[go: up one dir, main page]

JP5585069B2 - Manufacturing method of connecting member - Google Patents

Manufacturing method of connecting member Download PDF

Info

Publication number
JP5585069B2
JP5585069B2 JP2009285052A JP2009285052A JP5585069B2 JP 5585069 B2 JP5585069 B2 JP 5585069B2 JP 2009285052 A JP2009285052 A JP 2009285052A JP 2009285052 A JP2009285052 A JP 2009285052A JP 5585069 B2 JP5585069 B2 JP 5585069B2
Authority
JP
Japan
Prior art keywords
fiber reinforced
reinforced resin
resin material
cylindrical bracket
connecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009285052A
Other languages
Japanese (ja)
Other versions
JP2011126075A (en
Inventor
哲也 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009285052A priority Critical patent/JP5585069B2/en
Publication of JP2011126075A publication Critical patent/JP2011126075A/en
Application granted granted Critical
Publication of JP5585069B2 publication Critical patent/JP5585069B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/001Suspension arms, e.g. constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length
    • F16C7/026Constructions of connecting-rods with constant length made of fibre reinforced resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/06Rods, e.g. connecting rods, rails, stakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/013Constructional features of suspension elements, e.g. arms, dampers, springs with embedded inserts for material reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • B60G2206/11Constructional features of arms the arm being a radius or track or torque or steering rod or stabiliser end link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/71Light weight materials
    • B60G2206/7101Fiber-reinforced plastics [FRP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/85Filament winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/28Shaping by winding impregnated fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Vehicle Body Suspensions (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、筒状のブラケット部を介して機械構成部品を連結するための連結部材およびその製造方法に係り、特に、車両等の軽量化に好適な連結部材およびその製造方法に関する。   The present invention relates to a connecting member for connecting machine components via a cylindrical bracket portion and a manufacturing method thereof, and more particularly to a connecting member suitable for weight reduction of a vehicle or the like and a manufacturing method thereof.

従来から、車両のサスペンションアームなど、機械構成部品に連結される連結部材には、加工性に優れ、所望の剛性を得ることができることから、鉄またはアルミニウムなどの金属材が使用されている。しかしながら、近年、耐環境性の観点から車両の燃費を向上させるため、金属材よりも軽量である材料として、樹脂材の使用が注目さている。   Conventionally, a metal member such as iron or aluminum has been used for a connecting member connected to a machine component such as a suspension arm of a vehicle because it has excellent workability and can obtain a desired rigidity. However, in recent years, the use of a resin material has attracted attention as a material that is lighter than a metal material in order to improve vehicle fuel efficiency from the viewpoint of environmental resistance.

例えば、このような連結部材として、以下に示す製造方法で製造された連結部材が提案されている(例えば、特許文献1参照)。まず、一対の筒状の金属ブラケットを準備し、このブラケットを離間して配置し、この配置状態を維持する。次に、2つの金属ブラケットを連結するように、金属ブラケットの外周面に、ガラス繊維とマトリクス樹脂とかならなる繊維強化樹脂材を巻き付けて、繊維強化樹脂層を形成する。さらに、巻き付けた繊維強化樹脂材と一対の金属ブラケットによって囲まれた空間に、FRP素材を挿入し、繊維強化樹脂層を外側から熱プレスにより成形する。これにより、樹脂材料を含む連結部材を得ることができる。   For example, as such a connecting member, a connecting member manufactured by the following manufacturing method has been proposed (see, for example, Patent Document 1). First, a pair of cylindrical metal brackets are prepared, the brackets are spaced apart, and this arrangement state is maintained. Next, a fiber reinforced resin layer made of glass fiber and matrix resin is wound around the outer peripheral surface of the metal bracket so as to connect the two metal brackets to form a fiber reinforced resin layer. Further, an FRP material is inserted into a space surrounded by the wound fiber reinforced resin material and the pair of metal brackets, and the fiber reinforced resin layer is molded from the outside by hot pressing. Thereby, the connection member containing a resin material can be obtained.

また、この他にも、両側に一対の貫通穴が形成された繊維強化樹脂材からなるシートを積層して積層体とし、この積層体の貫通穴のそれぞれに金属ブラケットを勘合せしめた連結部材が提案されている(例えば、特許文献2参照)。   In addition to this, there are laminated members made of a fiber reinforced resin material having a pair of through holes formed on both sides to form a laminated body, and a connecting member in which a metal bracket is fitted into each of the through holes of the laminated body. It has been proposed (see, for example, Patent Document 2).

特開平1−82920号公報JP-A-1-82920 特開平4−81310号公報JP-A-4-81310

ところで、特許文献1に示す連結部材は、金属ブラケットの圧縮方向の荷重は、ブラケット間に配置したFRP素材で受け、引張方向の荷重は、繊維強化樹脂層により受ける構造となっている。しかしながら、製造時においては、このFRP素材と繊維強化樹脂層とは、製造時には別部品であるため、たとえ、熱プレスによりこれらを結合したとして、その結合部部の信頼性は高いものとはいえない。また、FRP素材は、一般的に引張方向の強度に対しては有効な素材であるが、圧縮方向の強度に対しては、金属素材等に比べて充分ではない。   By the way, the connection member shown in Patent Document 1 has a structure in which the load in the compression direction of the metal bracket is received by the FRP material disposed between the brackets, and the load in the tensile direction is received by the fiber reinforced resin layer. However, since the FRP material and the fiber reinforced resin layer are separate parts at the time of manufacture, even if they are combined by hot pressing, the reliability of the joint portion is high. Absent. In addition, the FRP material is generally an effective material for the strength in the tensile direction, but is not sufficient for the strength in the compression direction compared to a metal material or the like.

さらに、特許文献1に示す製造方法において、繊維強化樹脂層(プリプレグの層)のマトリクス樹脂に熱硬化性樹脂を用いられているが、この場合、架橋効果反応により樹脂を硬化させなければならないため、成形時間が長くなる。一方、マトリクス樹脂に熱可塑性樹脂を用いた場合には、上述した熱プレスにより成形する前に、FRP素材の熱可塑性樹脂を溶融温度(軟化温度以上)に加熱(プレヒート)する工程が必要であり、生産性が低い。   Furthermore, in the manufacturing method shown in Patent Document 1, a thermosetting resin is used for the matrix resin of the fiber reinforced resin layer (prepreg layer), but in this case, the resin must be cured by a crosslinking effect reaction. , Molding time becomes longer. On the other hand, when a thermoplastic resin is used for the matrix resin, a step of heating (preheating) the thermoplastic resin of the FRP material to a melting temperature (above the softening temperature) is necessary before molding by the above-described hot press. , Productivity is low.

同様に、また、特許文献2に記載の連結部材も繊維強化樹脂材の積層体で、圧縮方向の荷重を受けるので、その方向の強度は十分ではない。また、繊維強化樹脂材からなるシートに貫通穴を加工する必要があるので、材料の歩留まりが良いとはいえない。   Similarly, the connecting member described in Patent Document 2 is also a laminated body of fiber reinforced resin material, and receives a load in the compression direction, so the strength in that direction is not sufficient. Moreover, since it is necessary to process a through hole in the sheet | seat which consists of a fiber reinforced resin material, it cannot be said that the yield of material is good.

本発明は、上述の課題に鑑みてなされたものであり、その目的とするところは、一対のブラケット間に作用する引張強度と圧縮強度を両立させた連結部材と、このような連結部材として、より信頼性の高い連結部材を、生産性を高めつつ安価に製造する製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and the purpose of the present invention is as a connecting member that achieves both tensile strength and compressive strength acting between a pair of brackets, and as such a connecting member, An object of the present invention is to provide a manufacturing method for manufacturing a more reliable connecting member at a low cost while improving productivity.

前記課題を解決すべく、本発明に係る連結部材は、一対の筒状のブラケット部と、該一対の筒状ブラケット部を連結するアーム部と、を備えた金属部材と、該金属部材を囲繞するように、前記筒状ブラケット部の外周面に巻き付けられた連続強化繊維を含む繊維強化樹脂材と、を含むことを特徴とする。   In order to solve the above problems, a connecting member according to the present invention includes a metal member including a pair of cylindrical bracket portions and an arm portion that connects the pair of cylindrical bracket portions, and surrounds the metal member. And a fiber reinforced resin material including continuous reinforcing fibers wound around the outer peripheral surface of the cylindrical bracket portion.

本発明によれば、一対の筒状ブラケット部間に作用する圧縮荷重は、繊維強化樹脂材に比べて強度の優れている金属部材のアーム部が担うことができる。一方、一対の筒状ブラケット部間に作用する引張荷重は、金属材料に比べて比強度の優れている繊維強化樹脂材が担うことができる。このようにして、連結部材は、筒状ブラケット部間に作用する引張強度と圧縮強度を軽量な構成で両立させることができる。   According to the present invention, the compressive load acting between the pair of cylindrical bracket portions can be borne by the arm portion of the metal member that is superior in strength to the fiber reinforced resin material. On the other hand, the tensile load acting between the pair of cylindrical bracket portions can be borne by the fiber reinforced resin material having a higher specific strength than the metal material. In this way, the connecting member can balance the tensile strength and compressive strength acting between the cylindrical bracket portions with a lightweight configuration.

本発明でいう「繊維強化樹脂材」とは、連続した強化繊維と、この連続強化繊維に含浸されたマトリクス樹脂と、からなる複合材であり、強化繊維と合わせて所定の強度を保つことができるのであれば、特にその種類は限定されるものではない。   The “fiber reinforced resin material” as used in the present invention is a composite material composed of continuous reinforcing fibers and a matrix resin impregnated with the continuous reinforcing fibers, and can maintain a predetermined strength together with the reinforcing fibers. If possible, the type is not particularly limited.

本発明でいう「連続強化繊維」とは、繊維強化樹脂材の機械的強度を強化するための樹脂強化用の連続した繊維をいい、例えば、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維、スチール繊維、PBO繊維、有機繊維、又は高強度ポリエチレン繊維などの繊維が挙げられ、撒き付け方向に連続していれば、糸状の繊維はかりでなく、布状繊維であってもよい。織布である場合には、その織り方としては、平織、綾織、朱子織などの織組織いずれであってもよい。但し、より安価な連結部材を得ようとする場合には、繊維を一方向(巻き付け方向)に引き揃えた(配向した)連続強化繊維であることがより好ましい。   The “continuous reinforcing fiber” in the present invention refers to a continuous fiber for resin reinforcement for reinforcing the mechanical strength of the fiber reinforced resin material. For example, glass fiber, carbon fiber, aramid fiber, alumina fiber, boron Examples thereof include fibers such as fibers, steel fibers, PBO fibers, organic fibers, and high-strength polyethylene fibers. As long as the fibers are continuous in the winding direction, the fibers may be cloth-like fibers instead of thread-like fibers. In the case of a woven fabric, the weaving method may be any of woven structures such as plain weave, twill weave and satin weave. However, in order to obtain a cheaper connecting member, it is more preferably a continuous reinforcing fiber in which fibers are aligned (oriented) in one direction (winding direction).

なお、マトリクス樹脂は、後述する熱可塑性樹脂、または熱硬化性樹脂いずれであってもよくその種類も限定されるものではないが、製造面を考慮すると、後述するように熱可塑性樹脂が好ましい。   The matrix resin may be either a thermoplastic resin or a thermosetting resin, which will be described later, and the type of the matrix resin is not limited. However, in view of the manufacturing aspect, a thermoplastic resin is preferable as will be described later.

ここで、筒状ブラケット部の外周面の形状は、安定して繊維強化樹脂材を保持することができるのであれば、その形状は特に限定されるものではないが、より好ましい態様としては、本発明に係る連結部材の前記筒状ブラケット部の外周面は、凹面となっている。   Here, the shape of the outer peripheral surface of the cylindrical bracket portion is not particularly limited as long as the fiber-reinforced resin material can be stably held. The outer peripheral surface of the said cylindrical bracket part of the connection member which concerns on invention is a concave surface.

本発明によれば、この凹面により形成された筒状ブラケット部の凹空間に、繊維強化樹脂材が配置されるので、連結部材のコンパクト化を図ることができ、さらには、筒状ブラケット部に巻き付いた繊維強化樹脂材を確実に保持することができる。   According to the present invention, since the fiber reinforced resin material is disposed in the concave space of the cylindrical bracket portion formed by the concave surface, the connecting member can be made compact. The wound fiber reinforced resin material can be reliably held.

また、本発明に係る連結部材は、例えば、筒状ブラケット部とアーム部が連結されていれば、その連結状態は特に限定されるものではなく、例えば、一体成形、溶接、締め代を設けた接合等による連結状態を挙げることができる。しかしながら、より好ましい態様としては、本発明に係る連結部材の前記筒状ブラケット部と前記アーム部とは一体成形されている。本発明によれば、筒状ブラケット部とアーム部を一体成形するので、これらを別体で製造し接続した場合に比べて、強度面で信頼性の高い金属部材を得ることができる。   Further, the connecting member according to the present invention is not particularly limited as long as the cylindrical bracket portion and the arm portion are connected, for example, provided with integral molding, welding, and tightening allowance. The connection state by joining etc. can be mentioned. However, as a more preferable aspect, the cylindrical bracket portion and the arm portion of the connecting member according to the present invention are integrally formed. According to the present invention, since the cylindrical bracket portion and the arm portion are integrally formed, it is possible to obtain a metal member that is highly reliable in terms of strength compared to the case where these are manufactured separately and connected.

さらに、本発明に係る連結部材の前記繊維強化樹脂材は、熱可塑性樹脂でオーバーモールドされていることがより好ましい。これにより、巻き付いた繊維強化樹脂材のほつれ等を抑えることができる。   Furthermore, it is more preferable that the fiber reinforced resin material of the connecting member according to the present invention is overmolded with a thermoplastic resin. Thereby, fraying etc. of the wound fiber reinforced resin material can be suppressed.

本願では、本発明として、上述した連結部材を好適に製造することができる製造方法をも開示する。本発明に係る連結部材の製造方法は、一対の筒状のブラケット部と、該一対の筒状ブラケット部を連結するアーム部とかなる金属部材を製造する工程と、該金属部材を囲繞するように、前記筒状ブラケット部の外周面に、連続強化繊維を含む繊維強化樹脂材を、前記連続強化繊維の繊維長方向に張力をかけながら巻き付ける巻き付け工程と、を少なくとも含むことを特徴とするものである。   In this application, the manufacturing method which can manufacture the connecting member mentioned above suitably is also disclosed as this invention. The manufacturing method of the connecting member according to the present invention includes a step of manufacturing a metal member that serves as a pair of cylindrical bracket portions and an arm portion that connects the pair of cylindrical bracket portions, and surrounds the metal member. A winding step of winding a fiber reinforced resin material containing continuous reinforcing fibers on the outer peripheral surface of the cylindrical bracket portion while applying tension in the fiber length direction of the continuous reinforcing fibers. is there.

本発明によれば、製造された金属部材は、アーム部により、筒状ブラケット部を連結されているので、筒状ブラケット部の間に圧縮強度を確保するための部材(例えば、FRP材料など)を配置することは不要である。これにより、製造工程の簡素化、成形時間の短縮を図ることができる。   According to the present invention, since the manufactured metal member is connected to the cylindrical bracket portion by the arm portion, the member for securing compressive strength between the cylindrical bracket portions (for example, FRP material) It is not necessary to arrange. Thereby, the manufacturing process can be simplified and the molding time can be shortened.

連続強化繊維の繊維長方向に張力をかけながら繊維強化樹脂材を巻き付けるので、得られる連結部材の引張り方向の強度を向上させることができる。また、一対の筒状ブラケット部はアーム部で固定されているので、筒状ブラケット間の距離は変動することがない。さらに、繊維強化樹脂材を巻き付けることにより、繊維強化樹脂材の余分は廃材がほとんど排出されることはない。このようにして、簡素な工程で、精度良く、強度面においても信頼性の高い連結部材を安価に製造することができる。   Since the fiber reinforced resin material is wound while tension is applied in the fiber length direction of the continuous reinforcing fiber, the strength of the obtained connecting member in the tensile direction can be improved. Moreover, since a pair of cylindrical bracket part is being fixed by the arm part, the distance between cylindrical brackets does not fluctuate. Furthermore, by winding the fiber reinforced resin material, almost no waste material is discharged from the excess fiber reinforced resin material. In this way, it is possible to manufacture a connecting member with high accuracy and high reliability in a simple process at low cost.

このように繊維強化材を金属部材に巻き付けることができるのであれば、その巻き付け方法は特に限定されるものではない。例えば、一方向に連続強化繊維が引き揃えられた帯状の繊維強化樹脂材や、糸状の繊維強化樹脂材(例えば、連続強化繊維が一方向に引き揃えられた連続強化繊維と糸状のマトリクス樹脂とを紡糸したもの)など、巻き付ける繊維強化樹脂材(プリプレグ)の形態は特に限定されるものではない。また、巻き付ける筒状ブラケット部の外周面も、筒状ブラケット部の軸方向に沿った面に加工したもの(凹凸が無いもの)、または、この方向に沿って凹状または凸状に加工したもの等、外周面の形状も特に限定されるものではない。   As long as the fiber reinforcement can be wound around the metal member in this way, the winding method is not particularly limited. For example, a belt-like fiber reinforced resin material in which continuous reinforcing fibers are aligned in one direction, or a thread-like fiber reinforced resin material (for example, continuous reinforcing fibers in which continuous reinforcing fibers are aligned in one direction and a thread-like matrix resin) The form of the fiber reinforced resin material (prepreg) to be wound is not particularly limited. Also, the outer peripheral surface of the cylindrical bracket portion to be wound is processed into a surface along the axial direction of the cylindrical bracket portion (no irregularities), or processed into a concave or convex shape along this direction, etc. The shape of the outer peripheral surface is not particularly limited.

しかしながら、より好ましい態様としては、前記金属部材の製造工程において、前記筒状ブラケット部の外周面を、凹面に加工し、前記巻き付け工程において、前記繊維強化樹脂材として、前記連続強化繊維が一方向に引き揃えられた糸状の繊維強化樹脂材を巻き付ける。本発明によれば、筒状ブラケット部の外周面を凹面にすることにより、糸状の繊維強化樹脂材を、好適に金属部材を囲繞するように巻き付けることができる。   However, as a more preferable aspect, in the manufacturing process of the metal member, the outer peripheral surface of the cylindrical bracket portion is processed into a concave surface, and in the winding step, the continuous reinforcing fiber is unidirectional as the fiber reinforced resin material. Wrap the thread-like fiber reinforced resin material that has been aligned. According to the present invention, by making the outer peripheral surface of the cylindrical bracket portion concave, the thread-like fiber reinforced resin material can be wound so as to suitably surround the metal member.

また、巻き付け工程後においては、この巻き付けた繊維強化樹脂が緩んだりしなければ、特に、巻き付け工程後の状態の連結部材をそのまま用いてもよく、繊維強化樹脂材のマトリクス樹脂としては、熱硬化性樹脂、または熱可塑性樹脂いずれを用いてもよい。熱可塑性樹脂としては、ナイロン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、又はアクリル系樹脂、ABS系樹脂等を挙げることができる。熱硬化性樹脂としては、例えばビニルエステル系樹脂、エポキシ系樹脂、繊維強化樹脂、不飽和ポリエステル系樹脂等を挙げることができる。   Further, after the winding step, if the wound fiber reinforced resin does not loosen, the connecting member in the state after the winding step may be used as it is, and the matrix resin of the fiber reinforced resin material may be thermoset. Either a functional resin or a thermoplastic resin may be used. Examples of the thermoplastic resin include nylon resin, polycarbonate resin, polyamide resin, polyolefin resin, acrylic resin, ABS resin, and the like. Examples of the thermosetting resin include vinyl ester resins, epoxy resins, fiber reinforced resins, unsaturated polyester resins, and the like.

しかしながら、より好ましい態様としては、前記繊維強化樹脂材のマトリクス樹脂が、熱可塑性樹脂であり、前記巻き付け工程後、前記マトリクス樹脂が軟化するように加熱する。このように、加熱によるマトリクス樹脂の軟化により、繊維強化樹脂材を多重に巻き付けたときに発生する隙間、連続強化繊維間にある空隙(ボイド)等を軟化したマトリクス樹脂が埋め、強固な繊維強化樹脂材を得ることができる。   However, in a more preferred embodiment, the matrix resin of the fiber reinforced resin material is a thermoplastic resin, and after the winding step, heating is performed so that the matrix resin is softened. In this way, the softening of the matrix resin by heating fills the gap generated when multiple fiber reinforced resin materials are wound, the voids between the continuous reinforced fibers, etc., and the matrix resin that has softened fills the fiber. A resin material can be obtained.

また、別の態様としては、前記繊維強化樹脂材のマトリクス樹脂は、熱可塑性樹脂であり、前記巻き付け工程後、前記繊維強化樹脂材が巻き付けられた金属部材を、前記マトリクス樹脂が軟化するように、熱可塑性樹脂によりオーバーモールドすることがより好ましい。   In another aspect, the matrix resin of the fiber reinforced resin material is a thermoplastic resin, and the matrix resin softens the metal member around which the fiber reinforced resin material is wound after the winding step. It is more preferable to overmold with a thermoplastic resin.

本発明によれば、巻き付けた繊維強化樹脂材がオーバーモールドされるので、巻き付け状態を確実に保持することができる。さらに、このオーバーモールド時の熱可塑性樹脂の熱で、マトリクス樹脂が軟化するので、上述した多重巻きつけ時における隙間、繊維強化樹脂のボイドを低減し、より強度の高い連結部材を得ることができる。   According to the present invention, since the wound fiber reinforced resin material is overmolded, the wound state can be reliably maintained. Furthermore, since the matrix resin is softened by the heat of the thermoplastic resin at the time of overmolding, the gaps and voids of the fiber reinforced resin at the time of multiple winding described above can be reduced, and a higher strength connecting member can be obtained. .

また、オーバーモールドする熱可塑性樹脂は、繊維で強化されていない熱可塑性樹脂でも、繊維で強化された熱可塑性樹脂でも、どちらでもよい。また、マトリクス樹脂となじみ性が良いことが好ましく、例えば、上述した同じ種類の熱可塑性樹脂を選択してもよいが、より好ましくは、マトリクス樹脂の軟化温度が、前記オーバーモールドする熱可塑性樹脂の軟化温度よりも低い熱可塑性樹脂を選択する。これにより、オーバーモールド時の熱可塑性樹脂の熱で、より容易にマトリクス樹脂を軟化させることができる。   The thermoplastic resin to be overmolded may be either a thermoplastic resin not reinforced with fibers or a thermoplastic resin reinforced with fibers. In addition, it is preferable that the compatibility with the matrix resin is good. For example, the same kind of thermoplastic resin as described above may be selected. More preferably, the softening temperature of the matrix resin is higher than that of the thermoplastic resin to be overmolded. A thermoplastic resin lower than the softening temperature is selected. Thereby, the matrix resin can be softened more easily by the heat of the thermoplastic resin during overmolding.

また、本発明に係る連結部材の製造方法の金属部材の製造工程において、前記筒状ブラケット部と、前記アーム部とを一体成形することがより好ましく、この一体成形は、例えば、プレス成形、鋳造、鍛造等により行うことができる。   Further, in the metal member manufacturing process of the connecting member manufacturing method according to the present invention, it is more preferable to integrally form the cylindrical bracket portion and the arm portion, and this integral molding is, for example, press molding or casting. , Forging or the like.

本発明によれば、一対の筒状ブラケット間に作用する引張強度と圧縮強度ともに確保することができる連結部材を得ることができ、さらには、より信頼性の高い連結部材を、生産性を高めつつ安価に製造することができる。   According to the present invention, it is possible to obtain a connecting member that can ensure both tensile strength and compressive strength acting between a pair of cylindrical brackets, and further to improve the productivity of a more reliable connecting member. However, it can be manufactured at low cost.

本発明に係る第一実施形態の連結部材の模式的斜視図。The typical perspective view of the connection member of a first embodiment concerning the present invention. 図1に示す連結部材の断面図であり、(a)は、図1のA−A線に沿った矢視断面図、(b)は、図1のB−B線に沿った矢視断面図。It is sectional drawing of the connection member shown in FIG. 1, (a) is arrow sectional drawing along the AA line of FIG. 1, (b) is arrow sectional drawing along the BB line of FIG. Figure. 本発明に係る第二実施形態の連結部材の模式的斜視図。The typical perspective view of the connection member of a second embodiment concerning the present invention. 図3に示す連結部材の断面図であり、(a)は、図1のA−A線に沿った矢視断面図、(b)は、図1のB−B線に沿った矢視断面図。FIG. 4 is a cross-sectional view of the connecting member shown in FIG. 3, where (a) is a cross-sectional view taken along line AA in FIG. 1, and (b) is a cross-sectional view taken along line BB in FIG. Figure. 図1に示す第一実施形態に係る連結部材を好適に製造するための方法を説明するための図であり、(a)は、金属部材の製造工程を説明するための図、(b)は、巻き付け工程を説明するための図、(c)は、オーバーモールドを説明するための図。It is a figure for demonstrating the method for manufacturing suitably the connection member which concerns on 1st embodiment shown in FIG. 1, (a) is a figure for demonstrating the manufacturing process of a metal member, (b) is The figure for demonstrating a winding process, (c) is a figure for demonstrating overmolding. 図3に示す第二実施形態に係る連結部材を好適に製造するための方法を説明するための図であり、(a)は、金属部材の製造工程を説明するための図、(b)は、巻き付け工程を説明するための図、(c)は、オーバーモールドを説明するための図。It is a figure for demonstrating the method for manufacturing suitably the connection member which concerns on 2nd embodiment shown in FIG. 3, (a) is a figure for demonstrating the manufacturing process of a metal member, (b) The figure for demonstrating a winding process, (c) is a figure for demonstrating overmolding.

以下、図面を参照して、2つの実施の形態に基づき本発明を説明する。図1は、本発明に係る第一実施形態の連結部材の模式的斜視図である。図2は、図1に示す連結部材の断面図であり、(a)は、図1のA−A線に沿った矢視断面図、(b)は、図1のB−B線に沿った矢視断面図である。   Hereinafter, the present invention will be described based on two embodiments with reference to the drawings. FIG. 1 is a schematic perspective view of a connecting member according to the first embodiment of the present invention. 2 is a cross-sectional view of the connecting member shown in FIG. 1, wherein (a) is a cross-sectional view taken along line AA in FIG. 1, and (b) is along line BB in FIG. FIG.

図1及び図2に示すように、本実施形態に係る連結部材1Aは、金属部材10Aと、金属部材10Aの周りを囲繞するように配置された繊維強化樹脂材21Aを少なくとも備えている。金属部材10Aは、一対の筒状のブラケット部11A,11Aを備えており、一対の筒状ブラケット部11A,11Aは、アーム部12により連結されている。   As shown in FIGS. 1 and 2, the connecting member 1 </ b> A according to the present embodiment includes at least a metal member 10 </ b> A and a fiber reinforced resin material 21 </ b> A arranged so as to surround the metal member 10 </ b> A. The metal member 10 </ b> A includes a pair of cylindrical bracket portions 11 </ b> A and 11 </ b> A, and the pair of cylindrical bracket portions 11 </ b> A and 11 </ b> A are connected by an arm portion 12.

筒状ブラケット部11Aには、他の機械構成部品と連結するための円柱状の貫通穴13が形成されている。筒状ブラケット部11Aの外周面14Aは、筒状ブラケット部11Aの軸方向Lに沿って面が形成されており、凹凸のない面となっている。   The cylindrical bracket portion 11A is formed with a columnar through hole 13 for connecting to other machine components. The outer peripheral surface 14A of the cylindrical bracket portion 11A is formed with a surface along the axial direction L of the cylindrical bracket portion 11A, and has no irregularities.

金属部材10Aを構成する筒状ブラケット部11A及びアーム部12の素材としては、筒状ブラケット部間の圧縮強度を確保することができるものであれば、特に限定されるものではない。鋼、アルミニウム、マグネシウムなどの金属材料は、加工性に優れ、耐腐性を有しているので好ましく、これらは、さらに、一体成形されていることが好ましい。   The material of the cylindrical bracket portion 11A and the arm portion 12 constituting the metal member 10A is not particularly limited as long as the compressive strength between the cylindrical bracket portions can be ensured. Metal materials such as steel, aluminum, and magnesium are preferable because they are excellent in workability and have corrosion resistance, and are preferably integrally formed.

繊維強化樹脂材21Aは、金属部材10Aを囲繞するように、筒状ブラケット部11Aの外周面14Aに巻き付けられており、その巻き付け方向に対する断面形状は矩形状となっている。また、繊維強化樹脂材21Aは、複数の連続強化繊維23と、これらの繊維に含浸されたマトリクス樹脂からなる。連続強化繊維23は、繊維強化樹脂材21Aの巻き付け方向に沿った方向(一方向)に、引き揃えられて配向している。   The fiber reinforced resin material 21A is wound around the outer peripheral surface 14A of the cylindrical bracket portion 11A so as to surround the metal member 10A, and the cross-sectional shape with respect to the winding direction is rectangular. The fiber reinforced resin material 21A is composed of a plurality of continuous reinforcing fibers 23 and a matrix resin impregnated with these fibers. The continuous reinforcing fibers 23 are aligned and oriented in a direction (one direction) along the winding direction of the fiber reinforced resin material 21A.

連続強化繊維23の素材としては、例えば、炭素繊維、ガラス繊維、天然繊維、有機繊維、または金属繊維から選択される少なくとも1種であり、例えば、炭素繊維とガラス繊維とで構成されていてもよい。また、マトリクス樹脂は、熱可塑性樹脂であり、例えば、PP,PA、PET等の樹脂からなり、マトリクス樹脂を介して、これらの繊維同士を結合することができるのであれば、その種類は特に限定されるものではない。   The material of the continuous reinforcing fiber 23 is, for example, at least one selected from carbon fiber, glass fiber, natural fiber, organic fiber, or metal fiber. For example, the continuous reinforcing fiber 23 may be composed of carbon fiber and glass fiber. Good. The matrix resin is a thermoplastic resin, and is made of, for example, a resin such as PP, PA, or PET, and the type thereof is particularly limited as long as these fibers can be bonded to each other through the matrix resin. Is not to be done.

さらに、金属部材10Aに繊維強化樹脂材21Aが巻きつけられた巻付体を連結部材として用いてもよいが、本実施形態では、この巻付体は、さらに熱可塑性樹脂22によりオーバーモールドされている。これにより、巻き付けられた繊維強化樹脂材21Aの巻き付け状態をより確実に保持することができる。本実施形態では、非繊維強化樹脂でオーバーモールドされているが、上述した短繊維または長繊維からなる強化繊維を含む繊維強化樹脂でオーバーモールドされていてもよい。これにより、連結部材1Aの強度をさらに高めることができる。また、オーバーモールドされている熱可塑性樹脂は、繊維強化樹脂材21Aを構成するマトリクス樹脂となじみ性のよい樹脂であることが望ましい。   Further, a wound body in which the fiber reinforced resin material 21A is wound around the metal member 10A may be used as the connecting member. However, in this embodiment, the wound body is further overmolded with the thermoplastic resin 22. Yes. Thereby, the winding state of 21 A of fiber reinforced resin materials wound can be hold | maintained more reliably. In this embodiment, it is overmolded with a non-fiber reinforced resin, but it may be overmolded with a fiber reinforced resin including the above-described reinforced fibers composed of short fibers or long fibers. Thereby, the strength of the connecting member 1A can be further increased. Moreover, it is desirable that the overmolded thermoplastic resin is a resin that is compatible with the matrix resin constituting the fiber reinforced resin material 21A.

このような連結部材1Aは、貫通穴13を介して、他の機械構成部品と連結される。そして、一対の筒状ブラケット部11A間に作用する圧縮荷重は、繊維強化樹脂材21Aに比べて圧縮強度の優れている金属部材10Aのアーム部12が担う。一方、一対のブラケット部11A間に作用する引張荷重は、金属材料に比べて比強度の優れている繊維強化樹脂材21Aが担うことができる。このようにして、連結部材1Aは、筒状ブラケット部11A間に作用する引張強度と圧縮強度を両立させることができる。   Such a connecting member 1 </ b> A is connected to another machine component through the through hole 13. The compressive load acting between the pair of cylindrical bracket portions 11A is borne by the arm portion 12 of the metal member 10A, which is superior in compressive strength to the fiber reinforced resin material 21A. On the other hand, the tensile load acting between the pair of bracket portions 11A can be borne by the fiber reinforced resin material 21A having a higher specific strength than the metal material. In this way, the connecting member 1A can achieve both tensile strength and compressive strength acting between the cylindrical bracket portions 11A.

図3は、本発明に係る第二実施形態の連結部材の模式的斜視図である。図4は、図3に示す連結部材の断面図であり、(a)は、図1のA−A線に沿った矢視断面図、(b)は、図1のB−B線に沿った矢視断面図である。   FIG. 3 is a schematic perspective view of the connecting member according to the second embodiment of the present invention. 4 is a cross-sectional view of the connecting member shown in FIG. 3, where (a) is a cross-sectional view taken along the line AA in FIG. 1, and (b) is along the line BB in FIG. FIG.

ここで、第二実施形態に係る連結部材1Bは、第一実施形態に係る連結部材1Aと比較して、金属部材のブラケット部の外周面の形状と、これに巻き付いた繊維強化樹脂材の巻き付け状態のみが異なる。従って、第一実施形態の連結部材と同じ構成の部分は、同じ符号を付して、その詳細な説明は省略する。   Here, the connecting member 1B according to the second embodiment is compared with the connecting member 1A according to the first embodiment, and the shape of the outer peripheral surface of the bracket portion of the metal member and the winding of the fiber reinforced resin material wound around the shape. Only the state is different. Therefore, the same components as those of the connection member of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3及び4に示すように、本実施形態に係る連結部材1Bの金属部材10Bは、筒状ブラケット部11Bに繊維強化樹脂材21Bが巻き付き易い形状となっている。具体的には、筒状ブラケット部11Bの外周面14Bは、筒状ブラケット部11Bの軸方向Lに沿って湾曲した凹面となり、筒状ブラケット部11Bは、略鼓状となっている。筒状ブラケット部11Bは、ここでは鼓状となっているが、繊維強化樹脂材21Bとの巻き付け部分に、凹面が形成されていればよく、特に、その面形状(筒状ブラケット部11Bの外形)は、限定されるものではない。   As shown in FIGS. 3 and 4, the metal member 10B of the connecting member 1B according to the present embodiment has a shape in which the fiber reinforced resin material 21B is easily wound around the cylindrical bracket portion 11B. Specifically, the outer peripheral surface 14B of the cylindrical bracket portion 11B is a concave surface curved along the axial direction L of the cylindrical bracket portion 11B, and the cylindrical bracket portion 11B has a substantially drum shape. Although the cylindrical bracket part 11B has a drum shape here, it is sufficient that a concave surface is formed at a portion wound around the fiber reinforced resin material 21B, and in particular, its surface shape (the outer shape of the cylindrical bracket part 11B). ) Is not limited.

また、繊維強化樹脂材21Bは、金属部材10Bを囲繞するように、筒状ブラケット部11Bの外周面14Bに巻き付けられており、その巻き付け方向に対する断面形状は縦長の楕円状になっている。   The fiber reinforced resin material 21B is wound around the outer peripheral surface 14B of the cylindrical bracket portion 11B so as to surround the metal member 10B, and the cross-sectional shape with respect to the winding direction is a vertically long ellipse.

このように、外周面14Bを凹面にすることにより、凹面に形成された筒状ブラケット部11Bの凹部に、繊維強化樹脂材21Bが巻き付けて配置されるので、連結部材1Bのコンパクト化を図ることができ、さらには、筒状ブラケット部11Bに繊維強化樹脂材21Bをずれなく確実に保持することができ、信頼性の高い連結部材1Bを得ることができる。   Thus, by making the outer peripheral surface 14B concave, the fiber reinforced resin material 21B is wound around the concave portion of the cylindrical bracket portion 11B formed on the concave surface, so that the connecting member 1B can be made compact. Furthermore, the fiber reinforced resin material 21B can be securely held in the cylindrical bracket portion 11B without deviation, and a highly reliable connecting member 1B can be obtained.

以下に、上述した2つの実施形態に係る連結部材1A,1Bを好適に製造するための製造方法を説明する。まず、第一実施形態に係る連結部材1Aの製造方法を以下に説明する。図5は、図1に示す第一実施形態に係る連結部材を好適に製造するための方法を説明するための図であり、(a)は、金属部材の製造工程を説明するための図、(b)は、巻き付け工程を説明するための図、(c)は、オーバーモールドを説明するための図である。   Below, the manufacturing method for manufacturing suitably connecting member 1A, 1B which concerns on two embodiment mentioned above is demonstrated. First, the manufacturing method of 1 A of connection members which concern on 1st embodiment is demonstrated below. FIG. 5 is a diagram for explaining a method for suitably producing the connecting member according to the first embodiment shown in FIG. 1, and (a) is a diagram for explaining a production process of the metal member, (B) is a figure for demonstrating a winding process, (c) is a figure for demonstrating overmolding.

まず、図5(a)に示すように、金属部材10Aの製造工程を行う。具体的には、一対の筒状のブラケット部11A,11Aと、一対の筒状ブラケット部11A,11Aを連結するアーム部12と、を備えた金属部材10Aを一体成形により製造する。一体成形は、例えば、プレス成形、鋳造、鍛造等により行われる。これにより、強度面において、信頼性の高い金属部材10Aを得ることができる。なお、筒状ブラケット部11Aの貫通穴13は、一体成形をした後に、ドリルなどを用いた穴加工により成形してもよい。   First, as shown to Fig.5 (a), the manufacturing process of 10 A of metal members is performed. Specifically, a metal member 10A including a pair of cylindrical bracket portions 11A and 11A and an arm portion 12 connecting the pair of cylindrical bracket portions 11A and 11A is manufactured by integral molding. The integral molding is performed by, for example, press molding, casting, forging, or the like. Thereby, 10A of metal members with high reliability can be obtained in an intensity | strength surface. Note that the through hole 13 of the cylindrical bracket portion 11A may be formed by hole forming using a drill or the like after being integrally formed.

次に、図5(b)に示すように、巻き付け工程を行う。具体的には、金属部材10Aを囲繞するように、筒状ブラケット部11Aの外周面14Aに、連続強化繊維23を含む帯状の繊維強化樹脂材(プリプレグ)21aを、連続強化繊維23の繊維長方向に張力をかけながら多重に巻き付けて、巻付体1aを製造する。   Next, as shown in FIG. 5B, a winding process is performed. Specifically, a strip-shaped fiber reinforced resin material (prepreg) 21a including continuous reinforcing fibers 23 is disposed on the outer peripheral surface 14A of the cylindrical bracket portion 11A so as to surround the metal member 10A, and the fiber length of the continuous reinforcing fibers 23. The wound body 1a is manufactured by wrapping multiple times while applying tension in the direction.

この帯状の繊維強化樹脂材21aは、上述したように、長手方向に沿って(一方向に)引き揃えられた(配向した)複数の連続強化繊維23に、上述した素材のマトリクス樹脂が含浸されたもの(いわゆるUD材)である。   As described above, the strip-shaped fiber-reinforced resin material 21a is impregnated with the matrix resin of the above-described material in the plurality of continuous reinforcing fibers 23 that are aligned (oriented) along the longitudinal direction (in one direction). (So-called UD material).

上述した金属部材10Aは、アーム部12により、筒状ブラケット部11Aを連結されているので、筒状ブラケット部11A,11Aの間に圧縮強度を確保するための部材を配置することは不要である。   Since the metal member 10A described above is connected to the cylindrical bracket portion 11A by the arm portion 12, it is not necessary to arrange a member for securing the compressive strength between the cylindrical bracket portions 11A and 11A. .

連続強化繊維23の繊維長方向に張力をかけながら繊維強化樹脂材21aを巻き付けるので、得られるブラケット部間の引張り方向の強度は向上する。また、一対の筒状ブラケット部11A,11Aはアーム部12で固定されているので、帯状の繊維強化樹脂材21aの巻き付け時に、筒状ブラケット部11A,11A間の距離は変動することがない。さらに、帯状の繊維強化樹脂材21aを巻き付けることにより、連結部材1Aの繊維強化樹脂材21Aをなすので、帯状の繊維強化樹脂材21aの余分な廃材がほとんど排出されることはない。   Since the fiber reinforced resin material 21a is wound while tension is applied in the fiber length direction of the continuous reinforcing fiber 23, the strength in the tensile direction between the obtained bracket portions is improved. Further, since the pair of cylindrical bracket portions 11A and 11A are fixed by the arm portion 12, the distance between the cylindrical bracket portions 11A and 11A does not vary when the belt-shaped fiber reinforced resin material 21a is wound. Further, since the fiber-reinforced resin material 21A of the connecting member 1A is formed by winding the belt-shaped fiber reinforced resin material 21a, the excess waste material of the belt-shaped fiber reinforced resin material 21a is hardly discharged.

帯状の繊維強化樹脂材21aの巻き付け状態を例えば接着剤等により保持して、この巻付体1aを連結部材としてもよい。さらに、巻き付け工程後、巻付体1aの繊維強化樹脂材21Aのマトリクス樹脂が軟化するように加熱処理し、この処理後の巻付体1aを連結部材としてもよい。   The wound state of the belt-shaped fiber reinforced resin material 21a may be held by, for example, an adhesive, and the wound body 1a may be used as a connecting member. Further, after the winding step, heat treatment may be performed so that the matrix resin of the fiber reinforced resin material 21A of the wound body 1a is softened, and the wound body 1a after the treatment may be used as a connecting member.

加熱のよるマトリクス樹脂の軟化により、帯状の繊維強化樹脂材21aを多重に巻き付けたときに発生する隙間を無くすように、軟化したマトリクス樹脂が埋めることができる。このようにして、繊維強化樹脂材21Aの内部に存在する空隙(ボイド)を低減し、より強固な連結部材を得ることができる。   By softening the matrix resin by heating, the softened matrix resin can be filled so as to eliminate gaps generated when the belt-like fiber reinforced resin material 21a is wound in multiple layers. In this way, voids existing in the fiber reinforced resin material 21A can be reduced, and a stronger connection member can be obtained.

しかしながら、本実施形態では、さらに図5(c)に示すように、巻付体1aを熱可塑性樹脂Rでオーバーモールドする。ここでは、まず、上型51Aと下型52Aとからなる成形型50Aの内部に、巻付体1aを配置し、上型51Aと下型52Aとを型締めする。巻付体1aを配置し型締めした状態で、成形型50Aの内部(キャビティ)には、巻付体1aの表面等をオーバーモールドできる空間が形成されている。   However, in this embodiment, as shown in FIG. 5C, the wound body 1a is overmolded with the thermoplastic resin R. Here, first, the wound body 1a is arranged inside the molding die 50A composed of the upper die 51A and the lower die 52A, and the upper die 51A and the lower die 52A are clamped. In a state where the wound body 1a is arranged and clamped, a space in which the surface of the wound body 1a and the like can be overmolded is formed in the mold 50A (cavity).

次に、成形型50Aの樹脂導入口53Aから、加熱により軟化した熱可塑性樹脂Rを射出し、熱可塑性樹脂Rにより、巻付体1aをオーバーモールドし、これを脱型して連結部材1Aを得る。ここでは、射出前の熱可塑性樹脂Rを、成形型50A内において繊維強化樹脂材21Aのマトリクス樹脂が軟化する温度まで加熱している。   Next, the thermoplastic resin R softened by heating is injected from the resin introduction port 53A of the molding die 50A, and the wound body 1a is overmolded by the thermoplastic resin R, and this is removed to remove the connecting member 1A. obtain. Here, the thermoplastic resin R before injection is heated to a temperature at which the matrix resin of the fiber reinforced resin material 21A is softened in the mold 50A.

また、オーバーモールドする熱可塑性樹脂Rの軟化(開始)温度が、マトリクス樹脂の軟化(開始)温度よりもより高い熱可塑性樹脂Rを選択している。例えば、熱可塑性樹脂Rとしては、半芳香族ナイロン、マトリクス樹脂としては、6−ナイロンを挙げることができる。尚、軟化温度の異なる同種の熱可塑性樹脂を使い分けても良い。   Further, the thermoplastic resin R is selected such that the softening (starting) temperature of the overmolding thermoplastic resin R is higher than the softening (starting) temperature of the matrix resin. For example, examples of the thermoplastic resin R include semi-aromatic nylon, and examples of the matrix resin include 6-nylon. The same kind of thermoplastic resin having different softening temperatures may be used properly.

このようにして、耐圧縮荷重を担う部分を従来の如くFRP材料で成形するのではなく、筒状ブラケット部11Aを連結するアーム部12が担うので、製造工程の簡素化、成形時間の短縮を図ることができる。   In this way, the portion that bears the compressive load resistance is not molded by FRP material as in the prior art, but the arm portion 12 that connects the cylindrical bracket portion 11A bears, thus simplifying the manufacturing process and shortening the molding time. Can be planned.

また、巻き付けた繊維強化樹脂材21Aを含む巻付体1aがオーバーモールドされるので、繊維強化樹脂材21Aの巻き付け状態を確実に保持することができる。さらに、このオーバーモールド時の熱可塑性樹脂Rの熱で、マトリクス樹脂が軟化するので、上述した多重巻きつけ時における繊維強化樹脂材のボイドを低減し、より強度の高い連結部材1Aを得ることができる。   Moreover, since the wound body 1a including the wound fiber reinforced resin material 21A is overmolded, the wound state of the fiber reinforced resin material 21A can be reliably maintained. Furthermore, since the matrix resin is softened by the heat of the thermoplastic resin R at the time of overmolding, it is possible to reduce the voids of the fiber reinforced resin material at the time of multiple winding described above, and to obtain a stronger connecting member 1A. it can.

図6は、図3に示す第二実施形態に係る連結部材を好適に製造するための方法を説明するための図であり、(a)は、金属部材の製造工程を説明するための図、(b)は、巻き付け工程を説明するための図、(c)は、オーバーモールドを説明するための図である。   FIG. 6 is a diagram for explaining a method for suitably producing the connecting member according to the second embodiment shown in FIG. 3, and (a) is a diagram for explaining a production process of the metal member, (B) is a figure for demonstrating a winding process, (c) is a figure for demonstrating overmolding.

なお、本実施形態では、図6(a)及び(b)に示す、金属部材の製造工程と、巻き付け工程が異なり、それ以降のオーバーモールド等の工程は、第一実施形態で示した工程と同じ工程であるので、その詳細の説明は説明する。例えば、図6(c)は、巻付体1bの形状が、第一実施形態のものと異なるのみであるので、符号の末尾のAをBに変更しているが、第一実施形態と同様の方法である。   In this embodiment, the metal member manufacturing process and the winding process shown in FIGS. 6A and 6B are different, and the subsequent processes such as overmolding are the same as the processes shown in the first embodiment. Since it is the same process, the detailed description is demonstrated. For example, in FIG. 6C, since the shape of the wound body 1b is only different from that of the first embodiment, A at the end of the code is changed to B, but the same as in the first embodiment. It is a method.

まず、図6(a)に示すように、金属部材10Bの製造工程を行う。具体的には、一対の筒状のブラケット部11B,11Bと、一対の筒状ブラケット部11B,11Bを連結するアーム部12と、を備えた金属部材10Bを一体成形により製造する。このとき、筒状ブラケット部11Bの外周面14Bを、筒状ブラケット部11Bの軸方向Lに沿って湾曲した凹面に加工する。この凹面の加工は、一体成形時、もしくは、一体成形後いずれのタイミングで行ってもよい。また、貫通穴13の加工は、第一実施形態と同様である。   First, as shown to Fig.6 (a), the manufacturing process of the metal member 10B is performed. Specifically, a metal member 10B including a pair of cylindrical bracket portions 11B and 11B and an arm portion 12 connecting the pair of cylindrical bracket portions 11B and 11B is manufactured by integral molding. At this time, the outer peripheral surface 14B of the cylindrical bracket part 11B is processed into a concave surface curved along the axial direction L of the cylindrical bracket part 11B. The processing of the concave surface may be performed at any time during integral molding or after integral molding. Moreover, the process of the through-hole 13 is the same as that of 1st embodiment.

次に、図6(b)に示すように、巻き付け工程を行う。具体的には、金属部材10Bを囲繞するように、筒状ブラケット部11Bの外周面14Bに、連続強化繊維23を含む糸状の繊維強化樹脂材21bを多重に巻き付ける。巻き付けの際には、糸状の繊維強化樹脂材21bの連続強化繊維23の繊維長方向に張力を与えて巻き付けること(引き抜き成形)により巻付体1bを製造することができる。   Next, as shown in FIG. 6B, a winding process is performed. Specifically, thread-like fiber reinforced resin materials 21b including continuous reinforcing fibers 23 are wound around the outer peripheral surface 14B of the cylindrical bracket portion 11B in a multiple manner so as to surround the metal member 10B. At the time of winding, the wound body 1b can be manufactured by applying tension (pulling forming) in the fiber length direction of the continuous reinforcing fiber 23 of the thread-like fiber reinforced resin material 21b.

この糸状の繊維強化樹脂材21bは、上述したように、長手方向に沿って(一方向に)引き揃えられた(配向した)複数の連続強化繊維23に、上述した素材のマトリクス樹脂が含浸されたものである。例えば、糸状の繊維強化樹脂材21bは、ポリプロピレン樹脂とガラス繊維の混合紡糸などを挙げることができる。これは、“Twintex“(登録商標)として知られたロービング材を例示することができ、この材料は微細で均質に混合される連続的なガラスフィラメントおよびポリプロピレンのフィラメントから構成されている。   As described above, the thread-like fiber reinforced resin material 21b is impregnated with the matrix resin of the material described above into a plurality of continuous reinforcing fibers 23 aligned (oriented) along the longitudinal direction (in one direction). It is a thing. For example, the fiber-like fiber reinforced resin material 21b can include a mixed spinning of polypropylene resin and glass fiber. This can be exemplified by a roving material known as “Twintex” ®, which is composed of continuous glass filaments and polypropylene filaments that are finely and homogeneously mixed.

このようにして、第一実施形態の製造方法で示した効果に加え、さらに、筒状ブラケット部11Bの外周面14Bを凹面にすることにより、糸状の繊維強化樹脂材21bを、好適に金属部材10Bを囲繞するように巻き付けることができる。   In this way, in addition to the effects shown in the manufacturing method of the first embodiment, the outer peripheral surface 14B of the cylindrical bracket portion 11B is made concave so that the fiber-like fiber reinforced resin material 21b is suitably a metal member. It can be wound so as to surround 10B.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.

例えば、本実施形態では、オーバーモールドを射出成形により行ったが、これをプレス成形によって行ってもよい。また、第二実施形態の筒状ブラケット部の外周面を湾曲した凹面としたが、繊維強化樹脂材を巻き付けることができるのであれば、矩形状の凹面としてもよい。   For example, in this embodiment, overmolding is performed by injection molding, but this may be performed by press molding. Moreover, although the outer peripheral surface of the cylindrical bracket part of 2nd embodiment was made into the concave surface which curved, as long as a fiber reinforced resin material can be wound, it is good also as a rectangular-shaped concave surface.

1A,1B:連結部材、1a,1b:巻付体(連結部材)、10A,10B:金属部材、11A,11B:筒状ブラケット部、12:アーム部、13:貫通穴、14A,14B:外周面、21A,21B:繊維強化樹脂材、21a:帯状の繊維強化樹脂材、21b:糸状の繊維強化樹脂材、22:熱可塑性樹脂、23:連続強化繊維   1A, 1B: connecting member, 1a, 1b: wound body (connecting member), 10A, 10B: metal member, 11A, 11B: cylindrical bracket portion, 12: arm portion, 13: through hole, 14A, 14B: outer periphery 21A, 21B: Fiber reinforced resin material, 21a: Band-shaped fiber reinforced resin material, 21b: Thread-shaped fiber reinforced resin material, 22: Thermoplastic resin, 23: Continuous reinforced fiber

Claims (3)

一対の筒状のブラケット部と、該一対の筒状ブラケット部を連結するアーム部とからなる金属部材を製造する工程と、
該金属部材を囲繞するように、前記筒状ブラケット部の外周面に、連続強化繊維を含む繊維強化樹脂材を、前記連続強化繊維の繊維長方向に張力をかけながら多重に巻き付ける巻き付け工程と、を少なくとも含み、
前記繊維強化樹脂材を構成するマトリクス樹脂は、熱可塑性樹脂であり、前記巻き付け工程後、前記繊維強化樹脂材が巻き付けられた金属部材を、前記マトリクス樹脂が軟化するように、熱可塑性樹脂によりオーバーモールドし、
前記マトリクス樹脂の軟化温度は、前記オーバーモールドする熱可塑性樹脂の軟化温度よりも低いことを特徴とする連結部材の製造方法。
A step of manufacturing a metal member comprising a pair of cylindrical bracket portions and an arm portion connecting the pair of cylindrical bracket portions;
A winding step of wrapping a fiber reinforced resin material containing continuous reinforcing fibers around the outer peripheral surface of the cylindrical bracket portion in a multiple manner while applying tension in the fiber length direction of the continuous reinforcing fibers so as to surround the metal member; at least look at including the,
The matrix resin constituting the fiber reinforced resin material is a thermoplastic resin, and after the winding step, the metal member wrapped with the fiber reinforced resin material is overcoated with the thermoplastic resin so that the matrix resin is softened. Mold,
The method for manufacturing a connecting member , wherein the softening temperature of the matrix resin is lower than the softening temperature of the overmolded thermoplastic resin .
前記金属部材の製造工程において、前記筒状ブラケット部の外周面を、凹面に加工し、前記巻き付け工程において、前記繊維強化樹脂材として、前記連続強化繊維が一方向に引き揃えられた糸状の繊維強化樹脂材を巻き付けることを特徴とする請求項に記載の連結部材の製造方法。 In the manufacturing process of the metal member, the outer peripheral surface of the cylindrical bracket portion is processed into a concave surface, and in the winding step, the continuous reinforcing fibers are aligned in one direction as the fiber reinforced resin material. The method for manufacturing a connecting member according to claim 1 , wherein a reinforced resin material is wound. 前記金属部材の製造工程において、前記筒状ブラケット部と、前記アーム部とを一体成形することを特徴とする請求項1または2に記載の連部材の製造方法。 In the manufacturing process of the metal member, and the cylindrical bracket unit, method for producing consolidated member according to claim 1 or 2, characterized in that integrally molded with the arm portion.
JP2009285052A 2009-12-16 2009-12-16 Manufacturing method of connecting member Expired - Fee Related JP5585069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285052A JP5585069B2 (en) 2009-12-16 2009-12-16 Manufacturing method of connecting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285052A JP5585069B2 (en) 2009-12-16 2009-12-16 Manufacturing method of connecting member

Publications (2)

Publication Number Publication Date
JP2011126075A JP2011126075A (en) 2011-06-30
JP5585069B2 true JP5585069B2 (en) 2014-09-10

Family

ID=44289206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285052A Expired - Fee Related JP5585069B2 (en) 2009-12-16 2009-12-16 Manufacturing method of connecting member

Country Status (1)

Country Link
JP (1) JP5585069B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737134A (en) * 2019-03-14 2019-05-10 中国商用飞机有限责任公司 Broken safety connecting rod
EP4442570A1 (en) * 2023-04-06 2024-10-09 B/E Aerospace (UK) Limited Component for aircraft interiors

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014013752A2 (en) * 2011-12-07 2017-06-13 Du Pont method to form an article from a one-way tape and article
JP2014133446A (en) * 2013-01-09 2014-07-24 Nippon Light Metal Co Ltd High intensity suspension parts for vehicle, and method for manufacturing the same
DE102015208036A1 (en) 2014-05-02 2015-11-05 Toshiba Kikai Kabushiki Kaisha Shaping device, molding method and molded products
JP6184993B2 (en) * 2014-05-02 2017-08-23 東芝機械株式会社 Molded product manufacturing apparatus, molded product manufacturing method, and molded product
EP3288786B1 (en) * 2015-04-28 2019-09-18 Hutchinson Linking arm, for example for a vehicle wheel suspension, and method for manufacturing same
GB201611862D0 (en) * 2016-07-07 2016-08-24 Williams Grand Prix Eng Ltd A structural member
JP6708582B2 (en) 2017-04-10 2020-06-10 トヨタ自動車株式会社 Vehicle suspension arm
JP6538141B2 (en) * 2017-11-20 2019-07-03 本田技研工業株式会社 Double wishbone type suspension system
US11485468B2 (en) * 2018-09-27 2022-11-01 The Boeing Company Thermoplastic multi-grid overmolded/co-consolidated aircraft fuselage structure
TW202015962A (en) * 2018-10-29 2020-05-01 明安國際企業股份有限公司 Motorcycle steering connecting rod component and manufacturing method thereof having the advantages of low density and high rigidity of the carbon fiber material
JP7196126B2 (en) 2020-03-18 2022-12-26 株式会社有沢製作所 Connecting member for vehicle structure
CN115534604A (en) * 2021-06-29 2022-12-30 博戈橡胶塑料(株洲)有限公司 Lightweight connecting rod and manufacturing method thereof
DE102021116968A1 (en) * 2021-07-01 2023-01-05 Acad Group Gmbh Structural component with additively manufactured endless fiber insert
CN113815376B (en) * 2021-10-29 2023-07-28 博戈橡胶塑料(株洲)有限公司 Light-weight large-load commercial vehicle stabilizer bar suspender assembly and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH655551B (en) * 1981-06-26 1986-04-30
JPS6323019A (en) * 1985-12-06 1988-01-30 Sumitomo Electric Ind Ltd Fiber-reinforced plastic cooking stove and method for manufacturing the same
JPS6482920A (en) * 1987-09-24 1989-03-28 Mazda Motor Manufacture of arm member of frp
JPH01218824A (en) * 1988-02-29 1989-09-01 Mazda Motor Corp FRP arm member
JPH03161322A (en) * 1989-11-20 1991-07-11 Toyota Motor Corp Manufacture of fiber-reinforced resin product
US6116113A (en) * 1997-08-13 2000-09-12 Maclean-Fogg Company Composite link
US6324940B1 (en) * 1997-08-13 2001-12-04 Maclean-Fogg Company Composite link

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737134A (en) * 2019-03-14 2019-05-10 中国商用飞机有限责任公司 Broken safety connecting rod
CN109737134B (en) * 2019-03-14 2021-03-30 中国商用飞机有限责任公司 Broken safety connecting rod
EP4442570A1 (en) * 2023-04-06 2024-10-09 B/E Aerospace (UK) Limited Component for aircraft interiors

Also Published As

Publication number Publication date
JP2011126075A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5585069B2 (en) Manufacturing method of connecting member
CN105121175B (en) End face and wheel rim connecting portion for combined wheels
US11536306B2 (en) Attachment of composite lug to composite structural tube
CN105235232B (en) Method for manufacturing rack housing and rack housing
CN108790651B (en) vehicle suspension arm
CA2586394A1 (en) Fiber reinforced rebar
KR101646050B1 (en) Bicycle frame using composite materials and its manufacturing method
WO2017026355A1 (en) Vibration-proof member and method for manufacturing vibration-proof member
KR102166843B1 (en) Insert assembly of hardware and manufacturing method thereof
KR101703781B1 (en) Manufacturing method of high strength resin cowl cross member
KR101807039B1 (en) Composites having insert steel for welding
KR20160033947A (en) Method of forming fiber reinforced plastic composite for forming preform
JP2007271079A (en) Torque transmission shaft
JP5514658B2 (en) Case and manufacturing method thereof
JPH03161326A (en) Pipe fitted with flange made of fiber reinforced composite material and preparation thereof
KR101704038B1 (en) Propeller shaft for vehicle and manufacturing method thereof
KR102131777B1 (en) Composite plate and method joining for of the same
JP2020104308A (en) Fiber-reinforced resin body
KR101525388B1 (en) Stabilizer bar and method for making the same
JP2015139930A (en) Manufacturing method of bar-shaped part and bar-shaped part
US20230264748A1 (en) Vehicle body pillar structure and vehicle body structure
JPH11192990A (en) Frp monocock frame for bicycle having additional reinfrocing material layer in seat part and belly part
KR101905996B1 (en) Composite vehicle body parts and manufacturing method of the same
JP3135363U (en) Bicycle rear frame
WO2023238300A1 (en) Carbon-fiber-reinforced resin cylinder for propeller shafts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R151 Written notification of patent or utility model registration

Ref document number: 5585069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees