustrated example) of the opposing piezoelectric element 14A and the stopper 13 (lower end portion of the stopper 13) are connected by an opposing tension member 16A. The plug 13 itself is composed of a piezoelectric element. Further, the power supply to the plug 13 is performed by a tension member 16 made of a conductive material. In FIG. 8, reference numeral 33 denotes an electric circuit for applying a voltage to the opposing piezoelectric element 14A.

図9に示すように、栓13を中心に、互いに反対方向に配置した二つの圧電素子14、対向圧電素子14Aによって、図8及び図9中上側の圧電素子14の電圧印加が「ON」、下側の対向圧電素子14Aの電圧印加が「OFF」のときは、栓13を「開栓」とし(図9(a)参照)、上側の圧電素子14の電圧印加が「OFF」、下側の対向圧電素子14Aの電圧印加が「ON」のときは、栓13を「閉栓」とする(図9(b)参照)ことが出来る。即ち、電気回路17によって圧電素子14に電圧を印加することで圧電素子14を伸長させると共に、電気回路33による対向圧電素子14Aへの電圧印加を解除することで対向圧電素子14Aを縮退させ、圧電素子14によって張力材16を引っ張ることで栓(弁体)13を開栓(開弁)し(図9(a)参照)、一方、電気回路17による圧電素子14への電圧印加を解除することで圧電素子14を縮退させると共に、電気回路33によって対向圧電素子14Aに電圧を印加することで対向圧電素子14Aを伸長させ、対向圧電素子14Aによって対向張力材16Aを引っ張ることで栓(弁体)13を閉栓(閉弁)するようにしている。   As shown in FIG. 9, the voltage application of the upper piezoelectric element 14 in FIGS. 8 and 9 is “ON” by the two piezoelectric elements 14 and the opposing piezoelectric elements 14 </ b> A arranged in opposite directions around the plug 13. When the voltage application of the lower opposing piezoelectric element 14A is “OFF”, the plug 13 is set to “open” (see FIG. 9A), and the voltage application of the upper piezoelectric element 14 is “OFF”. When the voltage application of the opposing piezoelectric element 14A is “ON”, the plug 13 can be “closed” (see FIG. 9B). That is, the piezoelectric circuit 14 is expanded by applying a voltage to the piezoelectric element 14 by the electric circuit 17, and the opposing piezoelectric element 14A is degenerated by releasing the voltage application to the opposing piezoelectric element 14A by the electric circuit 33. The plug (valve element) 13 is opened (valve opened) by pulling the tension member 16 by the element 14 (see FIG. 9A), while the voltage application to the piezoelectric element 14 by the electric circuit 17 is released. The piezoelectric element 14 is contracted by the electric circuit 33, the voltage is applied to the counter piezoelectric element 14 </ b> A by the electric circuit 33, the counter piezoelectric element 14 </ b> A is expanded, and the counter tension member 16 </ b> A is pulled by the counter piezoelectric element 14 </ b> A to plug (valve). 13 is closed (valve closed).

図8及び図9に示すものでは、下側の対向圧電素子14Aにより栓13を閉栓するときも栓13を下方向に引っ張ることが出来るので、栓13と接触する、孔12のシート面18に力を加え、密着度を増し、栓13の閉栓時の流体の漏れを少なくすることが出来る。また、栓13の開栓及び閉栓を引っ張りのみで行うことが出来るため、栓13が孔12のシート面18と接触する際や、開栓する際に、ダンピングの挙動が生じにくいと考えられる。そのため、微小領域での開閉には最適な構造であると考えられる。また、図8及び図9に示すものでは、栓13自体を圧電素子から構成したので、電気回路24による栓13への電圧印加で、栓13の移動(変形)が可能になるため、極微少量の流量制御が可能になる。また、圧電素子14及び対向圧電素子14Aへの電圧印加と、栓13自体への電圧印加とを独立に行うことで、より複雑な栓13の位置制御を行うことが出来る。   8 and 9, when the plug 13 is closed by the lower opposing piezoelectric element 14 </ b> A, the plug 13 can be pulled downward, so that the sheet surface 18 of the hole 12 that is in contact with the plug 13 is not touched. By applying force, the degree of adhesion can be increased, and fluid leakage when the plug 13 is closed can be reduced. Moreover, since the plug 13 can be opened and closed only by pulling, it is considered that the damping behavior is unlikely to occur when the plug 13 contacts the sheet surface 18 of the hole 12 or when the plug 13 is opened. Therefore, it is considered that the structure is optimal for opening and closing in a minute region. 8 and 9, since the stopper 13 itself is made of a piezoelectric element, the stopper 13 can be moved (deformed) by applying a voltage to the stopper 13 by the electric circuit 24. It becomes possible to control the flow rate. Further, by performing voltage application to the piezoelectric element 14 and the opposing piezoelectric element 14A independently from voltage application to the plug 13 itself, more complicated position control of the plug 13 can be performed.

10 流体制御装置
11 流路
12 孔
13 栓(弁体)
14 圧電素子
14A 対向圧電素子
15 固定材
15A 対向固定材
16 張力材
16A 対向張力材
25 保護材
26 緩衝材
DESCRIPTION OF SYMBOLS 10 Fluid control apparatus 11 Flow path 12 Hole 13 Plug (valve body)
14 Piezoelectric element 14A Opposing piezoelectric element 15 Fixing material 15A Opposing fixing material 16 Tension material 16A Opposing tension material 25 Protective material 26 Buffer material

Claims (5)

流体が流れる管と、前記管の途中に形成された孔を上流側から閉塞する栓と、電圧の印加により伸長する第1圧電素子と、前記第1圧電素子の一端部を固定すると共に前記管によって支持された第1固定材と、前記第1圧電素子の他端部と前記栓とを繋ぐ線状の第1張力材と、前記第1固定材及び前記第1圧電素子を貫通して形成されて前記第1張力材と流体とを通過させる第1挿通孔と、前記栓に対して前記第1圧電素子とは反対側に対向配置されて電圧の印加により伸長する第2圧電素子と、前記第2圧電素子の一端部を固定すると共に前記管によって支持された第2固定材と、前記第2圧電素子の他端部と前記栓とを繋ぐ線状の第2張力材と、前記第2固定材及び前記第2圧電素子を貫通して形成されて前記第2張力材と流体とを通過させる第2挿通孔と、を備え
前記第1圧電素子に電圧を印加することで前記第1圧電素子を伸長させると共に、前記第2圧電素子への電圧印加を解除することで前記第2圧電素子を縮退させ、前記第1圧電素子によって前記第1張力材を引っ張ることで前記栓を開栓し、
前記第1圧電素子への電圧印加を解除することで前記第1圧電素子を縮退させると共に、前記第2圧電素子に電圧を印加することで前記第2圧電素子を伸長させ、前記第2圧電素子によって前記第2張力材を引っ張ることで前記栓を閉栓することを特徴とする流体制御装置。
A pipe through which a fluid flows , a plug that closes a hole formed in the middle of the pipe from the upstream side, a first piezoelectric element that expands when a voltage is applied, and one end of the first piezoelectric element that is fixed and the pipe a first fixing member which is supported by, formed through the a first piezoelectric element and the first tension member and the other end linear connecting the said plug, said first fixing member and the first piezoelectric element A first insertion hole that allows the first tension member and fluid to pass therethrough, a second piezoelectric element that is disposed opposite to the plug on the opposite side of the first piezoelectric element, and extends by application of a voltage; A second fixing member that fixes one end of the second piezoelectric element and is supported by the tube; a linear second tension member that connects the other end of the second piezoelectric element and the plug; 2 Passing through the second tension member and the fluid formed through the second fixing member and the second piezoelectric element It includes a second insertion hole for a,
The first Rutotomoni is extended the first piezoelectric element by applying a voltage to the piezoelectric element, wherein to degenerate the second piezoelectric element by the second to release the voltage applied to the piezoelectric element, said first piezoelectric The plug is opened by pulling the first tension member by an element,
The first piezoelectric element is degenerated by releasing the voltage application to the first piezoelectric element, and the second piezoelectric element is expanded by applying a voltage to the second piezoelectric element, and the second piezoelectric element The fluid control device according to claim 1, wherein the stopper is closed by pulling the second tension member .
前記第1及び第2圧電素子は、単一の結晶からなる請求項1に記載の流体制御装置。 The fluid control device according to claim 1, wherein the first and second piezoelectric elements are made of a single crystal. 前記栓が、第3圧電素子からなる請求項1又は2に記載の流体制御装置。 The fluid control device according to claim 1, wherein the stopper is made of a third piezoelectric element. 記栓の一部又は全部を保護材で覆った請求項3に記載の流体制御装置。 The fluid control device according to claim 3 which covers a part or the whole of the pre-hexene with a protective material. 前記栓と前記保護材との間に緩衝材を挟み込んだ請求項4に記載の流体制御装置。   The fluid control device according to claim 4, wherein a buffer material is sandwiched between the stopper and the protective material.
JP2010092421A 2010-04-13 2010-04-13 Fluid control device Expired - Fee Related JP5585178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010092421A JP5585178B2 (en) 2010-04-13 2010-04-13 Fluid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010092421A JP5585178B2 (en) 2010-04-13 2010-04-13 Fluid control device

Publications (2)

Publication Number Publication Date
JP2011220492A JP2011220492A (en) 2011-11-04
JP5585178B2 true JP5585178B2 (en) 2014-09-10

Family

ID=45037722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010092421A Expired - Fee Related JP5585178B2 (en) 2010-04-13 2010-04-13 Fluid control device

Country Status (1)

Country Link
JP (1) JP5585178B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022166A (en) * 1975-04-03 1977-05-10 Teledyne Industries, Inc. Piezoelectric fuel injector valve
JPS6117705A (en) * 1984-06-30 1986-01-25 Kayaba Ind Co Ltd Switching valve mechanism
JPH0287798A (en) * 1988-09-26 1990-03-28 Oki Electric Ind Co Ltd Vibration noise suppression type receiver
JPH05164261A (en) * 1991-12-13 1993-06-29 Mitsui Toatsu Chem Inc Valve drive device using electrostrictive element
JPH109084A (en) * 1996-06-24 1998-01-13 Nissan Motor Co Ltd Piezoelectric fuel injection valve
DE19912666A1 (en) * 1999-03-20 2000-09-21 Bosch Gmbh Robert Fuel injector
DE19915210A1 (en) * 1999-04-03 2000-10-05 Bosch Gmbh Robert Fuel injection valve for internal combustion engine, with actuator acting via needle carrier on valve needle
JP5131674B2 (en) * 2005-08-23 2013-01-30 キヤノン株式会社 Piezoelectric body and manufacturing method thereof, piezoelectric element, liquid discharge head and liquid discharge apparatus using the same
JP4701059B2 (en) * 2005-10-04 2011-06-15 東光東芝メーターシステムズ株式会社 Ultrasonic sensor, manufacturing method thereof, and optimum design apparatus thereof
JP5398131B2 (en) * 2006-07-14 2014-01-29 キヤノン株式会社 Piezoelectric element, method for manufacturing piezoelectric body, and liquid jet head
JP4117504B2 (en) * 2007-10-29 2008-07-16 セイコーエプソン株式会社 Inkjet recording head and inkjet recording apparatus
JP5533173B2 (en) * 2010-04-13 2014-06-25 いすゞ自動車株式会社 Fuel supply device

Also Published As

Publication number Publication date
JP2011220492A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP7476322B2 (en) Gas metering valve for internal combustion engine
EP1389274B1 (en) Directly actuated injection valve
JP6400781B2 (en) Direct-acting piezoelectric fuel injector with variable flow control
EP3482063B1 (en) Valve assembly for an injection valve, injection valve and injection method
JPH11193765A (en) Fuel injection system
WO2009036572A1 (en) Directly actuated valve with a strain-type actuator and a method of operating same
KR101926914B1 (en) Fuel supplying valve for fuel cell system
JP2017137870A5 (en)
US7438054B2 (en) Fuel injector for a direct injection internal combustion engine
JP5585178B2 (en) Fluid control device
KR102139895B1 (en) Injection valve with magnetic ring element
JP5833121B2 (en) Injector for injecting urea solution into exhaust gas train of internal combustion engine
CN1594869A (en) Fuel injection valve
KR20020072298A (en) Fuel injection valve
JP5009263B2 (en) Fuel injection device
JP2004076733A (en) Fuel injection valve for internal combustion engine
EP2065591B1 (en) Fuel injector with mechanic damping
EP1387077B1 (en) Fuel injector for an internal combustion engine with hydraulic pin actuation
JP5592741B2 (en) Fuel injection valve
KR20150029596A (en) Fluid injection valve
KR20090037290A (en) Injector
EP3153697A1 (en) Valve assembly arrangement for an injection valve and injection valve
RU2280781C1 (en) Electrohydraulic nozzle for diesel engine
JP2006214394A (en) Fuel injection valve
JP4760815B2 (en) nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5585178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees